1
|
Huang L, Zeng M, Li Y, Liu Z, Zhang J, Feng X. Solid/Liquid/Gas Three-Phase Interface Enzymatic Reaction-Based Lactate Biosensor with Simultaneously High Sensitivity and Wide Linear Range. ACS Sens 2025. [PMID: 40368837 DOI: 10.1021/acssensors.4c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Electrochemical lactate biosensors with simultaneously high sensitivity and wide linear detection range are desirable for health monitoring. Nevertheless, the low oxygen level in biological fluids compromises oxidase enzymatic kinetics, which consequently results in a narrow linear detection range and/or low sensitivity. In this study, we addressed this issue by fabricating a solid/liquid/gas three-phase enzyme electrode with sufficiently high oxygen levels in the local reaction zone and much enhanced oxidase enzymatic kinetics. The three-phase enzyme electrode was fabricated by successively immobilizing H2O2 electrocatalyst and lactate oxidase (LOx) on a superhydrophobic porous carbon substrate. Owing to the much-enhanced oxidase enzymatic kinetics, the linear detection upper limit of the three-phase lactate biosensor was increased up to 40 mM, about 57-fold higher than that of the conventional two-phase system (0.7 mM), while a sensitivity as high as 22.28 μA mM-1 cm-2 was maintained. Moreover, a sweat lactate sensing device was fabricated based on the three-phase enzyme electrode and utilized for lactate detection in undiluted sweat during exercise. This three-phase enzyme electrode with both high sensitivity and wide linear range provides a new approach for the development of high-performance lactate sensing systems.
Collapse
Affiliation(s)
- Lihui Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Mengli Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yaolan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhiping Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Innovation Center for Chemical Science, Soochow University, Suzhou 215123, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
2
|
Gebreslassie YT, Gebremeskel FG. Green and cost-effective biofabrication of copper oxide nanoparticles: Exploring antimicrobial and anticancer applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00828. [PMID: 38312482 PMCID: PMC10835232 DOI: 10.1016/j.btre.2024.e00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as novel therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an innovative approach for future therapeutic interventions against cancer and microbial infections.
Collapse
Affiliation(s)
- Yemane Tadesse Gebreslassie
- Department of Chemistry, College of Natural and Computational Science, Adigrat University, P.O. Box 50, Adigrat, Ethiopia
| | - Fisseha Guesh Gebremeskel
- Department of Chemistry, College of Natural Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia
| |
Collapse
|
3
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
4
|
Khan RS, Rather AH, Wani TU, Rather SU, Amna T, Hassan MS, Sheikh FA. Recent trends using natural polymeric nanofibers as supports for enzyme immobilization and catalysis. Biotechnol Bioeng 2023; 120:22-40. [PMID: 36169115 DOI: 10.1002/bit.28246] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
All the disciplines of science, especially biotechnology, have given continuous attention to the area of enzyme immobilization. However, the structural support made by material science intervention determines the performance of immobilized enzymes. Studies have proven that nanostructured supports can maintain better catalytic performance and improve immobilization efficiency. The recent trends in the application of nanofibers using natural polymers for enzyme immobilization have been addressed in this review article. A comprehensive survey about the immobilization strategies and their characteristics are highlighted. The natural polymers, e.g., chitin, chitosan, silk fibroin, gelatin, cellulose, and their blends with other synthetic polymers capable of immobilizing enzymes in their 1D nanofibrous form, are discussed. The multiple applications of enzymes immobilized on nanofibers in biocatalysis, biosensors, biofuels, antifouling, regenerative medicine, biomolecule degradation, etc.; some of these are discussed in this review article.
Collapse
Affiliation(s)
- Rumysa S Khan
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Anjum H Rather
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Taha U Wani
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Sami-Ullah Rather
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Touseef Amna
- Department of Biology, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - M Shamshi Hassan
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
5
|
Manoj D, Rajendran S, Vasseghian Y, Ansar S, Gracia F, Soto-Moscoso M. Tailoring the heterojunction of TiO2 with multivalence CeO2 nanocrystals - for detection of toxic 2-aminophenol. Food Chem Toxicol 2022; 165:113182. [DOI: 10.1016/j.fct.2022.113182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 01/24/2023]
|
6
|
Saifi MA, Seal S, Godugu C. Nanoceria, the versatile nanoparticles: Promising biomedical applications. J Control Release 2021; 338:164-189. [PMID: 34425166 DOI: 10.1016/j.jconrel.2021.08.033] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Nanotechnology has been a boon for the biomedical field due to the freedom it provides for tailoring of pharmacokinetic properties of different drug molecules. Nanomedicine is the medical application of nanotechnology for the diagnosis, treatment and/or management of the diseases. Cerium oxide nanoparticles (CNPs) are metal oxide-based nanoparticles (NPs) which possess outstanding reactive oxygen species (ROS) scavenging activities primarily due to the availability of "oxidation switch" on their surface. These NP have been found to protect from a number of disorders with a background of oxidative stress such as cancer, diabetes etc. In fact, the CNPs have been found to possess the environment-dependent ROS modulating properties. In addition, the inherent catalase, SOD, oxidase, peroxidase and phosphatase mimetic properties of CNPs provide them superiority over a number of NPs. Further, chemical reactivity of CNPs seems to be a function of their surface chemistry which can be precisely tuned by defect engineering. However, the contradictory reports make it necessary to critically evaluate the potential of CNPs, in the light of available literature. The review is aimed at probing the feasibility of CNPs to push towards the clinical studies. Further, we have also covered and censoriously discussed the suspected negative impacts of CNPs before making our way to a consensus. This review aims to be a comprehensive, authoritative, critical, and accessible review of general interest to the scientific community.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sudipta Seal
- University of Central Florida, 12760 Pegasus Drive ENG I, Suite 207, Orlando, FL 32816, USA
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
7
|
Rozhin P, Melchionna M, Fornasiero P, Marchesan S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2259. [PMID: 34578575 PMCID: PMC8467784 DOI: 10.3390/nano11092259] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
| | - Michele Melchionna
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
8
|
Ipekci HH, Ozcan M, Turkyilmaz BG, Uzunoglu A. Ni/NiO/Ni-B/graphene heterostructure-modified electrodes and their electrochemical activities towards acetaminophen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3187-3195. [PMID: 34180918 DOI: 10.1039/d1ay00446h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The surface of graphene was decorated with nickel/nickel oxide/nickel-boron particles to develop high-performance electrochemical sensors. The nanohybrid structures were prepared via a one-step reduction method under an oxygen-rich atmosphere to obtain an oxide phase besides metallic nickel nanoparticles. In addition, the use of NaBH4 as the reducing agent enabled simultaneous formation of Ni-B species on the graphene surface. XRD, XPS, TEM, Raman, and TGA analyses were implemented to characterize the samples. The XRD and XPS results revealed the presence of Ni/NiO/Ni-B on the surface of graphene. The electroanalytical performance of the nanocomposite was investigated against acetaminophen, which is an extensively exploited antipyretic and analgesic drug. The analytical performance results showed that the Ni/NiO/Ni-B/Gr-based sensors had a very wide working window between 10 μM and 2500 μM (y (μA) = 10.706x (mM) + 0.3151 (R2 = 0.9993)). The excellent storage stability, selectivity, and recovery results along with the high analytical performance make the novel Ni/NiO/Ni-B/Gr hybrid systems promising materials for the development of novel sensor platforms.
Collapse
Affiliation(s)
- Hasan Huseyin Ipekci
- Metallurgical and Materials Engineering, Faculty of Engineering and Architecture, Necmettin Erbakan University, Konya, Turkey.
| | | | | | | |
Collapse
|
9
|
TiO2/CeO2-CePO4-decorated enzymatic glucose biosensors operating in oxygen-restrictive environments. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04956-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Ipekci HH, Gozutok Z, Celik N, Serdar Onses M, Uzunoglu A. Ink-jet printing of particle-free silver inks on fabrics with a superhydrophobic protection layer for fabrication of robust electrochemical sensors. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Altundal M, Üğe A, Gök Ö, Zeybek B. Determination of Cadmium(II) by Differential Pulse Voltammetry (DPV) Using a Cerium(IV) Oxide: Polyaniline Composite Modified Glassy Carbon Electrode (GCE). ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1870121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Melis Altundal
- Department of Chemistry, Faculty of Arts and Science, Kütahya Dumlupınar University, Kütahya, Turkey
| | - Ahmet Üğe
- Department of Chemistry, Faculty of Arts and Science, Kütahya Dumlupınar University, Kütahya, Turkey
| | - Özer Gök
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| | - Bülent Zeybek
- Department of Chemistry, Faculty of Arts and Science, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
12
|
Uzunoglu A, Ipekci HH. The use of CeO2-modified Pt/C catalyst inks for the construction of high-performance enzyme-free H2O2 sensors. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Electrochemical Glucose Detection Using PdAg Nanoparticles Anchored on rGO/MWCNT Nanohybrids. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01641-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Verma N, Kumar N. Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon. ACS Biomater Sci Eng 2019; 5:1170-1188. [DOI: 10.1021/acsbiomaterials.8b01092] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nishant Verma
- National Centre for Flexible Electronics, Indian Institute of Technology, Kanpur, Kalyanpur, Kanpur, Uttar Pradesh−208016, India
| | - Nikhil Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, G.E. Road, Opposite Science College, Raipur, Chhattisgarh−492010, India
| |
Collapse
|
15
|
Stolzenburg P, Lorenz T, Dietzel A, Garnweitner G. Microfluidic synthesis of metal oxide nanoparticles via the nonaqueous method. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
A novel impedimetric glucose biosensor based on immobilized glucose oxidase on a CuO-Chitosan nanobiocomposite modified FTO electrode. Int J Biol Macromol 2018; 118:649-660. [DOI: 10.1016/j.ijbiomac.2018.05.228] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
|
17
|
T. D, Rao KV, Bikshalu K, Malapati V, Sadasivuni KK. Non-enzymatic sensing of glucose using screen-printed electrode modified with novel synthesized CeO2@CuO core shell nanostructure. Biosens Bioelectron 2018; 111:166-173. [DOI: 10.1016/j.bios.2018.03.063] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/11/2018] [Accepted: 03/28/2018] [Indexed: 11/24/2022]
|
18
|
Hiraka K, Kojima K, Lin CE, Tsugawa W, Asano R, La Belle JT, Sode K. Minimizing the effects of oxygen interference on l -lactate sensors by a single amino acid mutation in Aerococcus viridans l -lactate oxidase. Biosens Bioelectron 2018; 103:163-170. [DOI: 10.1016/j.bios.2017.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/17/2017] [Accepted: 12/13/2017] [Indexed: 01/26/2023]
|
19
|
Üğe A, Koyuncu Zeybek D, Zeybek B. An electrochemical sensor for sensitive detection of dopamine based on MWCNTs/CeO 2 -PEDOT composite. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Teepoo S, Dawan P, Barnthip N. Electrospun Chitosan-Gelatin Biopolymer Composite Nanofibers for Horseradish Peroxidase Immobilization in a Hydrogen Peroxide Biosensor. BIOSENSORS 2017; 7:E47. [PMID: 29036932 PMCID: PMC5746770 DOI: 10.3390/bios7040047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/18/2022]
Abstract
A biosensor based on chitosan-gelatin composite biopolymers nanofibers is found to be effective for the immobilization of horseradish peroxidase to detect hydrogen peroxide. The biopolymer nanofibers were fabricated by an electrospining technique. Upon optimization of synthesis parameters, biopolymers nanofibers, an average of 80 nm in diameter, were obtained and were then modified on the working electrode surface. The effects of the concentration of enzyme, pH, and concentration of the buffer and the working potential on the current response of the nanofibers-modified electrode toward hydrogen peroxide were optimized to obtain the maximal current response. The results found that horseradish peroxidase immobilization on chitosan-gelatin composite biopolymer nanofibers had advantages of fast response, excellent reproducibility, high stability, and showed a linear response to hydrogen peroxide in the concentration range from 0.1 to 1.7 mM with a detection limit of 0.05 mM and exhibited high sensitivity of 44 µA∙mM-1∙cm-2. The developed system was evaluated for analysis of disinfectant samples and showed good agreement between the results obtained by the titration method without significant differences at the 0.05 significance level. The proposed strategy based on chitosan-gelatin composite biopolymer nanofibers for the immobilization of enzymes can be extended for the development of other enzyme-based biosensors.
Collapse
Affiliation(s)
- Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand.
| | - Phanphruk Dawan
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand.
| | - Naris Barnthip
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand.
| |
Collapse
|
21
|
Uzunoglu A. The Use of CeO2-TiO2 Nanocomposites as Enzyme Immobilization Platforms in Electrochemical Sensors. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2017. [DOI: 10.18596/jotcsa.327686] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
22
|
Synthesis of CeO2-based core/shell nanoparticles with high oxygen storage capacity. INTERNATIONAL NANO LETTERS 2017. [DOI: 10.1007/s40089-017-0213-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method. MATERIALS 2016; 9:ma9060480. [PMID: 28773602 PMCID: PMC5456763 DOI: 10.3390/ma9060480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/06/2016] [Accepted: 06/10/2016] [Indexed: 11/17/2022]
Abstract
Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W) microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD), below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO₂. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM). Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg) was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO₂ to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications.
Collapse
|