1
|
Wu W, Li Y, Hu W, Zhao J, Zhang B, Feng Y, Zhang Y, Wang S. The Combined Effect Between SEPS1 Genetic Polymorphisms and Exposure to Metals on the Risk of Gestational Diabetes Mellitus. Biol Trace Elem Res 2025:10.1007/s12011-025-04597-y. [PMID: 40163211 DOI: 10.1007/s12011-025-04597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Environmental metal exposure is a key risk factor for gestational diabetes mellitus (GDM), but the mechanisms remain unclear. The traditional view holds that excessive accumulation of metals directly damages the islets to induce GDM. Recent studies suggest that supplementing with trace elements can alleviate insulin resistance by reducing endoplasmic reticulum stress, indicating that endoplasmic reticulum stress might have a comparable impact in metal-induced GDM. Selenoprotein S (SEPS1), a key regulator of endoplasmic reticulum function, may play a role. This study aims to investigate the interaction between the genetic predisposition of the SEPS1 gene and exposure to metals on GDM from the perspective of endoplasmic reticulum stress. A total of 278 pregnant women with GDM and 278 matched pregnant women without GDM were recruited. Maternal blood samples were collected before delivery to genotype the SEPS1 gene and measure metal levels. We found that rs28533324 and rs894317 were associated with the risk of GDM. The level of chromium (Cr) Q3 in maternal blood increased the risk of GDM, and the level of nickel (Ni) Q4 decreased the risk of GDM. Furthermore, the Q3 and Q4 Cr exhibit a multiplicative interaction with rs894317 in both the codominant and dominant models, and a multiplicative interaction between the Cr Q3 and rs894317 is also observed in the allele model. We found a novel link between SEPS1 gene variation and GDM, with these associations potentially being modified by Cr exposure. Our findings provide new etiological insights into GDM induced by Cr through endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Weiwei Wu
- Department of Epidemiology, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Shanxi, 030001, China.
| | - Yulin Li
- Department of Epidemiology, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Shanxi, 030001, China
| | - Weixuan Hu
- Department of Epidemiology, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Shanxi, 030001, China
| | - Jing Zhao
- Department of Epidemiology, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Shanxi, 030001, China
| | - Bole Zhang
- Department of Epidemiology, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Shanxi, 030001, China
| | - Yongliang Feng
- Department of Epidemiology, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Shanxi, 030001, China
| | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Suping Wang
- Department of Epidemiology, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Shanxi, 030001, China
| |
Collapse
|
2
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
3
|
He Y, Liu Y, Meng H, Sun J, Rui Y, Tian X, Zhu Z, Gao Y. Genetically Elevated Selenoprotein S Levels and Risk of Stroke: A Two-Sample Mendelian Randomization Analysis. Int J Mol Sci 2025; 26:1652. [PMID: 40004116 PMCID: PMC11855697 DOI: 10.3390/ijms26041652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Selenoprotein S (SELENOS), one of the carrier proteins of dietary selenium (Se), is a key regulator of inflammation, oxidative stress, and endoplasmic reticulum (ER) stress, all of which are implicated in the pathogenesis of stroke. However, the causality between SELENOS and stroke risk remains poorly understood. This study aimed to explore the association between genetically determined plasma SELENOS levels and the risk of all-cause stroke, ischemic stroke, and intracerebral hemorrhage (ICH) using a two-sample Mendelian randomization (MR) approach. We analyzed data from three large-scale Genome-Wide Association Study (GWAS) meta-analyses of individuals of European descent. The fixed-effect inverse-variance weighted (IVW) model analysis revealed that genetically elevated SELENOS levels were associated with an increased risk of all-cause stroke, ischemic stroke, and ICH. Sensitivity analyses showed no evidence of pleiotropy or heterogeneity, and leave-one-out analyses confirmed the robustness of our results. Here, we show that elevated plasma SELENOS levels are causally linked to increased stroke risk. Although the effect sizes were modest, these findings suggest SELENOS may play a role in stroke pathogenesis, emphasizing the need for further mechanistic and functional studies. Finally, our findings shed light on the importance of tailored Se intake management in the context of stroke prevention.
Collapse
Affiliation(s)
- Yan He
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College, Soochow University, Suzhou 215006, China; (Y.H.); (Y.L.)
| | - Yi Liu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College, Soochow University, Suzhou 215006, China; (Y.H.); (Y.L.)
| | - Haoliang Meng
- Department of Forensic Medicine, Suzhou Medical College, Soochow University, Suzhou 215006, China; (H.M.); (J.S.); (Y.R.)
| | - Jinsheng Sun
- Department of Forensic Medicine, Suzhou Medical College, Soochow University, Suzhou 215006, China; (H.M.); (J.S.); (Y.R.)
| | - Yukun Rui
- Department of Forensic Medicine, Suzhou Medical College, Soochow University, Suzhou 215006, China; (H.M.); (J.S.); (Y.R.)
| | - Xiaoyi Tian
- School of Public Health, Dalian Medical University, Dalian 116041, China;
| | - Zhengbao Zhu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College, Soochow University, Suzhou 215006, China; (Y.H.); (Y.L.)
| | - Yuzhen Gao
- Department of Forensic Medicine, Suzhou Medical College, Soochow University, Suzhou 215006, China; (H.M.); (J.S.); (Y.R.)
| |
Collapse
|
4
|
Odunsi A, Kapitonova MA, Woodward G, Rahmani E, Ghelichkhani F, Liu J, Rozovsky S. Selenoprotein K at the intersection of cellular pathways. Arch Biochem Biophys 2025; 764:110221. [PMID: 39571956 PMCID: PMC11750610 DOI: 10.1016/j.abb.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/08/2024]
Abstract
Selenoprotein K (selenok) is linked to the integrated stress response, which helps cells combat stressors and regain normal function. The selenoprotein contains numerous protein interaction hubs and post-translational modification sites and is involved in protein palmitoylation, vesicle trafficking, and the resolution of ER stress. Anchored to the endoplasmic reticulum (ER) membrane, selenok interacts with protein partners to influence their stability, localization, and trafficking, impacting various cellular functions such as calcium homeostasis, cellular migration, phagocytosis, gene expression, and immune response. Consequently, selenok expression level is linked to cancer and neurodegenerative diseases. Because it contains the reactive amino acid selenocysteine, selenok is likely to function as an enzyme. However, highly unusual for enzymes, the protein segment containing the selenocysteine lacks a stable secondary or tertiary structure, yet it includes multiple interaction sites for protein partners and post-translational modifications. Currently, the reason(s) for the presence of the rare selenocysteine in selenok is not known. Furthermore, of selenok's numerous interaction sites, only some have been sufficiently characterized, leaving many of selenok's potential protein partners to be discovered. In this review, we explore selenok's role in various cellular pathways and its impact on human health, thereby highlighting the links between its diverse cellular functions.
Collapse
Affiliation(s)
- Atinuke Odunsi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - George Woodward
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jun Liu
- Asieris Pharmaceuticals, Palo Alto, CA, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
5
|
Shahidin, Wang Y, Wu Y, Chen T, Wu X, Yuan W, Zhu Q, Wang X, Zi C. Selenium and Selenoproteins: Mechanisms, Health Functions, and Emerging Applications. Molecules 2025; 30:437. [PMID: 39942544 PMCID: PMC11820089 DOI: 10.3390/molecules30030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Selenium (Se) is an essential trace element crucial for human health that primarily functions as an immunonutrient. It is incorporated into polypeptides such as selenocysteine (SeC) and selenomethionine (SeMet), two key amino acids involved in various biochemical processes. All living organisms can convert inorganic Se into biologically active organic forms, with SeMet being the predominant form and a precursor for SeC production in humans and animals. The human genome encodes 25 selenoprotein genes, which incorporate low-molecular-weight Se compounds in the form of SeC. Organic Se, especially in the form of selenoproteins, is more efficiently absorbed than inorganic Se, driving the demand for selenoprotein-based health products, such as functional foods. Se-enriched functional foods offer a practical means of delivering bioavailable Se and are associated with enhanced antioxidant properties and various health benefits. Recent advancements in selenoprotein synthesis have improved our understanding of their roles in antioxidant defense, cancer prevention, immune regulation, anti-inflammation, hypoglycemia, cardiovascular health, Alzheimer's disease, fertility, and COVID-19. This review highlights key selenoproteins and their biological functions, biosynthetic pathways, and emerging applications while highlighting the need for further research.
Collapse
Affiliation(s)
- Shahidin
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yilong Wu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Taixia Chen
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyun Wu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Wenjuan Yuan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Qiangqiang Zhu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
| | - Xuanjun Wang
- College of Resources, Environment, and Chemistry, Chuxiong Normal University, No. 546 S Rd. Lucheng, Chuxiong 675099, China
| | - Chengting Zi
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
6
|
Wang Y, Qu K, Xia Z, Qi M, Du X, Ke Z, Zhang R. Selenoprotein S (SELENOS) is a potential prognostic biomarker for brain lower grade glioma. J Trace Elem Med Biol 2024; 86:127539. [PMID: 39378668 DOI: 10.1016/j.jtemb.2024.127539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Selenium, an essential micronutrient, primarily exists as selenocysteine in various selenoproteins. Selenoprotein S (SELENOS) is crucial in the development of human cancer. This study aimed to explore the correlation between SELENOS gene expression and the prognosis of brain lower-grade glioma (LGG). METHODS SELENOS protein and mRNA expression in human normal and tumor tissues were explored through the HPA database. SELENOS expression differences between normal and tumor tissues, along with its prognostic significance in gliomas, were analyzed using the TCGA, GTEx datasets, while the CGGA dataset was used to further assess its prognostic potential in a Chinese cohort. The association between SELENOS expression and tumor immune infiltration was also assessed. Multivariate and univariate Cox models were used to screen for clinicopathological parameters associated with SELENOS expression. The GDSC datasets was utilized to explore the connection between SELENOS and chemotherapeutic responses in LGG. A protein-protein interaction network for SELENOS was created. SELENOS expression in LGG cell lines were determined by Western blotting and qRT-PCR, and its functions were ascertained by routine in vitro experiments. RESULTS SELENOS was upregulated in 11 cancers and downregulated in 10 cancers relative to the corresponding normal tissues, and correlated significantly with the prognosis, especially for GBM, LGG and GBMLGG. Furthermore, It displayed a positive correlation with immune cell infiltration levels in LGG. Multivariate and Univariate Cox analyses confirmed that the impact of SELENOS on the prognosis of LGG is the combined result of factors such as age and tumor grade. The expression of SELENOS was significantly negatively correlated with temozolomide IC50 in LGG. We found that SELENOS interacts with 10 proteins, which are upregulated in LGG compared to human normal tissues. The expression of these interactors is positively correlated with SELENOS expression and LGG survival/prognosis. In vitro experiments confirmed the aberrant expression of SELENOS in LGG cell lines, and siRNA-mediated knockdown of SELENOS reduced the proliferation, viability, invasion and migration of LGG cells, and induced apoptosis. CONCLUSIONS SELENOS is a potential prognostic marker and therapeutic target for LGG, and its low expression is associated with favorable prognosis in LGG.
Collapse
Affiliation(s)
- Yuetong Wang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), Xi'an 710003, PR China
| | - Kai Qu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), Xi'an 710003, PR China
| | - Zengrun Xia
- Ankang R&D Center of Se-enriched Products, Ankang 725000, PR China
| | - Meng Qi
- Ankang R&D Center of Se-enriched Products, Ankang 725000, PR China
| | - Xiaoping Du
- Ankang R&D Center of Se-enriched Products, Ankang 725000, PR China
| | - Zunhua Ke
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| |
Collapse
|
7
|
Zatorski N, Sun Y, Elmas A, Dallago C, Karl T, Stein D, Rost B, Huang KL, Walsh M, Schlessinger A. Structural analysis of genomic and proteomic signatures reveal dynamic expression of intrinsically disordered regions in breast cancer. iScience 2024; 27:110640. [PMID: 39310778 PMCID: PMC11416222 DOI: 10.1016/j.isci.2024.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 05/05/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024] Open
Abstract
Structural features of proteins capture underlying information about protein evolution and function, which enhances the analysis of proteomic and transcriptomic data. Here, we develop Structural Analysis of Gene and protein Expression Signatures (SAGES), a method that describes expression data using features calculated from sequence-based prediction methods and 3D structural models. We used SAGES, along with machine learning, to characterize tissues from healthy individuals and those with breast cancer. We analyzed gene expression data from 23 breast cancer patients and genetic mutation data from the Catalog of Somatic Mutations In Cancer database as well as 17 breast tumor protein expression profiles. We identified prominent expression of intrinsically disordered regions in breast cancer proteins as well as relationships between drug perturbation signatures and breast cancer disease signatures. Our results suggest that SAGES is generally applicable to describe diverse biological phenomena including disease states and drug effects.
Collapse
Affiliation(s)
- Nicole Zatorski
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl, New York, NY 10029, USA
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl, New York, NY 10029, USA
| | - Abdulkadir Elmas
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl, New York, NY 10029, USA
| | - Christian Dallago
- NVIDIA DE GmbH, Einsteinstraße 172, 81677 München, Germany
- Faculty of Informatics, Bioinformatics & Computational Biology, Technical University Munich (TUM), 85748 Garching, Germany
| | - Timothy Karl
- Faculty of Informatics, Bioinformatics & Computational Biology, Technical University Munich (TUM), 85748 Garching, Germany
| | - David Stein
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl, New York, NY 10029, USA
| | - Burkhard Rost
- Faculty of Informatics, Bioinformatics & Computational Biology, Technical University Munich (TUM), 85748 Garching, Germany
| | - Kuan-Lin Huang
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl, New York, NY 10029, USA
| | - Martin Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl, New York, NY 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl, New York, NY 10029, USA
| |
Collapse
|
8
|
Yao Y, Xu T, Li X, Shi X, Wu H, Zhang Z, Xu S. Selenoprotein S maintains intestinal homeostasis in ulcerative colitis by inhibiting necroptosis of colonic epithelial cells through modulation of macrophage polarization. Theranostics 2024; 14:5903-5925. [PMID: 39346531 PMCID: PMC11426251 DOI: 10.7150/thno.97005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Rationale: Macrophage polarization plays an important role in the inflammatory regulation of ulcerative colitis (UC). In this context, necroptosis is a type of cell death that regulates intestinal inflammation, and selenoprotein S (SelS) is a selenoprotein expressed in intestinal epithelial cells and macrophages that prevents intestinal inflammation. However, the underlying mechanisms of SelS in both cell types in regulating UC inflammatory responses remain unclear. Therefore, the direct effect of SelS deficiency on necroptosis in colonic epithelial cells (CECs) was investigated. In addition, whether SelS knockdown exacerbated intestinal inflammation by modulating macrophage polarization to promote necroptosis in CECs was assessed. Methods: The UC model of SelS knockdown mice was established with 3.5% sodium dextran sulfate, and clinical indicators and colon injury were evaluated in the mice. Moreover, SelS knockdown macrophages and CECs cultured alone/cocultured were treated with IL-1β. The M1/M2 polarization, NF-κB/NLRP3 signaling pathway, oxidative stress, necroptosis, inflammatory cytokine, and tight junction indicators were analyzed. In addition, co-immunoprecipitation, liquid chromatography-mass spectrometry, laser confocal analysis, and molecular docking were performed to identify the interacting proteins of SelS. The GEO database was used to assess the correlation of SelS and its target proteins with macrophage polarization. The intervention effect of four selenium supplements on UC was also explored. Results: Ubiquitin A-52 residue ribosomal protein fusion product 1 (Uba52) was identified as a potential interacting protein of SelS and SelS, Uba52, and yes-associated protein (YAP) was associated with macrophage polarization in the colon tissue of patients with UC. SelS deficiency in CECs directly induced reactive oxygen species (ROS) production, necroptosis, cytokine release, and tight junction disruption. SelS deficiency in macrophages inhibited YAP ubiquitination degradation by targeting Uba52, promoted M1 polarization, and activated the NF-κB/NLRP3 signaling pathway, thereby exacerbating ROS-triggered cascade damage in CECs. Finally, exogenous selenium supplementation could effectively alleviate colon injury in UC. Conclusion: SelS is required for maintaining intestinal homeostasis and that its deletion enhances necroptosis in CECs, which is further exacerbated by promoting M1 macrophage polarization, and triggers more severe barrier dysfunction and inflammatory responses in UC.
Collapse
Affiliation(s)
- Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
9
|
Cui Y, Liao Y, Chen Y, Zhao X, Zhang Y, Wang H, Li L, Zhang X, Chen K, Jia M, Tian J, Ruan X, Shi Y, Yang P, Chen J. Low expression of selenoprotein S induces oxidative damage in cartilages. J Trace Elem Med Biol 2024; 85:127492. [PMID: 38964025 DOI: 10.1016/j.jtemb.2024.127492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Low levels of the indispensable trace element selenium (Se) can cause oxidative stress and disrupt environmental homeostasis in humans and animals. Selenoprotein S (Selenos), of which Se is a key component, is a member of the selenoprotein family involved in various biological processes. This study aimed to investigate whether low-level SELENOS gene expression can induce oxidative stress and decrease the antioxidative capacity of chondrocytes. Compared with control cells, SELENOS-knockdown ATDC5 cells showed substantially higher dihydroethidium, reactive oxygen species and malondialdehyde levels, and lower superoxide dismutase (SOD) expression. Knockout of the gene in C57BL/6 mice increased the 8-hydroxy-2-deoxyguanosine level considerably and decreased SOD expression in cartilages relative to the levels in wild-type mice. The results showed that the increased nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling mediated by low-level SELENOS expression was involved in oxidative damage. The proliferative zone of the cartilage growth plate of SELENOS-knockout mice was shortened, suggesting cartilage differentiation dysfunction. In conclusion, this study confirmed that low-level Selenos expression plays a role in oxidative stress in cartilages.
Collapse
Affiliation(s)
- Yixin Cui
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Yucheng Liao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Yonghui Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Xu Zhao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Yi Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Hui Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Lian Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Xinhe Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Kunpan Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Mingzhao Jia
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Jing Tian
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Xingran Ruan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Yawen Shi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Pinglin Yang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, People's Republic of China.
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| |
Collapse
|
10
|
Zhang S, Zhang G, Wang P, Wang L, Fang B, Huang J. Effect of Selenium and Selenoproteins on Radiation Resistance. Nutrients 2024; 16:2902. [PMID: 39275218 PMCID: PMC11396913 DOI: 10.3390/nu16172902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
With the advancement of radiological medicine and nuclear industry technology, radiation is increasingly used to diagnose human health disorders. However, large-scale nuclear leakage has heightened concerns about the impact on human organs and tissues. Selenium is an essential trace element that functions in the body mainly in the form of selenoproteins. Selenium and selenoproteins can protect against radiation by stimulating antioxidant actions, DNA repair functions, and immune enhancement. While studies on reducing radiation through antioxidants have been conducted for many years, the underlying mechanisms of selenium and selenoproteins as significant antioxidants in radiation damage mitigation remain incompletely understood. Therefore, this paper aims to provide new insights into developing safe and effective radiation protection agents by summarizing the anti-radiation mechanism of selenium and selenoproteins.
Collapse
Affiliation(s)
- Shidi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Guowei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Limited Liability Company of Hongda Salt Industry, Hoboksar Mongol Autonomous County, Tacheng 834700, China
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Lianshun Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
11
|
Turan TL, Klein HJ, Graf TR, Chillon TS, Plock JA, Schomburg L. New-onset autoantibodies to selenoprotein P following severe burn injury. Front Immunol 2024; 15:1422781. [PMID: 39176084 PMCID: PMC11338932 DOI: 10.3389/fimmu.2024.1422781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
The liver-derived selenium (Se) transporter selenoprotein P (SELENOP) declines in critical illness as a negative acute phase reactant and has recently been identified as an autoantigen. Hepatic selenoprotein biosynthesis and cotranslational selenocysteine insertion are sensitive to inflammation, therapeutic drugs, Se deficiency, and other modifiers. As severe burn injury induces a heavy inflammatory burden with concomitant Se depletion, we hypothesized an impairment of selenoprotein biosynthesis in the acute post-burn phase, potentially triggering the development of autoantibodies to SELENOP (SELENOP-aAb). To test this hypothesis, longitudinal serum samples from severely burned patients were analyzed over a period of six months. Newly occurring SELENOP-aAb were detected in 8.4% (7/83) of the burn patients, with onset not earlier than two weeks after injury. Prevalence of SELENOP-aAb was associated with injury severity, as aAb-positive patients have suffered more severe burns than their aAb-negative counterparts (median [IQR] ABSI: 11 [7-12] vs. 7 [5.8-8], p = 0.023). Autoimmunity to SELENOP was not associated with differences in total serum Se or SELENOP concentrations. A positive correlation of kidney-derived glutathione peroxidase (GPx3) with serum SELENOP was not present in the patients with SELENOP-aAb, who showed delayed normalization of GPx3 activity post-burn. Overall, the data suggest that SELENOP-aAb emerge after severe injury in a subset of patients and have antagonistic effects on Se transport. The nature of burn injury as a sudden event allowed a time-resolved analysis of a direct trigger for new-onset SELENOP-aAb, which may be relevant for severely affected patients requiring intensified acute and long-term care.
Collapse
Affiliation(s)
- Tabael L. Turan
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger J. Klein
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
- Department of Plastic Surgery and Hand Surgery, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Theresia Reding Graf
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan A. Plock
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
- Department of Plastic Surgery and Hand Surgery, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
12
|
Shan D, Chen Q, Xie Y, Dai S, Hu Y. Current understanding of essential trace elements in intrahepatic cholestasis of pregnancy. Biometals 2024; 37:943-953. [PMID: 38367126 DOI: 10.1007/s10534-024-00586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/19/2024] [Indexed: 02/19/2024]
Abstract
Trace elements are important components in the body and have fundamental roles in maintaining a healthy and balanced pregnancy process. Either deficiency or excess of trace elements, including selenium, iron, zinc, copper, and magnesium can lead to pregnancy complications. As a rare disorder during pregnancy of unknown aetiology, intrahepatic cholestasis of pregnancy (ICP) poses a significant risk to the fetus of perinatal mortality. ICP is a multifactorial complication of which the pathogenesis is still an enigma. Epidemiological studies have demonstrated the association of ICP with some trace elements. Evidence from retrospective studies in humans further revealed the possible contributing roles of trace elements in the pathogenesis of ICP. The published literature on the association of trace elements with ICP was reviewed. Recent advances in molecular biological techniques from animal studies have helped to elucidate the possible mechanisms by how these trace elements function in regulating oxidative reactions, inflammatory reactions and immune balance in the maternal-fetal interface, as well as the influence on hepato-intestinal circulation of bile acid. The scenario regarding the role of trace elements in the pathogenesis of ICP is still developing. The administration or depletion of these trace elements may have promising effects in alleviating the symptoms and improving the pregnancy outcomes of ICP.
Collapse
Affiliation(s)
- Dan Shan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, South Renmin Road, Section 3, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, South Renmin Road, Section 3, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Yupei Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, South Renmin Road, Section 3, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Siyu Dai
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, South Renmin Road, Section 3, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Yayi Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, South Renmin Road, Section 3, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Dogaru CB, Muscurel C, Duță C, Stoian I. "Alphabet" Selenoproteins: Their Characteristics and Physiological Roles. Int J Mol Sci 2023; 24:15992. [PMID: 37958974 PMCID: PMC10650576 DOI: 10.3390/ijms242115992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Selenium (Se) is a metalloid that is recognized as one of the vital trace elements in our body and plays multiple biological roles, largely mediated by proteins containing selenium-selenoproteins. Selenoproteins mainly have oxidoreductase functions but are also involved in many different molecular signaling pathways, physiological roles, and complex pathogenic processes (including, for example, teratogenesis, neurodegenerative, immuno-inflammatory, and obesity development). All of the selenoproteins contain one selenocysteine (Sec) residue, with only one notable exception, the selenoprotein P (SELENOP), which has 10 Sec residues. Although these mechanisms have been studied intensely and in detail, the characteristics and functions of many selenoproteins remain unknown. This review is dedicated to the recent data describing the identity and the functions of several selenoproteins that are less known than glutathione peroxidases (Gpxs), iodothyronine deiodinases (DIO), thioredoxin reductases (TRxRs), and methionine sulfoxide reductases (Msrs) and which are named after alphabetical letters (i.e., F, H, I, K, M, N, O, P, R, S, T, V, W). These "alphabet" selenoproteins are involved in a wide range of physiological and pathogenetic processes such as antioxidant defense, anti-inflammation, anti-apoptosis, regulation of immune response, regulation of oxidative stress, endoplasmic reticulum (ER) stress, immune and inflammatory response, and toxin antagonism. In selenium deficiency, the "alphabet" selenoproteins are affected hierarchically, both with respect to the particular selenoprotein and the tissue of expression, as the brain or endocrine glands are hardly affected by Se deficiency due to their equipment with LRP2 or LRP8.
Collapse
Affiliation(s)
| | | | - Carmen Duță
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania (I.S.)
| | | |
Collapse
|
14
|
Rathore AS, Gupta KK, Govindaraj SK, Ajmani A, Arivalagan J, Anto RJ, Kalishwaralal K, Chandran SA. Targeting BRF2: insights from in silico screening and molecular dynamic simulations. J Biomol Struct Dyn 2023; 42:10439-10451. [PMID: 37705251 DOI: 10.1080/07391102.2023.2256884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
The Transcription factor II B (TFIIB)‑related factor 2 (BRF2) containing TFIIIB complex recruits RNA polymerase III multi-subunit complex to selective gene promoters that altogether are responsible for synthesizing a variety of small non-coding RNAs, including a special type of selenocysteine tRNA (tRNASec), micro-RNA (miRNA), and other regulatory RNAs. BRF2 has been identified as a potential oncogene that promotes cancer cell survival under oxidative stress through its genetic activation. The structure of the BRF2 protein was modeled using the Robetta server, refined, and validated using the Ramachandran plot. A virtual approach utilizing molecular docking was used to screen a natural compound library to determine potential compounds that can interact with the molecular pin motif of the BRF2 protein using Maestro (Schrodinger). Subsequent molecular dynamics simulation studies of the top four ligands that exhibited low glide scores were performed using GROMACS. The findings derived from the simulations, in conjunction with the exploration of hydrogen bonding patterns, evaluation of the free energy landscape, and thorough analysis of residue decomposition, collectively converged to emphasize the robust interaction characteristics exhibited by Ligand 366 (Deacetyl lanatoside C) and ligand 336 (Neogitogenin)-with the BRF2 protein. These natural compounds may be potential inhibitors of BRF2, which could modulate the regulation of selenoprotein synthesis in cancer cells. Targeting BRF2 using these promising compounds may offer a new therapeutic approach to sensitize cancer cells to ferroptosis and apoptosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Krishna Kant Gupta
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | | | - Abhishek Ajmani
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | | | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Kalimuthu Kalishwaralal
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Sam Aldrin Chandran
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
15
|
Ghelichkhani F, Gonzalez FA, Kapitonova MA, Rozovsky S. Selenoprotein S Interacts with the Replication and Transcription Complex of SARS-CoV-2 by Binding nsp7. J Mol Biol 2023; 435:168008. [PMID: 36773692 PMCID: PMC9911985 DOI: 10.1016/j.jmb.2023.168008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replicates and evades detection using ER membranes and their associated protein machinery. Among these hijacked human proteins is selenoprotein S (selenos). This selenoprotein takes part in the protein quality control, signaling, and the regulation of cytokine secretion. While the role of selenos in the viral life cycle is not yet known, it has been reported to interact with SARS-CoV-2 nonstructural protein 7 (nsp7), a viral protein essential for the replication of the virus. We set to study whether selenos and nsp7 interact directly and if they can still bind when nsp7 is bound to the replication and transcription complex of the virus. Using biochemical assays, we show that selenos binds directly to nsp7. In addition, we found that selenos can bind to nsp7 when it is in a complex with the coronavirus's minimal replication and transcription complex, comprised of nsp7, nsp8, and the RNA-dependent RNA polymerase nsp12. In addition, through crosslinking experiments, we mapped the interaction sites of selenos and nsp7 in the replication complex and showed that the hydrophobic segment of selenos is essential for binding to nsp7. This arrangement leaves an extended helix and the intrinsically disordered segment of selenos-including the reactive selenocysteine-exposed and free to potentially recruit additional proteins to the replication and transcription complex.
Collapse
Affiliation(s)
- Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Fabio A Gonzalez
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|