1
|
Pal AK, Hossain MN, Brogna S, Goddard NJ, Gupta R. Leaky waveguide biosensors for label-free measurement of human serum albumin. Analyst 2025. [PMID: 40384237 DOI: 10.1039/d5an00108k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Early diagnosis of diseases such as kidney disease relies on the successful measurement of albumin concentration in urine. We report label-free detection of human serum albumin (HSA) using a leaky waveguide (LW) optical biosensor. The LW reported in this work comprised a few microns-thick mesoporous polyacrylamide hydrogel film deposited on a glass substrate by casting and, for the first time, copolymerized with N-(3-aminopropyl)methacrylamide (APMAA) to provide functional amine groups required to immobilise recognition elements, half-antibody fragments. Furthermore, this is an unprecedented report on the use of a high molecular weight (3700 D) poly(ethylene glycol) diacrylamide in contrast to previously reported low molecular weight bis-acrylamide crosslinkers to increase the porosity of waveguide films. Equally, other parameters such as molar ratio of APMAA to acrylamide and total weight of (monomers and crosslinker) to volume ratio were optimised to obtain hydrogel films with pore size and amine groups required to immobilise half-antibody fragments in hydrogel films. Three different strategies for immobilisation of recognition elements; two based on streptavidin biotin interactions and the third based on half fragments of antibody were studied. The third immobilisation strategy resulted in the most reproducible results and hence was used to measure the equilibrium dissociation constant of HSA and its corresponding half-antibody fragments. Using the LW-based label-free optical biosensor, HSA was successfully detected with a limit of detection of 28 ng mL-1 in buffer and the lowest concentration of HSA measured in this work was 66.5 ng mL-1. This capability of quantitation of HSA by the LW can be built upon to realise a LW biosensor for early detection of diseases including kidney disease.
Collapse
Affiliation(s)
- Anil Kumar Pal
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK.
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Md Nazmul Hossain
- School of Biosciences and Birmingham Centre of Genome Biology, University of Birmingham, B15 2TT UK
- Department of Microbial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Saverio Brogna
- School of Biosciences and Birmingham Centre of Genome Biology, University of Birmingham, B15 2TT UK
| | | | - Ruchi Gupta
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
2
|
Brazys E, Ratautaite V, Mohsenzadeh E, Boguzaite R, Ramanaviciute A, Ramanavicius A. Formation of molecularly imprinted polymers: Strategies applied for the removal of protein template (review). Adv Colloid Interface Sci 2025; 337:103386. [PMID: 39754907 DOI: 10.1016/j.cis.2024.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025]
Abstract
The key step in the entire molecularly imprinted polymer (MIP) preparation process is the formation of the complementary cavities in the polymer matrix through the template removal process. The template is removed using chemical treatments, leaving behind selective binding sites for target molecules within the polymer matrix. Other MIP preparation steps include mixing monomers and template molecules in the appropriate solvent(s), monomer-template complex equilibration, and polymerisation of the monomers around the template. However, template removal is the most important among all the preparation steps because the final structure, which can be accepted and recognised as the MIP, is obtained only after the template removal. A thorough analysis of the studies dedicated to MIP applications demonstrates that this MIP preparation step, namely the template removal, is relatively understudied. MIP template removal is especially challenging in the synthesis, where the molecular template is a macromolecule such as a protein. This review aims to provide a deliberate, systematic, and consistent overview of protein removal as the MIP template molecules. The most prevalent template removal methods are outlined for removing protein templates from electrochemically synthesised MIPs, particularly thin layers on electrodes used in electrochemical sensors. Five protein template removal approaches involving chemical treatment are highlighted, which include the utilisation of (i) chaotropic agents, (ii) salt, (iii) acidic cleavage, (iv) alkaline, and finally, (v) proteolytic treatment focusing on studies conducted over the past decade. In addition, we discuss the interactions driving the removal of protein templates in each approach and associated challenges. This review provides insights into MIPs protein template removal strategies while highlighting the prevalent issue of this understudied step of template removal.
Collapse
Affiliation(s)
- Ernestas Brazys
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
| | - Vilma Ratautaite
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Enayat Mohsenzadeh
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Agne Ramanaviciute
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
3
|
Yarman A, Waffo AFT, Katz S, Bernitzky C, Kovács N, Borrero P, Frielingsdorf S, Supala E, Dragelj J, Kurbanoglu S, Neumann B, Lenz O, Mroginski MA, Gyurcsányi RE, Wollenberger U, Scheller FW, Caserta G, Zebger I. A Strep-Tag Imprinted Polymer Platform for Heterogenous Bio(electro)catalysis. Angew Chem Int Ed Engl 2024; 63:e202408979. [PMID: 38979660 DOI: 10.1002/anie.202408979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Molecularly imprinted polymers (MIPs) are artificial receptors equipped with selective recognition sites for target molecules. One of the most promising strategies for protein MIPs relies on the exploitation of short surface-exposed protein fragments, termed epitopes, as templates to imprint binding sites in a polymer scaffold for a desired protein. However, the lack of high-resolution structural data of flexible surface-exposed regions challenges the selection of suitable epitopes. Here, we addressed this drawback by developing a polyscopoletin-based MIP that recognizes recombinant proteins via imprinting of the widely used Strep-tag II affinity peptide (Strep-MIP). Electrochemistry, surface-sensitive IR spectroscopy, and molecular dynamics simulations were employed to ensure an utmost control of the Strep-MIP electrosynthesis. The functionality of this novel platform was verified with two Strep-tagged enzymes: an O2-tolerant [NiFe]-hydrogenase, and an alkaline phosphatase. The enzymes preserved their biocatalytic activities after multiple utilization confirming the efficiency of Strep-MIP as a general biocompatible platform to confine recombinant proteins for exploitation in biotechnology.
Collapse
Affiliation(s)
- Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Sahinkaya Cad. No. 86, Beykoz, Istanbul, 34820, Türkiye
| | - Armel F T Waffo
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Cornelius Bernitzky
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Norbert Kovács
- BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Paloma Borrero
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Stefan Frielingsdorf
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Eszter Supala
- BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Jovan Dragelj
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Yenimahalle, Ankara, 06560, Turkey
| | - Bettina Neumann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Róbert E Gyurcsányi
- BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
- HUN-REN-BME Computation Driven Chemistry Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Ulla Wollenberger
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Frieder W Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
4
|
Marinangeli A, Chianella I, Radicchi E, Maniglio D, Bossi AM. Molecularly Imprinted Polymers Electrochemical Sensing: The Effect of Inhomogeneous Binding Sites on the Measurements. A Comparison between Imprinted Polyaniline versus nanoMIP-Doped Polyaniline Electrodes for the EIS Detection of 17β-Estradiol. ACS Sens 2024; 9:4963-4973. [PMID: 39206707 DOI: 10.1021/acssensors.4c01787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic receptors made by template-assisted synthesis. MIPs might be ideal receptors for sensing devices, given the possibility to custom-design selectivity and affinity toward a targeted analyte and their robustness and ability to withstand harsh conditions. However, the synthesis of MIP is an inherently random process that produces a statistical distribution of binding sites, characterized by a variety of affinities. This is verified both for bulk MIP materials and for MIP's thin layers. In the present work, we aimed at assessing the effects of inhomogeneous versus homogeneous imprinted binding sites on electrochemical sensing measurements, and the possible implications on the sensor's performance. In the example of an Electrochemical Impedance Spectroscopy (EIS) sensor for the 17β-estradiol (E2) hormone, the scenario of inhomogeneous binding sites was studied by modifying electrodes with an E2-MIP polyaniline (PANI) thin layer, called the "Imprinted PANI layer". In contrast, the condition of discrete and uniform binding sites was epitomized by electrodes modified with a thin PANI layer purposedly doped with E2-MIP nanoparticles (nanoMIPs), which were referred to as "nanoMIP-doped PANI". The behaviors of the two EIS sensors were compared. Interestingly, the sensitivity of the nanoMIP-doped PANI was almost twice with respect to that of the imprinted PANI layer, strongly suggesting that the homogeneity of the binding sites has a fundamental role in the sensor's development. The nanoMIP-doped PANI sensor, which showed a response for E2 in the range 36.7 pM-36.7 nM and had a limit of detection of 2.86 pg/mL, was used to determine E2 in wastewater.
Collapse
Affiliation(s)
- Alice Marinangeli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Iva Chianella
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, U.K
| | - Eros Radicchi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Devid Maniglio
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
5
|
Saylan Y, Aliyeva N, Eroglu S, Denizli A. Nanomaterial-Based Sensors for Coumarin Detection. ACS OMEGA 2024; 9:30015-30034. [PMID: 39035881 PMCID: PMC11256117 DOI: 10.1021/acsomega.4c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Sensors are widely used owing to their advantages including excellent sensing performance, user-friendliness, portability, rapid response, high sensitivity, and specificity. Sensor technologies have been expanded rapidly in recent years to offer many applications in medicine, pharmaceuticals, the environment, food safety, and national security. Various nanomaterial-based sensors have been developed for their exciting features, such as a powerful absorption band in the visible region, excellent electrical conductivity, and good mechanical properties. Natural and synthetic coumarin derivatives are attracting attention in the development of functional polymers and polymeric networks for their unique biological, optical, and photochemical properties. They are the most abundant organic molecules in medicine because of their biological and pharmacological impacts. Furthermore, coumarin derivatives can modulate signaling pathways that affect various cellular processes. This review covers the discovery of coumarins and their derivatives, the integration of nanomaterial-based sensors, and recent advances in nanomaterial-based sensing for coumarins. This review also explains how sensors work, their types, their pros and cons, and sensor studies for coumarin detection in recent years.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Nilufer Aliyeva
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Seckin Eroglu
- Department
of Biological Sciences, Middle East Technical
University, 06800 Ankara, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
6
|
Yarman A. Effect of Various Carbon Electrodes on MIP-Based Sensing Proteins Using Poly(Scopoletin): A Case Study of Ferritin. Biomimetics (Basel) 2024; 9:426. [PMID: 39056867 PMCID: PMC11274590 DOI: 10.3390/biomimetics9070426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Sensitivity in the sub-nanomolar concentration region is required to determine important protein biomarkers, e.g., ferritin. As a prerequisite for high sensitivity, in this paper, the affinity of the functional monomer to the macromolecular target ferritin in solution was compared with the value for the respective molecularly imprinted polymer (MIP)-based electrodes, and the influence of various surface modifications of the electrode was investigated. The analytical performance of ferritin sensing was investigated using three different carbon electrodes (screen-printed carbon electrodes, single-walled-carbon-nanotube-modified screen-printed carbon electrodes, and glassy carbon electrodes) covered with a scopoletin-based MIP layer. Regardless of the electrode type, the template molecule ferritin was mixed with the functional monomer scopoletin, and electropolymerization was conducted using multistep amperometry. All stages of MIP preparation were followed by evaluating the diffusional permeability of the redox marker ferricyanide/ferrocyanide through the polymer layer by differential pulse voltammetry. The best results were obtained with glassy carbon electrodes. The MIP sensor responded up to 0.5 µM linearly with a Kd of 0.30 µM. Similar results were also obtained in solution upon the interaction of scopoletin and ferritin using fluorescence spectroscopy, resulting in the quenching of the scopoletin signal, with a calculated Kd of 0.81 µM. Moreover, the binding of 1 µM ferritin led to 49.6% suppression, whereas human serum albumin caused 8.6% suppression.
Collapse
Affiliation(s)
- Aysu Yarman
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul 34820, Türkiye
| |
Collapse
|
7
|
Jahanban-Esfahlan A, Amarowicz R. Molecularly imprinted polymers for sensing/depleting human serum albumin (HSA): A critical review of recent advances and current challenges. Int J Biol Macromol 2024; 266:131132. [PMID: 38531529 DOI: 10.1016/j.ijbiomac.2024.131132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Human serum albumin (HSA) is an essential biomacromolecule in the blood circulatory system because it carries numerous molecules, including fatty acids (FAs), bilirubin, metal ions, hormones, and different pharmaceuticals, and plays a significant role in regulating blood osmotic pressure. Fluctuations in HSA levels in human biofluids, particularly urine and serum, are associated with several disorders, such as elevated blood pressure, diabetes mellitus (DM), liver dysfunction, and a wide range of renal diseases. Thus, the ability to quickly and accurately measure HSA levels is important for the rapid identification of these disorders in human populations. Molecularly imprinted polymers (MIPs), well known as artificial antibodies (Abs), have been extensively used for the quantitative detection of small molecules and macromolecules, especially HSA, in recent decades. This review highlights major challenges and recent developments in the application of MIPs to detect HSA in artificial and real samples. The fabrication and application of various MIPs for the depletion of HSA are also discussed, as well as different MIP preparation approaches and strategies for overcoming obstacles that hinder the development of MIPs with high efficiency and recognition capability for HSA determination/depletion.
Collapse
Affiliation(s)
- Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.
| | - Ryszard Amarowicz
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Street Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
8
|
Wang J, Liang R, Qin W. Improvement of the selectivity of a molecularly imprinted polymer-based potentiometric sensor by using a specific functional monomer. Anal Chim Acta 2024; 1298:342412. [PMID: 38462336 DOI: 10.1016/j.aca.2024.342412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Potentiometric sensors based on the molecularly imprinted polymers (MIPs) as the receptors have been successfully developed for determination of various organic and biological species. However, these MIP receptors may suffer from problems of low selectivity. Especially, it would be difficult to distinguish the target analyte from its structurally similar interferents. In this work, we propose a novel strategy that using specific functional monomer to fabricate MIP with high selectivity towards the target molecule. The density functional theory calculations are used to investigate the interactions between the template and the functional monomer. The binding energy between the template and functional monomer can be used as the criterion for identifying the optimal monomer. As a proof-of-concept experiment, bisphenol A (BPA) is chosen as the template and the MIP is synthesized by the precipitation polymerization method using the specific allyl-β-cyclodextrin (allyl-β-CD) with high affinity towards BPA as the functional monomer. The high-affinity MIP is employed as the receptor for the construction of the potentiometric sensor. The proposed potentiometric sensor based on the MIP using allyl-β-CD as the functional monomer shows an improved response performance in terms of selectivity and sensitivity compared to the conventional potentiometric sensor based on the MIP with the common monomer (i.e., methacrylic acid). This allyl-β-CD MIP-based potentiometric sensor shows a detection limit of 0.29 μM for BPA, which is about one order of magnitude lower than that obtained by the conventional MIP-based potentiometric sensor. We believe that utilizing a functional monomer with specific recognition ability towards target in the fabrication of MIP could provide an appealing way to construct highly selective MIP-based electrochemical and optical sensors.
Collapse
Affiliation(s)
- Junhao Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongning Liang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, China.
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China.
| |
Collapse
|
9
|
Li Y, Luo L, Kong Y, Li Y, Wang Q, Wang M, Li Y, Davenport A, Li B. Recent advances in molecularly imprinted polymer-based electrochemical sensors. Biosens Bioelectron 2024; 249:116018. [PMID: 38232451 DOI: 10.1016/j.bios.2024.116018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Molecularly imprinted polymers (MIPs) are the equivalent of natural antibodies and have been widely used as synthetic receptors for the detection of disease biomarkers. Benefiting from their excellent chemical and physical stability, low-cost, relative ease of production, reusability, and high selectivity, MIP-based electrochemical sensors have attracted great interest in disease diagnosis and demonstrated superiority over other biosensing techniques. Here we compare various types of MIP-based electrochemical sensors with different working principles. We then evaluate the state-of-the-art achievements of the MIP-based electrochemical sensors for the detection of different biomarkers, including nucleic acids, proteins, saccharides, lipids, and other small molecules. The limitations, which prevent its successful translation into practical clinical settings, are outlined together with the potential solutions. At the end, we share our vision of the evolution of MIP-based electrochemical sensors with an outlook on the future of this promising biosensing technology.
Collapse
Affiliation(s)
- Yixuan Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Liuxiong Luo
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Yingqi Kong
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Yujia Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Quansheng Wang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, 150036, China
| | - Mingqing Wang
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Ying Li
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, WC1N 3BG, UK
| | - Andrew Davenport
- Department of Renal Medicine, University College London, London, NW3 2PF, UK
| | - Bing Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
10
|
Sarvutiene J, Prentice U, Ramanavicius S, Ramanavicius A. Molecular imprinting technology for biomedical applications. Biotechnol Adv 2024; 71:108318. [PMID: 38266935 DOI: 10.1016/j.biotechadv.2024.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs), a type of biomimetic material, have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favourable specificity and selectivity for target analytes, and widely used for various biological applications. It was demonstrated that MIPs with significant selectivity towards protein-based targets could be applied in medicine, diagnostics, proteomics, environmental analysis, sensors, various in vivo and/or in vitro applications, drug delivery systems, etc. This review provides an overview of MIPs dedicated to biomedical applications and insights into perspectives on the application of MIPs in newly emerging areas of biotechnology. Many different protocols applied for the synthesis of MIPs are overviewed in this review. The templates used for molecular imprinting vary from the minor glycosylated glycan-based structures, amino acids, and proteins to whole bacteria, which are also overviewed in this review. Economic, environmental, rapid preparation, stability, and reproducibility have been highlighted as significant advantages of MIPs. Particularly, some specialized MIPs, in addition to molecular recognition properties, can have high catalytic activity, which in some cases could be compared with other bio-catalytic systems. Therefore, such MIPs belong to the class of so-called 'artificial enzymes'. The discussion provided in this manuscript furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages highlighting trends and possible future directions of MIP technology.
Collapse
Affiliation(s)
- Julija Sarvutiene
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Urte Prentice
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania.
| |
Collapse
|
11
|
Ghosh Dastidar M, Murugappan K, R Nisbet D, Tricoli A. Simultaneous electrochemical detection of glycated and human serum albumin for diabetes management. Biosens Bioelectron 2024; 246:115876. [PMID: 38039734 DOI: 10.1016/j.bios.2023.115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Developing highly selective and sensitive biosensors for diabetes management blood glucose monitoring is essential to reduce the health risks associated with diabetes. Assessing the glycation (GA) of human serum albumin (HSA) serves as an indicator for medium-term glycemic control, making it suitable for assessing the efficacy of blood glucose management protocols. However, most biosensors are not capable of simultaneous detection of the relative fraction of GA to HSA in a clinically relevant range. Here, we report an effective miniaturised biosensor architecture for simultaneous electrochemical detection of HSA and GA across relevant concentration ranges. We immobilise DNA aptamers specific for the detection of HSA and GA on gold nanoislands (Au NIs) decorated screen-printed carbon electrodes (SPCEs), and effectively passivate the residual surface sites. We achieve a dynamic detection range between 20 and 60 mg/mL for HSA and 1-40 mg/mL for GA in buffer solutions. The analytical utility of our HSA and GA biosensor architectures are validated in mice serum indicating immediate potential for clinical applications. Since HSA and GA have similar structures, we extensively assess our sensor specificity, observing high selectivity of the HSA and GA sensors against each other and other commonly present interfering molecules in blood such as glucose, glycine, ampicillin, and insulin. Additionally, we determine the glycation ratio, which is a crucial metric for assessing blood glucose management efficacy, in an extensive range representing healthy and poor blood glucose management profiles. These findings provide strong evidence for the clinical potential of our biosensor architecture for point-of-care and self-assessment of diabetes management protocols.
Collapse
Affiliation(s)
- Monalisha Ghosh Dastidar
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Krishnan Murugappan
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, ACT, 2601, Australia; CSIRO, Mineral Resources, Private Bag 10, Clayton South, Victoria, 3169, Australia.
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne, Australia; Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Australia; Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, ACT, 2601, Australia; Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
12
|
Mandal A, Mandal S, Mallik S, Mondal S, Bag SS, Goswami DK. Precise and rapid point-of-care quantification of albumin levels in unspiked blood using organic field-effect transistors. NANOSCALE ADVANCES 2024; 6:630-637. [PMID: 38235103 PMCID: PMC10790970 DOI: 10.1039/d3na00564j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Nanowire-based field-effect transistors (FETs) are widely used to detect biomolecules precisely. However, the fabrication of such devices involves complex integration procedures of nanowires into the device and most are not easily scalable. In this work, we report a straightforward fabrication approach that utilizes the grain boundaries of the semiconducting film of organic FETs to fabricate biosensors for the detection of human serum albumin (HSA) with an enhanced sensitivity and detection range. We used trichromophoric pentapeptide (TPyAlaDo-Leu-ArTAA-Leu-TPyAlaDo, TPP) as a receptor molecule to precisely estimate the concentration of HSA protein in human blood. Bi-layer semiconductors (pentacene and TPP) were used to fabricate the OFET, where the pentacene molecule acted as a conducting channel and TPP acted as a receptor molecule. This approach of engineering the diffusion of receptor molecules into the grain boundaries is crucial in developing OFET-based HSA protein sensors, which cover a considerable detection range from 1 pM to 1 mM in a single device. The point-of-care detection in unspiked blood samples was confirmed at 4.2 g dL-1, which is similar to 4.1 g dL-1 measured using a pathological procedure.
Collapse
Affiliation(s)
- Ajoy Mandal
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur Kharagpur - 721302 India
| | - Suman Mandal
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur Kharagpur - 721302 India
| | - Samik Mallik
- School of Nanoscience and Technology, Indian Institute of Technology Kharagpur Kharagpur - 721302 India
| | - Sovanlal Mondal
- School of Nanoscience and Technology, Indian Institute of Technology Kharagpur Kharagpur - 721302 India
| | - Subhendu Sekhar Bag
- Bioorganic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati Guwahati -781039 India
| | - Dipak K Goswami
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur Kharagpur - 721302 India
- School of Nanoscience and Technology, Indian Institute of Technology Kharagpur Kharagpur - 721302 India
| |
Collapse
|
13
|
Zhang X, Yarman A, Bagheri M, El-Sherbiny IM, Hassan RYA, Kurbanoglu S, Waffo AFT, Zebger I, Karabulut TC, Bier FF, Lieberzeit P, Scheller FW. Imprinted Polymers on the Route to Plastibodies for Biomacromolecules (MIPs), Viruses (VIPs), and Cells (CIPs). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:107-148. [PMID: 37884758 DOI: 10.1007/10_2023_234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Aysu Yarman
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul, Turkey
| | - Mahdien Bagheri
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria
| | - Ibrahim M El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Rabeay Y A Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | - Ingo Zebger
- Institut für Chemie, PC 14 Technische Universität Berlin, Berlin, Germany
| | | | - Frank F Bier
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Peter Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria.
| | - Frieder W Scheller
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany.
| |
Collapse
|
14
|
Kamel AH, Ashmawy NH, Youssef TA, Elnakib M, Abd El‐Naby H, Abd‐Rabboh HSM. Screen‐printed electrochemical sensors for label‐free potentiometric and impedimetric detection of human serum albumin. ELECTROANAL 2023; 35. [DOI: 10.1002/elan.202200436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/25/2023] [Indexed: 09/01/2023]
Abstract
AbstractHerein, two electrochemical methods based on potentiometric and impedimetric transductions were presented for albumin targeting, employing screen‐printed platforms (SPEs) to make easy and cost‐effective sensors with good detection merits. The SPEs incorporated ion‐to‐electron multi‐walled carbon nanotubes (MWCNTs) transducer. Sensors were constructed using either tridodecyl methyl‐ammonium chloride (TDMACl) (sensor I) or aliquate 336S (sensor II) in plasticized polymeric matrices of carboxylated poly (vinyl chloride) (PVC‐COOH). Analytical performances of the sensors were evaluated using the above‐mentioned electrochemical techniques. For potentiometric assay, constructed sensors responded to albumin with −81.7 ± 1.7 (r2 = 0.9986) and −146.2 ± 2.3 mV/decade (r2 = 0.9991) slopes over the linearity range 1.5 μM–1.5 mM with 0.8 and 1.0 μM detection limits for respective TDMAC‐ and aliquate‐based sensors. Interference study showed apparent selectivity for both sensors. Impedimetric assays were performed at pH = 7.5 in 10 mM PBS buffer solution with a 0.02 M [Fe(CN)6]−3/−4 redox‐active electrolyte. Sensors achieved detection limits of 4.3 × 10−8 and 1.8 × 10−7 M over the linear ranges of 5.2×10−8–1.0×10−4 M and 1.4×10−6–1.4×10−3 M, with 0.09 ± 0.004 and 0.168 ± 0.009 log Ω/decade slopes for sensors based on TDMAC and aliquate, respectively. These sensors are characterized with simple construction, high sensitivity and selectivity, fast response time, single‐use, and cost‐effectiveness. The methods were successfully applied to albumin assessment in different biological fluids.
Collapse
Affiliation(s)
- Ayman H. Kamel
- Department of Chemistry Faculty of Science Ain Shams University Cairo 11566 Egypt
- Chemistry Department College of Science Sakhir 32038, Kingdom of Bahrain
| | - Nashwa H. Ashmawy
- Department of Chemistry Faculty of Science Ain Shams University Cairo 11566 Egypt
| | - Teraze A. Youssef
- Department of Chemistry Faculty of Science Ain Shams University Cairo 11566 Egypt
| | - Mostafa Elnakib
- Military Medical Academy, Elkhalifa El-Maamoun St. Heliopolis Cairo Egypt
| | - Heba Abd El‐Naby
- Department of Chemistry Faculty of Science Ain Shams University Cairo 11566 Egypt
| | | |
Collapse
|
15
|
Indah Wardani N, Kanatharana P, Thavarungkul P, Limbut W. Molecularly imprinted polymer dual electrochemical sensor for the one-step determination of albuminuria to creatinine ratio (ACR). Talanta 2023; 265:124769. [PMID: 37329752 DOI: 10.1016/j.talanta.2023.124769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
The urinary albumin to creatinine ratio (ACR) is a convenient and accurate biomarker of chronic kidney disease (CKD). An electrochemical sensor for the quantification of ACR was developed based on a dual screen-printed carbon electrode (SPdCE). The SPdCE was modified with carboxylated multiwalled carbon nanotubes (f-MWCNTs) and redox probes of polymethylene blue (PMB) for creatinine and ferrocene (Fc) for albumin. The modified working electrodes were then molecularly imprinted with coated with polymerized poly-o-phenylenediamine (PoPD) to form surfaces that could be separately imprinted with creatinine and albumin template molecules. The seeded polymer layers were polymerized with a second coating of PoPD and the templates were removed to form two different molecularly imprinted polymer (MIP) layers. The dual sensor presented recognition sites for creatinine and albumin on different working electrodes, enabling the measurement of each analyte in one potential scan of square wave voltammetry (SWV). The proposed sensor produced linear ranges of 5.0-100 ng mL-1 and 100-2500 ng mL-1 for creatinine, and 5.0-100 ng mL-1 for albumin. LODs were 1.5 ± 0.2 ng mL-1 and 1.5 ± 0.3 ng mL-1, respectively. The dual MIP sensor was highly selective and stable for seven weeks at room temperature. The ACRs obtained using the proposed sensor compared well (P > 0.05) with the results from immunoturbidimetric and enzymatic methods.
Collapse
Affiliation(s)
- Nur Indah Wardani
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
16
|
Pilvenyte G, Ratautaite V, Boguzaite R, Ramanavicius S, Chen CF, Viter R, Ramanavicius A. Molecularly Imprinted Polymer-Based Electrochemical Sensors for the Diagnosis of Infectious Diseases. BIOSENSORS 2023; 13:620. [PMID: 37366985 DOI: 10.3390/bios13060620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The appearance of biological molecules, so-called biomarkers in body fluids at abnormal concentrations, is considered a good tool for detecting disease. Biomarkers are usually looked for in the most common body fluids, such as blood, nasopharyngeal fluids, urine, tears, sweat, etc. Even with significant advances in diagnostic technology, many patients with suspected infections receive empiric antimicrobial therapy rather than appropriate treatment, which is driven by rapid identification of the infectious agent, leading to increased antimicrobial resistance. To positively impact healthcare, new tests are needed that are pathogen-specific, easy to use, and produce results quickly. Molecularly imprinted polymer (MIP)-based biosensors can achieve these general goals and have enormous potential for disease detection. This article aimed to overview recent articles dedicated to electrochemical sensors modified with MIP to detect protein-based biomarkers of certain infectious diseases in human beings, particularly the biomarkers of infectious diseases, such as HIV-1, COVID-19, Dengue virus, and others. Some biomarkers, such as C-reactive protein (CRP) found in blood tests, are not specific for a particular disease but are used to identify any inflammation process in the body and are also under consideration in this review. Other biomarkers are specific to a particular disease, e.g., SARS-CoV-2-S spike glycoprotein. This article analyzes the development of electrochemical sensors using molecular imprinting technology and the used materials' influence. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.
Collapse
Affiliation(s)
- Greta Pilvenyte
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia
- Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
17
|
Babaeipour V, Jabbari F. Pre-polymerization process simulation, synthesis and investigation the properties of dipicolinic acid molecularly imprinted polymers. Polym Bull (Berl) 2023:1-18. [PMID: 37362956 PMCID: PMC10081820 DOI: 10.1007/s00289-023-04774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/17/2023] [Accepted: 03/25/2023] [Indexed: 06/28/2023]
Abstract
Molecularly imprinted polymers (MIPs) have attracted much attention in recent years due to their structure predictability, recognition specificity, and universal application, as well as robustness, simplicity, and cheapness. In this study, firstly, the pre-polymerization process of molecularly imprinted polymer of dipicolinic acid (DPA) was simulated by molecular dynamics. Then, the appropriate functional monomer molecule for printing was selected and its intermolecular bond with the DPA molecule was evaluated. The monomers 2-vinyl pyridine, acrylic acid (AA), and methacrylic acid (MAA) were selected with potential energies of 3.93 kcal/mol, 3.15 kcal/mol, and 2.78 kcal/mol, respectively. Finally, the ability of functional groups to form hydrogen bonds was estimated, and molecularly imprinted polymers (MIPs) and non-imprinted polymers (NIPs) were synthesized by bulk polymerization. MAA and AA were used as functional monomers to identify DPA molecules. The morphology of MIP and NIP was investigated using a scanning electron microscope (SEM). Their performance was evaluated in the absorption of DPA molecules and picolinic acid (PA) molecules and the printing factor of synthesis polymers. The results showed that fabricated MIPs can be used in the structure of sensors, and the synthesis process is a key factor that significantly affects the polymer properties. The MIP based on the AA monomer showed a higher adsorption rate/capacity and maximum printing factor than MAA monomer-based MIP.
Collapse
Affiliation(s)
- Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316, Tehran, Iran
| |
Collapse
|
18
|
Integration of smart nanomaterials for highly selective disposable sensors and their forensic applications in amphetamine determination. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
19
|
Tlili A, Ayed D, Attia G, Fourati N, Zerrouki C, Othmane A. Comparative study of two surface techniques of proteins imprinting in a polydopamine matrix. Application to immunoglobulin detection. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Abstract
The SARS-CoV-2 spike glycoprotein (SARS-CoV-2-S) was used as a template molecule and polypyrrole (Ppy) was applied as an electro-generated conducting polymer, which was acting as a matrix for the formation of molecular imprints. Two types of Ppy-layers: molecularly imprinted polypyrrole (MIP-Ppy) and non-imprinted polypyrrole (NIP-Ppy) were electrochemically deposited on the working platinum electrode. The performance of electrodes modified by MIP-Ppy and NIP-Ppy layers was evaluated by pulsed amperometric detection (PAD). During the assessment of measurement results registered by PAD, the integrated Cottrell equation (Anson plot) was used to calculate the amount of charge passed through the MIP-Ppy and NIP-Ppy layers. The interaction between SARS-CoV-2 spike glycoproteins and molecularly imprinted polypyrrole (MIP-Ppy) was assessed by the Anson plot based calculations. This assessment reveals that SARS-CoV-2-S glycoproteins are interacting with MIP-Ppy more strongly than with NIP-Ppy.
Collapse
|
21
|
Akgönüllü S, Kılıç S, Esen C, Denizli A. Molecularly Imprinted Polymer-Based Sensors for Protein Detection. Polymers (Basel) 2023; 15:629. [PMID: 36771930 PMCID: PMC9919373 DOI: 10.3390/polym15030629] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The accurate detection of biological substances such as proteins has always been a hot topic in scientific research. Biomimetic sensors seek to imitate sensitive and selective mechanisms of biological systems and integrate these traits into applicable sensing platforms. Molecular imprinting technology has been extensively practiced in many domains, where it can produce various molecular recognition materials with specific recognition capabilities. Molecularly imprinted polymers (MIPs), dubbed plastic antibodies, are artificial receptors with high-affinity binding sites for a particular molecule or compound. MIPs for protein recognition are expected to have high affinity via numerous interactions between polymer matrices and multiple functional groups of the target protein. This critical review briefly describes recent advances in the synthesis, characterization, and application of MIP-based sensor platforms used to detect proteins.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Seçkin Kılıç
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Cem Esen
- Department of Chemistry, Faculty of Science, Aydın Adnan Menderes University, 09010 Aydın, Turkey
| | - Adil Denizli
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
22
|
Nadar PM, Merrill MA, Austin K, Strakowski SM, Halpern JM. The emergence of psychoanalytical electrochemistry: the translation of MDD biomarker discovery to diagnosis with electrochemical sensing. Transl Psychiatry 2022; 12:372. [PMID: 36075922 PMCID: PMC9452859 DOI: 10.1038/s41398-022-02138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 01/30/2023] Open
Abstract
The disease burden and healthcare costs of psychiatric diseases along with the pursuit to understand their underlying biochemical mechanisms have led to psychiatric biomarker investigations. Current advances in evaluating candidate biomarkers for psychiatric diseases, such as major depressive disorder (MDD), focus on determining a specific biomarker signature or profile. The origins of candidate biomarkers are heterogenous, ranging from genomics, proteomics, and metabolomics, while incorporating associations with clinical characterization. Prior to clinical use, candidate biomarkers must be validated by large multi-site clinical studies, which can be used to determine the ideal MDD biomarker signature. Therefore, identifying valid biomarkers has been challenging, suggesting the need for alternative approaches. Following validation studies, new technology must be employed to transition from biomarker discovery to diagnostic biomolecular profiling. Current technologies used in discovery and validation, such as mass spectroscopy, are currently limited to clinical research due to the cost or complexity of equipment, sample preparation, or measurement analysis. Thus, other technologies such as electrochemical detection must be considered for point-of-care (POC) testing with the needed characteristics for physicians' offices. This review evaluates the advantages of using electrochemical sensing as a primary diagnostic platform due to its rapidity, accuracy, low cost, biomolecular detection diversity, multiplexed capacity, and instrument flexibility. We evaluate the capabilities of electrochemical methods in evaluating current candidate MDD biomarkers, individually and through multiplexed sensing, for promising applications in detecting MDD biosignatures in the POC setting.
Collapse
Affiliation(s)
- Priyanka M Nadar
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Mckenna A Merrill
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Katherine Austin
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Stephen M Strakowski
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
23
|
Electroanalytical sensors for antiretroviral drugs determination in pharmaceutical and biological samples: A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Ramanavicius S, Ramanavicius A. Development of molecularly imprinted polymer based phase boundaries for sensors design (review). Adv Colloid Interface Sci 2022; 305:102693. [PMID: 35609398 DOI: 10.1016/j.cis.2022.102693] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Achievements in polymer chemistry enables to design artificial phase boundaries modified by imprints of selected molecules and some larger structures. These structures seem very useful for the design of new materials suitable for affinity chromatography and sensors. In this review, we are overviewing the synthesis of molecularly imprinted polymers (MIPs) and the applicability of these MIPs in the design of affinity sensors. Such MIP-based layers or particles can be used as analyte-recognizing parts for sensors and in some cases they can replace very expensive compounds (e.g.: antibodies, receptors etc.), which are recognizing analyte. Many different polymers can be used for the formation of MIPs, but conducing polymers shows the most attractive capabilities for molecular-imprinting by various chemical compounds. Therefore, the application of conducting polymers (e.g.: polypyrrole, polyaniline, polythiophene, poly(3,4-ethylenedioxythiophene), and ortho-phenylenediamine) seems very promising. Polypyrrole is one of the most suitable for the development of MIP-based structures with molecular imprints by analytes of various molecular weights. Overoxiation of polypyrrole enables to increase the selectivity of polypyrrole-based MIPs. Methods used for the synthesis of conducting polymer based MIPs are overviewed. Some methods, which are applied for the transduction of analytical signal, are discussed, and challenges and new trends in MIP-technology are foreseen.
Collapse
|
25
|
Mazzotta E, Di Giulio T, Malitesta C. Electrochemical sensing of macromolecules based on molecularly imprinted polymers: challenges, successful strategies, and opportunities. Anal Bioanal Chem 2022; 414:5165-5200. [PMID: 35277740 PMCID: PMC8916950 DOI: 10.1007/s00216-022-03981-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022]
Abstract
Looking at the literature focused on molecularly imprinted polymers (MIPs) for protein, it soon becomes apparent that a remarkable increase in scientific interest and exploration of new applications has been recorded in the last several years, from 42 documents in 2011 to 128 just 10 years later, in 2021 (Scopus, December 2021). Such a rapid threefold increase in the number of works in this field is evidence that the imprinting of macromolecules no longer represents a distant dream of optimistic imprinters, as it was perceived until only a few years ago, but is rapidly becoming an ever more promising and reliable technology, due to the significant achievements in the field. The present critical review aims to summarize some of them, evidencing the aspects that have contributed to the success of the most widely used strategies in the field. At the same time, limitations and drawbacks of less frequently used approaches are critically discussed. Particular focus is given to the use of a MIP for protein in the assembly of electrochemical sensors. Sensor design indeed represents one of the most active application fields of imprinting technology, with electrochemical MIP sensors providing the broadest spectrum of protein analytes among the different sensor configurations.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy.
| | - Tiziano Di Giulio
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
26
|
Goldoni R, Thomaz DV, Di Giulio T, Malitesta C, Mazzotta E. An insight into polyscopoletin electrosynthesis by a quality-by-design approach. JOURNAL OF MATERIALS SCIENCE 2022; 57:12161-12175. [PMID: 35755421 PMCID: PMC9215150 DOI: 10.1007/s10853-022-07349-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Scopoletin (SP) as a functional monomer for electropolymerization has recently been investigated in the context of molecularly imprinted polymers for biosensing applications. Herein we describe an in-depth analysis of the mechanisms involved in the electropolymerization of SP toward the optimization of the experimental conditions for applications in sensor studies. PolySP films have been in situ synthesized on a standard glassy carbon electrodes by varying three independent experimental parameters, and the output of the analysis has been evaluated in terms of the resulting electroactive area and surface coverage. A quality-by-design approach including design-of-experiments principles and response surface methodology produced unbiased observations on the most relevant parameters to be controlled during the electropolymerization of SP. By combining the output of electroactive area and surface overage, we highlighted a strong dependence on the monomer concentration and scan rate. Thus, an appropriate selection of these two parameters should be sought to have an optimal electropolymerization process, leading to uniform films and homogeneous surface behavior. This study shows that the application of multi-factorial analysis in a comprehensive design of experiments allows the systematic study of polymer electrosynthesis. Therefore, this research is expected to guide further efforts in the electropolymerization of several functional monomers. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10853-022-07349-8.
Collapse
Affiliation(s)
- Riccardo Goldoni
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano, 20133 Milan, Italy
- National Research Council, Institute of Electronics, Computer and Telecommunication Engineering (CNR-IEIIT), 20133 Milan, Italy
| | - Douglas Vieira Thomaz
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, 73100 Lecce, Italy
| | - Tiziano Di Giulio
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, 73100 Lecce, Italy
| | - Cosimino Malitesta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, 73100 Lecce, Italy
| | - Elisabetta Mazzotta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, 73100 Lecce, Italy
| |
Collapse
|
27
|
Molecularly Imprinted Polymer-Based Sensors for SARS-CoV-2: Where Are We Now? Biomimetics (Basel) 2022; 7:biomimetics7020058. [PMID: 35645185 PMCID: PMC9149885 DOI: 10.3390/biomimetics7020058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Since the first reported case of COVID-19 in 2019 in China and the official declaration from the World Health Organization in March 2021 as a pandemic, fast and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has played a major role worldwide. For this reason, various methods have been developed, comprising reverse transcriptase-polymerase chain reaction (RT-PCR), immunoassays, clustered regularly interspaced short palindromic repeats (CRISPR), reverse transcription loop-mediated isothermal amplification (RT-LAMP), and bio(mimetic)sensors. Among the developed methods, RT-PCR is so far the gold standard. Herein, we give an overview of the MIP-based sensors utilized since the beginning of the pandemic.
Collapse
|
28
|
Ramanavicius S, Samukaite-Bubniene U, Ratautaite V, Bechelany M, Ramanavicius A. Electrochemical Molecularly Imprinted Polymer Based Sensors for Pharmaceutical and Biomedical Applications (Review). J Pharm Biomed Anal 2022; 215:114739. [DOI: 10.1016/j.jpba.2022.114739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
|
29
|
Lin SY, Lin CY. Electrochemically-functionalized CNT/ABTS nanozyme enabling sensitive and selective voltammetric detection of microalbuminuria. Anal Chim Acta 2022; 1197:339517. [PMID: 35168734 DOI: 10.1016/j.aca.2022.339517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/01/2022]
|
30
|
Park R, Jeon S, Jeong J, Park SY, Han DW, Hong SW. Recent Advances of Point-of-Care Devices Integrated with Molecularly Imprinted Polymers-Based Biosensors: From Biomolecule Sensing Design to Intraoral Fluid Testing. BIOSENSORS 2022; 12:136. [PMID: 35323406 PMCID: PMC8946830 DOI: 10.3390/bios12030136] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 05/11/2023]
Abstract
Recent developments of point-of-care testing (POCT) and in vitro diagnostic medical devices have provided analytical capabilities and reliable diagnostic results for rapid access at or near the patient's location. Nevertheless, the challenges of reliable diagnosis still remain an important factor in actual clinical trials before on-site medical treatment and making clinical decisions. New classes of POCT devices depict precise diagnostic technologies that can detect biomarkers in biofluids such as sweat, tears, saliva or urine. The introduction of a novel molecularly imprinted polymer (MIP) system as an artificial bioreceptor for the POCT devices could be one of the emerging candidates to improve the analytical performance along with physicochemical stability when used in harsh environments. Here, we review the potential availability of MIP-based biorecognition systems as custom artificial receptors with high selectivity and chemical affinity for specific molecules. Further developments to the progress of advanced MIP technology for biomolecule recognition are introduced. Finally, to improve the POCT-based diagnostic system, we summarized the perspectives for high expandability to MIP-based periodontal diagnosis and the future directions of MIP-based biosensors as a wearable format.
Collapse
Affiliation(s)
- Rowoon Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Jeonghwa Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Shin-Young Park
- Department of Dental Education and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
31
|
Ramanavičius S, Morkvėnaitė-Vilkončienė I, Samukaitė-Bubnienė U, Ratautaitė V, Plikusienė I, Viter R, Ramanavičius A. Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:1282. [PMID: 35162027 PMCID: PMC8838766 DOI: 10.3390/s22031282] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022]
Abstract
This review is dedicated to the development of molecularly imprinted polymers (MIPs) and the application of MIPs in sensor design. MIP-based biological recognition parts can replace receptors or antibodies, which are rather expensive. Conducting polymers show unique properties that are applicable in sensor design. Therefore, MIP-based conducting polymers, including polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polyaniline and ortho-phenylenediamine are frequently applied in sensor design. Some other materials that can be molecularly imprinted are also overviewed in this review. Among many imprintable materials conducting polymer, polypyrrole is one of the most suitable for molecular imprinting of various targets ranging from small organics up to rather large proteins. Some attention in this review is dedicated to overview methods applied to design MIP-based sensing structures. Some attention is dedicated to the physicochemical methods applied for the transduction of analytical signals. Expected new trends and horizons in the application of MIP-based structures are also discussed.
Collapse
Affiliation(s)
- Simonas Ramanavičius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Urtė Samukaitė-Bubnienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Vilma Ratautaitė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Ieva Plikusienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Roman Viter
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| | - Arūnas Ramanavičius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
32
|
Bognár Z, Supala E, Yarman A, Zhang X, Bier FF, Scheller FW, Gyurcsányi RE. Peptide epitope-imprinted polymer microarrays for selective protein recognition. Application for SARS-CoV-2 RBD protein. Chem Sci 2022; 13:1263-1269. [PMID: 35222909 PMCID: PMC8809392 DOI: 10.1039/d1sc04502d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
We introduce a practically generic approach for the generation of epitope-imprinted polymer-based microarrays for protein recognition on surface plasmon resonance imaging (SPRi) chips. The SPRi platform allows the subsequent rapid screening of target binding kinetics in a multiplexed and label-free manner. The versatility of such microarrays, both as synthetic and screening platform, is demonstrated through developing highly affine molecularly imprinted polymers (MIPs) for the recognition of the receptor binding domain (RBD) of SARS-CoV-2 spike protein. A characteristic nonapeptide GFNCYFPLQ from the RBD and other control peptides were microspotted onto gold SPRi chips followed by the electrosynthesis of a polyscopoletin nanofilm to generate in one step MIP arrays. A single chip screening of essential synthesis parameters, including the surface density of the template peptide and its sequence led to MIPs with dissociation constants (K D) in the lower nanomolar range for RBD, which exceeds the affinity of RBD for its natural target, angiotensin-convertase 2 enzyme. Remarkably, the same MIPs bound SARS-CoV-2 virus like particles with even higher affinity along with excellent discrimination of influenza A (H3N2) virus. While MIPs prepared with a truncated heptapeptide template GFNCYFP showed only a slightly decreased affinity for RBD, a single mismatch in the amino acid sequence of the template, i.e. the substitution of the central cysteine with a serine, fully suppressed the RBD binding.
Collapse
Affiliation(s)
- Zsófia Bognár
- BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics Szt. Gellért tér 4 1111 Budapest Hungary
| | - Eszter Supala
- BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics Szt. Gellért tér 4 1111 Budapest Hungary
| | - Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam Karl-Liebknecht-Str. 24-25 14476 Potsdam OT Golm Germany
| | - Xiaorong Zhang
- Institute of Biochemistry and Biology, University of Potsdam Karl-Liebknecht-Str. 24-25 14476 Potsdam OT Golm Germany
| | - Frank F Bier
- Institute of Biochemistry and Biology, University of Potsdam Karl-Liebknecht-Str. 24-25 14476 Potsdam OT Golm Germany
| | - Frieder W Scheller
- Institute of Biochemistry and Biology, University of Potsdam Karl-Liebknecht-Str. 24-25 14476 Potsdam OT Golm Germany
| | - Róbert E Gyurcsányi
- BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics Szt. Gellért tér 4 1111 Budapest Hungary
| |
Collapse
|
33
|
Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim Acta 2022; 403:139581. [PMID: 34898691 PMCID: PMC8643074 DOI: 10.1016/j.electacta.2021.139581] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022]
Abstract
This study describes the application of a polypyrrole-based sensor for the determination of SARS-CoV-2-S spike glycoprotein. The SARS-CoV-2-S spike glycoprotein is a spike protein of the coronavirus SARS-CoV-2 that recently caused the worldwide spread of COVID-19 disease. This study is dedicated to the development of an electrochemical determination method based on the application of molecularly imprinted polymer technology. The electrochemical sensor was designed by molecular imprinting of polypyrrole (Ppy) with SARS-CoV-2-S spike glycoprotein (MIP-Ppy). The electrochemical sensors with MIP-Ppy and with polypyrrole without imprints (NIP-Ppy) layers were electrochemically deposited on a platinum electrode surface by a sequence of potential pulses. The performance of polymer layers was evaluated by pulsed amperometric detection. According to the obtained results, a sensor based on MIP-Ppy is more sensitive to the SARS-CoV-2-S spike glycoprotein than a sensor based on NIP-Ppy. Also, the results demonstrate that the MIP-Ppy layer is more selectively interacting with SARS-CoV-2-S glycoprotein than with bovine serum albumin. This proves that molecularly imprinted MIP-Ppy-based sensors can be applied for the detection of SARS-CoV-2 virus proteins.
Collapse
|
34
|
Zidarič T, Finšgar M, Maver U, Maver T. Artificial Biomimetic Electrochemical Assemblies. BIOSENSORS 2022; 12:44. [PMID: 35049673 PMCID: PMC8773559 DOI: 10.3390/bios12010044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022]
Abstract
Rapid, selective, and cost-effective detection and determination of clinically relevant biomolecule analytes for a better understanding of biological and physiological functions are becoming increasingly prominent. In this regard, biosensors represent a powerful tool to meet these requirements. Recent decades have seen biosensors gaining popularity due to their ability to design sensor platforms that are selective to determine target analytes. Naturally generated receptor units have a high affinity for their targets, which provides the selectivity of a device. However, such receptors are subject to instability under harsh environmental conditions and have consequently low durability. By applying principles of supramolecular chemistry, molecularly imprinted polymers (MIPs) can successfully replace natural receptors to circumvent these shortcomings. This review summarizes the recent achievements and analytical applications of electrosynthesized MIPs, in particular, for the detection of protein-based biomarkers. The scope of this review also includes the background behind electrochemical readouts and the origin of the gate effect in MIP-based biosensors.
Collapse
Affiliation(s)
- Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (T.Z.); (U.M.)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (T.Z.); (U.M.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (T.Z.); (U.M.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
35
|
Mustafa YL, Keirouz A, Leese HS. Molecularly Imprinted Polymers in Diagnostics: Accessing Analytes in Biofluids. J Mater Chem B 2022; 10:7418-7449. [DOI: 10.1039/d2tb00703g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bio-applied molecularly imprinted polymers (MIPs) are biomimetic materials with tailor-made synthetic recognition sites, mimicking biological counterparts known for their sensitive and selective analyte detection. MIPs, specifically designed for biomarker analysis...
Collapse
|
36
|
Electrochemical Sensors Based on the Electropolymerized Natural Phenolic Antioxidants and Their Analytical Application. SENSORS 2021; 21:s21248385. [PMID: 34960482 PMCID: PMC8707084 DOI: 10.3390/s21248385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022]
Abstract
The design and fabrication of novel electrochemical sensors with high analytical and operational characteristics are one of the sustainable trends in modern analytical chemistry. Polymeric film formation by the electropolymerization of suitable monomers is one of the methods of sensors fabrication. Among a wide range of the substances able to polymerize, the phenolic ones are of theoretical and practical interest. The attention is focused on the sensors based on the electropolymerized natural phenolic antioxidants and their analytical application. The typical electropolymerization reaction schemes are discussed. Phenol electropolymerization leads to insulating coverage formation. Therefore, a combination of electropolymerized natural phenolic antioxidants and carbon nanomaterials as modifiers is of special interest. Carbon nanomaterials provide conductivity and a high working surface area of the electrode, while the polymeric film properties affect the selectivity and sensitivity of the sensor response for the target analyte or the group of structurally related compounds. The possibility of guided changes in the electrochemical response for the improvement of target compounds' analytical characteristics has appeared. The analytical capabilities of sensors based on electropolymerized natural phenolic antioxidants and their future development in this field are discussed.
Collapse
|
37
|
Bräuer B, Unger C, Werner M, Lieberzeit PA. Biomimetic Sensors to Detect Bioanalytes in Real-Life Samples Using Molecularly Imprinted Polymers: A Review. SENSORS 2021; 21:s21165550. [PMID: 34450992 PMCID: PMC8400518 DOI: 10.3390/s21165550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Molecularly imprinted polymers (MIPs) come with the promise to be highly versatile, useful artificial receptors for sensing a wide variety of analytes. Despite a very large body of literature on imprinting, the number of papers addressing real-life biological samples and analytes is somewhat limited. Furthermore, the topic of MIP-based sensor design is still, rather, in the research stage and lacks wide-spread commercialization. This review summarizes recent advances of MIP-based sensors targeting biological species. It covers systems that are potentially interesting in medical applications/diagnostics, in detecting illicit substances, environmental analysis, and in the quality control of food. The main emphasis is placed on work that demonstrates application in real-life matrices, including those that are diluted in a reasonable manner. Hence, it does not restrict itself to the transducer type, but focusses on both materials and analytical tasks.
Collapse
|
38
|
Caserta G, Zhang X, Yarman A, Supala E, Wollenberger U, Gyurcsányi RE, Zebger I, Scheller FW. Insights in electrosynthesis, target binding, and stability of peptide-imprinted polymer nanofilms. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Boonsriwong W, Chunta S, Thepsimanon N, Singsanan S, Lieberzeit PA. Thin Film Plastic Antibody-Based Microplate Assay for Human Serum Albumin Determination. Polymers (Basel) 2021; 13:polym13111763. [PMID: 34072152 PMCID: PMC8198403 DOI: 10.3390/polym13111763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Herein we demonstrate molecularly imprinted polymers (MIP) as plastic antibodies for a microplate-based assay. As the most abundant plasma protein, human serum albumin (HSA) was selected as the target analyte model. Thin film MIP was synthesized by the surface molecular imprinting approach using HSA as the template. The optimized polymer consisted of acrylic acid (AA) and N-vinylpyrrolidone (VP) in a 2:3 (w/w) ratio, crosslinked with N,N'-(1,2-dihydroxyethylene) bisacrylamide (DHEBA) and then coated on the microplate well. The binding of MIP toward the bound HSA was achieved via the Bradford reaction. The assay revealed a dynamic detection range toward HSA standards in the clinically relevant 1-10 g/dL range, with a 0.01 g/dL detection limit. HSA-MIP showed minimal interference from other serum protein components: γ-globulin had 11% of the HSA response, α-globulin of high-density lipoprotein had 9%, and β-globulin of low-density lipoprotein had 7%. The analytical accuracy of the assay was 89-106% at the 95% confidence interval, with precision at 4-9%. The MIP-coated microplate was stored for 2 months at room temperature without losing its binding ability. The results suggest that the thin film plastic antibody system can be successfully applied to analytical/pseudoimmunological HSA determinations in clinical applications.
Collapse
Affiliation(s)
| | - Suticha Chunta
- Department of Clinical Chemistry, Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand;
- Correspondence: ; Tel.: +66-74-28-9125
| | - Nonthawat Thepsimanon
- Department of Clinical Chemistry, Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Sanita Singsanan
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand;
| | - Peter A. Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
40
|
Ratautaite V, Samukaite-Bubniene U, Plausinaitis D, Boguzaite R, Balciunas D, Ramanaviciene A, Neunert G, Ramanavicius A. Molecular Imprinting Technology for Determination of Uric Acid. Int J Mol Sci 2021; 22:5032. [PMID: 34068596 PMCID: PMC8126139 DOI: 10.3390/ijms22095032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/05/2023] Open
Abstract
The review focuses on the overview of electrochemical sensors based on molecularly imprinted polymers (MIPs) for the determination of uric acid. The importance of robust and precise determination of uric acid is highlighted, a short description of the principles of molecular imprinting technology is presented, and advantages over the others affinity-based analytical methods are discussed. The review is mainly concerned with the electro-analytical methods like cyclic voltammetry, electrochemical impedance spectroscopy, amperometry, etc. Moreover, there are some scattered notes to the other electrochemistry-related analytical methods, which are capable of providing additional information and to solve some challenges that are not achievable using standard electrochemical methods. The significance of these overviewed methods is highlighted. The overview of the research that is employing MIPs imprinted with uric acid is mainly targeted to address these topics: (i) type of polymers, which are used to design uric acid imprint structures; (ii) types of working electrodes and/or other parts of signal transducing systems applied for the registration of analytical signal; (iii) the description of the uric acid extraction procedures applied for the design of final MIP-structure; (iv) advantages and disadvantages of electrochemical methods and other signal transducing methods used for the registration of the analytical signal; (vi) overview of types of interfering molecules, which were analyzed to evaluate the selectivity; (vi) comparison of analytical characteristics such as linear range, limits of detection and quantification, reusability, reproducibility, repeatability, and stability. Some insights in future development of uric acid sensors are discussed in this review.
Collapse
Affiliation(s)
- Vilma Ratautaite
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (U.S.-B.); (R.B.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
| | - Urte Samukaite-Bubniene
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (U.S.-B.); (R.B.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
| | - Deivis Plausinaitis
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
| | - Raimonda Boguzaite
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (U.S.-B.); (R.B.)
| | - Domas Balciunas
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
| | - Almira Ramanaviciene
- NanoTechnas—Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Grażyna Neunert
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland
| | - Arunas Ramanavicius
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (U.S.-B.); (R.B.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
- NanoTechnas—Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| |
Collapse
|
41
|
Herrera-Chacón A, Cetó X, Del Valle M. Molecularly imprinted polymers - towards electrochemical sensors and electronic tongues. Anal Bioanal Chem 2021; 413:6117-6140. [PMID: 33928404 PMCID: PMC8084593 DOI: 10.1007/s00216-021-03313-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Molecularly imprinted polymers (MIPs) are artificially synthesized materials to mimic the molecular recognition process of biological macromolecules such as substrate-enzyme or antigen-antibody. The combination of these biomimetic materials with electrochemical techniques has allowed the development of advanced sensing devices, which significantly improve the performance of bare or catalyst-modified sensors, being able to unleash new applications. However, despite the high selectivity that MIPs exhibit, those can still show some cross-response towards other compounds, especially with chemically analogous (bio)molecules. Thus, the combination of MIPs with chemometric methods opens the room for the development of what could be considered a new type of electronic tongues, i.e. sensor array systems, based on its usage. In this direction, this review provides an overview of the more common synthetic approaches, as well as the strategies that can be used to achieve the integration of MIPs and electrochemical sensors, followed by some recent examples over different areas in order to illustrate the potential of such combination in very diverse applications.
Collapse
Affiliation(s)
- Anna Herrera-Chacón
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - Xavier Cetó
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - Manel Del Valle
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
42
|
|
43
|
Ramanavicius S, Jagminas A, Ramanavicius A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers (Basel) 2021; 13:974. [PMID: 33810074 PMCID: PMC8004762 DOI: 10.3390/polym13060974] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recent challenges in biomedical diagnostics show that the development of rapid affinity sensors is very important issue. Therefore, in this review we are aiming to outline the most important directions of affinity sensors where polymer-based semiconducting materials are applied. Progress in formation and development of such materials is overviewed and discussed. Some applicability aspects of conducting polymers in the design of affinity sensors are presented. The main attention is focused on bioanalytical application of conducting polymers such as polypyrrole, polyaniline, polythiophene and poly(3,4-ethylenedioxythiophene) ortho-phenylenediamine. In addition, some other polymers and inorganic materials that are suitable for molecular imprinting technology are also overviewed. Polymerization techniques, which are the most suitable for the development of composite structures suitable for affinity sensors are presented. Analytical signal transduction methods applied in affinity sensors based on polymer-based semiconducting materials are discussed. In this review the most attention is focused on the development and application of molecularly imprinted polymer-based structures, which can replace antibodies, receptors, and many others expensive affinity reagents. The applicability of electrochromic polymers in affinity sensor design is envisaged. Sufficient biocompatibility of some conducting polymers enables to apply them as "stealth coatings" in the future implantable affinity-sensors. Some new perspectives and trends in analytical application of polymer-based semiconducting materials are highlighted.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Jagminas
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
44
|
Aptamer-functionalised magnetic particles for highly selective detection of urinary albumin in clinical samples of diabetic nephropathy and other kidney tract disease. Anal Chim Acta 2021; 1154:338302. [PMID: 33736810 DOI: 10.1016/j.aca.2021.338302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/05/2023]
Abstract
We report a new highly selective detection platform for human albumin (HA) in urine based on aptamer-functionalised magnetic particles. Magnetic separation and re-dispersion was utilised to expose the HA-bound particles to a methylene blue solution. A second magnetic collection step was then used to allow the methylene blue supernatant to be reduced at an unmodified screen-printed electrode. Since methylene blue adsorbs to HA, the reduction current fell in proportion to HA concentration. There was no interference from compounds such as dopamine, epinephrine, vanillylmandelic acid, normetanephrine, metanephrine and creatinine in artificial urine at the concentrations at which they would be expected to appear. A calibration equation was derived to allow for the effect of pH on the response. This enabled measurement to be made directly in clinical urine samples of varying pH. After optimisation of experimental parameters, the total assay time was 40 min and the limit of detection was between 0.93 and 1.16 μg mL-1, depending on the pH used. HA could be detected up to 400 μg mL-1, covering the range from normoalbuminuria to macroalbuminuria. Analysis of urine samples of patients, with diabatic nephropathy, type I & II diabetes mellitus and chronic kidney disease, from a local hospital showed good agreement with the standard urinary human albumin detection method.
Collapse
|
45
|
Tlili A, Attia G, Khaoulani S, Mazouz Z, Zerrouki C, Yaakoubi N, Othmane A, Fourati N. Contribution to the Understanding of the Interaction between a Polydopamine Molecular Imprint and a Protein Model: Ionic Strength and pH Effect Investigation. SENSORS (BASEL, SWITZERLAND) 2021; 21:619. [PMID: 33477338 PMCID: PMC7830185 DOI: 10.3390/s21020619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/30/2022]
Abstract
Several studies were devoted to the design of molecularly imprinted polymer (MIP)-based sensors for the detection of a given protein. Here, we bring elements that could contribute to the understanding of the interaction mechanism involved in the recognition of a protein by an imprint. For this purpose, a polydopamine (PDA)-MIP was designed for bovine serum albumin (BSA) recognition. Prior to BSA grafting, the gold surfaces were functionalized with mixed self-assembled monolayers of (MUDA)/(MHOH) (1/9, v/v). The MIP was then elaborated by dopamine electropolymerization and further extraction of BSA templates by incubating the electrode in proteinase K solution. Three complementary techniques, electrochemistry, zetametry, and Fourier-transform infrared spectrometry, were used to investigate pH and ionic strength effects on a MIP's design and the further recognition process of the analytes by the imprints. Several MIPs were thus designed in acidic, neutral, and basic media and at various ionic strength values. Results indicate that the most appropriate conditions, to achieve a successful MIPs, were an ionic strength of 167 mM and a pH of 7.4. Sensitivity and dissociation constant of the designed sensor were of order of (3.36 ± 0.13) µA·cm-2·mg-1·mL and (8.56 ± 6.09) × 10-11 mg/mL, respectively.
Collapse
Affiliation(s)
- Amal Tlili
- LIMA Laboratory, Faculty of Medicine of Monastir, Monastir University, Av. Avicenne, Monastir 5019, Tunisia;
- SATIE Laboratory, Cnam, UMR CNRS 8029, 292 Rue Saint Martin, 75003 Paris, France; (G.A.); (S.K.); (C.Z.)
| | - Ghada Attia
- SATIE Laboratory, Cnam, UMR CNRS 8029, 292 Rue Saint Martin, 75003 Paris, France; (G.A.); (S.K.); (C.Z.)
| | - Sohayb Khaoulani
- SATIE Laboratory, Cnam, UMR CNRS 8029, 292 Rue Saint Martin, 75003 Paris, France; (G.A.); (S.K.); (C.Z.)
| | - Zouhour Mazouz
- NANOMISENE Laboratory, CRMN, Technopôle Sousse, Sousse University, Sousse 4050, Tunisia;
| | - Chouki Zerrouki
- SATIE Laboratory, Cnam, UMR CNRS 8029, 292 Rue Saint Martin, 75003 Paris, France; (G.A.); (S.K.); (C.Z.)
| | - Nourdin Yaakoubi
- LAUM Laboratory, Le Mans University, UMR CNR 6613, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France;
| | - Ali Othmane
- LIMA Laboratory, Faculty of Medicine of Monastir, Monastir University, Av. Avicenne, Monastir 5019, Tunisia;
| | - Najla Fourati
- SATIE Laboratory, Cnam, UMR CNRS 8029, 292 Rue Saint Martin, 75003 Paris, France; (G.A.); (S.K.); (C.Z.)
| |
Collapse
|
46
|
Ramanavicius S, Ramanavicius A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers (Basel) 2020; 13:E49. [PMID: 33375584 PMCID: PMC7795957 DOI: 10.3390/polym13010049] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
Fast and sensitive determination of biologically active compounds is very important in biomedical diagnostics, the food and beverage industry, and environmental analysis. In this review, the most promising directions in analytical application of conducting polymers (CPs) are outlined. Up to now polyaniline, polypyrrole, polythiophene, and poly(3,4-ethylenedioxythiophene) are the most frequently used CPs in the design of sensors and biosensors; therefore, in this review, main attention is paid to these conducting polymers. The most popular polymerization methods applied for the formation of conducting polymer layers are discussed. The applicability of polypyrrole-based functional layers in the design of electrochemical biosensors and biofuel cells is highlighted. Some signal transduction mechanisms in CP-based sensors and biosensors are discussed. Biocompatibility-related aspects of some conducting polymers are overviewed and some insights into the application of CP-based coatings for the design of implantable sensors and biofuel cells are addressed. New trends and perspectives in the development of sensors based on CPs and their composites with other materials are discussed.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
47
|
Kalecki J, Iskierko Z, Cieplak M, Sharma PS. Oriented Immobilization of Protein Templates: A New Trend in Surface Imprinting. ACS Sens 2020; 5:3710-3720. [PMID: 33225686 PMCID: PMC7771019 DOI: 10.1021/acssensors.0c01634] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022]
Abstract
In this Review, we have summarized recent trends in protein template imprinting. We emphasized a new trend in surface imprinting, namely, oriented protein immobilization. Site-directed proteins were assembled through specially selected functionalities. These efforts resulted in a preferably oriented homogeneous protein construct with decreased protein conformation changes during imprinting. Moreover, the maximum functionality for protein recognition was utilized. Various strategies were exploited for oriented protein immobilization, including covalent immobilization through a boronic acid group, metal coordinating center, and aptamer-based immobilization. Moreover, we have discussed the involvement of semicovalent as well as covalent imprinting. Interestingly, these approaches provided additional recognition sites in the molecular cavities imprinted. Therefore, these molecular cavities were highly selective, and the binding kinetics was improved.
Collapse
Affiliation(s)
- Jakub Kalecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush S. Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
48
|
Supala E, Tamás L, Erdőssy J, Gyurcsányi RE. Multiplexed redox gating measurements with a microelectrospotter. Towards electrochemical readout of molecularly imprinted polymer microarrays. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
49
|
A surfactant-mediated sol-gel method for the preparation of molecularly imprinted polymers and its application in a biomimetic immunoassay for the detection of protein. J Pharm Biomed Anal 2020; 190:113511. [PMID: 32781321 DOI: 10.1016/j.jpba.2020.113511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/20/2020] [Accepted: 07/25/2020] [Indexed: 01/11/2023]
Abstract
Molecularly imprinted polymers have demonstrated tremendous potential in the immunoassay as alternatives to biological antibodies. However, the production of molecularly imprinted polymers for protein remains great challenges because of structural complexity and organic solvent instability. In addition, non-specific binding sites in the molecularly imprinted polymers debase the feasibility of it as alternative to antibodies for immunoassay. Here, a surfactant-mediated sol-gel system in an aqueous environment was designed to produce the molecularly imprinted polymers for protein. A blocked strategy was introduced to decrease non-specific cross-reactivity and to improve the selectivity. The developed products were characterized by infrared spectroscopy, scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy, and vibrating sample magnetometer, respectively. The obtained molecularly imprinted polymers exhibited desirable specific recognition towards the target and a biomimetic immunoassay method was developed. The method exhibited a good linear response to human serum albumin in a concentration range of 1-100 μg mL-1. The limit of detection of this method was 0.3 μg mL-1 (3s/K), and good recoveries ranging from 85.4-104.5% were achieved. This study demonstrated that the molecularly imprinted polymers prepared by the surfactant-mediated sol-gel method can produce high selectivity materials, which had great potential to replace antibodies in a biomimetic immunoassay.
Collapse
|
50
|
Spychalska K, Zając D, Baluta S, Halicka K, Cabaj J. Functional Polymers Structures for (Bio)Sensing Application-A Review. Polymers (Basel) 2020; 12:E1154. [PMID: 32443618 PMCID: PMC7285029 DOI: 10.3390/polym12051154] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022] Open
Abstract
In this review we present polymeric materials for (bio)sensor technology development. We focused on conductive polymers (conjugated microporous polymer, polymer gels), composites, molecularly imprinted polymers and their influence on the design and fabrication of bio(sensors), which in the future could act as lab-on-a-chip (LOC) devices. LOC instruments enable us to perform a wide range of analysis away from the stationary laboratory. Characterized polymeric species represent promising candidates in biosensor or sensor technology for LOC development, not only for manufacturing these devices, but also as a surface for biologically active materials' immobilization. The presence of biological compounds can improve the sensitivity and selectivity of analytical tools, which in the case of medical diagnostics is extremely important. The described materials are biocompatible, cost-effective, flexible and are an excellent platform for the anchoring of specific compounds.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, 50-137 Wrocław, Poland; (K.S.); (D.Z.); (S.B.); (K.H.)
| |
Collapse
|