1
|
Ma H, Pu S, Jia S, Xu S, Yu Q, Yang L, Wu H, Sun Q. Laser-assisted thermoelectric-enhanced hydrogen peroxide biosensors based on Ag 2Se nanofilms for sensitive detection of bacterial pathogens. NANOSCALE 2025; 17:5858-5868. [PMID: 39927897 DOI: 10.1039/d4nr04860a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Thermoelectric (TE) materials can convert the heat produced during biochemical reactions into electrical signals, enabling the self-powered detection of biomarkers. In this work, we design and fabricate a simple Ag2Se nanofilm-based TE biosensor to precisely quantify hydrogen peroxide (H2O2) levels in liquid samples. A chemical reaction involving horseradish peroxidase, ABTS and H2O2 in the specimens produces a photothermal agent-ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) free radical, which triggers the heat fluctuations at the TE sensor through the photo-thermal effect, eventually enabling the sensing of H2O2. Consequently, the constructed sensor can achieve a detection limit of 0.26 μM by a three-leg TE device design. Further investigations suggest that the application of our TE sensor can be extended in testing H2O2 in beverages (including milk, soda water, and lemonade) and evaluating the load of bacterial pathogens relevant to dental diseases and infections including Streptococcus sanguinis and Methicillin-resistant Staphylococcus aureus with high analytical accuracy. This strategy utilizes the combination of high thermoelectric performance with chemical reactions to realize a straightforward and accurate biomarker detection method, making it suitable for applications in medical diagnostics, personalized health monitoring, and the food industry.
Collapse
Affiliation(s)
- Huangshui Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610064, China.
| | - Shiyu Pu
- Department of Ultrasonography, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Shiyu Jia
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Shengduo Xu
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Qiwei Yu
- The First Clinical College, Changsha Medical University, Changsha 410005, China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Hao Wu
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100039, China.
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610064, China.
| |
Collapse
|
2
|
Oliver MA, Hussein LK, Molina EA, Keyloun JW, McKnight SM, Jimenez LM, Moffatt LT, Shupp JW, Carney BC. Cold atmospheric plasma is bactericidal to wound-relevant pathogens and is compatible with burn wound healing. Burns 2024; 50:1192-1212. [PMID: 38262886 DOI: 10.1016/j.burns.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Burn wound healing can be significantly delayed by infection leading to increased morbidity and hypertrophic scarring. An optimal antimicrobial agent would have the ability to kill bacteria without negatively affecting the host skin cells that are required for healing. Currently available products provide antimicrobial coverage, but may also cause reductions in cell proliferation and migration. Cold atmospheric plasma is a partially ionized gas that can be produced under atmospheric pressure at room temperature. In this study a novel handheld Aceso Plasma Generator was used to produce and test Aceso Cold Plasma (ACP) in vitro and in vivo. ACP showed a potent ability to eliminate bacterial load in vitro for a number of different species. Deep partial-thickness and full-thickness wounds that were treated with ACP after burning, after excision, after autografting, and at days 5, 7, and 9 did not show any negative effects on their wound healing trajectories. On par with in vitro analysis, bioburden was decreased in treated wounds vs. control. In addition, metrics of hypertrophic scar such as dyschromia, elasticity, trans-epidermal water loss (TEWL), and epidermal and dermal thickness were the same between the two treatment groups.It is likely that ACP can be used to mitigate the risk of bacterial infection during the phase of acute burn injury while patients await surgery for definitive closure. It may also be useful in treating wounds with delayed re-epithelialization that are at risk for infection and hypertrophic scarring. A handheld cold plasma device will be useful in treating all manner of wounds and surgical sites in order to decrease bacterial burden in an efficient and highly effective manner without compromising wound healing.
Collapse
Affiliation(s)
- Mary A Oliver
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Lou'ay K Hussein
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Esteban A Molina
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - John W Keyloun
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Surgery, MedStar Washington Hospital Center and MedStar Georgetown University Hospital, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Sydney M McKnight
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Lesle M Jimenez
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States; Department of Surgery, Georgetown University School of Medicine, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States; Department of Surgery, Georgetown University School of Medicine, Washington, DC, United States; The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Surgery, MedStar Washington Hospital Center and MedStar Georgetown University Hospital, Washington, DC, United States; Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States.
| |
Collapse
|
3
|
Wang W, Zheng P, Yan L, Chen X, Wang Z, Liu Q. Mechanism of non-thermal atmospheric plasma in anti-tumor: influencing intracellular RONS and regulating signaling pathways. Free Radic Res 2024; 58:333-353. [PMID: 38767976 DOI: 10.1080/10715762.2024.2358026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Non-thermal atmospheric plasma (NTAP) has been proven to be an effective anti-tumor tool, with various biological effects such as inhibiting tumor proliferation, metastasis, and promoting tumor cell apoptosis. At present, the main conclusion is that ROS and RNS are the main effector components of NTAP, but the mechanisms of which still lack systematic summary. Therefore, in this review, we first summarized the mechanism by which NTAP directly or indirectly causes an increase in intracellular RONS concentration, and the multiple pathways dysregulation (i.e. NRF2, PI3K, MAPK, NF-κB) induced by intracellular RONS. Then, we generalized the relationship between NTAP induced pathways dysregulation and the various biological effects it brought. The summary of the anti-tumor mechanism of NTAP is helpful for its further research and clinical transformation.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peijia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiaoman Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhicheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Larkin JO, Mozden SC, Chyan Y, Zheng Q, Cherukuri P, Tour JM, Ball ZT. Capacitively Coupled Plasma from Laser-Induced Graphene Points to Ozone as the Major Mediator of Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45601-45605. [PMID: 37724983 DOI: 10.1021/acsami.3c09216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Low-temperature plasma is an emerging approach for the treatment of bacterial infections. Nonchemical treatments such as cold plasma offer potential solutions to antibiotic resistance. We investigated the use of laser-induced graphene as an inexpensive, lightweight, and portable electrode for generating cold plasma. At the same time, the mechanism or molecular mediators of cold plasma-induced antibacterial activity remain poorly understood. This study validates graphene as an efficient structure for producing therapeutic cold plasma, and this study also indicates that ozone is the primary mediator of antibacterial activity in graphene-mediated cold plasmas for bacterial growth under the conditions studied.
Collapse
Affiliation(s)
- James O Larkin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Sarah C Mozden
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yieu Chyan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Qingxin Zheng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Paul Cherukuri
- Institute of Biosciences and Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Rice Nexus, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute and the NanoCarbon Center, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Computer Science, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Institute of Biosciences and Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Mohseni P, Ghorbani A, Fariborzi N. Exploring the potential of cold plasma therapy in treating bacterial infections in veterinary medicine: opportunities and challenges. Front Vet Sci 2023; 10:1240596. [PMID: 37720476 PMCID: PMC10502341 DOI: 10.3389/fvets.2023.1240596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Cold plasma therapy is a novel approach that has shown significant promise in treating bacterial infections in veterinary medicine. Cold plasma possesses the potential to eliminate various bacteria, including those that are resistant to antibiotics, which renders it a desirable substitute for traditional antibiotics. Furthermore, it can enhance the immune system and facilitate the process of wound healing. However, there are some challenges associated with the use of cold plasma in veterinary medicine, such as achieving consistent and uniform exposure to the affected area, determining optimal treatment conditions, and evaluating the long-term impact on animal health. This paper explores the potential of cold plasma therapy in veterinary medicine for managing bacterial diseases, including respiratory infections, skin infections, and wound infections such as Clostridium botulinum, Clostridium perfringens, Bacillus cereus, and Bacillus subtilis. It also shows the opportunities and challenges associated with its use. In conclusion, the paper highlights the promising potential of utilizing cold plasma in veterinary medicine. However, to gain a comprehensive understanding of its benefits and limitations, further research is required. Future studies should concentrate on refining treatment protocols and assessing the long-term effects of cold plasma therapy on bacterial infections and the overall health of animals.
Collapse
Affiliation(s)
- Parvin Mohseni
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Niloofar Fariborzi
- Department of Biology and Control of Diseases Vector, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Moszczyńska J, Roszek K, Wiśniewski M. Non-Thermal Plasma Application in Medicine-Focus on Reactive Species Involvement. Int J Mol Sci 2023; 24:12667. [PMID: 37628848 PMCID: PMC10454508 DOI: 10.3390/ijms241612667] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Non-thermal plasma (NTP) application in medicine is a dynamically developing interdisciplinary field. Despite the fact that basics of the plasma phenomenon have been known since the 19th century, growing scientific attention has been paid in recent years to the use of plasma in medicine. Three most important plasma-based effects are pivotal for medical applications: (i) inactivation of a broad spectrum of microorganisms, (ii) stimulation of cell proliferation and angiogenesis with lower plasma treatment intensity, and (iii) inactivation of cells by initialization of cell death with higher plasma intensity. In this review, we explain the underlying chemical processes and reactive species involvement during NTP in human (or animal) tissues, as well as in bacteria inactivation, which leads to sterilization and indirectly supports wound healing. In addition, plasma-mediated modifications of medical surfaces, such as surgical instruments or implants, are described. This review focuses on the existing knowledge on NTP-based in vitro and in vivo studies and highlights potential opportunities for the development of novel therapeutic methods. A full understanding of the NTP mechanisms of action is urgently needed for the further development of modern plasma-based medicine.
Collapse
Affiliation(s)
- Julia Moszczyńska
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Marek Wiśniewski
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| |
Collapse
|
7
|
Abu Rached N, Kley S, Storck M, Meyer T, Stücker M. Cold Plasma Therapy in Chronic Wounds-A Multicenter, Randomized Controlled Clinical Trial (Plasma on Chronic Wounds for Epidermal Regeneration Study): Preliminary Results. J Clin Med 2023; 12:5121. [PMID: 37568525 PMCID: PMC10419810 DOI: 10.3390/jcm12155121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic wounds (CWs) pose a significant health challenge in clinical practice. Standard wound therapy (SWT) is currently considered the gold standard. However, recent evidence suggests that cold plasma therapy (CPT) holds promise for improving CWs. In light of this, the POWER study was conducted as a multicenter, randomized clinical trial to investigate the effect of large-area plasma application compared with SWT in patients with chronic, non-healing arterial or venous wounds on the lower leg. To analyze the interim results, we employed a comprehensive range of statistical tests, including both parametric and non-parametric methods, as well as GLS model regression and an ordinal mixed model. Our findings clearly demonstrate that CPT therapy significantly accelerates wound closure compared with SWT. In fact, complete wound closure was exclusively observed in the CPT group during the intervention period. Additionally, the CPT group required significantly less antibiotic therapy (4%) compared with the SWT group (23%). Furthermore, CPT led to a significant reduction in wound pain and improved quality of life compared with SWT. In conclusion, the study highlights that the combination of CPT and SWT surpasses monotherapy with SWT alone.
Collapse
Affiliation(s)
- Nessr Abu Rached
- Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
| | - Susanne Kley
- Scientific Institute for Health Economics and Health Research, Markt 9, 04109 Leipzig, Germany;
| | - Martin Storck
- Municipal Hospital Karlsruhe gGmbH, Moltkestraße 90, 76133 Karlsruhe, Germany;
| | - Thomas Meyer
- Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
| | - Markus Stücker
- Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
| |
Collapse
|
8
|
Sremački I, Asadian M, De Geyter N, Leys C, Geris L, Nikiforov A. Potentials of a Plasma-Aerosol System for Wound Healing Advanced by Drug Introduction: An In Vitro Study. ACS Biomater Sci Eng 2023; 9:2392-2407. [PMID: 37129346 DOI: 10.1021/acsbiomaterials.2c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cold plasmas have found their application in a wide range of biomedical fields by virtue of their high chemical reactivity. In the past decades, many attempts have been made to use cold plasmas in wound healing, and within this field, many studies have focused on plasma-induced cell proliferation mechanisms. In this work, one step further has been taken to demonstrate the advanced role of plasma in wound healing. To this end, the simultaneous ability of plasma to induce cell proliferation and permeabilize treated cells has been examined in the current study. The driving force was to advance the wound healing effect of plasma with drug delivery. On this subject, we demonstrate in vitro the healing effect of Ar, Ar+N2 plasma, and their aerosol counterparts. A systematic study has been carried out to study the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in cell adhesion, signaling, differentiation, and proliferation. An additional investigation was also performed to study the permeabilization of cells and the delivery of the modeled drug carrier fluorescein isothiocyanate (FITC) labeled dextran into cells upon plasma treatment. Short 35 s plasma treatments were found to promote fibroblast adhesion, migration, signaling, proliferation, and differentiation by means of reactive oxygen and nitrogen species (RONS) created by plasma and deposited into the cell environment. The impact of the plasma downstream products NO2- and NO3- on the expressions of the focal adhesion's genes, syndecans, and collagens was observed to be prominent. On the other hand, the differentiation of fibroblasts to myofibroblasts was mainly initiated by ROS produced by the plasma. In addition, the ability of plasma to locally permeabilize fibroblast cells was demonstrated. During proliferative cell treatment, plasma can simultaneously induce cell membrane permeabilization (d ∼ 7.3 nm) by the species OH and H2O2. The choice for a plasma or a plasma-aerosol configuration thus allows the possibility to change the spatial chemistry of drug delivery molecules and thus to locally deliver drugs. Accordingly, this study offers a pivotal step toward plasma-assisted wound healing advanced by drug delivery.
Collapse
Affiliation(s)
- Ivana Sremački
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Mahtab Asadian
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
- Skeletal Biology & Engineering Research Center, ON1 Herestraat 49, 3000 Leuven, Belgium
| | - Nathalie De Geyter
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Christophe Leys
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Liesbet Geris
- Skeletal Biology & Engineering Research Center, ON1 Herestraat 49, 3000 Leuven, Belgium
- Biomechanics Research Unit, Liège University, GIGA In Silico Medicine, Quartier Hôpital avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Anton Nikiforov
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| |
Collapse
|
9
|
Keni R, Begum F, Gourishetti K, Viswanatha GL, Nayak PG, Nandakumar K, Shenoy RR. Diabetic wound healing approaches: an update. J Basic Clin Physiol Pharmacol 2023; 34:137-150. [PMID: 34995024 DOI: 10.1515/jbcpp-2021-0340] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/19/2021] [Indexed: 01/01/2023]
Abstract
Diabetic wounds are of profound clinical importance. Despite immense efforts directed towards its management, it results in the development of amputations, following a diagnosis of diabetic foot. With a better understanding of the complexities of the microbalance involved in the healing process, researchers have developed advanced methods for the management of wounds as well as diagnostic tools (especially, for wound infections) to be delivered to clinics sooner. In this review, we address the newer developments that hope to drive the transition from bench to bedside in the coming decade.
Collapse
Affiliation(s)
- Raghuvir Keni
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Karthik Gourishetti
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Pawan Ganesh Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
10
|
Zhang Y, Zhang Y, Mei Y, Zou R, Niu L, Dong S. Reactive Oxygen Species Enlightened Therapeutic Strategy for Oral and Maxillofacial Diseases-Art of Destruction and Reconstruction. Biomedicines 2022; 10:biomedicines10112905. [PMID: 36428473 PMCID: PMC9687321 DOI: 10.3390/biomedicines10112905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) are byproducts of cell metabolism produced by living cells and signal mediators in biological processes. As unstable and highly reactive oxygen-derived molecules, excessive ROS production and defective oxidant clearance, or both, are associated with the pathogenesis of several conditions. Among them, ROS are widely involved in oral and maxillofacial diseases, such as periodontitis, as well as other infectious diseases or chronic inflammation, temporomandibular joint disorders, oral mucosal lesions, trigeminal neuralgia, muscle fatigue, and oral cancer. The purpose of this paper is to outline how ROS contribute to the pathophysiology of oral and maxillofacial regions, with an emphasis on oral infectious diseases represented by periodontitis and mucosal diseases represented by oral ulcers and how to effectively utilize and eliminate ROS in these pathological processes, as well as to review recent research on the potential targets and interventions of cutting-edge antioxidant materials. The PubMed, Web of Science, and Embase databases were searched using the MesH terms "oral and maxillofacial diseases", "reactive oxygen species", and "antioxidant materials". Irrelevant, obsolete, imprecise, and repetitive articles were excluded through screening of titles, abstracts, and eventually full content. The full-text data of the selected articles are, therefore, summarized using selection criteria. While there are various emerging biomaterials used as drugs themselves or delivery systems, more attention was paid to antioxidant drugs with broad application prospects and rigorous prophase animal experimental results.
Collapse
Affiliation(s)
- Yuwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Yifei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Yukun Mei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Correspondence: (L.N.); (S.D.)
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Correspondence: (L.N.); (S.D.)
| |
Collapse
|
11
|
Tan F, Wang Y, Zhang S, Shui R, Chen J. Plasma Dermatology: Skin Therapy Using Cold Atmospheric Plasma. Front Oncol 2022; 12:918484. [PMID: 35903680 PMCID: PMC9314643 DOI: 10.3389/fonc.2022.918484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Cold atmospheric plasma-based plasma medicine has been expanding the diversity of its specialties. As an emerging branch, plasma dermatology takes advantage of the beneficial complexity of plasma constituents (e.g., reactive oxygen and nitrogen species, UV photons, and electromagnetic emission), technical versatility (e.g., direct irradiation and indirect aqueous treatment), and practical feasibility (e.g., hand-held compact device and clinician-friendly operation). The objective of this comprehensive review is to summarize recent advances in the CAP-dominated skin therapy by broadly covering three aspects. We start with plasma optimisation of intact skin, detailing the effect of CAP on skin lipids, cells, histology, and blood circulation. We then conduct a clinically oriented and thorough dissection of CAP treatment of various skin diseases, focusing on the wound healing, inflammatory disorders, infectious conditions, parasitic infestations, cutaneous malignancies, and alopecia. Finally, we conclude with a brief analysis on the safety aspect of CAP treatment and a proposal on how to mitigate the potential risks. This comprehensive review endeavors to serve as a mini textbook for clinical dermatologists and a practical manual for plasma biotechnologists. Our collective goal is to consolidate plasma dermatology’s lead in modern personalized medicine.
Collapse
Affiliation(s)
- Fei Tan
- Department of Otorhinolaryngology and Head & Neck Surgery (ORL-HNS), Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
- *Correspondence: Fei Tan,
| | - Yang Wang
- Department of Pathology, Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Shiqun Zhang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Runying Shui
- Department of Surgery, Department of Dermatology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jianghan Chen
- Department of Surgery, Department of Dermatology, Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Sorg H, Tilkorn DJ, Hauser J, Ring A. Improving Vascularization of Biomaterials for Skin and Bone Regeneration by Surface Modification: A Narrative Review on Experimental Research. Bioengineering (Basel) 2022; 9:bioengineering9070298. [PMID: 35877349 PMCID: PMC9311595 DOI: 10.3390/bioengineering9070298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022] Open
Abstract
Artificial tissue substitutes are of great interest for the reconstruction of destroyed and non-functional skin or bone tissue due to its scarcity. Biomaterials used as scaffolds for tissue regeneration are non-vascularized synthetic tissues and often based on polymers, which need ingrowth of new blood vessels to ensure nutrition and metabolism. This review summarizes previous approaches and highlights advances in vascularization strategies after implantation of surface-modified biomaterials for skin and bone tissue regeneration. The efficient integration of biomaterial, bioactive coating with endogenous degradable matrix proteins, physiochemical modifications, or surface geometry changes represents promising approaches. The results show that the induction of angiogenesis in the implant site as well as the vascularization of biomaterials can be influenced by specific surface modifications. The neovascularization of a biomaterial can be supported by the application of pro-angiogenic substances as well as by biomimetic surface coatings and physical or chemical surface activations. Furthermore, it was confirmed that the geometric properties of the three-dimensional biomaterial matrix play a central role, as they guide or even enable the ingrowth of blood vessels into a biomaterial.
Collapse
Affiliation(s)
- Heiko Sorg
- Department of Plastic and Reconstructive Surgery, Marien Hospital Witten, Marienplatz 2, 58452 Witten, Germany;
- Department of Health, University of Witten/Herdecke, Alfred-Herrhausen-Str. 50, 58455 Witten, Germany
| | - Daniel J. Tilkorn
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Alfried Krupp Krankenhaus, Hellweg 100, 45276 Essen, Germany; (D.J.T.); (J.H.)
| | - Jörg Hauser
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Alfried Krupp Krankenhaus, Hellweg 100, 45276 Essen, Germany; (D.J.T.); (J.H.)
| | - Andrej Ring
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, St. Rochus Hospital Castrop-Rauxel, Katholische St. Lukas Gesellschaft, Glückaufstraße 10, 44575 Castrop-Rauxel, Germany
- Correspondence: ; Tel.: +49-2305-294-2801
| |
Collapse
|
13
|
Martusevich AK, Surovegina AV, Bocharin IV, Nazarov VV, Minenko IA, Artamonov MY. Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities. Antioxidants (Basel) 2022; 11:antiox11071262. [PMID: 35883753 PMCID: PMC9311881 DOI: 10.3390/antiox11071262] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/21/2023] Open
Abstract
Currently, plasma medicine is a synthetic direction that unites the efforts of specialists of various profiles. For the successful formation of plasma medicine, it is necessary to solve a large complex of problems, including creating equipment for generating cold plasma, revealing the biological effects of this effect, as well as identifying and justifying the most promising areas of its application. It is known that these biological effects include antibacterial and antiviral activity, the ability to stimulate hemocoagulation, pro-regenerative properties, etc. The possibility of using the factor in tissue engineering and implantology is also shown. Based on this, the purpose of this review was to form a unified understanding of the biological effects and biomedical applications of argon cold plasma. The review shows that cold plasma, like any other physical and chemical factors, has dose dependence, and the variable parameter in this case is the exposure of its application. One of the significant characteristics determining the specificity of the cold plasma effect is the carrier gas selection. This gas carrier is not just an ionized medium but modulates the response of biosystems to it. Finally, the perception of cold plasma by cellular structures can be carried out by activating a special molecular biosensor, the functioning of which significantly depends on the parameters of the medium (in the field of plasma generation and the cell itself). Further research in this area can open up new prospects for the effective use of cold plasma.
Collapse
Affiliation(s)
- Andrew K. Martusevich
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Nizhny Novgorod State Agricultural Academy, 603117 Nizhny Novgorod, Russia
- Correspondence: ; Tel.: +7-909-144-9182
| | - Alexandra V. Surovegina
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
| | - Ivan V. Bocharin
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Nizhny Novgorod State Agricultural Academy, 603117 Nizhny Novgorod, Russia
| | - Vladimir V. Nazarov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Institute of Applied Physics, 603950 Nizhny Novgorod, Russia
| | - Inessa A. Minenko
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Mikhail Yu. Artamonov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| |
Collapse
|
14
|
Zhao L, Yan C, Kong S, Jia T, Chu Z, Yang L, Wu J, Geng S, Guo K. Biosafety and differentially expressed genes analysis of melanoma cells treated with cold atmospheric plasma. JOURNAL OF BIOPHOTONICS 2022; 15:e202100403. [PMID: 35261164 DOI: 10.1002/jbio.202100403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Cold atmospheric plasma (CAP) has attracted increasing attention due to its anti-bacterial and anti-tumor effects. Melanoma is an aggressive malignancy with increasing incidence rate and poor prognosis. Evaluating cell viability, apoptosis rate and reactive species injection efficiency of melanoma cells and human keratinocyte cells (HaCaT) treated with CAP to analyze biological safety of CAP. RNA-sequencing (RNA-seq) of A875 cells before and after treatment was performed to further explore the anti-tumor mechanism of CAP. CAP had a more significant biological effect on melanoma cells than HaCaT cells by inhibiting proliferation and promoting apoptosis. RNA-sequencing analysis showed that besides MAPK and p53 apoptotic signaling pathways, necroptosis and autophagy also played important roles in CAP-induced melanoma cells death. CAP can selectively kill melanoma cells and has good biosafety cytologically. Besides apoptosis, CAP can induce cell death via autophagy and necroptosis.
Collapse
Affiliation(s)
- Lihong Zhao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cong Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuzhen Kong
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Jia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jian Wu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Zhou H, Yang Y, Shang W, Rao Y, Chen J, Peng H, Huang J, Hu Z, Zhang R, Rao X. Pyocyanin biosynthesis protects Pseudomonas aeruginosa from nonthermal plasma inactivation. Microb Biotechnol 2022; 15:1910-1921. [PMID: 35290715 PMCID: PMC9151332 DOI: 10.1111/1751-7915.14032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 03/05/2022] [Indexed: 11/27/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen, which raises a worldwide concern for its increasing resistance. Nonthermal plasma, which is also called cold atmospheric plasma (CAP), is an alternative therapeutic approach for clinical infectious diseases. However, the bacterial factors that affect CAP treatment remain unclear. The sterilization effect of a portable CAP device on different P. aeruginosa strains was investigated in this study. Results revealed that CAP can directly or indirectly kill P. aeruginosa in a time‐dependent manner. Scanning electron microscopy and transmission electron microscope showed negligible surface changes between CAP‐treated and untreated P. aeruginosa cells. However, cell leakage occurred during the CAP process with increased bacterial lactate dehydrogenase release. More importantly, pigmentation of the P. aeruginosa culture was remarkably reduced after CAP treatment. Further mechanical exploration was performed by utilizing mutants with loss of functional genes involved in pyocyanin biosynthesis, including P. aeruginosa PAO1 strain‐derived phzA1::Tn, phzA2::Tn, ΔphzA1/ΔphzA2, phzM::Tn and phzS::Tn, as well as corresponding gene deletion mutants based on clinical PA1 isolate. The results indicated that pyocyanin and its intermediate 5‐methyl phenazine‐1‐carboxylic acid (5‐Me‐PCA) play important roles in P. aeruginosa resistance to CAP treatment. The unique enzymes, such as PhzM in the pyocyanin biosynthetic pathway, could be novel targets for the therapeutic strategy design to control the growing P. aeruginosa infections.
Collapse
Affiliation(s)
- Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Yifan Rao
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Juan Chen
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
16
|
Lata S, Chakravorty S, Mitra T, Pradhan PK, Mohanty S, Patel P, Jha E, Panda PK, Verma SK, Suar M. Aurora Borealis in dentistry: The applications of cold plasma in biomedicine. Mater Today Bio 2022; 13:100200. [PMID: 35036896 PMCID: PMC8743205 DOI: 10.1016/j.mtbio.2021.100200] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 01/11/2023] Open
Abstract
Plasma is regularly alluded to as the fourth form of matter. Its bounty presence in nature along with its potential antibacterial properties has made it a widely utilized disinfectant in clinical sciences. Thermal plasma and non-thermal (or cold atmospheric) plasma (NTP) are two types of plasma. Atoms and heavy particles are both available at the same temperature in thermal plasma. Cold atmospheric plasma (CAP) is intended to be non-thermal since its electrons are hotter than the heavier particles at ambient temperature. Direct barrier discharge (DBD), atmospheric plasma pressure jet (APPJ), etc. methods can be used to produce plasma, however, all follow a basic concept in their generation. This review focuses on the anticipated uses of cold atmospheric plasma in dentistry, such as its effectiveness in sterilizing dental instruments by eradicating bacteria, its advantage in dental cavity decontamination over conventional methods, root canal disinfection, its effects on tooth whitening, the benefits of plasma treatment on the success of dental implant placement, and so forth. Moreover, the limitations and probable solutions has also been anticipated. These conceivable outcomes thus have proclaimed the improvement of more up-to-date gadgets, for example, the plasma needle and plasma pen, which are efficient in treating the small areas like root canal bleaching, biofilm disruption, requiring treatment in dentistry. Non-thermal plasma (NTP) has regarded as an important tool for biomedical application especially dental application. The surface application of NTP can be used for disinfecting microbial infection in endodontic issues. NTP can be used to eradicate the microorganism biofilm responsible for dental caries. NTP can also be utilized in would healing, implant modifications and adhesive restoration. NTP is potential candidate for clinical application in dentistry based on the experimental proofs.
Collapse
Affiliation(s)
- S Lata
- Kalinga Institute of Dental Sciences, Department of Conservative Dentistry and Endodontics, KIIT University, Bhubaneswar, 751024, India
| | - Shibani Chakravorty
- Kalinga Institute of Dental Sciences, Department of Conservative Dentistry and Endodontics, KIIT University, Bhubaneswar, 751024, India
| | - Tamoghni Mitra
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Prasanti Kumari Pradhan
- Kalinga Institute of Dental Sciences, Department of Conservative Dentistry and Endodontics, KIIT University, Bhubaneswar, 751024, India
| | - Soumyakanta Mohanty
- Department of Conservative Dentistry and Endodontics, SCB Dental College and Hospital, Cuttack, 753007, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Ealisha Jha
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.,Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|
17
|
Cold Atmospheric Plasma, Platelet-Rich Plasma, and Nitric Oxide Synthesis Inhibitor: Effects Investigation on an Experimental Model on Rats. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The evolution of reconstructive methods for defects of the human body cannot yet replace the use of flap surgery. Research is still preoccupied with the ideal techniques for offering the best chances of survival of the flaps. In our study, we investigated the effects of cold atmospheric plasma (CAP), N-nitro-L-arginine methyl ester (L-NAME), and platelet-rich plasma (PRP) injectable solutions on flap survival using an in vivo model. Twenty-four Wistar rats (four groups) had the McFarlane flap raised and CAP, L-NAME, and PRP substances tested through a single dose subcutaneous injection. The control group had only a saline solution injected. To the best of our knowledge, this is the first study that evaluated a CAP activated solution through injection on flaps. The flap survival rate was determined by clinical examination (photography documented), hematology, thermography, and anatomopathological tests. The image digital analysis performed on the flaps showed that the necrosis area (control—49.64%) was significantly lower for the groups with the three investigated solutions: CAP (14.47%), L-NAME (18.2%), and PRP (23.85%). Thermography exploration revealed less ischemia than the control group on the CAP, L-NAME, and PRP groups as well. Anatomopathological data noted the best degree of angiogenesis on the CAP group, with similar findings on the L-NAME and PRP treated flaps. The blood work did not indicate infection or a strong inflammatory process in any of the subjects. Overall, the study shows that the CAP activated solution has a similar (better) impact on the necrosis rate (compared with other solutions with known effects) when injected on the modified dorsal rat skin flap, and on top of that it can be obtained fast, in unlimited quantities, non-invasively, and through a standardized process.
Collapse
|
18
|
Dikyol C, Ercan UK. Evaluation of Penetration Depth of Antimicrobial Effect by Cold Atmospheric Plasma Treatment In vitro. PLASMA MEDICINE 2022. [DOI: 10.1615/plasmamed.2022043466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Dubey SK, Parab S, Alexander A, Agrawal M, Achalla VPK, Pal UN, Pandey MM, Kesharwani P. Cold atmospheric plasma therapy in wound healing. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Scholtz V, Vaňková E, Kašparová P, Premanath R, Karunasagar I, Julák J. Non-thermal Plasma Treatment of ESKAPE Pathogens: A Review. Front Microbiol 2021; 12:737635. [PMID: 34712211 PMCID: PMC8546340 DOI: 10.3389/fmicb.2021.737635] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 01/19/2023] Open
Abstract
The acronym ESKAPE refers to a group of bacteria consisting of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. They are important in human medicine as pathogens that show increasing resistance to commonly used antibiotics; thus, the search for new effective bactericidal agents is still topical. One of the possible alternatives is the use of non-thermal plasma (NTP), a partially ionized gas with the energy stored particularly in the free electrons, which has antimicrobial and anti-biofilm effects. Its mechanism of action includes the formation of pores in the bacterial membranes; therefore, resistance toward it is not developed. This paper focuses on the current overview of literature describing the use of NTP as a new promising tool against ESKAPE bacteria, both in planktonic and biofilm forms. Thus, it points to the fact that NTP treatment can be used for the decontamination of different types of liquids, medical materials, and devices or even surfaces used in various industries. In summary, the use of diverse experimental setups leads to very different efficiencies in inactivation. However, Gram-positive bacteria appear less susceptible compared to Gram-negative ones, in general.
Collapse
Affiliation(s)
- Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia
| | - Eva Vaňková
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia.,Department of Biotechnology, University of Chemistry and Technology, Prague, Czechia
| | - Petra Kašparová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia
| | - Ramya Premanath
- Nitte University, Nitte University Centre for Science Education and Research, Mangalore, India
| | - Iddya Karunasagar
- Nitte University, Nitte University Centre for Science Education and Research, Mangalore, India
| | - Jaroslav Julák
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia.,Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
21
|
Arndt S, Unger P, Bosserhoff AK, Berneburg M, Karrer S. The Anti-Fibrotic Effect of Cold Atmospheric Plasma on Localized Scleroderma In Vitro and In Vivo. Biomedicines 2021; 9:biomedicines9111545. [PMID: 34829774 PMCID: PMC8615017 DOI: 10.3390/biomedicines9111545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 02/06/2023] Open
Abstract
Cold Atmospheric Plasma (CAP) has shown promising results in the treatment of various skin diseases. The therapeutic effect of CAP on localized scleroderma (LS), however, has not yet been evaluated. We investigated the effects of CAP on LS by comparing human normal fibroblasts (hNF), human TGF-β-activated fibroblasts (hAF), and human localized scleroderma-derived fibroblasts (hLSF) after direct CAP treatment, co-cultured with plasma-treated human epidermal keratinocytes (hEK) and with an experimental murine model of scleroderma. In hAF and hLSF, 2 min CAP treatment with the MicroPlaSterβ® plasma torch did not affect pro-fibrotic gene expression of alpha smooth muscle actin, fibroblast activating protein, and collagen type I, however, it promoted re-expression of matrix metalloproteinase 1. Functionally, CAP treatment reduced cell migration and stress fiber formation in hAF and hLSF. The relevance of CAP treatment was confirmed in an in vivo model of bleomycin-induced dermal fibrosis. In this model, CAP-treated mice showed significantly reduced dermal thickness and collagen deposition as well as a decrease in both alpha smooth muscle actin-positive myofibroblasts and CD68-positive macrophages in the affected skin in comparison to untreated fibrotic tissue. In conclusion, this study provides the first evidence for the successful use of CAP for treating LS and may be the basis for clinical trials including patients with LS.
Collapse
Affiliation(s)
- Stephanie Arndt
- Department of Dermatology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany; (P.U.); (M.B.); (S.K.)
- Correspondence: ; Tel.: +49-941-944-9650
| | - Petra Unger
- Department of Dermatology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany; (P.U.); (M.B.); (S.K.)
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, University of Erlangen-Nuernberg (FAU), 91054 Erlangen, Germany;
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany; (P.U.); (M.B.); (S.K.)
| | - Sigrid Karrer
- Department of Dermatology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany; (P.U.); (M.B.); (S.K.)
| |
Collapse
|
22
|
Sremački I, Kos Š, Bošnjak M, Jurov A, Serša G, Modic M, Leys C, Cvelbar U, Nikiforov A. Plasma Damage Control: From Biomolecules to Cells and Skin. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46303-46316. [PMID: 34569240 DOI: 10.1021/acsami.1c12232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The antibacterial and cell-proliferative character of atmospheric pressure plasma jets (APPJs) helps in the healing process of chronic wounds. However, control of the plasma-biological target interface remains an open issue. High vacuum ultraviolet/ultraviolet (VUV/UV) radiation and RONS flux from plasma may cause damage of a treated tissue; therefore, controlled interaction is essential. VUV/UV emission from argon APPJs and radiation control with aerosol injection in plasma effluent is the focus of this research. The aerosol effect on radiation is studied by a fluorescent target capable of resolving the plasma oxidation footprint. In addition, DNA damage is evaluated by plasmid DNA radiation assay and cell proliferation assay to assess safety aspects of the plasma jet, the effect of VUV/UV radiation, and its control with aerosol injection. Inevitable emission of VUV/UV radiation from plasmas during treatment is demonstrated in this work. Plasma has no antiproliferative effect on fibroblasts in short treatments (t < 60 s), while long exposure has a cytotoxic effect, resulting in decreased cell survival. Radiation has no effect on cell survival in the medium due to absorption. However, a strong cytotoxic effect on the attached fibroblasts without the medium is apparent. VUV/UV radiation contributes 70% of the integral plasma effect in induction of single- and double-strand DNA breaks and cytotoxicity of the attached cells without the medium. Survival of the attached cells increases by 10% when aerosol is introduced between plasma and the cells. Injection of aerosol in the plasma effluent can help to control the plasma-cell/tissue interaction. Aerosol droplets in the effluent partially absorb UV emission from the plasma, limiting photon flux in the direction of the biological target. Herein, cold and safe plasma-aerosol treatment and a safe operational mode of treatment are demonstrated in a murine model.
Collapse
Affiliation(s)
- Ivana Sremački
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, Ljubljana 1000, Slovenia
| | - Maša Bošnjak
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, Ljubljana 1000, Slovenia
| | - Andrea Jurov
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana 1000, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, Ljubljana 1000, Slovenia
| | - Martina Modic
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia
| | - Christophe Leys
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Uroš Cvelbar
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana 1000, Slovenia
| | - Anton Nikiforov
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| |
Collapse
|
23
|
Multi-Modal Biological Destruction by Cold Atmospheric Plasma: Capability and Mechanism. Biomedicines 2021; 9:biomedicines9091259. [PMID: 34572443 PMCID: PMC8465976 DOI: 10.3390/biomedicines9091259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/07/2023] Open
Abstract
Cold atmospheric plasma (CAP) is a near-room-temperature, partially ionized gas composed of reactive neutral and charged species. CAP also generates physical factors, including ultraviolet (UV) radiation and thermal and electromagnetic (EM) effects. Studies over the past decade demonstrated that CAP could effectively induce death in a wide range of cell types, from mammalian to bacterial cells. Viruses can also be inactivated by a CAP treatment. The CAP-triggered cell-death types mainly include apoptosis, necrosis, and autophagy-associated cell death. Cell death and virus inactivation triggered by CAP are the foundation of the emerging medical applications of CAP, including cancer therapy, sterilization, and wound healing. Here, we systematically analyze the entire picture of multi-modal biological destruction by CAP treatment and their underlying mechanisms based on the latest discoveries particularly the physical effects on cancer cells.
Collapse
|
24
|
Eggers B, Marciniak J, Memmert S, Wagner G, Deschner J, Kramer FJ, Nokhbehsaim M. Influences of cold atmospheric plasma on apoptosis related molecules in osteoblast-like cells in vitro. Head Face Med 2021; 17:37. [PMID: 34479596 PMCID: PMC8414668 DOI: 10.1186/s13005-021-00287-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Background Cold atmospheric plasma (CAP) has recently been identified as a novel therapeutic strategy for supporting processes of wound healing. Since CAP is additionally known to kill malignant cells, our study intends to determine the influence of CAP on crucial molecules involved in the molecular mechanism of apoptosis in osteoblast-like cells. Methods Human osteoblast-like cells were CAP-treated for 30 and 60 s. CAP effects on critical factors related to apoptosis were studied at transcriptional and protein level using real time-PCR, immunofluorescence staining and western blot. Phalloidin / DAPI staining was used for analyzing the cell morphology. In addition, apoptotic outcomes of CAP were displayed using flow cytometry analysis. For studying intracellular signaling pathways, MAP kinase MEK 1/2 and PI3K were blocked. Finally, the effects of CAP on caspase-3 activity were examined using a caspase-3 assay. Results CAP treatment resulted in a significant downregulation of p53 and apoptotic protease activating factor (APAF)-1, caspase (CASP)9, CASP3, BCL2 Antagonist/Killer (BAK)1, and B-Cell Lymphoma (BCL)2 mRNA expression at 1 d. An inhibitory effect of CAP on apoptotic genes was also shown under inflammatory and apoptotic conditions. Nuclear translocation of p53 was determined in CAP treated cells at the early and late stage, after 15 min, 30 min, and 1 h. p53 and APAF-1 protein levels were reduced at 1 d, visualized by immunofluorescence and western blot, respectively. Moreover, a morphological cytoskeleton modification was observed after CAP treatment at 1 d. Further, both CAP-treated and untreated (control) cells remained equally vital as detected by flow cytometry analysis. Interestingly, CAP-associated downregulation of CASP9 and CASP3 mRNA gene expression was also visible after blocking MAP kinase and PI3K. Finally, CAP led to a decrease in CASP3 activity in osteoblast-like cells under normal and apoptotic conditions. Conclusions Our in vitro-study demonstrated, that CAP decreases apoptosis related molecules in osteoblast-like cells, underlining a beneficial effect on hard-tissue cells.
Collapse
Affiliation(s)
- Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| | - Jana Marciniak
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.,Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Svenja Memmert
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.,Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Gunar Wagner
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, 55131, Mainz, Germany
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| |
Collapse
|
25
|
Plasma-Activated Water Promotes Wound Healing by Regulating Inflammatory Responses. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1030022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infection can hinder the process of wound healing, so it is important to begin antibacterial treatment quickly after a wound forms. Plasma activated water (PAW) can inactivate a variety of common wound infection bacteria. In this study, we compared the effects of PAW prepared with portable surface discharge plasma equipment and medical alcohol on wound healing in a mouse full-thickness skin wound model. The effectiveness of wound healing processes in mice was ranked accordingly: PAW treatment group > medical alcohol treatment group > control group. In order to further understand the mechanism of PAW in promoting wound healing, we tested the expression levels of the pro-inflammatory factors interleukin (IL)-1β and IL-6, the anti-inflammatory factor IL-10, and vascular endothelial growth factor (VEGF). The results showed that PAW promoted the release of pro-inflammatory factors and anti-inflammatory factors from the wounds in mice, which allowed the mice in the treatment group to transition out of the inflammatory period early and enter the next stage of wound healing. The expression level of VEGF in the wounds of mice in the PAW treatment group was higher, which indicates that the microvessels around the wound in the PAW treatment group proliferated faster, and thus the wound healed faster. PAW biosafety experiments showed that PAW did not significantly affect the appearance, morphology, or tissue structure of internal organs, or blood biochemical indicators in mice. In general, PAW prepared via portable devices is expected to become more widely used given its convenience, affordability, and lack of side effects in promoting wound healing.
Collapse
|
26
|
Duchesne C, Frescaline N, Blaise O, Lataillade JJ, Banzet S, Dussurget O, Rousseau A. Cold Atmospheric Plasma Promotes Killing of Staphylococcus aureus by Macrophages. mSphere 2021; 6:e0021721. [PMID: 34133202 PMCID: PMC8265637 DOI: 10.1128/msphere.00217-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 01/16/2023] Open
Abstract
Macrophages are important immune cells that are involved in the elimination of microbial pathogens. Following host invasion, macrophages are recruited to the site of infection, where they launch antimicrobial defense mechanisms. Effective microbial clearance by macrophages depends on phagocytosis and phagolysosomal killing mediated by oxidative burst, acidification, and degradative enzymes. However, some pathogenic microorganisms, including some drug-resistant bacteria, have evolved sophisticated mechanisms to prevent phagocytosis or escape intracellular degradation. Cold atmospheric plasma (CAP) is an emerging technology with promising bactericidal effects. Here, we investigated the effect of CAP on Staphylococcus aureus phagocytosis by RAW 264.7 macrophage-like cells. We demonstrate that CAP treatment increases intracellular concentrations of reactive oxygen species (ROS) and nitric oxide and promotes the elimination of both antibiotic-sensitive and antibiotic-resistant S. aureus by RAW 264.7 cells. This effect was inhibited by antioxidants indicating that the bactericidal effect of CAP was mediated by oxidative killing of intracellular bacteria. Furthermore, we show that CAP promotes the association of S. aureus to lysosomal-associated membrane protein 1 (LAMP-1)-positive phagosomes, in which bacteria are exposed to low pH and cathepsin D hydrolase. Taken together, our results provide the first evidence that CAP activates defense mechanisms of macrophages, ultimately leading to bacterial elimination. IMPORTANCE Staphylococcus aureus is the most frequent cause of skin and soft tissue infections. Treatment failures are increasingly common due to antibiotic resistance and the emergence of resistant strains. Macrophages participate in the first line of immune defense and are critical for coordinated defense against pathogenic bacteria. However, S. aureus has evolved sophisticated mechanisms to escape macrophage killing. In the quest to identify novel antimicrobial therapeutic approaches, we investigated the activity of cold atmospheric plasma (CAP) on macrophages infected with S. aureus. Here, we show that CAP treatment promotes macrophage ability to eliminate internalized bacteria. Importantly, CAP could trigger killing of both antibiotic-sensitive and antibiotic-resistant strains of S. aureus. While CAP did not affect the internalization capacity of macrophages, it increased oxidative-dependent bactericidal activity and promoted the formation of degradative phagosomes. Our study shows that CAP has beneficial effects on macrophage defense mechanisms and may potentially be useful in adjuvant antimicrobial therapies.
Collapse
Affiliation(s)
- Constance Duchesne
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Nadira Frescaline
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Océane Blaise
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Olivier Dussurget
- Institut Pasteur, Unité de Recherche Yersinia, Département de Microbiologie, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Antoine Rousseau
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| |
Collapse
|
27
|
Cold Atmospheric Plasma Promotes Regeneration-Associated Cell Functions of Murine Cementoblasts In Vitro. Int J Mol Sci 2021; 22:ijms22105280. [PMID: 34067898 PMCID: PMC8156616 DOI: 10.3390/ijms22105280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of the study was to examine the efficacy of cold atmospheric plasma (CAP) on the mineralization and cell proliferation of murine dental cementoblasts. Cells were treated with CAP and enamel matrix derivates (EMD). Gene expression of alkaline phosphatase (ALP), bone gamma-carboxyglutamate protein (BGLAP), periostin (POSTN), osteopontin (OPN), osterix (OSX), collagen type I alpha 1 chain (COL1A1), dentin matrix acidic phosphoprotein (DMP)1, RUNX family transcription factor (RUNX)2, and marker of proliferation Ki-67 (KI67) was quantified by real-time PCR. Protein expression was analyzed by immunocytochemistry and ELISA. ALP activity was determined by ALP assay. Von Kossa and alizarin red staining were used to display mineralization. Cell viability was analyzed by XTT assay, and morphological characterization was performed by DAPI/phalloidin staining. Cell migration was quantified with an established scratch assay. CAP and EMD upregulated both mRNA and protein synthesis of ALP, POSTN, and OPN. Additionally, DMP1 and COL1A1 were upregulated at both gene and protein levels. In addition to upregulated RUNX2 mRNA levels, treated cells mineralized more intensively. Moreover, CAP treatment resulted in an upregulation of KI67, higher cell viability, and improved cell migration. Our study shows that CAP appears to have stimulatory effects on regeneration-associated cell functions in cementoblasts.
Collapse
|
28
|
Abstract
Nonthermal atmospheric pressure biocompatible plasma (NBP), alternatively called bio-cold plasma, is a partially ionized gas that consists of charged particles, neutral atoms and molecules, photons, an electric field, and heat. Recently, nonthermal plasma-based technology has been applied to bioscience, medicine, agriculture, food processing, and safety. Various plasma device configurations and electrode layouts has fast-tracked plasma applications in the treatment of biological and material surfaces. The NBP action mechanism may be related to the synergy of plasma constituents, such as ultraviolet radiation or a reactive species. Recently, plasma has been used in the inactivation of viruses and resistant microbes, such as fungal cells, bacteria, spores, and biofilms made by microbes. It has also been used to heal wounds, coagulate blood, degrade pollutants, functionalize material surfaces, kill cancers, and for dental applications. This review provides an outline of NBP devices and their applications in bioscience and medicine. We also discuss the role of plasma-activated liquids in biological applications, such as cancer treatments and agriculture. The individual adaptation of plasma to meet specific medical requirements necessitates real-time monitoring of both the plasma performance and the target that is treated and will provide a new paradigm of plasma-based therapeutic clinical systems.
Collapse
Affiliation(s)
- Eun H. Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Han S. Uhm
- Canode # 702, 136-11 Tojeong-ro, Mapo-gu, Seoul, 04081 Republic of Korea
| | - Nagendra K. Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| |
Collapse
|
29
|
Akbiyik A, Sari D, Ercan UK, Uyanikgil Y, Taşli H, Tomruk C, Usta YH. The antimicrobial and tissue healing efficacy of the atmospheric pressure cold plasma on grade III infected pressure ulcer: randomized controlled in vivo experiment. J Appl Microbiol 2021; 131:973-987. [PMID: 33354899 DOI: 10.1111/jam.14980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
AIM To evaluate the antimicrobial efficacy and wound healing effect of atmospheric pressure cold plasma (APCP) on an infected pressure ulcer (IPUs) model that was created on rats. METHODS A total of 18 rats was divided into APCP, silver sulfadiazine (AgS) and control groups to have six rats in each group. A third-grade pressure ulcer model was developed on the back of each of the rats, and pressure ulcers were infected by inoculation of multidrug resistance (MDR) Pseudomonas aeruginosa. A portable dielectric barrier discharge device was used to generate cold air plasma. APCP, AgS and saline treatments were carried out once a day for 14 days. The effectiveness of the treatment was evaluated on days 5, 10 and 15. Surface area, depth, pressure ulcer healing scale (PUSH) and microbiological examination were used for evaluation. RESULTS The results of this study showed that APCP was superior over AgS application and irrigation with saline by means of the reduction in surface area and depth of ulcers. Furthermore, PUSH score in plasma group was lower than other groups and histopathological examination showed a higher epithelization in APCP group. The average reductions of MDR P. aeruginosa for APCP, AgS and control groups were determined as 5·64 ± 1·87, 1·91 ± 0·90 and 1·22 ± 0·88 log10 CFU per gram tissue, respectively. CONCLUSION Atmospheric pressure cold plasma healed IPUs better than AgS. SIGNIFICANCE AND IMPACT OF THE STUDY Portable cold plasma devices could be a potential novel treatment modality for the patients who have IPUs.
Collapse
Affiliation(s)
- A Akbiyik
- Faculty of Health Sciences, Izmir Katip Celebi University, Çiğli İzmir, Turkey
| | - D Sari
- Department of Fundamentals of Nursing, Faculty of Nursing, Ege University, Izmir, Turkey
| | - U K Ercan
- Department of Biomedical Engineering, Faculty of Engineering, İzmir Katip Çelebi University, Çiğli/İzmir, Turkey
| | - Y Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - H Taşli
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - C Tomruk
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Y H Usta
- Department of Biomedical Engineering, Faculty of Engineering, İzmir Katip Çelebi University, Çiğli/İzmir, Turkey
| |
Collapse
|
30
|
Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z, Dørum A, Kajo K, Dvorska D, Lucansky V, Malicherova B, Kasubova I, Bujnak J, Mlyncek M, Dussan CA, Kubatka P, Büsselberg D, Golubnitschaja O. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int J Mol Sci 2020; 21:ijms21217988. [PMID: 33121141 PMCID: PMC7663780 DOI: 10.3390/ijms21217988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
- OBGY Health & Care, Ltd., 010 01 Zilina, Slovakia
- Correspondence: or
| | - Yun Wang
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Alena Liskova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Lenka Koklesova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Anne Dørum
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Bibiana Malicherova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, 07101 Michalovce, Slovakia;
| | - Milos Mlyncek
- Department of Obstetrics and Gynaecology, Faculty Hospital Nitra, Constantine the Philosopher University, 949 01 Nitra, Slovakia;
| | - Carlos Alberto Dussan
- Department of Surgery, Orthopaedics and Oncology, University Hospital Linköping, 581 85 Linköping, Sweden;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144 Doha, Qatar;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53105 Bonn, Germany;
| |
Collapse
|
31
|
Kang KA, Piao MJ, Eom S, Yoon SY, Ryu S, Kim SB, Yi JM, Hyun JW. Non-thermal dielectric-barrier discharge plasma induces reactive oxygen species by epigenetically modifying the expression of NADPH oxidase family genes in keratinocytes. Redox Biol 2020; 37:101698. [PMID: 32863235 PMCID: PMC7472924 DOI: 10.1016/j.redox.2020.101698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
We have previously shown that non-thermal dielectric-barrier discharge (DBD) plasma induces the generation of reactive oxygen species (ROS) in cells; however, the underlying mechanism has not been elucidated. This study aimed to identify the mechanisms through which DBD plasma induces the expression of NADPH oxidase (NOX) family members by epigenetic modification in human keratinocytes (HaCaT). Cell exposure to DBD plasma in 10% oxygen and 90% argon resulted in the generation of ROS, triggering oxidative stress that manifested in various forms, including lipid membrane peroxidation, DNA base modification, and protein carbonylation. DBD plasma upregulated the expression of NOX1, NOX5, and DUOX2 at the mRNA and protein levels; and siRNAs targeting NOX1, NOX5, and DUOX2 attenuated the generation of DBD plasma-induced ROS. DBD plasma upregulated the transcriptional activators TET1, MLL1, and HAT1 and downregulated the transcriptional repressors DNMT1, EZH2, and HDAC1. Additionally, DBD plasma increased the binding of transcriptional activators and decreased the binding of transcriptional repressors to the DUOX2 promoter. Methyl-specific polymerase chain reaction and bisulfite sequencing indicated that DBD plasma decreased methylation at the DUOX2 promoter. These results suggest that DBD plasma induces ROS generation by enhancing the expression of the NOX system through epigenetic DNA and histone modifications.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sangheum Eom
- Plasma Technology Research Center of National Fusion Research Institute, Gunsan, 54004, Republic of Korea
| | - Sung-Young Yoon
- Plasma Technology Research Center of National Fusion Research Institute, Gunsan, 54004, Republic of Korea
| | - Seungmin Ryu
- Plasma Technology Research Center of National Fusion Research Institute, Gunsan, 54004, Republic of Korea
| | - Seong Bong Kim
- Plasma Technology Research Center of National Fusion Research Institute, Gunsan, 54004, Republic of Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
32
|
Kar R, Chand N, Bute A, Maiti N, Rao AVSSN, Nagar V, Shashidhar R, Patil DS, Ghosh SK, Sharma A. Cold Plasma: Clean Technology to Destroy Pathogenic Micro-organisms. TRANSACTIONS OF THE INDIAN NATIONAL ACADEMY OF ENGINEERING : AN INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY 2020; 5:327-331. [PMID: 38624412 PMCID: PMC7305861 DOI: 10.1007/s41403-020-00133-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 11/03/2022]
Abstract
Atmospheric pressure cold plasma is a promising technology in fighting pathogenic micro-organisms. In times of Covid-19 pandemic, it was decided to modify two types of cold plasma devices to study their effectiveness in the killing of pathogenic micro-organisms. These studies have shown that both the devices are efficient in this purpose. While pencil like microwave based device can destroy Aeromonas bacteria and its bacteriophage from 6 cm distance in 2 min, the larger (~ 40 cm2) RF plasma based device could do the similar killing ability for the larger possible area in 4 min. Optical Emission Spectroscopy (OES) studies revealed that both these devices produce OH radicals which helped in the destruction of both bacteria and its bacteriophage. With suitable modifications, these devices, especially the larger area device may even be implemented for the elimination of Covid-19 affected wards of hospital without using any sensitive chemical process.
Collapse
Affiliation(s)
- R. Kar
- Beam Technology and Development Group, Bhabha Atomic Research Centre, Mumbai, 400085 India
| | - N. Chand
- Beam Technology and Development Group, Bhabha Atomic Research Centre, Mumbai, 400085 India
| | - A. Bute
- Beam Technology and Development Group, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| | - Namita Maiti
- Beam Technology and Development Group, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| | - A. V. S. S. Narayan Rao
- Bio Science Group, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| | - V. Nagar
- Bio Science Group, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| | - R. Shashidhar
- Bio Science Group, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| | - D. S. Patil
- Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai, 400076 India
| | - S. K. Ghosh
- Bio Science Group, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| | - A. Sharma
- Beam Technology and Development Group, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| |
Collapse
|
33
|
Supply Systems of Non-Thermal Plasma Reactors. Construction Review with Examples of Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A review of the supply systems of non-thermal plasma reactors (NTPR) with dielectric barrier discharge (DBD), atmospheric pressure plasma jets (APPJ) and gliding arc discharge (GAD) was performed. This choice is due to the following reasons: these types of electrical discharges produce non-thermal plasma at atmospheric pressure, the reactor design is well developed and relatively simple, the potential area of application is large, especially in environmental protection processes and biotechnologies currently under development, theses reactors can be powered from similar sources using non-linear transformer magnetic circuits and power electronics systems, and finally, these plasma reactors and their power supply systems, as well as their applications are the subject of research conducted by the author of the review and her team from the Department of Electrical Engineering and Electrotechnology of the Lublin University of Technology, Poland.
Collapse
|
34
|
Rotering H, Al Shakaki M, Welp H, Dell'Aquila AM. Preliminary Results of a New Treatment Strategy for Relapsed Left Ventricular Assist Device-Specific Infections. Ann Thorac Surg 2020; 110:1302-1307. [PMID: 32169499 DOI: 10.1016/j.athoracsur.2020.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 12/27/2019] [Accepted: 02/04/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Relapsed ventricular assist device-specific infections are associated with high morbidity, mortality, and hospital costs. A new combination of cold atmospheric plasma and special dressing technique with negative pressure wound therapy with an additional underlay of carbon cloth and hypochlorite rinsing solutions has been developed and reported in this study. METHODS Between January 2016 and January 2018, 9 patients with relapsed infected driveline or pump pocket infection were treated with this new combined strategy. The primary endpoint was complete wound healing without recurrence of infection, defined as the presence at the same site within the first year after treatment. The secondary endpoint was control of infection, defined as a marked reduction of the infected area. RESULTS After a median treatment time of 3 weeks, an immediate response was observed in all patients, and complete healing was achieved in 6 patients. Five patients met the primary endpoint, and infection did not recur after a median follow-up of 17.5 (range, 12.1 to 21.8) months. One patient underwent heart transplantation 6 months after successful wound treatment (complete wound healing). The remaining 3 patients were discharged with controlled infection. After a median follow-up of 5.7 months, 1 destination therapy patient died at home, and 2 patients underwent urgent heart transplantation because of recurrence of infection caused by Pseudomonas aeruginosa. Side effects were not observed. CONCLUSIONS The new combination treatment offers a promising option for patients with ventricular assist device-relapsed infection. Despite this, further studies are warranted to confirm those encouraging preliminary results.
Collapse
Affiliation(s)
- Heinrich Rotering
- Department of Cardiac Surgery, University Hospital Münster, Münster, Germany
| | - Mosab Al Shakaki
- Department of Cardiac Surgery, University Hospital Münster, Münster, Germany
| | - Henryk Welp
- Department of Cardiac Surgery, University Hospital Münster, Münster, Germany
| | | |
Collapse
|
35
|
Yang Y, Wang H, Zhou H, Hu Z, Shang W, Rao Y, Peng H, Zheng Y, Hu Q, Zhang R, Luo H, Rao X. Protective Effect of the Golden Staphyloxanthin Biosynthesis Pathway on Staphylococcus aureus under Cold Atmospheric Plasma Treatment. Appl Environ Microbiol 2020; 86:e01998-19. [PMID: 31704682 PMCID: PMC6974630 DOI: 10.1128/aem.01998-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus infection poses a serious threat to public health, and antibiotic resistance has complicated the clinical treatment and limited the solutions available to solve this problem. Cold atmospheric plasma (CAP) is a promising strategy for microorganism inactivation. However, the mechanisms of microbial inactivation or resistance remain unclear. In this study, we treated S. aureus strains with a self-assembled CAP device and found that CAP can kill S. aureus in an exposure time-dependent manner. In addition, the liquid environment can influence the survival rate of S. aureus post-CAP treatment. The S. aureus cells can be completely inactivated in normal saline and phosphate-buffered saline but not in tryptic soy broth culture medium. Scanning and transmission electron microscopy revealed that the CAP-treated S. aureus cells maintained integrated morphological structures, similar to the wild-type strain. Importantly, the CAP-treated S. aureus cells exhibited a reduced pigment phenotype. Deletion of the staphyloxanthin biosynthetic genes crtM and crtN deprived the pigmentation ability of S. aureus Newman. Both the Newman-ΔcrtM and Newman-ΔcrtN mutants presented high sensitivity to CAP treatment, whereas Newman-ΔcrtO exhibited a survival rate comparable to wild-type Newman after CAP treatment. Our data demonstrated that the yellow pigment intermediates of the staphyloxanthin biosynthetic pathway are responsible for the protection of S. aureus from CAP inactivation. The key enzymes, such as CrtM and CrtN, of the golden staphyloxanthin biosynthetic pathway could be important targets for the design of novel sterilization strategies against S. aureus infections.IMPORTANCEStaphylococcus aureus is an important pathogen that can be widely distributed in the community and clinical settings. The emergence of S. aureus with multiple-antibiotic resistance has complicated staphylococcal infection control. The development of alternative strategies with powerful bactericidal effects is urgently needed. Cold atmospheric plasma (CAP) is a promising strategy for microorganism inactivation. Nevertheless, the underlying mechanisms of microbial inactivation or resistance are not completely illustrated. In this study, we validated the bactericidal effects of CAP on S. aureus, including antibiotic-resistant strains. We also found that the golden staphyloxanthin, as well as its yellow pigment intermediates, protected S. aureus against CAP, and blocking the staphyloxanthin synthesis pathway at the early steps could strengthen the sensitivity of S. aureus to CAP treatment. These data provide insights into the germicidal mechanism of CAP from the aspect of bacteria and suggest new targets against S. aureus infections.
Collapse
Affiliation(s)
- Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Hao Wang
- Department of Electrical Engineering, Tsinghua University, Beijing, China
| | - Huyue Zhou
- Department of Pharmacy, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Yifan Rao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Ying Zheng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haiyun Luo
- Department of Electrical Engineering, Tsinghua University, Beijing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| |
Collapse
|
36
|
Cornell KA, Benfield K, Berntsen T, Clingerman J, Croteau A, Goering S, Moyer D, Provost M, White A, Plumlee D, Oxford JT, Browning J. A Cold Atmospheric Pressure Plasma Discharge Device Exerts Antimicrobial Effects. INTERNATIONAL JOURNAL OF LATEST TRENDS IN ENGINEERING & TECHNOLOGY : IJLTET 2020; 15:036-41. [PMID: 32219149 PMCID: PMC7098701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A cold atmospheric pressure plasma device was developed using two parallel plates of Low Temperature Co-fired Ceramic with embedded electrodes. The 2.4 cm wide by 1 mm deep plasma discharge operates at 20 kHz with a 2-5 kV AC drive signal across a 0.25 mm gap. Mixed Argon/oxygen plasmas were directed between the plates to flow toward a bacterial biofilm sample for treatment. Results showed that at 4-5 kV the plasma etched away a bacterial biofilm on glass in 10 minutes. In addition, we showed that short plasma treatments rapidly killed biofilm resident bacteria with ED90 values of <15 s.
Collapse
Affiliation(s)
- Kenneth A Cornell
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID USA
| | - Kate Benfield
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID USA
| | - Tiffany Berntsen
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID USA
| | - Jenna Clingerman
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID USA
| | - Adam Croteau
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID USA
| | - Spencer Goering
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID USA
| | - Daniel Moyer
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID USA
| | - Mariah Provost
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID USA
| | - Amanda White
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID USA
| | - Don Plumlee
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID USA
| | - Julia T Oxford
- Department of Biological Science, Boise State University, Boise, ID USA
| | - Jim Browning
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID USA
| |
Collapse
|
37
|
Zhou X, Cai D, Xiao S, Ning M, Zhou R, Zhang S, Chen X, Ostrikov K, Dai X. InvivoPen: A novel plasma source for in vivo cancer treatment. J Cancer 2020; 11:2273-2282. [PMID: 32127954 PMCID: PMC7052936 DOI: 10.7150/jca.38613] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/04/2020] [Indexed: 12/27/2022] Open
Abstract
Background: With the anti-cancer efficacies of cold atmospheric plasma being increasingly recognized in vitro, a demand on creating an effective tool feasible for in vivo animal treatment has emerged. Methods: Through the use of co-axial needles with different calibers in diameter, we designed a novel in situ ejection source of cold atmospheric plasma, namely invivoPen, for animal experiments. It punches just a single pinhole that could considerably ease the complexity of operating with small animals such as mouse. Results: We showed that invivoPen could deliver similar efficacies as plasma activated medium with reduced cost in suppressing cell proliferation and migration as well as potentially boosting the viabilities of mice receiving invivoPen treatment. Blood test, renal and liver functionalities tests all suggest that physical plasma could effectively return tumor-carrying mice to the healthy state without harm to body conditions, and invivoPen slightly outweighs PAM in boosting animal immunity and reducing inflammation. Conclusion: Our study contributes to the community in providing a minimal invasive in situ plasma source, having partly explained the efficacies of cold atmospheric plasma in treating triple negative breast cancers, and proposing the potential synergies between physical plasma and conventional drugs for cancer treatment.
Collapse
Affiliation(s)
- Xin Zhou
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, China
| | - Dongyan Cai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Shaoqing Xiao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, China
| | - Meng Ning
- School of Mechanical Engineering, Jiangnan University ,Jiangsu Wuxi 214122, China
- Laboratory of Advanced Food Manufacturing Technology of Jiangsu Province, Jiangnan University, Jiangsu Wuxi 214122, China
| | - Renwu Zhou
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4059, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Shuo Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao Chen
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Kostya Ostrikov
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4059, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- ✉ Corresponding author: Xiaofeng Dai, , Mobile: +86 18168870169
| |
Collapse
|
38
|
Kwon T, Chandimali N, Lee DH, Son Y, Yoon SB, Lee JR, Lee S, Kim KJ, Lee SY, Kim SY, Jo YJ, Kim M, Park BJ, Lee JK, Jeong DK, Kim JS. Potential Applications of Non-thermal Plasma in Animal Husbandry to Improve Infrastructure. In Vivo 2019; 33:999-1010. [PMID: 31280188 PMCID: PMC6689345 DOI: 10.21873/invivo.11569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022]
Abstract
Infrastructure in animal husbandry refers to fundamental facilities and services necessary for better living conditions of animals and its economy to function through better productivity. Mainly, infrastructure can be divided into two categories: hard infrastructure and soft infrastructure. Physical infrastructure, such as buildings, roads, and water supplying systems, belongs to hard infrastructure. Soft infrastructure includes services which are required to maintain economic, health, cultural and social standards of animal husbandry. Therefore, the proper management of infrastructure in animal husbandry is necessary for animal welfare and its economy. Among various technologies to improve the quality of infrastructure, non-thermal plasma (NTP) technology is an effectively applicable technology in different stages of animal husbandry. NTP is mainly helpful in maintaining better health conditions of animals in several ways via decontamination from microorganisms present in air, water, food, instruments and surfaces of animal farming systems. Furthermore, NTP is used in the treatment of waste water, vaccine production, wound healing in animals, odor-free ventilation, and packaging of animal food or animal products. This review summarizes the recent studies of NTP which can be related to the infrastructure in animal husbandry.
Collapse
Affiliation(s)
- Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Nisansala Chandimali
- Immunotherapy Convergence Research Center,Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Yeonghoon Son
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Ja-Rang Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Sangil Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Ki Jin Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Sang-Yong Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Se-Yong Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Minseong Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Byoung-Jin Park
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Jun-Ki Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| |
Collapse
|
39
|
Short exposure to cold atmospheric plasma induces senescence in human skin fibroblasts and adipose mesenchymal stromal cells. Sci Rep 2019; 9:8671. [PMID: 31209329 PMCID: PMC6572822 DOI: 10.1038/s41598-019-45191-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
Cold Atmospheric Plasma (CAP) is a novel promising tool developed in several biomedical applications such as cutaneous wound healing or skin cancer. Nevertheless, in vitro studies are lacking regarding to CAP effects on cellular actors involved in healthy skin healing and regarding to the mechanism of action. In this study, we investigated the effect of a 3 minutes exposure to CAP-Helium on human dermal fibroblasts and Adipose-derived Stromal Cells (ASC) obtained from the same tissue sample. We observed that CAP treatment did not induce cell death but lead to proliferation arrest with an increase in p53/p21 and DNA damages. Interestingly we showed that CAP treated dermal fibroblasts and ASC developed a senescence phenotype with p16 expression, characteristic morphological changes, Senescence-Associated β-galactosidase expression and the secretion of pro-inflammatory cytokines defined as the Senescence-Associated Secretory Phenotype (SASP). Moreover this senescence phenotype is associated with a glycolytic switch and an increase in mitochondria content. Despite this senescence phenotype, cells kept in vitro functional properties like differentiation potential and immunomodulatory effects. To conclude, we demonstrated that two main skin cellular actors are resistant to cell death but develop a senescence phenotype while maintaining some functional characteristics after 3 minutes of CAP-Helium treatment in vitro.
Collapse
|
40
|
Lin L, Wang L, Liu Y, Xu C, Tu Y, Zhou J. Non‑thermal plasma inhibits tumor growth and proliferation and enhances the sensitivity to radiation in vitro and in vivo. Oncol Rep 2018; 40:3405-3415. [PMID: 30272342 PMCID: PMC6196603 DOI: 10.3892/or.2018.6749] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer is a major disease currently endangering the entire world population. Morbidity and mortality have increased substantially during recent decades. Radiotherapy is a primary treatment for malignant tumors, however side-effects and tumor cell resistance to ionizing radiation reduce the efficacy of radiotherapy. In recent years, non-thermal plasma (NTP) technology been used to treat cancer. In this study, we investigated the toxic effects of NTP on normal cells and tumor cells. We explored the inhibitory effect of NTP on tumor cell proliferation and evaluated the radiation-sensitizing effects of NTP on tumor cells and its mechanisms. In short, we examined the effect of NTP-combined radiation on proliferation, the cell cycle, apoptosis and DNA damage in normal and cancer cells. We found that NTP inhibited proliferation and induced apoptosis in tumor cells. NTP was more lethal to tumor cells than to normal cells. We found promising synergies of NTP with radiotherapy on cancer cells owing to their combined cytotoxic effects by generating ROS, inducing cell cycle arrest and apoptosis. NTP may be a new candidate for the treatment of cancer.
Collapse
Affiliation(s)
- Lin Lin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lili Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yandong Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chao Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yu Tu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Juying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
41
|
Non-thermal atmospheric pressure plasma-induced IL-8 expression is regulated via intracellular K + loss and subsequent ERK activation in human keratinocyte HaCaT cells. Arch Biochem Biophys 2018. [PMID: 29518371 DOI: 10.1016/j.abb.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-thermal atmospheric pressure plasma (NTAPP) has recently emerged as a novel medical therapy for skin wounds. Interleukin-8 (IL-8) is thought to play a critical role in wound healing. NTAPP irradiation has been reported to promote production of IL-8; however, the mechanism is not fully understood. The aim of this study was to elucidate the underlying mechanism of NTAPP-induced IL-8 expression in human keratinocyte HaCaT cells. NTAPP irradiation of HaCaT cells increased IL-8 mRNA expression in an irradiation time-dependent manner. Although hydrogen peroxide (H2O2) was generated in culture medium irradiated with NTAPP, treatment of HaCaT cells with H2O2 itself failed to induce the expression. In addition, we found that NTAPP irradiation of HaCaT cells decreased intracellular K+ levels. High intracellular K+ concentrations suppressed NTAPP-induced IL-8 mRNA expression, and the K+ ionophore valinomycin (Val) enhanced the induction of IL-8 mRNA. Moreover, NTAPP stimulated activation of ERK MAP kinase and the ERK inhibitor prevented NTAPP-induced IL-8 mRNA expression. NTAPP-induced ERK activation was inhibited in the presence of high concentrations of extracellular K+ and enhanced in the presence of Val. Taken together, these findings suggest that NTAPP irradiation stimulates intracellular K+ loss and subsequent ERK activation, leading to the induction of IL-8 expression.
Collapse
|
42
|
Arndt S, Unger P, Berneburg M, Bosserhoff AK, Karrer S. Cold atmospheric plasma (CAP) activates angiogenesis-related molecules in skin keratinocytes, fibroblasts and endothelial cells and improves wound angiogenesis in an autocrine and paracrine mode. J Dermatol Sci 2017; 89:181-190. [PMID: 29191392 DOI: 10.1016/j.jdermsci.2017.11.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/10/2017] [Accepted: 11/21/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cold atmospheric plasma (CAP) emerged as a novel therapeutic field with applications developed for bacterial sterilization, wound healing and cancer treatment. For clinical implementation it is important to know how CAP works and which molecular changes occur after the CAP treatment. Vascularization is an important step during wound healing, however, the effects of CAP on wound angiogenesis are not well examined so far. Furthermore, it has not been investigated, whether CAP primarily affects endothelial cells directly or via paracrine mechanisms to modulate the vasculature. OBJECTIVE This study concentrates on the influence of CAP on angiogenesis-related molecules in human epidermal keratinocytes, dermal fibroblasts and endothelial cells. METHODS CAP was generated by the MicroPlaSter ß® plasma torch system and CAP effects on angiogenesis were determined in vitro and in vivo. RESULTS We observed that CAP significantly induces the expression of Artemin, EGF, EG-VEGF (PK1), Endothelin-1 (ET-1), FGF-2 (FGF basic), IL-8 (CXCL8) and uPA in keratinocytes and Angiogenin (ANG), Endostatin (Col18A1), MCP-1 (CCL2), MMP-9, TIMP-1, uPA and VEGF in fibroblasts. In addition, CAP activates the expression of Angiopoietin-2 (Ang-2), Angiostatin (PLG), Amphiregulin (AR), Endostatin, FGF-2 and angiogenic-involved receptor expression of FGF R1 and VEGF R1 in HUVEC endothelial cells. It was also demonstrated that supernatants collected from CAP activated fibroblasts and keratinocytes elevate tube formation by endothelial cells and FGF-2 appears to be an important pro-angiogenic factor that controls vascularization via paracrine mechanisms. Mouse experiments supplement that CAP promotes angiogenesis during wound healing in vivo. CONCLUSIONS Taken together, these results suggest that CAP modulates angiogenesis-involved factors via autocrine and paracrine mechanisms and may be used to affect angiogenesis during wound healing.
Collapse
Affiliation(s)
- Stephanie Arndt
- Department of Dermatology, University Hospital Regensburg, D-93053 Regensburg, Germany.
| | - Petra Unger
- Department of Dermatology, University Hospital Regensburg, D-93053 Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, D-93053 Regensburg, Germany
| | | | - Sigrid Karrer
- Department of Dermatology, University Hospital Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
43
|
Hartwig S, Preissner S, Voss JO, Hertel M, Doll C, Waluga R, Raguse JD. The feasibility of cold atmospheric plasma in the treatment of complicated wounds in cranio-maxillo-facial surgery. J Craniomaxillofac Surg 2017; 45:1724-1730. [DOI: 10.1016/j.jcms.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/12/2017] [Accepted: 07/18/2017] [Indexed: 11/28/2022] Open
|
44
|
Ranjan R, Krishnamraju PV, Shankar T, Gowd S. Nonthermal Plasma in Dentistry: An Update. J Int Soc Prev Community Dent 2017; 7:71-75. [PMID: 28584774 PMCID: PMC5452569 DOI: 10.4103/jispcd.jispcd_29_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/30/2017] [Indexed: 12/15/2022] Open
Abstract
The recent enormous progress in understanding of plasma physics and development of plasma jet has attracted focus on the application of plasma in medicine and dentistry. Active plasma ions, electrons, and photons have the ability to activate and control various biochemical procedures. Nonthermal plasma (NTP) is widely used for various therapeutic applications in health care. Particularly in dentistry, NTP holds big potential such as for bacterial inactivation, efficient sterilization, and treatment of dental caries. This review intends to provide information on potential NTP applications in dentistry.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Department of Periodontics and Oral Implantology, Kalinga Institute of Dental Sciences, KIIT University, Patia, Bhubaneswar, Odisha, India
| | - P V Krishnamraju
- Department of Periodontics and Oral Implantology, Kalinga Institute of Dental Sciences, KIIT University, Patia, Bhubaneswar, Odisha, India
| | - Thatapudi Shankar
- Department of Prosthodontics, Kalinga Institute of Dental Sciences, KIIT University, Patia, Bhubaneswar, Odisha, India
| | - Snigdha Gowd
- Department of Orthodontics and Dentofacial Orthopedics, Kalinga Institute of Dental Sciences, KIIT University, Patia, Bhubaneswar, Odisha, India
| |
Collapse
|
45
|
Zhu G, Wang Q, Lu S, Niu Y. Hydrogen Peroxide: A Potential Wound Therapeutic Target? Med Princ Pract 2017; 26:301-308. [PMID: 28384636 PMCID: PMC5768111 DOI: 10.1159/000475501] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
Hydrogen peroxide (H2O2) is a topical antiseptic used in wound cleaning which kills pathogens through oxidation burst and local oxygen production. H2O2 has been reported to be a reactive biochemical molecule synthesized by various cells that influences biological behavior through multiple mechanisms: alterations of membrane potential, generation of new molecules, and changing intracellular redox balance, which results in activation or inactivation of different signaling transduction pathways. Contrary to the traditional viewpoint that H2O2 probably impairs tissue through its high oxidative property, a proper level of H2O2 is considered an important requirement for normal wound healing. Although the present clinical use of H2O2 is still limited to the elimination of microbial contamination and sometimes hemostasis, better understanding towards the sterilization ability and cell behavior regulatory function of H2O2 within wounds will enhance the potential to exogenously augment and manipulate healing.
Collapse
Affiliation(s)
| | | | | | - Yiwen Niu
- *Yiwen Niu, Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China), E-Mail
| |
Collapse
|
46
|
Dujowich M, Case JB, Ellison G, Wellehan JF. Evaluation of Low-Dose Ultraviolet Light C for Reduction of Select ESKAPE Pathogens in a Canine Skin and Muscle Model. Photomed Laser Surg 2016; 34:363-70. [DOI: 10.1089/pho.2016.4107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mauricio Dujowich
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - J. Brad Case
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - Gary Ellison
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - James F.X. Wellehan
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida
| |
Collapse
|