1
|
Shen S, Zhao S, Shan J, Ren Q. Metabolomic and microbiota profiles in cervicovaginal lavage fluid of women with high-risk human papillomavirus infection. Sci Rep 2025; 15:796. [PMID: 39755909 PMCID: PMC11700163 DOI: 10.1038/s41598-024-84796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
The presence of high-risk human papillomavirus (HR-HPV) contributes to the development of cervical lesions and cervical cancer. Recent studies suggest that an imbalance in the cervicovaginal microbiota might be a factor in the persistence of HR-HPV infections. In this study, we collected 156 cervicovaginal fluid (CVF) of women with HR-HPV infection, which were divided into three groups (negative for intraepithelial lesions = 78, low/high-grade squamous intraepithelial lesions = 52/26). We performed metabolomics and 16 S rRNA sequencing to identify changes in metabolites and cervicovaginal microbiota among patients with HR-HPV infection and varying grades of cervical lesions. We detected 164 metabolites and 389 flora types in the three groups. Ten CVF metabolites-N-methylalanine, phenylacetaldehyde, succinic acid, 2-3-dihydroxypyridine, DL-p-hydroxylphenyllactic acid, gluconic acid lactone, guanine, glucose-6-phosphate, erythrose, and sucrose showed significant associations with disease severity and distinct separation patterns in HR-HPV-infected patients with LSIL and HSIL, with an area under the curve of 0.928. The most abundant microbial communities in the CVF were Gardnerella. Gardnerella was found to be associated with increased levels of succinic acid, thereby highlighting distinct metabolic profiles. These findings suggest that the development of cervical lesions resulting from persistent HR-HPV infection is associated with significant alterations in systemic metabolism and shifts in the cervicovaginal microbiota, providing valuable insights into the metabolic and microbiota changes linked to disease severity.
Collapse
Affiliation(s)
- Su Shen
- Gynecology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Shixian Zhao
- Gynecology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jinjun Shan
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingling Ren
- Gynecology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
2
|
Kim S, Choi YJ, Eom H, Ro HS. Fungal degradation of phenylacetate focusing on CRISPR/Cas9-assisted characterization of two oxidative enzyme genes of Akanthomyces muscarius AM1091. Microbiol Res 2024; 289:127934. [PMID: 39454413 DOI: 10.1016/j.micres.2024.127934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
The degradation of phenylacetate (PA) was investigated as a model to explore aromatic compound breakdown in the fungal system. Fungal strains capable of utilizing PA as their sole carbon source were isolated using a minimal solid medium supplemented with 0.5 % PA. Subsequent cultivation in minimum liquid medium revealed that selected fungal strains, including Trametes versicolor TV0876 and TV3295, Paecilomyces hepiali PH4477, and Akanthomyces muscarius AM1091, efficiently removed PA within 24 h. HPLC analysis of culture supernatants from various fungal strains revealed a time-dependent accumulation of 2-hydroxyphenylacetate (2-HPA) and 4-hydroxyphenylacetate (4-HPA), two key major metabolic products primarily found in ascomycetes and basidiomycetes, respectively. This suggests that the first hydroxylation of PA is catalyzed by two distinct hydroxylases, one for each fungal group. Furthermore, fungal species that make 4-HPA also produce phenylethanol (PE), indicating a distinct catabolic mechanism to remove PA by direct reduction of PA to PE. A. muscarius AM1091, identified as the most efficient PA degrader in this study, was studied further to determine the biochemical pathway of PA degradation. RNA-Seq and RT-PCR analyses of AM1091 revealed two oxidative enzyme genes, CYP1 and DIO4, upregulated in the presence of PA. Targeted disruption utilizing preassembled Cas9-gRNA ribonucleoprotein complexes and homologous DNAs harboring the URA3 gene as an auxotrophic marker resulted in the cyp1 and dio4 mutant strains. The cyp1 mutant was incapable of converting PA to 2-HPA, indicating its involvement in the C2 hydroxylation, whereas the dio4 mutant was unable to degrade 2,5-dihydroxyphenylacetate (2,5-DHPA), resulting in the accumulation of 2,5-DHPA. Our findings indicate that A. muscarius AM1091 degrades PA through the activities of CYP1 and DIO4 for the C2 hydroxylation and subsequent ring-opening reactions, respectively.
Collapse
Affiliation(s)
- Sinil Kim
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Biological Resources Utilization Division, National Institute of Biological Resources (NIBR), Incheon 22689, Republic of Korea
| | - Yeon-Jae Choi
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyerang Eom
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeon-Su Ro
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
3
|
Moffat AD, Höing L, Santos-Aberturas J, Markwalder T, Malone JG, Teufel R, Truman AW. Understanding the biosynthesis, metabolic regulation, and anti-phytopathogen activity of 3,7-dihydroxytropolone in Pseudomonas spp. mBio 2024; 15:e0102224. [PMID: 39207110 PMCID: PMC11481866 DOI: 10.1128/mbio.01022-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The genus Pseudomonas is a prolific source of specialized metabolites with significant biological activities, including siderophores, antibiotics, and plant hormones. These molecules play pivotal roles in environmental interactions, influencing pathogenicity, inhibiting microorganisms, responding to nutrient limitation and abiotic challenges, and regulating plant growth. These properties mean that pseudomonads are suitable candidates as biological control agents against plant pathogens. Multiple transposon-based screens have identified a Pseudomonas biosynthetic gene cluster (BGC) associated with potent antibacterial and antifungal activities, which produces 7-hydroxytropolone (7-HT). In this study, we show that this BGC also makes 3,7-dihydroxytropolone (3,7-dHT), which has strong antimicrobial activity toward Streptomyces scabies, a potato pathogen. Through metabolomics and reporter assays, we unveil the involvement of cluster-situated genes in generating phenylacetyl-coenzyme A, a key precursor for tropolone biosynthesis via the phenylacetic acid catabolon. The clustering of these phenylacetic acid genes within tropolone BGCs is unusual in other Gram-negative bacteria. Our findings support the interception of phenylacetic acid catabolism via an enoyl-CoA dehydratase encoded in the BGC, as well as highlighting an essential role for a conserved thioesterase in biosynthesis. Biochemical assays were used to show that this thioesterase functions after a dehydrogenation-epoxidation step catalyzed by a flavoprotein. We use this information to identify diverse uncharacterized BGCs that encode proteins with homology to flavoproteins and thioesterases involved in tropolone biosynthesis. This study provides insights into tropolone biosynthesis in Pseudomonas, laying the foundation for further investigations into the ecological role of tropolone production.IMPORTANCEPseudomonas bacteria produce various potent chemicals that influence interactions in nature, such as metal-binding molecules, antibiotics, or plant hormones. This ability to synthesize bioactive molecules means that Pseudomonas bacteria may be useful as biological control agents to protect plants from agricultural pathogens, as well as a source of antibiotic candidates. We have identified a plant-associated Pseudomonas strain that can produce 3,7-dihydroxytropolone, which has broad biological activity and can inhibit the growth of Streptomyces scabies, a bacterium that causes potato scab. Following the identification of this molecule, we used a combination of genetic, chemical, and biochemical experiments to identify key steps in the production of tropolones in Pseudomonas species. Understanding this biosynthetic process led to the discovery of an array of diverse pathways that we predict will produce new tropolone-like molecules. This work should also help us shed light on the natural function of antibiotics in nature.
Collapse
Affiliation(s)
- Alaster D. Moffat
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Lars Höing
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Tim Markwalder
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jacob G. Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Robin Teufel
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Andrew W. Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
4
|
Nenni M, Çelebier M, Maçin S, Örsten S, Yabanoğlu-Çiftçi S, Baysal İ. Untargeted metabolomics to discriminate liver and lung hydatid cysts: Importance of metabolites involved in the immune response. Vet Parasitol 2024; 328:110180. [PMID: 38626652 DOI: 10.1016/j.vetpar.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024]
Abstract
The Echinococcus granulosus sensu lato species complex is responsible for the neglected zoonotic disease known as cystic echinococcosis (CE). Humans and livestock are infected via fecal-oral transmission. CE remains prevalent in Western China, Central Asia, South America, Eastern Africa, and the Mediterranean. Approximately one million individuals worldwide are affected, influencing veterinary and public health, as well as social and economic matters. The infection causes slow-growing cysts, predominantly in the liver and lungs, but can also develop in other organs. The exact progression of these cysts is uncertain. This study aimed to understand the survival mechanisms of liver and lung CE cysts from cattle by determining their metabolite profiles through metabolomics and multivariate statistical analyses. Non-targeted metabolomic approaches were conducted using quadrupole-time-of-flight liquid chromatography/mass spectrometry (LC-QTOF-MS) to distinguish between liver and lung CE cysts. Data processing to extract the peaks on complex chromatograms was performed using XCMS. PCA and OPLS-DA plots obtained through multiple statistical analyses showed interactions of metabolites within and between groups. Metabolites such as glutathione, prostaglandin, folic acid, and cortisol that cause different immunological reactions have been identified both in liver and lung hydatid cysts, but in different ratios. Considering the differences in the metabolomic profiles of the liver and lung cysts determined in the present study will contribute research to enlighten the nature of the cyst and develop specific therapeutic strategies.
Collapse
Affiliation(s)
- Merve Nenni
- Cukurova University, Faculty of Pharmacy, Department of Analytical Chemistry, Adana, Turkey; Hacettepe University, Graduate School of Health Sciences, Department of One Health, Ankara, Turkey
| | - Mustafa Çelebier
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Salih Maçin
- Selçuk University, Faculty of Medicine, Department of Medical Microbiology, Konya, Turkey
| | - Serra Örsten
- Hacettepe University, Graduate School of Health Sciences, Department of One Health, Ankara, Turkey; Hacettepe University, Vocational School of Health Services, Ankara, Turkey
| | | | - İpek Baysal
- Hacettepe University, Graduate School of Health Sciences, Department of One Health, Ankara, Turkey; Hacettepe University, Vocational School of Health Services, Ankara, Turkey.
| |
Collapse
|
5
|
Venegas S, Alarcón C, Araya J, Gatica M, Morin V, Tarifeño-Saldivia E, Uribe E. Biodegradation of Polystyrene by Galleria mellonella: Identification of Potential Enzymes Involved in the Degradative Pathway. Int J Mol Sci 2024; 25:1576. [PMID: 38338857 PMCID: PMC10855133 DOI: 10.3390/ijms25031576] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Galleria mellonella is a lepidopteran whose larval stage has shown the ability to degrade polystyrene (PS), one of the most recalcitrant plastics to biodegradation. In the present study, we fed G. mellonella larvae with PS for 54 days and determined candidate enzymes for its degradation. We first confirmed the biodegradation of PS by Fourier transform infrared spectroscopy- Attenuated total reflectance (FTIR-ATR) and then identified candidate enzymes in the larval gut by proteomic analysis using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Two of these proteins have structural similarities to the styrene-degrading enzymes described so far. In addition, potential hydrolases, isomerases, dehydrogenases, and oxidases were identified that show little similarity to the bacterial enzymes that degrade styrene. However, their response to a diet based solely on polystyrene makes them interesting candidates as a potential new group of polystyrene-metabolizing enzymes in eukaryotes.
Collapse
Affiliation(s)
- Sebastián Venegas
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070409, Chile; (S.V.); (C.A.); (M.G.); (V.M.)
| | - Carolina Alarcón
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070409, Chile; (S.V.); (C.A.); (M.G.); (V.M.)
| | - Juan Araya
- Department of Instrumental Analysis, Faculty of Pharmacy, University of Concepción, Concepción 4070409, Chile;
| | - Marcell Gatica
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070409, Chile; (S.V.); (C.A.); (M.G.); (V.M.)
| | - Violeta Morin
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070409, Chile; (S.V.); (C.A.); (M.G.); (V.M.)
| | - Estefanía Tarifeño-Saldivia
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070409, Chile; (S.V.); (C.A.); (M.G.); (V.M.)
| | - Elena Uribe
- Department of Instrumental Analysis, Faculty of Pharmacy, University of Concepción, Concepción 4070409, Chile;
| |
Collapse
|
6
|
Wang R, Wang X, Xiong Y, Cao J, Nussio LG, Ni K, Lin Y, Wang X, Yang F. Dietary Paper Mulberry Silage Supplementation Improves the Growth Performance, Carcass Characteristics, and Meat Quality of Yangzhou Goose. Animals (Basel) 2024; 14:359. [PMID: 38338002 PMCID: PMC10854908 DOI: 10.3390/ani14030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
There have been few investigations into the health benefits and meat quality of supplementing Yangzhou geese with paper mulberry silage. One hundred and twenty 28-day-old Yangzhou geese were selected for the experiment and randomly divided into two groups: a control group (CON) and a paper mulberry silage group (PM), with six replicates in each group. The experiment lasted for a total of 6 weeks. The experiment found that compared with CON, PM had a promoting effect on the average daily weight gain of Yangzhou geese (p = 0.056). Sensory and nutritional analysis of breast muscles revealed a decrease in a* value (p < 0.05) and an increase in protein content (p < 0.05) following PM treatment. Through untargeted metabolomics analysis of breast muscle samples, it was found that 11 different metabolites, including guanidinoacetic acid and other substances, had a positive effect on amino acid metabolism and lipid antioxidant pathways of PM treatment. Overall, the strategy of feeding Yangzhou geese with paper mulberry silage is feasible, which can improve the sensory quality and nutritional value of goose meat. The experiment provides basic data for the application form of goose breeding, so exploring the impact of substances within paper mulberry on goose meat should be focused on in the future.
Collapse
Affiliation(s)
- Ruhui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Yi Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Jingwen Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Luiz Gustavo Nussio
- Department of Animal Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba 13418-900, Brazil;
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Xuekai Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Bhanot V, Pali S, Panwar J. Understanding the in silico aspects of bacterial catabolic cascade for styrene degradation. Proteins 2023; 91:532-541. [PMID: 36416087 DOI: 10.1002/prot.26447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
Styrene is a nonpolar organic compound used in very high volume for the industrial scale production of commercially important polymers such as polystyrene resins as well as copolymers like acrylonitrile butadiene styrene, latex, and rubber. These resins are widely used in the manufacturing of various products including single-use plastics such as disposable cups and containers, protective packaging, heat insulation, and so forth. The large-scale utilization leads to the over-accumulation of styrene waste in the environment causing deleterious health risks including cancer, neurological impairment, dysbiosis of central nervous system, and respiratory problems. To eliminate the accumulating waste. Microbial enzyme-based system represents the most environmental friendly and sustainable approach for elimination of styrene waste. However, comprehensive understanding of the enzyme-substrate interaction and associated pathways would be crucial for developing large-scale disposal systems. This study aims to understand the molecular interaction between the protein-ligand complexes of the styrene catabolic reactions by bacterial enzymes of sty operon. Molecular docking analysis for catalytic enzymes namely, styrene monooxygenase (SMO), styrene oxide isomerase (SOI), and phenylacetaldehyde dehydrogenase (PAD) of the bacterial sty operon was carried out with their individual substrates, that is, styrene, styrene oxide, and phenylacetic acid, respectively. The binding energy, amino acids forming binding cavity, and binding interactions between the protein-ligand binding sites were calculated for each case. The obtained binding energies showed a stable association of these complexes indicating the future scope of their utilization for large-scale bioremediation of styrene, and its commercially used polymers and copolymers.
Collapse
Affiliation(s)
- Vishalakshi Bhanot
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Snigdha Pali
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| |
Collapse
|
8
|
Garneau L, Beauregard PB, Roy S. Deciphering the role of non- Frankia nodular endophytes in alder through in vitro and genomic characterization. Can J Microbiol 2023; 69:72-87. [PMID: 36288604 DOI: 10.1139/cjm-2022-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Endophytic bacterial populations are well-positioned to provide benefits to their host plants such as nutrient acquisition and plant hormone level manipulation. Actinorhizal plants such as alders are well known for their microbial symbioses that allow them to colonize harsh environments whether natural or anthropized. Although the nitrogen-fixing actinobacterium Frankia sp. is the main endophyte found in alder root nodules, other bacterial genera, whose roles remain poorly defined, inhabit this niche. In this study, we isolated a diverse panel of non-Frankia nodular endophytes (NFNE). Some NFNE were isolated from alders grown from surface-sterilized seeds and maintained in sterile conditions, suggesting these may have been seed-borne. In vitro testing of 24 NFNE revealed some possessed putative plant growth promotion traits. Their genomes were also sequenced to identify genes related to plant growth promotion traits. This study highlights the complexity of the alder nodular microbial community. It paves the way for further understanding of the biology of nodules and could help improve land reclamation practices that involve alders.
Collapse
Affiliation(s)
- Louis Garneau
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, Canada, J1K 2R1
| | - Pascale B Beauregard
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, Canada, J1K 2R1
| | - Sébastien Roy
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, Canada, J1K 2R1
| |
Collapse
|
9
|
Kotova IB, Taktarova YV, Tsavkelova EA, Egorova MA, Bubnov IA, Malakhova DV, Shirinkina LI, Sokolova TG, Bonch-Osmolovskaya EA. Microbial Degradation of Plastics and Approaches to Make it More Efficient. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721060084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract—
The growing worldwide production of synthetic plastics leads to increased amounts of plastic pollution. Even though microbial degradation of plastics is known to be a very slow process, this capacity has been found in many bacteria, including invertebrate symbionts, and microscopic fungi. Research in this field has been mostly focused on microbial degradation of polyethylene, polystyrene, and polyethylene terephthalate (PET). Quite an arsenal of different methods is available today for detecting processes of plastic degradation and measuring their rates. Given the lack of generally accepted protocols, it is difficult to compare results presented by different authors. PET degradation by recombinant hydrolases from thermophilic actinobacteria happens to be the most efficient among the currently known plastic degradation processes. Various approaches to accelerating microbial plastic degradation are also discussed.
Collapse
|
10
|
Double agent indole-3-acetic acid (IAA): Mechanistic analysis of indole-3-acetaldehyde dehydrogenase AldA that synthesizes IAA, an auxin that aids bacterial virulence. Biosci Rep 2021; 41:229488. [PMID: 34369556 PMCID: PMC8385190 DOI: 10.1042/bsr20210598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/10/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
The large diversity of organisms inhabiting various environmental niches on our planet are engaged in a lively exchange of biomolecules, including nutrients, hormones, and vitamins. In a quest to survive, organisms that we define as pathogens employ innovative methods to extract valuable resources from their host leading to an infection. One such instance is where plant-associated bacterial pathogens synthesize and deploy hormones or their molecular mimics to manipulate the physiology of the host plant. This commentary describes one such specific example—the mechanism of the enzyme AldA, an aldehyde dehydrogenase (ALDH) from the bacterial plant pathogen Pseudomonas syringae which produces the plant auxin hormone indole-3-acetic acid (IAA) by oxidizing the substrate indole-3-acetaldehyde (IAAld) using the cofactor nicotinamide adenine dinucleotide (NAD+) (Bioscience Reports (2020) 40(12), https://doi.org/10.1042/BSR20202959). Using mutagenesis, enzyme kinetics, and structural analysis, Zhang et al. established that the progress of the reaction hinges on the formation of two distinct conformations of NAD(H) during the reaction course. Additionally, a key mutation in the AldA active site ‘aromatic box’ changes the enzyme’s preference for an aromatic substrate to an aliphatic one. Our commentary concludes that such molecular level investigations help to establish the nature of the dynamics of NAD(H) in ALDH-catalyzed reactions, and further show that the key active site residues control substrate specificity. We also contemplate that insights from the present study can be used to engineer novel ALDH enzymes for environmental, health, and industrial applications.
Collapse
|
11
|
Shortall K, Djeghader A, Magner E, Soulimane T. Insights into Aldehyde Dehydrogenase Enzymes: A Structural Perspective. Front Mol Biosci 2021; 8:659550. [PMID: 34055881 PMCID: PMC8160307 DOI: 10.3389/fmolb.2021.659550] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
Aldehyde dehydrogenases engage in many cellular functions, however their dysfunction resulting in accumulation of their substrates can be cytotoxic. ALDHs are responsible for the NAD(P)-dependent oxidation of aldehydes to carboxylic acids, participating in detoxification, biosynthesis, antioxidant and regulatory functions. Severe diseases, including alcohol intolerance, cancer, cardiovascular and neurological diseases, were linked to dysfunctional ALDH enzymes, relating back to key enzyme structure. An in-depth understanding of the ALDH structure-function relationship and mechanism of action is key to the understanding of associated diseases. Principal structural features 1) cofactor binding domain, 2) active site and 3) oligomerization mechanism proved critical in maintaining ALDH normal activity. Emerging research based on the combination of structural, functional and biophysical studies of bacterial and eukaryotic ALDHs contributed to the appreciation of diversity within the superfamily. Herewith, we discuss these studies and provide our interpretation for a global understanding of ALDH structure and its purpose–including correct function and role in disease. Our analysis provides a synopsis of a common structure-function relationship to bridge the gap between the highly studied human ALDHs and lesser so prokaryotic models.
Collapse
Affiliation(s)
- Kim Shortall
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Ahmed Djeghader
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Edmond Magner
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Tewfik Soulimane
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
12
|
Investigating the reaction and substrate preference of indole-3-acetaldehyde dehydrogenase from the plant pathogen Pseudomonas syringae PtoDC3000. Biosci Rep 2021; 40:227102. [PMID: 33325526 PMCID: PMC7745063 DOI: 10.1042/bsr20202959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) catalyze the conversion of various aliphatic and aromatic aldehydes into corresponding carboxylic acids. Traditionally considered as housekeeping enzymes, new biochemical roles are being identified for members of ALDH family. Recent work showed that AldA from the plant pathogen Pseudomonas syringae strain PtoDC3000 (PtoDC3000) functions as an indole-3-acetaldehyde dehydrogenase for the synthesis of indole-3-acetic acid (IAA). IAA produced by AldA allows the pathogen to suppress salicylic acid-mediated defenses in the model plant Arabidopsis thaliana. Here we present a biochemical and structural analysis of the AldA indole-3-acetaldehyde dehydrogenase from PtoDC3000. Site-directed mutants targeting the catalytic residues Cys302 and Glu267 resulted in a loss of enzymatic activity. The X-ray crystal structure of the catalytically inactive AldA C302A mutant in complex with IAA and NAD+ showed the cofactor adopting a conformation that differs from the previously reported structure of AldA. These structures suggest that NAD+ undergoes a conformational change during the AldA reaction mechanism similar to that reported for human ALDH. Site-directed mutagenesis of the IAA binding site indicates that changes in the active site surface reduces AldA activity; however, substitution of Phe169 with a tryptophan altered the substrate selectivity of the mutant to prefer octanal. The present study highlights the inherent biochemical versatility of members of the ALDH enzyme superfamily in P. syringae.
Collapse
|
13
|
Zimmerling J, Oelschlägel M, Großmann C, Voitel M, Schlömann M, Tischler D. Biochemical Characterization of Phenylacetaldehyde Dehydrogenases from Styrene-degrading Soil Bacteria. Appl Biochem Biotechnol 2021; 193:650-667. [PMID: 33106986 PMCID: PMC7910268 DOI: 10.1007/s12010-020-03421-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/11/2020] [Indexed: 10/24/2022]
Abstract
Four phenylacetaldehyde dehydrogenases (designated as FeaB or StyD) originating from styrene-degrading soil bacteria were biochemically investigated. In this study, we focused on the Michaelis-Menten kinetics towards the presumed native substrate phenylacetaldehyde and the obviously preferred co-substrate NAD+. Furthermore, the substrate specificity on four substituted phenylacetaldehydes and the co-substrate preference were studied. Moreover, these enzymes were characterized with respect to their temperature as well as long-term stability. Since aldehyde dehydrogenases are known to show often dehydrogenase as well as esterase activity, we tested this capacity, too. Almost all results showed clearly different characteristics between the FeaB and StyD enzymes. Furthermore, FeaB from Sphingopyxis fribergensis Kp5.2 turned out to be the most active enzyme with an apparent specific activity of 17.8 ± 2.1 U mg-1. Compared with that, both StyDs showed only activities less than 0.2 U mg-1 except the overwhelming esterase activity of StyD-CWB2 (1.4 ± 0.1 U mg-1). The clustering of both FeaB and StyD enzymes with respect to their characteristics could also be mirrored in the phylogenetic analysis of twelve dehydrogenases originating from different soil bacteria.
Collapse
Affiliation(s)
- Juliane Zimmerling
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany.
| | - Michel Oelschlägel
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Carolin Großmann
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Matthias Voitel
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Michael Schlömann
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Dirk Tischler
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
14
|
Abstract
Emerging pollutants in nature are linked to various acute and chronic detriments in biotic components and subsequently deteriorate the ecosystem with serious hazards. Conventional methods for removing pollutants are not efficient; instead, they end up with the formation of secondary pollutants. Significant destructive impacts of pollutants are perinatal disorders, mortality, respiratory disorders, allergy, cancer, cardiovascular and mental disorders, and other harmful effects. The pollutant substrate can recognize different microbial enzymes at optimum conditions (temperature/pH/contact time/concentration) to efficiently transform them into other rather unharmful products. The most representative enzymes involved in bioremediation include cytochrome P450s, laccases, hydrolases, dehalogenases, dehydrogenases, proteases, and lipases, which have shown promising potential degradation of polymers, aromatic hydrocarbons, halogenated compounds, dyes, detergents, agrochemical compounds, etc. Such bioremediation is favored by various mechanisms such as oxidation, reduction, elimination, and ring-opening. The significant degradation of pollutants can be upgraded utilizing genetically engineered microorganisms that produce many recombinant enzymes through eco-friendly new technology. So far, few microbial enzymes have been exploited, and vast microbial diversity is still unexplored. This review would also be useful for further research to enhance the efficiency of degradation of xenobiotic pollutants, including agrochemical, microplastic, polyhalogenated compounds, and other hydrocarbons.
Collapse
|
15
|
Lee SG, Harline K, Abar O, Akadri SO, Bastian AG, Chen HYS, Duan M, Focht CM, Groziak AR, Kao J, Kottapalli JS, Leong MC, Lin JJ, Liu R, Luo JE, Meyer CM, Mo AF, Pahng SH, Penna V, Raciti CD, Srinath A, Sudhakar S, Tang JD, Cox BR, Holland CK, Cascella B, Cruz W, McClerkin SA, Kunkel BN, Jez JM. The plant pathogen enzyme AldC is a long-chain aliphatic aldehyde dehydrogenase. J Biol Chem 2020; 295:13914-13926. [PMID: 32796031 DOI: 10.1074/jbc.ra120.014747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aldehyde dehydrogenases are versatile enzymes that serve a range of biochemical functions. Although traditionally considered metabolic housekeeping enzymes because of their ability to detoxify reactive aldehydes, like those generated from lipid peroxidation damage, the contributions of these enzymes to other biological processes are widespread. For example, the plant pathogen Pseudomonas syringae strain PtoDC3000 uses an indole-3-acetaldehyde dehydrogenase to synthesize the phytohormone indole-3-acetic acid to elude host responses. Here we investigate the biochemical function of AldC from PtoDC3000. Analysis of the substrate profile of AldC suggests that this enzyme functions as a long-chain aliphatic aldehyde dehydrogenase. The 2.5 Å resolution X-ray crystal of the AldC C291A mutant in a dead-end complex with octanal and NAD+ reveals an apolar binding site primed for aliphatic aldehyde substrate recognition. Functional characterization of site-directed mutants targeting the substrate- and NAD(H)-binding sites identifies key residues in the active site for ligand interactions, including those in the "aromatic box" that define the aldehyde-binding site. Overall, this study provides molecular insight for understanding the evolution of the prokaryotic aldehyde dehydrogenase superfamily and their diversity of function.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Chemistry and Biochemistry, University of North Carolina-Wilmington, Wilmington, North Carolina, USA
| | - Kate Harline
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Orchid Abar
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sakirat O Akadri
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexander G Bastian
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hui-Yuan S Chen
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael Duan
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Caroline M Focht
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Amanda R Groziak
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jesse Kao
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Matthew C Leong
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joy J Lin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Regina Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joanna E Luo
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christine M Meyer
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Albert F Mo
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Seong Ho Pahng
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Vinay Penna
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Chris D Raciti
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Abhinav Srinath
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shwetha Sudhakar
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph D Tang
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Brian R Cox
- Department of Chemistry and Biochemistry, University of North Carolina-Wilmington, Wilmington, North Carolina, USA
| | - Cynthia K Holland
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Biology, Williams College, Williamstown, Massachusetts, USA
| | - Barrie Cascella
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wilhelm Cruz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sheri A McClerkin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| | - Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
16
|
Danso D, Chow J, Streit WR. Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Appl Environ Microbiol 2019; 85:e01095-19. [PMID: 31324632 PMCID: PMC6752018 DOI: 10.1128/aem.01095-19] [Citation(s) in RCA: 352] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Plastics are widely used in the global economy, and each year, at least 350 to 400 million tons are being produced. Due to poor recycling and low circular use, millions of tons accumulate annually in terrestrial or marine environments. Today it has become clear that plastic causes adverse effects in all ecosystems and that microplastics are of particular concern to our health. Therefore, recent microbial research has addressed the question of if and to what extent microorganisms can degrade plastics in the environment. This review summarizes current knowledge on microbial plastic degradation. Enzymes available act mainly on the high-molecular-weight polymers of polyethylene terephthalate (PET) and ester-based polyurethane (PUR). Unfortunately, the best PUR- and PET-active enzymes and microorganisms known still have moderate turnover rates. While many reports describing microbial communities degrading chemical additives have been published, no enzymes acting on the high-molecular-weight polymers polystyrene, polyamide, polyvinylchloride, polypropylene, ether-based polyurethane, and polyethylene are known. Together, these polymers comprise more than 80% of annual plastic production. Thus, further research is needed to significantly increase the diversity of enzymes and microorganisms acting on these polymers. This can be achieved by tapping into the global metagenomes of noncultivated microorganisms and dark matter proteins. Only then can novel biocatalysts and organisms be delivered that allow rapid degradation, recycling, or value-added use of the vast majority of most human-made polymers.
Collapse
Affiliation(s)
- Dominik Danso
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
17
|
Lubbers RJM, Dilokpimol A, Visser J, Mäkelä MR, Hildén KS, de Vries RP. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnol Adv 2019; 37:107396. [PMID: 31075306 DOI: 10.1016/j.biotechadv.2019.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.
Collapse
Affiliation(s)
- Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Kristiina S Hildén
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| |
Collapse
|
18
|
Heine T, Zimmerling J, Ballmann A, Kleeberg SB, Rückert C, Busche T, Winkler A, Kalinowski J, Poetsch A, Scholtissek A, Oelschlägel M, Schmidt G, Tischler D. On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2. Appl Environ Microbiol 2018; 84:e00154-18. [PMID: 29475871 PMCID: PMC5930330 DOI: 10.1128/aem.00154-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 02/05/2023] Open
Abstract
Among bacteria, only a single styrene-specific degradation pathway has been reported so far. It comprises the activity of styrene monooxygenase, styrene oxide isomerase, and phenylacetaldehyde dehydrogenase, yielding phenylacetic acid as the central metabolite. The alternative route comprises ring-hydroxylating enzymes and yields vinyl catechol as central metabolite, which undergoes meta-cleavage. This was reported to be unspecific and also allows the degradation of benzene derivatives. However, some bacteria had been described to degrade styrene but do not employ one of those routes or only parts of them. Here, we describe a novel "hybrid" degradation pathway for styrene located on a plasmid of foreign origin. As putatively also unspecific, it allows metabolizing chemically analogous compounds (e.g., halogenated and/or alkylated styrene derivatives). Gordonia rubripertincta CWB2 was isolated with styrene as the sole source of carbon and energy. It employs an assembled route of the styrene side-chain degradation and isoprene degradation pathways that also funnels into phenylacetic acid as the central metabolite. Metabolites, enzyme activity, genome, transcriptome, and proteome data reinforce this observation and allow us to understand this biotechnologically relevant pathway, which can be used for the production of ibuprofen.IMPORTANCE The degradation of xenobiotics by bacteria is not only important for bioremediation but also because the involved enzymes are potential catalysts in biotechnological applications. This study reveals a novel degradation pathway for the hazardous organic compound styrene in Gordonia rubripertincta CWB2. This study provides an impressive illustration of horizontal gene transfer, which enables novel metabolic capabilities. This study presents glutathione-dependent styrene metabolization in an (actino-)bacterium. Further, the genomic background of the ability of strain CWB2 to produce ibuprofen is demonstrated.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Anne Ballmann
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Christian Rückert
- Technologieplattform Genomik, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Tobias Busche
- Technologieplattform Genomik, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Anika Winkler
- Technologieplattform Genomik, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- Technologieplattform Genomik, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, United Kingdom
| | - Anika Scholtissek
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Gert Schmidt
- Institut für Keramik, Glas- und Baustofftechnik, TU Bergakademie Freiberg, Freiberg, Germany
| | - Dirk Tischler
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
19
|
Oelschlägel M, Zimmerling J, Tischler D. A Review: The Styrene Metabolizing Cascade of Side-Chain Oxygenation as Biotechnological Basis to Gain Various Valuable Compounds. Front Microbiol 2018; 9:490. [PMID: 29623070 PMCID: PMC5874493 DOI: 10.3389/fmicb.2018.00490] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/02/2018] [Indexed: 11/16/2022] Open
Abstract
Styrene is one of the most produced and processed chemicals worldwide and is released into the environment during widespread processing. But, it is also produced from plants and microorganisms. The natural occurrence of styrene led to several microbiological strategies to form and also to degrade styrene. One pathway designated as side-chain oxygenation has been reported as a specific route for the styrene degradation among microorganisms. It comprises the following enzymes: styrene monooxygenase (SMO; NADH-consuming and FAD-dependent, two-component system), styrene oxide isomerase (SOI; cofactor independent, membrane-bound protein) and phenylacetaldehyde dehydrogenase (PAD; NAD+-consuming) and allows an intrinsic cofactor regeneration. This specific way harbors a high potential for biotechnological use. Based on the enzymatic steps involved in this degradation route, important reactions can be realized from a large number of substrates which gain access to different interesting precursors for further applications. Furthermore, stereochemical transformations are possible, offering chiral products at high enantiomeric excess. This review provides an actual view on the microbiological styrene degradation followed by a detailed discussion on the enzymes of the side-chain oxygenation. Furthermore, the potential of the single enzyme reactions as well as the respective multi-step syntheses using the complete enzyme cascade are discussed in order to gain styrene oxides, phenylacetaldehydes, or phenylacetic acids (e.g., ibuprofen). Altered routes combining these putative biocatalysts with other enzymes are additionally described. Thus, the substrates spectrum can be enhanced and additional products as phenylethanols or phenylethylamines are reachable. Finally, additional enzymes with similar activities toward styrene and its metabolic intermediates are shown in order to modify the cascade described above or to use these enzyme independently for biotechnological application.
Collapse
Affiliation(s)
- Michel Oelschlägel
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Juliane Zimmerling
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Dirk Tischler
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|