1
|
Kumar A, Estrada DF. Structural basis of bidirectional allostery across the heme in a cytochrome P450 enzyme. J Biol Chem 2023; 299:104977. [PMID: 37390989 PMCID: PMC10416055 DOI: 10.1016/j.jbc.2023.104977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Cytochromes P450 (CYPs) are heme-containing enzymes that are present in all kingdoms of life and share a structurally homologous, globular protein fold. CYPs utilize structures distal to the heme to recognize and coordinate substrates, while the necessary interactions with redox partner proteins are mediated at the opposite, proximal surface. In the current study, we investigated the functional allostery across the heme for the bacterial enzyme CYP121A1, which utilizes a non-polar distal-to-distal dimer interface for specific binding of its dicyclotyrosine substrate. Fluorine-detected Nuclear Magnetic Resonance (19F-NMR) spectroscopy was combined with site-specific labeling of a distal surface residue (S171C of the FG-loop), one residue of the B-helix (N84C), and two proximal surface residues (T103C and T333C) with a thiol-reactive fluorine label. Adrenodoxin was used as a substitute redox protein and was found to promote a closed arrangement of the FG-loop, similar to the addition of substrate alone. Disruption of the protein-protein interface by mutagenesis of two CYP121 basic surface residues removed the allosteric effect. Moreover, 19F-NMR spectra of the proximal surface indicate that ligand-induced allostery modulates the environment at the C-helix but not the meander region of the enzyme. In light of the high degree of structural homology in this family of enzymes, we interpret the findings from this work to represent a conserved allosteric network in CYPs.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
2
|
Singh H, Kumar R, Mazumder A, Salahuddin, Mazumder R, Abdullah MM. Insights into Interactions of Human Cytochrome P450 17A1: Review. Curr Drug Metab 2022; 23:172-187. [DOI: 10.2174/1389200223666220401093833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/15/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cytochrome P450s are a widespread and vast superfamily of hemeprotein monooxygenases that metabolize physiologically essential chemicals necessary for most species' survival, from protists to plants to humans. They catalyze the synthesis of steroid hormones, cholesterol, bile acids, and arachidonate metabolites and the degradation of endogenous compounds such as steroids, fatty acids, and other catabolizing compounds as an energy source and detoxifying xenobiotics such as drugs, procarcinogens, and carcinogens. The human CYP17A1 is one of the cytochrome P450 genes located at the 10q chromosome. The gene expression occurs in the adrenals and gonads, with minor amounts in the brain, placenta, and heart. This P450c17 cytochrome gene is a critical steroidogenesis regulator which performs two distinct activities: 17 alpha-hydroxylase activity (converting pregnenolone to 17-hydroxypregnenolone and progesterone to 17-hydroxyprogesterone, these precursors are further processed to provide glucocorticoids and sex hormones) and 17, 20-lyase activity (which converts 17-hydroxypregnenolone to DHEA). Dozens of mutations within CYP17A1 are found to cause 17-alpha-hydroxylase and 17, 20-lyase deficiency. This condition affects the function of certain hormone-producing glands, resulting in high blood pressure levels (hypertension), abnormal sexual development, and other deficiency diseases. This review highlights the changes in CYP17A1 associated with gene-gene interaction, drug-gene interaction, chemical-gene interaction, and its biochemical reactions; they have some insights to correlate with the fascinating functional characteristics of this human steroidogenic gene. The findings of our theoretical results will be helpful to further the design of specific inhibitors of CYP17A1.
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rupa Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | | |
Collapse
|
3
|
Jiang Z, Xu C, Wang L, Hong K, Ma C, Lv C. Potential enzymes involved in beer monoterpenoids transformation: structures, functions and challenges. Crit Rev Food Sci Nutr 2021; 63:2082-2092. [PMID: 34459289 DOI: 10.1080/10408398.2021.1970510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Monoterpenes are important flavor and fragrance compounds in food. In beer, the monoterpenes mainly come from hops added during boiling process. Biotransformations of monoterpene which occurred during fermentation conferred beer with various kinds of aroma profiles, which can be mainly attributed to the contribution of enzymes in yeast. However, there are few reports on the identification and characterization of these enzymes in yeast. Illustrating the structure and functions of key enzymes related to transformations will broaden their potential applications in beer or other foodstuffs. Monoterpenoids including terpene hydrocarbons (limonene, myrcene, and pinene) and terpene alcohol (linalool, geraniol, nerol, and citronellol) gave the beer flower-like or fruit-like aroma. The biotransformation of monoterpenes and monoterpene alcohols in bacteria and yeast, and potential enzymes related to the transformation of them are reviewed here. Enzymes primarily are dehydrogenases including linalool dehydrogenase/isomerase, geraniol/geranial dehydrogenase, nerol dehydrogenase and citronellol dehydrogenase. Most of them are substrate-specific or substrate-specific after modifications by biotechnology methods, and part of them have been expressed in E. coli, while the purification and catalytic rate is very low. Efforts should be made to acquire abundant enzymes, and to fabricate enzyme-expressing yeast, which can be further applied in beer fermentation system.highlightsMonoterpenoids contributed to the flavor of food, especially beer.Transformation of monoterpenoids occurred during fermentation.Various kinds of enzymes are involved in the transformation of monoterpenoids in bacteria, yeast, etc.Crystal structures of these enzymes have been partially resolved.Few enzymes are further applied in food system to obtain abundant flavor.
Collapse
Affiliation(s)
- Zhenghui Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, China
| | - Chen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, China
| | - Limin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, China
| | - Kai Hong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, China
| | - Changwei Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, China
| |
Collapse
|
4
|
An overview of the factors playing a role in cytochrome P450 monooxygenase and ferredoxin interactions. Biophys Rev 2020; 12:1217-1222. [PMID: 32885385 DOI: 10.1007/s12551-020-00749-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/28/2020] [Indexed: 01/11/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s) are heme-thiolate proteins that are ubiquitously present in organisms, including non-living entities such as viruses. With the exception of self-sufficient P450s, all other P450 enzymes need electrons to perform their enzymatic activity and these electrons are supplied by P450 redox proteins. Different types of P450 redox proteins can be found in organisms and are classified into different classes. Bacterial P450s (class I) receive electrons from ferredoxins which are iron-sulfur cluster proteins. The presence of more than one copy and different types of ferredoxins within a bacterial species poses fundamental questions about the selectivity of P450s and ferredoxins in relation to each other. Apart from transferring electrons, ferredoxins have also been found to modulate P450 functions. Achieving an understanding of the interaction between ferredoxins and P450s is required to harness their biotechnological potential for designing a universal electron transfer protein. A brief overview of factors playing a role in ferredoxin and P450 interactions is presented in this review article.
Collapse
|
5
|
Liou SH, Chuo SW, Qiu Y, Wang LP, Goodin DB. Linkage between Proximal and Distal Movements of P450cam Induced by Putidaredoxin. Biochemistry 2020; 59:2012-2021. [PMID: 32369344 PMCID: PMC9749489 DOI: 10.1021/acs.biochem.0c00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Putidaredoxin (Pdx) is the exclusive reductase and a structural effector for P450cam (CYP101A1). However, the mechanism of how Pdx modulates the conformational states of P450cam remains elusive. Here we report a putative communication pathway for the Pdx-induced conformational change in P450cam using results of double electron-electron resonance (DEER) spectroscopy and molecular dynamics simulations. Use of solution state DEER measurements allows us to observe subtle conformational changes in the internal helices in P450cam among closed, open, and P450cam-Pdx complex states. Molecular dynamics simulations and dynamic network analysis suggest that Pdx binding is coupled to small coordinated movements of several regions of P450cam, including helices C, B', I, G, and F. These changes provide a linkage between the Pdx binding site on the proximal side of the enzyme and helices F/G on the distal side and the site of the largest movement resulting from the Pdx-induced closed-to-open transition. This study provides a detailed rationale for how Pdx exerts its long-recognized effector function at the active site from its binding site on the opposite face of the enzyme.
Collapse
Affiliation(s)
| | | | - Yudong Qiu
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - David B. Goodin
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
6
|
Li Z, Jiang Y, Guengerich FP, Ma L, Li S, Zhang W. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J Biol Chem 2020; 295:833-849. [PMID: 31811088 PMCID: PMC6970918 DOI: 10.1074/jbc.rev119.008758] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 enzymes (P450s) are broadly distributed among living organisms and play crucial roles in natural product biosynthesis, degradation of xenobiotics, steroid biosynthesis, and drug metabolism. P450s are considered as the most versatile biocatalysts in nature because of the vast variety of substrate structures and the types of reactions they catalyze. In particular, P450s can catalyze regio- and stereoselective oxidations of nonactivated C-H bonds in complex organic molecules under mild conditions, making P450s useful biocatalysts in the production of commodity pharmaceuticals, fine or bulk chemicals, bioremediation agents, flavors, and fragrances. Major efforts have been made in engineering improved P450 systems that overcome the inherent limitations of the native enzymes. In this review, we focus on recent progress of different strategies, including protein engineering, redox-partner engineering, substrate engineering, electron source engineering, and P450-mediated metabolic engineering, in efforts to more efficiently produce pharmaceuticals and other chemicals. We also discuss future opportunities for engineering and applications of the P450 systems.
Collapse
Affiliation(s)
- Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| |
Collapse
|
7
|
|
8
|
Yang JW, Cho W, Lim Y, Park S, Lee D, Jang HA, Kim HS. Evaluation of aromatic hydrocarbon decomposition catalyzed by the dioxygenase system and substitution of ferredoxin and ferredoxin reductase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34047-34057. [PMID: 30244447 DOI: 10.1007/s11356-018-3200-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/11/2018] [Indexed: 05/25/2023]
Abstract
In this study, the catalytic activity and kinetic characteristics of the aromatic hydrocarbon dioxygenase system and the possibility of substituting its ferredoxin and ferredoxin reductase components were evaluated. The genes encoding toluene dioxygenase and toluene dihydrodiol dehydrogenase were cloned from Pseudomonas putida F1, and the corresponding enzymes were overexpressed and purified to homogeneity. Oxidative hydroxylation of toluene to cis-toluene dihydrodiol was catalyzed by toluene dioxygenase, and its subsequent dehydrogenation to 3-methylcatechol was catalyzed by toluene dihydrodiol dehydrogenase. The specific activity of the dioxygenase was 2.82 U/mg-protein, which is highly remarkable compared with the values obtained in previous researches conducted with crude extracts or insoluble forms of enzymes. Kinetic parameters, as characterized by the Hill equation, were vmax = 497.2 μM/min, KM = 542.4 μM, and nH = 2.2, suggesting that toluene dioxygenase has at least three cooperative binding sites for toluene. In addition, the use of alternative ferredoxins and reductases was examined. Ferredoxin cloned from CYP153 could transfer electrons to the iron sulfur protein component of toluene dioxygenase. The ferredoxin could be reduced by ferredoxin, rubredoxin, and putidaredoxin reductases of CYP153, alkane-1 monooxygenase, and camphor 5-monooxygenase, respectively. The results provide useful information regarding the effective enzymatic biotreatment of hazardous aromatic hydrocarbon contaminants.
Collapse
Affiliation(s)
- Jun Won Yang
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Wooyoun Cho
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Yejee Lim
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Sungyoon Park
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Dayoung Lee
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Hyun-A Jang
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Han S Kim
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
9
|
Huff HC, Maroutsos D, Das A. Lipid composition and macromolecular crowding effects on CYP2J2-mediated drug metabolism in nanodiscs. Protein Sci 2019; 28:928-940. [PMID: 30861250 DOI: 10.1002/pro.3603] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023]
Abstract
Lipid composition and macromolecular crowding are key external effectors of protein activity and stability whose role varies between different proteins. Therefore, it is imperative to study their effects on individual protein function. CYP2J2 is a membrane-bound cytochrome P450 in the heart involved in the metabolism of fatty acids and xenobiotics. In order to facilitate this metabolism, cytochrome P450 reductase (CPR), transfers electrons to CYP2J2 from NADPH. Herein, we use nanodiscs to show that lipid composition of the membrane bilayer affects substrate metabolism of the CYP2J2-CPR nanodisc (ND) system. Differential effects on both NADPH oxidation and substrate metabolism by CYP2J2-CPR are dependent on the lipid composition. For instance, sphingomyelin containing nanodiscs produced more secondary substrate metabolites than discs of other lipid compositions, implying a possible conformational change leading to processive metabolism. Furthermore, we demonstrate that macromolecular crowding plays a role in the lipid-solubilized CYP2J2-CPR system by increasing the Km and decreasing the Vmax , and effect that is size-dependent. Crowding also affects the CYP2J2-CPR-ND system by decreasing both the Km and Vmax for Dextran-based macromolecular crowding agents, implying an increase in substrate affinity but a lack of metabolism. Finally, protein denaturation studies show that crowding agents destabilize CYP2J2, while the multidomain protein CPR is stabilized. Overall, these studies are the first report on the role of the surrounding lipid environment and macromolecular crowding in modulating enzymatic function of CYP2J2-CPR membrane protein system.
Collapse
Affiliation(s)
- Hannah C Huff
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Demetri Maroutsos
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Aditi Das
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Beckman Institute for Advanced Science and Technology, Division of Nutritional Science, Neuroscience Program, and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
10
|
Goodin DB, Chuo SW, Liou SH. Conformational Changes in Cytochrome P450cam and the Effector Role of Putidaredoxin. DIOXYGEN-DEPENDENT HEME ENZYMES 2018. [DOI: 10.1039/9781788012911-00292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cytochromes P450 form an enormous family of over 20 000 enzyme variants found in all branches of life. They catalyze the O2 dependent monooxygenation of a wide range of substrates in reactions important to drug metabolism, biosynthesis and energy utilization. Understanding how they function is important for biomedical science and requires a full description of their notorious propensity for specificity and promiscuity. The bacterial P450cam is an unusual example, having the most well characterized chemical mechanism of all of the forms. It also undergoes an increasingly well characterized structural change upon substrate binding, which may be similar to to that displayed by some, but not all forms of P450. Finally, P450cam is one of the rare forms that have a strict requirement for a particular electron donor, putidaredoxin (pdx). Pdx provides the required electrons for enzyme turnover, but it also induces specific changes in the enzyme to allow enzyme turnover, long known as its effector role. This review summarizes recent crystallographic and double electron–electron resonance studies that have revealed the effects of substrate and pdx binding on the structure of P450cam. We describe an emerging idea for how pdx exerts its effector function by inducing a conformational change in the enzyme. This change then propagates to the active site to enable cleavage of the ferric–hydroperoxy bond during catalysis, and appears to provide a very elegant approach for P450cam to attain both high efficiency and protection from oxidative damage.
Collapse
Affiliation(s)
- David B. Goodin
- University of California Davis, Department of Chemistry One Shields Ave Davis CA 95616 USA
| | - Shih-Wei Chuo
- University of California Davis, Department of Chemistry One Shields Ave Davis CA 95616 USA
| | - Shu-Hao Liou
- Research Group EPR Spectroscopy, Max-Planck-Institute for Biophysical Chemistry Göttingen 37077 Germany
| |
Collapse
|
11
|
Hussain R, Ahmed M, Khan TA, Akhter Y. Augmentation of cytochrome P450 monooxygenase catalysis on its interaction with NADPH-cytochrome P450 reductase FMN domain from Trichoderma brevicompactum. Int J Biochem Cell Biol 2018; 103:74-80. [DOI: 10.1016/j.biocel.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 12/23/2022]
|
12
|
Zhang W, Du L, Li F, Zhang X, Qu Z, Han L, Li Z, Sun J, Qi F, Yao Q, Sun Y, Geng C, Li S. Mechanistic Insights into Interactions between Bacterial Class I P450 Enzymes and Redox Partners. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02913] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Lei Du
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Fengwei Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Xingwang Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Zepeng Qu
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Jingran Sun
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Fengxia Qi
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Qiuping Yao
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Yue Sun
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| |
Collapse
|
13
|
Kammoonah S, Prasad B, Balaraman P, Mundhada H, Schwaneberg U, Plettner E. Selecting of a cytochrome P450 cam SeSaM library with 3-chloroindole and endosulfan - Identification of mutants that dehalogenate 3-chloroindole. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:68-79. [PMID: 28923662 DOI: 10.1016/j.bbapap.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 11/25/2022]
Abstract
Cytochrome P450cam (a camphor hydroxylase) from the soil bacterium Pseudomonas putida shows potential importance in environmental applications such as the degradation of chlorinated organic pollutants. Seven P450cam mutants generated from Sequence Saturation Mutagenesis (SeSaM) and isolated by selection on minimal media with either 3-chloroindole or the insecticide endosulfan were studied for their ability to oxidize of 3-chloroindole to isatin. The wild-type enzyme did not accept 3-chloroindole as a substrate. Mutant (E156G/V247F/V253G/F256S) had the highest maximal velocity in the conversion of 3-chloroindole to isatin, whereas mutants (T56A/N116H/D297N) and (G60S/Y75H) had highest kcat/KM values. Six of the mutants had more than one mutation, and within this set, mutation of residues 297 and 179 was observed twice. Docking simulations were performed on models of the mutant enzymes; the wild-type did not accommodate 3-chloroindole in the active site, whereas all the mutants did. We propose two potential reaction pathways for dechlorination of 3-chloroindole. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Shaima Kammoonah
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Brinda Prasad
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Priyadarshini Balaraman
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Hemanshu Mundhada
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Erika Plettner
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
14
|
Liou SH, Myers WK, Oswald JD, Britt RD, Goodin DB. Putidaredoxin Binds to the Same Site on Cytochrome P450cam in the Open and Closed Conformation. Biochemistry 2017; 56:4371-4378. [DOI: 10.1021/acs.biochem.7b00564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shu-Hao Liou
- Department
of Chemistry, University of California, Davis, California 95616, United States
- Research
Group EPR Spectroscopy, Max-Planck-Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - William K. Myers
- Centre
for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Jason D. Oswald
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - R. David Britt
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - David B. Goodin
- Department
of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
15
|
Liou SH, Mahomed M, Lee YT, Goodin DB. Effector Roles of Putidaredoxin on Cytochrome P450cam Conformational States. J Am Chem Soc 2016; 138:10163-72. [PMID: 27452076 DOI: 10.1021/jacs.6b04110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, the effector role of Pdx (putidaredoxin) on cytochrome P450cam conformation is refined by attaching two different spin labels, MTSL or BSL (bifunctional spin-label) onto the F or G helices and using DEER (double electron-electron resonance) to measure the distance between labels. Recent EPR and crystallographic studies have observed that oxidized Pdx induces substrate-bound P450cam to change from the closed to the open state. However, this change was not observed by DEER in the reduced Pdx complex with carbon-monoxide-bound P450cam (Fe(2+)CO). In addition, recent NMR studies have failed to observe a change in P450cam conformation upon binding Pdx. Hence, resolving these issues is important for a full understanding the effector role of Pdx. Here we show that oxidized Pdx induces camphor-bound P450cam to shift from the closed to the open conformation when labeled on either the F or G helices with MTSL. BSL at these sites can either narrow the distance distribution widths dramatically or alter the extent of the conformational change. In addition, we report DEER spectra on a mixed oxidation state containing oxidized Pdx and ferrous CO-bound P450cam, showing that P450cam remains closed. This indicates that CO binding to the heme prevents P450cam from opening, overriding the influence exerted by Pdx binding. Finally, we report the open form P450cam crystal structure with substrate bound, which suggests that crystal packing effects may prevent conformational conversion. Using multiple labeling approaches, DEER provides a unique perspective to resolve how the conformation of P450cam depends on Pdx and ligand states.
Collapse
Affiliation(s)
- Shu-Hao Liou
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Mavish Mahomed
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Young-Tae Lee
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - David B Goodin
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
16
|
Identification, characterization and molecular adaptation of class I redox systems for the production of hydroxylated diterpenoids. Microb Cell Fact 2016; 15:86. [PMID: 27216162 PMCID: PMC4877809 DOI: 10.1186/s12934-016-0487-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022] Open
Abstract
Background De novo production of multi-hydroxylated diterpenoids is challenging due to the lack of efficient redox systems. Results In this study a new reductase/ferredoxin system from Streptomyces afghaniensis (AfR·Afx) was identified, which allowed the Escherichia coli-based production of the trihydroxylated diterpene cyclooctatin, a potent inhibitor of human lysophospholipase. This production system provides a 43-fold increase in cyclooctatin yield (15 mg/L) compared to the native producer. AfR·Afx is superior in activating the cylcooctatin-specific class I P450s CotB3/CotB4 compared to the conventional Pseudomonas putida derived PdR·Pdx model. To enhance the activity of the PdR·Pdx system, the molecular basis for these activity differences, was examined by molecular engineering. Conclusion We demonstrate that redox system engineering can boost and harmonize the catalytic efficiency of class I hydroxylase enzyme cascades. Enhancing CotB3/CotB4 activities also provided for identification of CotB3 substrate promiscuity and sinularcasbane D production, a functionalized diterpenoid originally isolated from the soft coral Sinularia sp. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0487-6) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Tieves F, Erenburg IN, Mahmoud O, Urlacher VB. Synthesis of chiral 2-alkanols fromn-alkanes by aP. putidawhole-cell biocatalyst. Biotechnol Bioeng 2016; 113:1845-52. [DOI: 10.1002/bit.25953] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/08/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Florian Tieves
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Isabelle N. Erenburg
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Osama Mahmoud
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; 40225 Düsseldorf Germany
| |
Collapse
|
18
|
Khatri Y, Ringle. M, Lisurek M, von Kries JP, Zapp J, Bernhardt R. Substrate Hunting for the Myxobacterial CYP260A1 Revealed New 1α-Hydroxylated Products from C-19 Steroids. Chembiochem 2015; 17:90-101. [DOI: 10.1002/cbic.201500420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Yogan Khatri
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
| | - Michael Ringle.
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
| | - Michael Lisurek
- Forschungsinstitut für Molekulare Pharmakologie; Robert-Rössle-Strasse 10 13125 Berlin Germany
| | - Jens Peter von Kries
- Forschungsinstitut für Molekulare Pharmakologie; Robert-Rössle-Strasse 10 13125 Berlin Germany
| | - Josef Zapp
- Universität des Saarlandes; Pharmazeutische Biologie; Campus C2.2 66123 Saarbrücken Germany
| | - Rita Bernhardt
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
| |
Collapse
|
19
|
Abstract
The energy landscapes of proteins are highly complex and can be influenced by changes in physical and chemical conditions under which the protein is studied. The redox enzyme cytochrome P450cam undergoes a multistep catalytic cycle wherein two electrons are transferred to the heme group and the enzyme visits several conformational states. Using paramagnetic NMR spectroscopy with a lanthanoid tag, we show that the enzyme bound to its redox partner, putidaredoxin, is in a closed state at ambient temperature in solution. This result contrasts with recent crystal structures of the complex, which suggest that the enzyme opens up when bound to its partner. The closed state supports a model of catalysis in which the substrate is locked in the active site pocket and the enzyme acts as an insulator for the reactive intermediates of the reaction.
Collapse
|
20
|
Durairaj P, Malla S, Nadarajan SP, Lee PG, Jung E, Park HH, Kim BG, Yun H. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb Cell Fact 2015; 14:45. [PMID: 25880760 PMCID: PMC4387584 DOI: 10.1186/s12934-015-0228-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/12/2015] [Indexed: 01/03/2023] Open
Abstract
Background Omega hydroxy fatty acids (ω-OHFAs) are multifunctional compounds that act as the basis for the production of various industrial products with broad commercial and pharmaceutical implications. However, the terminal oxygenation of saturated or unsaturated fatty acids for the synthesis of ω-OHFAs is intricate to accomplish through chemocatalysis, due to the selectivity and controlled reactivity in C-H oxygenation reactions. Cytochrome P450, the ubiquitous enzyme is capable of catalyzing the selective terminal omega hydroxylation naturally in biological kingdom. Results To gain a deep insight on the biochemical role of fungal P450s towards the production of omega hydroxy fatty acids, two cytochrome P450 monooxygenases from Fusarium oxysporum (FoCYP), FoCYP539A7 and FoCYP655C2; were identified, cloned, and heterologously expressed in Saccharomyces cerevisiae. For the efficient production of ω-OHFAs, the S. cerevisiae was engineered to disrupt the acyl-CoA oxidase enzyme and the β-oxidation pathway inactivated (ΔPox1) S. cerevisiae mutant was generated. To elucidate the significance of the interaction of redox mechanism, FoCYPs were reconstituted with the heterologous and homologous reductase systems - S. cerevisiae CPR (ScCPR) and F. oxysporum CPR (FoCPR). To further improve the yield, the effect of pH was analyzed and the homologous FoCYP-FoCPR system efficiently hydroxylated caprylic acid, capric acid and lauric acid into their respective ω-hydroxy fatty acids with 56%, 79% and 67% conversion. Furthermore, based on computational simulations, we identified the key residues (Asn106 of FoCYP539A7 and Arg235 of FoCYP655C2) responsible for the recognition of fatty acids and demonstrated the structural insights of the active site of FoCYPs. Conclusion Fungal CYP monooxygenases, FoCYP539A7 and FoCYP655C2 with its homologous redox partner, FoCPR constitutes a promising catalyst due to its high regio- and stereo-selectivity in the hydroxylation of fatty acids and in the substantial production of industrially valuable ω-hydroxy fatty acids. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0228-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Sailesh Malla
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea. .,Current position: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark.
| | | | - Pyung-Gang Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea.
| | - Eunok Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea.
| | - Hyun Ho Park
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea.
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea.
| | - Hyungdon Yun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea.
| |
Collapse
|
21
|
Tan CY, Hirakawa H, Nagamune T. Supramolecular protein assembly supports immobilization of a cytochrome P450 monooxygenase system as water-insoluble gel. Sci Rep 2015; 5:8648. [PMID: 25733255 PMCID: PMC4346803 DOI: 10.1038/srep08648] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/29/2015] [Indexed: 01/05/2023] Open
Abstract
Diverse applications of the versatile bacterial cytochrome P450 enzymes (P450s) are hampered by their requirement for the auxiliary proteins, ferredoxin reductases and ferredoxins, that transfer electrons to P450s. Notably, this limits the use of P450s as immobilized enzymes for industrial purposes. Herein, we demonstrate the immobilization of a bacterial P450 and its redox protein partners by supramolecular complex formation using a self-assembled heterotrimeric protein. Employment of homodimeric phosphite dehydrogenase (PTDH) for cross-linking “proliferating cell nuclear antigen-utilized protein complex of P450 and its two electron transfer-related proteins” (PUPPET) yielded a gelling PUPPET-PTDH system capable of regenerating NADH for electron supply owing to its phosphite oxidation activity. The protein gel catalyzed monooxygenation in the presence of phosphite and NAD+. The gel was completely water-insoluble and could be reused. This concept of oligomeric protein-insolubilized enzymes can be widely applied to various multienzymatic reactions such as cascade reactions and coupling reactions.
Collapse
Affiliation(s)
- Cheau Yuaan Tan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hidehiko Hirakawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Teruyuki Nagamune
- 1] Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan [2] Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
22
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
23
|
Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:1-61. [PMID: 26002730 DOI: 10.1007/978-3-319-16009-2_1] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review examines the monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 (CYP) enzymes in bacterial, archaeal and mammalian systems. CYP enzymes catalyze monooxygenation reactions by inserting one oxygen atom from O2 into an enormous number and variety of substrates. The catalytic versatility of CYP stems from its ability to functionalize unactivated carbon-hydrogen (C-H) bonds of substrates through monooxygenation. The oxidative prowess of CYP in catalyzing monooxygenation reactions is attributed primarily to a porphyrin π radical ferryl intermediate known as Compound I (CpdI) (Por•+FeIV=O), or its ferryl radical resonance form (FeIV-O•). CYP-mediated hydroxylations occur via a consensus H atom abstraction/oxygen rebound mechanism involving an initial abstraction by CpdI of a H atom from the substrate, generating a highly-reactive protonated Compound II (CpdII) intermediate (FeIV-OH) and a carbon-centered alkyl radical that rebounds onto the ferryl hydroxyl moiety to yield the hydroxylated substrate. CYP enzymes utilize hydroperoxides, peracids, perborate, percarbonate, periodate, chlorite, iodosobenzene and N-oxides as surrogate oxygen atom donors to oxygenate substrates via the shunt pathway in the absence of NAD(P)H/O2 and reduction-oxidation (redox) auxiliary proteins. It has been difficult to isolate the historically elusive CpdI intermediate in the native NAD(P)H/O2-supported monooxygenase pathway and to determine its precise electronic structure and kinetic and physicochemical properties because of its high reactivity, unstable nature (t½~2 ms) and short life cycle, prompting suggestions for participation in monooxygenation reactions of alternative CYP iron-oxygen intermediates such as the ferric-peroxo anion species (FeIII-OO-), ferric-hydroperoxo species (FeIII-OOH) and FeIII-(H2O2) complex.
Collapse
|
24
|
Comparative functional characterization of a novel benzoate hydroxylase cytochrome P450 of Fusarium oxysporum. Enzyme Microb Technol 2014; 70:58-65. [PMID: 25659633 DOI: 10.1016/j.enzmictec.2014.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 01/13/2023]
Abstract
FoCYP53A19, a novel cytochrome P450 capable of performing benzoate hydroxylation, was identified and characterized from the ascomycete Fusarium oxysporum f.sp. lycopersici. Comparative functional analysis of FoCYP53A19 with the heterologous and homologous cytochrome P450 reductases (CPR) such as Saccharomyces cerevisiae (ScCPR), Candida albicans (CaCPR) and F. oxysporum (FoCPR) revealed novel catalytic properties. The catalytic efficiency and substrate specificity of FoCYP53A19 were significantly influenced and altered by the source of the reductase employed. The yeast reconstitution system of FoCYP53A19 with ScCPR performed the hydroxylation of benzoic acid (BA) and demethylation of 3-methoxybenzoic acid (3-MBA); but when reconstituted with CaCPR, FoCYP53A19 performed only the essential hydroxylation of fungal benzoate catabolism. Remarkably, FoCYP53A19 with its homologous reductase FoCPR, not only demonstrated the improved conversion rates of BA and 3-MBA, but also exhibited activity toward the hydroxylation of 3-hydroxybenzoic acid. The electron transfer compatibility and the coupling efficiency between the homologous FoCYP-FoCPR system are significant and it favored enhanced monooxygenase activity with broader substrate specificity.
Collapse
|
25
|
Hollingsworth SA, Poulos TL. Molecular dynamics of the P450cam-Pdx complex reveals complex stability and novel interface contacts. Protein Sci 2014; 24:49-57. [PMID: 25307478 DOI: 10.1002/pro.2583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 11/07/2022]
Abstract
Cytochrome P450cam catalyzes the stereo and regiospecific hydroxylation of camphor to 5-exo-hydroxylcamphor. The two electrons for the oxidation of camphor are provided by putidaredoxin (Pdx), a Fe2 S2 containing protein. Two recent crystal structures of the P450cam-Pdx complex, one solved with the aid of covalent cross-linking and one without, have provided a structural picture of the redox partner interaction. To study the stability of the complex structure and the minor differences between the recent crystal structures, a 100 nanosecond molecular dynamics (MD) simulation of the cross-linked structure, mutated in silico to wild type and the linker molecule removed, was performed. The complex was stable over the course of the simulation though conformational changes including the movement of the C helix of P450cam further toward Pdx allowed for the formation of a number of new contacts at the complex interface that remained stable throughout the simulation. While several minor crystal contacts were lost in the simulation, all major contacts that had been experimentally studied previously were maintained. The equilibrated MD structure contained a mixture of contacts resembling both the cross-linked and noncovalent structures and the newly identified interactions. Finally, the reformation of the P450cam Asp251-Arg186 ion pair in the MD simulation mirrors the ion pair observed in the more promiscuous CYP101D1 and suggests that the Asp251-Arg186 ion pair may be important.
Collapse
Affiliation(s)
- Scott A Hollingsworth
- Departments of Chemistry, Pharmaceutical Sciences, and Molecular Biology and Biochemistry, University of California, Irvine, California, 92697
| | | |
Collapse
|
26
|
Suzuki R, Hirakawa H, Nagamune T. Electron donation to an archaeal cytochrome P450 is enhanced by PCNA-mediated selective complex formation with foreign redox proteins. Biotechnol J 2014; 9:1573-81. [PMID: 24924478 DOI: 10.1002/biot.201400007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/15/2014] [Accepted: 06/11/2014] [Indexed: 01/04/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are environmentally friendly biocatalysts that catalyze diverse chemical reactions using molecular oxygen under mild reaction conditions. P450s are activated upon receiving electrons from specific redox partner proteins, although the redox partners for most bacterial/archaeal P450s are not yet identified. Thus, it is important to establish a variety of efficient and versatile electron transfer systems from NAD(P)H to P450s for the design of biocatalysts. Sulfolobus solfataricus possesses a heterotrimeric proliferating cell nuclear antigen (PCNA). Fusion of the PCNA subunits to S. acidocaldarius P450 (CYP119) and the Pseudomonas putida redox proteins, putidaredoxin (PdX) and putidaredoxin reductase (PdR), yielded a selective protein complex containing one molecule each of the three proteins. The PCNA-mediated heterotrimerization of CYP119, PdX, and PdR enhanced the CYP119 activity, likely as a result of high local concentrations of the two redox proteins toward CYP119. Therefore, the PCNA-mediated formation of the complex containing PdX and PdR might be applicable for harnessing the utility of P450s whose redox partners are not yet identified.
Collapse
Affiliation(s)
- Risa Suzuki
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
27
|
Exploring the electron transfer pathway in the oxidation of avermectin by CYP107Z13 in Streptomyces ahygroscopicus ZB01. PLoS One 2014; 9:e98916. [PMID: 24905717 PMCID: PMC4048220 DOI: 10.1371/journal.pone.0098916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
Streptomyces ahygroscopicus ZB01 can effectively oxidize 4″-OH of avermectin to form 4″-oxo-avermectin. CYP107Z13 is responsible for this site-specific oxidation in ZB01. In the present study, we explored the electron transfer pathway in oxidation of avermectin by CYP107Z13 in ZB01. A putative [3Fe-4S] ferredoxin gene fd68 and two possible NADH-dependent ferredoxin reductase genes fdr18 and fdr28 were cloned from the genomic DNA of ZB01. fd68 gene disruption mutants showed no catalytic activity in oxidation of avermectin to form 4″-oxo-avermectin. To clarify whether FdR18 and FdR28 participate in the electron transfer during avermectin oxidation by CYP107Z13, two whole-cell biocatalytic systems were designed in E. coli BL21 (DE3), with one co-expressing CYP107Z13, Fd68 and FdR18 and the other co-expressing CYP107Z13, Fd68 and FdR28. Both of the two biocatalytic systems were found to be able to mediate the oxidation of avermectin to form 4″-oxo-avermectin. Thus, we propose an electron transfer pathway NADH→FdR18/FdR28→Fd68→CYP107Z13 for oxidation of avermectin to form 4″-oxo-avermectin in ZB01.
Collapse
|
28
|
Zhang T, Zhang A, Bell SG, Wong LL, Zhou W. The structure of a novel electron-transfer ferredoxin from Rhodopseudomonas palustris HaA2 which contains a histidine residue in its iron-sulfur cluster-binding motif. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1453-64. [PMID: 24816113 DOI: 10.1107/s139900471400474x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/01/2014] [Indexed: 11/10/2022]
Abstract
Rhodopseudomonas palustris HaA2 contains a gene, RPB3630, encoding a ferredoxin, HaPuxC, with an atypical CXXHXXC(X)nCP iron-sulfur cluster-binding motif. The ferredoxin gene is associated with a cytochrome P450 (CYP) monooxygenase-encoding gene, CYP194A3, an arrangement which is conserved in several strains of bacteria. Similar ferredoxin genes are found in other bacteria, such as Mycobacterium tuberculosis, where they are also associated with CYP genes. The crystal structure of HaPuxC has been solved at 2.3 Å resolution. The overall fold of this [3Fe-4S] cluster-containing ferredoxin is similar to other [3Fe-4S] and [4Fe-4S] species, with the loop around the iron-sulfur cluster more closely resembling those of [3Fe-4S] ferredoxins. The side chain of His17 from the cluster-binding motif in HaPuxC points away from the vacant site of the cluster and interacts with Glu61 and one of the sulfide ions of the cluster. This is the first cytochrome P450 electron-transfer partner of this type to be structurally characterized and will provide a better understanding of the electron-transfer processes between these ferredoxins and their CYP enzymes.
Collapse
Affiliation(s)
- Ting Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Aili Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Stephen G Bell
- School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Luet-Lok Wong
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, England
| | - Weihong Zhou
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
29
|
Pandey BP, Lee N, Choi KY, Kim JN, Kim EJ, Kim BG. Identification of the specific electron transfer proteins, ferredoxin, and ferredoxin reductase, for CYP105D7 in Streptomyces avermitilis MA4680. Appl Microbiol Biotechnol 2014; 98:5009-17. [PMID: 24549766 DOI: 10.1007/s00253-014-5525-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/22/2013] [Accepted: 01/07/2014] [Indexed: 01/29/2023]
Abstract
It was previously proposed that regiospecific hydroxylation of daidzein at 3'-position is mediated by cytochrome P450 hydroxylase (CYP105D7) in the presence of putidaredoxin (CamB) and putidaredoxin reductase (CamA) as electron transfer proteins from Pseudomonas putida. The genome sequence of Streptomyces avermitilis MA4680 revealed 33 P450 (CYPs) with 6 ferredoxin reductases (Fprs) and 9 ferredoxins (Fdxs) as their putative electron transfer partner proteins. To identify right endogenous electron transfer proteins for CYP105D7 activity, in vitro reconstitution, gene disruption, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) mRNA expression profile analysis were examined. The most effective electron transfer proteins for CYP105D7 appear to be FdxH (SAV7470), which is located downstream to CYP105D7 as a cluster, and FprD (SAV5675). Throughout our overall analysis, we proposed that the primary electron transfer pathway for CYP105D7 follows as such NAD(P)H→FdxH→FprD→CYP105D7.
Collapse
Affiliation(s)
- Bishnu Prasad Pandey
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, Institute of Bioengineering, Seoul National University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
30
|
Ban JG, Kim HB, Lee MJ, Anbu P, Kim ES. Identification of a vitamin D3-specific hydroxylase genes through actinomycetes genome mining. ACTA ACUST UNITED AC 2014; 41:265-73. [DOI: 10.1007/s10295-013-1336-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022]
Abstract
Abstract
We previously completed whole-genome sequencing of a rare actinomycete named Sebekia benihana, and identified the complete S. benihana cytochrome P450 complement (CYPome), including 21 cytochrome P450 hydroxylase (CYP), seven ferredoxin (FD), and four ferredoxin reductase (FDR) genes. Through targeted CYPome disruption, a total of 32 S. benihana CYPome mutants were obtained. Subsequently, a novel cyclosporine A region-specific hydroxylase was successfully determined to be encoded by a CYP-sb21 gene by screening the S. benihana CYPome mutants. Here, we report that S. benihana is also able to mediate vitamin D3 (VD3) hydroxylation. Among the 32 S. benihana CYPome mutants tested, only a single S. benihana CYP mutant, ΔCYP-sb3a, failed to show regio-specific hydroxylation of VD3 to 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3. Moreover, the VD3 hydroxylation activity in the ΔCYP-sb3a mutant was restored by CYP-sb3a gene complementation. Since all S. benihana FD and FDR disruption mutants maintained VD3 hydroxylation activity, we conclude that CYP-sb3a, a member of the bacterial CYP107 family, is the only essential component of the in vivo regio-specific VD3 hydroxylation process in S. benihana. Expression of the CYP-sb3a gene exhibited VD3 hydroxylation in the VD3 non-hydroxylating Streptomyces coelicolor, implying that the regio-specific hydroxylation of VD3 is carried out by a specific P450 hydroxylase in S. benihana.
Collapse
Affiliation(s)
- Jun-Gyu Ban
- grid.202119.9 0000000123648385 Department of Biological Engineering Inha University 402-751 Incheon Korea
| | - Hyun-Bum Kim
- grid.202119.9 0000000123648385 Department of Biological Engineering Inha University 402-751 Incheon Korea
| | - Mi-Jin Lee
- grid.202119.9 0000000123648385 Department of Biological Engineering Inha University 402-751 Incheon Korea
| | - Periasamy Anbu
- grid.202119.9 0000000123648385 Department of Biological Engineering Inha University 402-751 Incheon Korea
| | - Eung-Soo Kim
- grid.202119.9 0000000123648385 Department of Biological Engineering Inha University 402-751 Incheon Korea
| |
Collapse
|
31
|
Hiruma Y, Hass MA, Kikui Y, Liu WM, Ölmez B, Skinner SP, Blok A, Kloosterman A, Koteishi H, Löhr F, Schwalbe H, Nojiri M, Ubbink M. The Structure of the Cytochrome P450cam–Putidaredoxin Complex Determined by Paramagnetic NMR Spectroscopy and Crystallography. J Mol Biol 2013; 425:4353-65. [DOI: 10.1016/j.jmb.2013.07.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 11/27/2022]
|
32
|
Ba L, Li P, Zhang H, Duan Y, Lin Z. Engineering of a hybrid biotransformation system for cytochrome P450sca-2 in Escherichia coli. Biotechnol J 2013; 8:785-93. [PMID: 23744742 DOI: 10.1002/biot.201200097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/24/2013] [Accepted: 05/29/2013] [Indexed: 11/09/2022]
Abstract
P450sca-2 is an industrially important enzyme that stereoselectively converts mevastatin into pravastatin. However, little information or engineering efforts have been reported for this enzyme or its redox partner. In this study, we successfully reconstituted the P450sca-2 activity in Escherichia coli by co-expression with putidaredoxin reductase (Pdr) and putidaredoxin (Pdx) from the Pseudomonas putida cytochrome P450cam system. With an HPLC-based screening assay, random mutagenesis was applied to yield a mutant (R8-5C) with a pravastatin yield of the whole-cell biotransformation 4.1-fold that of the wild type. P450sca-2 wild-type and R8-5C were characterized in terms of mevastatin binding and hydroxylation, electron transfer, and circular dichroism spectroscopy. R8-5C showed an active P450 expression level that was 3.8-fold that of the wild type, with relatively smaller changes in the apparent k(cat)/K(M) with respect to the substrate mevastatin (1.3-fold) or Pdx (1.5-fold) compared with the wild type. Thus, the increase in the pravastatin yield of the whole-cell biotransformation primarily came from the improved active P450 expression, which has resulted largely from better heme incorporation, although none of the six mutations of R8-5C are located near the heme active site. These results will facilitate further engineering of this P450sca-2 system and provide useful clues for improving other hybrid P450 systems.
Collapse
Affiliation(s)
- Lina Ba
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes, Tsinghua University, Beijing, P.R. China
| | | | | | | | | |
Collapse
|
33
|
Ba L, Li P, Zhang H, Duan Y, Lin Z. Semi-rational engineering of cytochrome P450sca-2 in a hybrid system for enhanced catalytic activity: Insights into the important role of electron transfer. Biotechnol Bioeng 2013; 110:2815-25. [DOI: 10.1002/bit.24960] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/28/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Lina Ba
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Pan Li
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Hui Zhang
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Yan Duan
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Zhanglin Lin
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| |
Collapse
|
34
|
Sadeghi SJ, Gilardi G. Chimeric P450 enzymes: Activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnol Appl Biochem 2013; 60:102-10. [DOI: 10.1002/bab.1086] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/20/2012] [Indexed: 11/09/2022]
|
35
|
Lin HL, Kenaan C, Zhang H, Hollenberg PF. Reaction of human cytochrome P450 3A4 with peroxynitrite: nitrotyrosine formation on the proximal side impairs its interaction with NADPH-cytochrome P450 reductase. Chem Res Toxicol 2012; 25:2642-53. [PMID: 23016756 DOI: 10.1021/tx3002753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The reaction of peroxynitrite (PN) with purified human cytochrome P450 3A4 (CYP3A4) resulted in the loss of the reduced-CO difference spectrum, but the absolute absorption spectrum of the heme was not significantly altered. The loss of 7-benzyloxy-4-(trifluoromethyl)coumarin (BFC) O-debenzylation activity of CYP3A4 was concentration-dependent with respect to PN, and the loss of BFC activity supported by NADPH-cytochrome P450 reductase (CPR) was much greater than that supported by tert-butyl hydroperoxide. Moreover, the PN-treated CYP3A4 exhibited a reduced-CO spectrum when reduced by CPR that was much smaller than when it was reduced by dithionite. These results suggest that modification of CYP3A4 by PN may impair its interaction with CPR, leading to the loss of catalytic activity. Tyrosine nitration, as measured by an increase in mass of 45 Da due to the addition of a nitro group, was used as a biomarker for protein modification by PN. PN-treated CYP3A4 was digested by trypsin and endoproteinase Glu C, and nitrotyrosine formation was then determined by using electrospray ionization-liquid chromatography-tandem mass spectrometry. Tyr residues 99, 307, 347, 430, and 432 were found to be nitrated. Using the GRAMM-X docking program, the structure for the CYP3A4-CPR complex shows that Tyr99, Tyr347, and Tyr430 are on the proximal side of CYP3A4 and are in close contact with three acidic residues in the FMN domain of CPR, suggesting that modification of one or more of these tyrosine residues by PN may influence CPR binding or the transfer of electrons to CYP3A4. Mutagenesis of Tyr430 to Phe or Val revealed that both the aromatic and the hydroxyl groups of Tyr are required for CPR-dependent catalytic activity and thus support the idea that the proximal side Tyr participates in the 3A4-CPR interaction. In conclusion, modification of tyrosine residues by PN and their subsequent identification can be used to enhance our knowledge of the structure/function relationships of the P450s with respect to the electron transfer steps, which are critical for P450 activity.
Collapse
Affiliation(s)
- Hsia-lien Lin
- Department of Pharmacology, University of Michigan, 2301 MSRB III, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5632, United States
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Rudi Fasan
- Department of Chemistry,
Hutchison Hall, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
37
|
Feng C. Mechanism of Nitric Oxide Synthase Regulation: Electron Transfer and Interdomain Interactions. Coord Chem Rev 2012; 256:393-411. [PMID: 22523434 PMCID: PMC3328867 DOI: 10.1016/j.ccr.2011.10.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitric oxide synthase (NOS), a flavo-hemoprotein, tightly regulates nitric oxide (NO) synthesis and thereby its dual biological activities as a key signaling molecule for vasodilatation and neurotransmission at low concentrations, and also as a defensive cytotoxin at higher concentrations. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their key biological functions by tight regulation of interdomain electron transfer (IET) process via interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O(2) activation at the catalytic heme site. Compelling evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS through a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the domains. Another exciting recent development in NOS enzymology is the discovery of importance of the the FMN domain motions in modulating reactivity and structure of the catalytic heme active site (in addition to the primary role of controlling the IET processes). In the absence of a structure of full-length NOS, an integrated approach of spectroscopic (e.g. pulsed EPR, MCD, resonance Raman), rapid kinetics (laser flash photolysis and stopped flow) and mutagenesis methods is critical to unravel the molecular details of the interdomain FMN/heme interactions. This is to investigate the roles of dynamic conformational changes of the FMN domain and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in understanding of mechanisms of the NOS regulation that are driven by the combined approach are the focuses of this review. An improved understanding of the role of interdomain FMN/heme interaction and CaM binding may serve as the basis for the design of new selective inhibitors of NOS isoforms.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131 (USA) , Tel: 505-925-4326
| |
Collapse
|
38
|
Abdalla JAB, Bowen AM, Bell SG, Wong LL, Timmel CR, Harmer J. Characterisation of the paramagnetic [2Fe–2S]+ centre in palustrisredoxin-B (PuxB) from Rhodopseudomonas palustris CGA009: g-matrix determination and spin coupling analysis. Phys Chem Chem Phys 2012; 14:6526-37. [DOI: 10.1039/c2cp24112a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Takayama H, Takahashi S, Moriya T, Osada H, Iwabuchi Y, Kanoh N. Detection of cytochrome P450 substrates by using a small-molecule droplet array on an NADH-immobilized solid surface. Chembiochem 2011; 12:2748-52. [PMID: 22162215 DOI: 10.1002/cbic.201100541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Indexed: 01/29/2023]
Abstract
Seeing below the surface: A small-molecule droplet array platform on an NADH-immobilized solid surface and a biotinylated acetophenone derivative were developed to identify the substrate candidates for soluble P450 enzymes of interest. This methodology is thought to be easily applicable to other class I P450 systems, including those that use NADPH as cofactor.
Collapse
Affiliation(s)
- Hiroshi Takayama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Lah L, Podobnik B, Novak M, Korošec B, Berne S, Vogelsang M, Kraševec N, Zupanec N, Stojan J, Bohlmann J, Komel R. The versatility of the fungal cytochrome P450 monooxygenase system is instrumental in xenobiotic detoxification. Mol Microbiol 2011; 81:1374-89. [PMID: 21810122 DOI: 10.1111/j.1365-2958.2011.07772.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cytochromes P450 (CYPs) catalyse diverse reactions and are key enzymes in fungal primary and secondary metabolism, and xenobiotic detoxification. CYP enzymatic properties and substrate specificity determine the reaction outcome. However, CYP-mediated reactions may also be influenced by their redox partners. Filamentous fungi with numerous CYPs often possess multiple microsomal redox partners, cytochrome P450 reductases (CPRs). In the plant pathogenic ascomycete Cochliobolus lunatus we recently identified two CPR paralogues, CPR1 and CPR2. Our objective was to functionally characterize two endogenous fungal cytochrome P450 systems and elucidate the putative physiological roles of CPR1 and CPR2. We reconstituted both CPRs with CYP53A15, or benzoate 4-hydroxylase from C. lunatus, which is crucial in the detoxification of phenolic plant defence compounds. Biochemical characterization using RP-HPLC shows that both redox partners support CYP activity, but with different product specificities. When reconstituted with CPR1, CYP53A15 converts benzoic acid to 4-hydroxybenzoic acid, and 3-methoxybenzoic acid to 3-hydroxybenzoic acid. However, when the redox partner is CPR2, both substrates are converted to 3,4-dihydroxybenzoic acid. Deletion mutants and gene expression in mycelia grown on media with inhibitors indicate that CPR1 is important in primary metabolism, whereas CPR2 plays a role in xenobiotic detoxification.
Collapse
Affiliation(s)
- Ljerka Lah
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kenaan C, Zhang H, Shea EV, Hollenberg PF. Uncovering the role of hydrophobic residues in cytochrome P450-cytochrome P450 reductase interactions. Biochemistry 2011; 50:3957-67. [PMID: 21462923 PMCID: PMC3102249 DOI: 10.1021/bi1020748] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytochrome P450 (CYP or P450)-mediated drug metabolism requires the interaction of P450s with their redox partner, cytochrome P450 reductase (CPR). In this work, we have investigated the role of P450 hydrophobic residues in complex formation with CPR and uncovered novel roles for the surface-exposed residues V267 and L270 of CYP2B4 in mediating CYP2B4--CPR interactions. Using a combination of fluorescence labeling and stopped-flow spectroscopy, we have investigated the basis for these interactions. Specifically, in order to study P450--CPR interactions, a single reactive cysteine was introduced in to a genetically engineered variant of CYP2B4 (C79SC152S) at each of seven strategically selected surface-exposed positions. Each of these cysteine residues was modified by reaction with fluorescein-5-maleimide (FM), and the CYP2B4-FM variants were then used to determine the K(d) of the complex by monitoring fluorescence enhancement in the presence of CPR. Furthermore, the intrinsic K(m) values of the CYP2B4 variants for CPR were measured, and stopped-flow spectroscopy was used to determine the intrinsic kinetics and the extent of reduction of the ferric P450 mutants to the ferrous P450--CO adduct by CPR. A comparison of the results from these three approaches reveals that the sites on P450 exhibiting the greatest changes in fluorescence intensity upon binding CPR are associated with the greatest increases in the K(m) values of the P450 variants for CPR and with the greatest decreases in the rates and extents of reduced P450--CO formation.
Collapse
Affiliation(s)
- Cesar Kenaan
- Chemical Biology Doctoral Program, The University of Michigan, Medical Science Research Building III, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
- Department of Pharmacology, The University of Michigan, Medical Science Research Building III, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - Haoming Zhang
- Department of Pharmacology, The University of Michigan, Medical Science Research Building III, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - Erin V. Shea
- Department of Pharmacology, The University of Michigan, Medical Science Research Building III, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - Paul F. Hollenberg
- Chemical Biology Doctoral Program, The University of Michigan, Medical Science Research Building III, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
- Department of Pharmacology, The University of Michigan, Medical Science Research Building III, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
42
|
Karunakaran V, Denisov I, Sligar SG, Champion PM. Investigation of the low frequency dynamics of heme proteins: native and mutant cytochrome P450(cam) and redox partner complexes. J Phys Chem B 2011; 115:5665-77. [PMID: 21391540 DOI: 10.1021/jp112298y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Vibrational coherence spectroscopy (VCS) is used to investigate the low-frequency dynamics of camphor-free and camphor-bound cytochrome P450(cam) (CYP 101) and its L358P mutant. The low-frequency heme vibrations are found to be perturbed upon binding to the electron transfer partner putidaredoxin (Pdx). A strong correlation between the "detuned" vibrational coherence spectrum, which monitors frequencies between 100 and 400 cm(-1), and the lower frequency part of the Raman spectrum is also demonstrated. The very low frequency region ≤200 cm(-1), uniquely accessed by open-band VCS measurements, reveals a mode near 103 cm(-1) in P450(cam) when camphor is not present in the distal pocket. This reflects the presence of a specific heme distortion, such as saddling or ruffling, in the substrate-free state where water is coordinated to the low-spin iron atom. Such distortions are likely to retard the rate of electron transfer to the substrate-free protein. The presence of strong mode near ∼33 cm(-1) in the camphor-bound form suggests a significant heme-doming distortion, which is supported by analysis using normal coordinate structural decomposition. Pdx also displays a strong coherent vibration near 30 cm(-1) that in principle could be involved in vibrational resonance with its electron transfer target. A splitting of the 33 cm(-1) feature and intensification of a mode near 78 cm(-1) appear when the P450(cam)/Pdx complex is formed. These observations are consistent with vibrational mixing and heme geometric distortions upon Pdx binding that are coincident with the increased thiolate electron donation to the heme. The appearance of a mode near 65 cm(-1) in the coherence spectra of the L358P mutant is comparable to the mode at 78 cm(-1) seen in the P450(cam)/Pdx complex and is consistent with the view that the heme and its environment in the L358P mutant are similar to the Pdx-bound native protein. Resonance Raman spectra are presented for both P450(cam) and the L358P mutant and the changes are correlated with an increased amount of thiolate electron donation to the heme in the mutant sample.
Collapse
Affiliation(s)
- Venugopal Karunakaran
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, United States
| | | | | | | |
Collapse
|
43
|
Tribute to Professor Minor J. Coon. Arch Biochem Biophys 2011; 507:3. [DOI: 10.1016/j.abb.2011.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2011] [Indexed: 11/18/2022]
|