1
|
Khalikova M, Jireš J, Horáček O, Douša M, Kučera R, Nováková L. What is the role of current mass spectrometry in pharmaceutical analysis? MASS SPECTROMETRY REVIEWS 2024; 43:560-609. [PMID: 37503656 DOI: 10.1002/mas.21858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.
Collapse
Affiliation(s)
- Maria Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jakub Jireš
- Department of Analytical Chemistry, Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Michal Douša
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Prieto-Espinoza M, Malleret L, Ravier S, Höhener P. A Novel Multi-ion Evaluation Scheme to Determine Stable Chlorine Isotope Ratios ( 37Cl/ 35Cl) of Chlordecone by LC-QTOF. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2711-2721. [PMID: 37883681 DOI: 10.1021/jasms.3c00270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Organochlorinated pesticides are highly persistent organic pollutants having important adverse effects in the environment. To study their fate, compound-specific isotope analysis (CSIA) may be used to investigate their degradation pathways and mechanisms but is currently limited to 13C isotope ratios. The assessment of 37Cl isotope ratios from mass spectra is complicated by the large number of isotopologues of polychlorinated compounds. For method development, chlordecone (C10Cl10O2H2; hydrate form), an organochlorine insecticide that led to severe contamination of soils and aquatic ecosystems of the French West Indies, was taken as a model analyte. Chlorine isotope analysis of chlordecone hydrate was evaluated using high-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), enabling smooth ionization to detect the molecular ion. First, a new evaluation scheme is presented to correct for multiple isotope presence in polychlorinated compounds. The scheme is based on probability calculations of the most frequent isotopologues, distributions by binomial probability functions, and corrections for the presence of nonchlorine heavy isotopes. Second, mobile-phase modifiers, ionization energy (sampling cone tension) and scan time were optimized for accurate chlorine isotope ratios. Chlordecone standard samples were measured up to 10-fold and bracketed with a second chlordecone external standard. δ37Cl values were obtained after conversion to the SMOC scale by a two-point calibration. The robustness of the analysis method and evaluation scheme were tested and gave satisfactory results with standard errors (σm) of ±0.34‰ for precision and ±0.89‰ for long-term accuracy of chlorine isotope ratios of chlordecone hydrate. This work opens perspectives for applications of the C-Cl CSIA approach to investigate the fate of highly toxic and low reactive polychlorinated compounds in the environment.
Collapse
Affiliation(s)
- Maria Prieto-Espinoza
- Aix Marseille University - CNRS UMR 7376, Laboratory of Environmental Chemistry, Marseille, France
| | - Laure Malleret
- Aix Marseille University - CNRS UMR 7376, Laboratory of Environmental Chemistry, Marseille, France
| | - Sylvain Ravier
- Aix Marseille University - CNRS UMR 7376, Laboratory of Environmental Chemistry, Marseille, France
| | - Patrick Höhener
- Aix Marseille University - CNRS UMR 7376, Laboratory of Environmental Chemistry, Marseille, France
| |
Collapse
|
3
|
Walles M, Pähler A, Isin EM, Weidolf L. Meeting report of the second European Biotransformation Workshop. Xenobiotica 2022; 52:426-431. [PMID: 35410573 DOI: 10.1080/00498254.2022.2064253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Challenges and opportunities in the field of biotransformation were presented and discussed at the 2nd European Biotransformation workshop which was conducted virtually in collaboration with the DMDG on November 24/25, 2021. Here we summarise the presentations and discussions from this workshop.The following topics were covered:Regulatory requirements and biotransformation studies for antibody drug conjugates (ADCs) and antisense oligonucleotides (ASOs)Solutions for mass spectral data processing of peptides and oligonucleotidesFuture outsourcing needs in biotransformation for new modalitiesEstablished quantitative and qualitative workflows for metabolite identificationNew in vitro systems to study new chemical entities (NCEs) with low metabolic turnoverNew strategies on the timing of the human ADME (absorption, distribution, metabolism, excretion) study and to investigate the impact of human microbiome on drug development.
Collapse
Affiliation(s)
- M Walles
- Department, a Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - A Pähler
- Pharma Research and Early Development, F. Hoffmann-La Roche
| | - E M Isin
- DMPK, Translational Medicine, Servier, Orléans, France
| | - L Weidolf
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
4
|
2020 White Paper on Recent Issues in Bioanalysis: BMV of Hybrid Assays, Acoustic MS, HRMS, Data Integrity, Endogenous Compounds, Microsampling and Microbiome ( Part 1 - Recommendations on Industry/Regulators Consensus on BMV of Biotherapeutics by LCMS, Advanced Application in Hybrid Assays, Regulatory Challenges in Mass Spec, Innovation in Small Molecules, Peptides and Oligos). Bioanalysis 2021; 13:203-238. [PMID: 33470871 DOI: 10.4155/bio-2020-0324] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by Mass Spectrometry (hybrid assays, LCMS and HRMS) were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication covers the recommendations on (Part 1) Hybrid Assays, Innovation in Small Molecules, & Regulated Bioanalysis. Part 2A (BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation), Part 2B (Regulatory Input) and Part 3 (Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity) are published in volume 13 of Bioanalysis, issues 5, and 6 (2021), respectively.
Collapse
|
5
|
van der Laan T, Boom I, Maliepaard J, Dubbelman AC, Harms AC, Hankemeier T. Data-Independent Acquisition for the Quantification and Identification of Metabolites in Plasma. Metabolites 2020; 10:metabo10120514. [PMID: 33353236 PMCID: PMC7766927 DOI: 10.3390/metabo10120514] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
A popular fragmentation technique for non-targeted analysis is called data-independent acquisition (DIA), because it provides fragmentation data for all analytes in a specific mass range. In this work, we demonstrated the strengths and weaknesses of DIA. Two types of chromatography (fractionation/3 min and hydrophilic interaction liquid chromatography (HILIC)/18 min) and three DIA protocols (variable sequential window acquisition of all theoretical mass spectra (SWATH), fixed SWATH and MSALL) were used to evaluate the performance of DIA. Our results show that fast chromatography and MSALL often results in product ion overlap and complex MS/MS spectra, which reduces the quantitative and qualitative power of these DIA protocols. The combination of SWATH and HILIC allowed for the correct identification of 20 metabolites using the NIST library. After SWATH window customization (i.e., variable SWATH), we were able to quantify ten structural isomers with a mean accuracy of 103% (91-113%). The robustness of the variable SWATH and HILIC method was demonstrated by the accurate quantification of these structural isomers in 10 highly diverse blood samples. Since the combination of variable SWATH and HILIC results in good quantitative and qualitative fragmentation data, it is promising for both targeted and untargeted platforms. This should decrease the number of platforms needed in metabolomics and increase the value of a single analysis.
Collapse
|
6
|
Wang T, Duedahl-Olesen L, Lauritz Frandsen H. Targeted and non-targeted unexpected food contaminants analysis by LC/HRMS: Feasibility study on rice. Food Chem 2020; 338:127957. [PMID: 32919373 DOI: 10.1016/j.foodchem.2020.127957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/30/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
A widely applicable analytical LC/HRMS method based on ion source optimization, data treatment optimization on rice matrix was developed. The effects of key parameters of ion source, and their interactions on ESI response were studied on HPLC-QTOF. Compared with center points, 40% and 20% increase of response factors in the positive and negative mode can be achieved by ion source optimization, respectively. Data processing strategies inspired from metabolomics and multi-targeted analysis were compared and developed using case and control rice samples. Highly automated workflow using XCMS achieved highest mass accuracy, highest detection rate of 96% for 5 μg/kg in a non-targeted way. A clear distinction between the control and contaminated samples by PCA and PLS-DA was also achieved by this workflow using XCMS, even for the concentration of 5 μg/kg.
Collapse
Affiliation(s)
- Tingting Wang
- National Food Institute, Research Group for Analytical Food Chemistry, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby, DK-2800, Denmark.
| | - Lene Duedahl-Olesen
- National Food Institute, Research Group for Analytical Food Chemistry, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby, DK-2800, Denmark
| | - Henrik Lauritz Frandsen
- National Food Institute, Research Group for Analytical Food Chemistry, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
7
|
Xu X, Li W, Li T, Zhang K, Song Q, Liu L, Tu P, Wang Y, Song Y, Li J. Direct Infusion-Three-Dimensional-Mass Spectrometry Enables Rapid Chemome Comparison among Herbal Medicines. Anal Chem 2020; 92:7646-7656. [DOI: 10.1021/acs.analchem.0c00483] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xia Xu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li Liu
- Guizhou Hanfang Pharmaceutical Co. Ltd., Guiyang 550014, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
8
|
Ng B, Quinete N, Gardinali PR. Assessing accuracy, precision and selectivity using quality controls for non-targeted analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136568. [PMID: 31955085 DOI: 10.1016/j.scitotenv.2020.136568] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
The benchmarks to assess reproducibility are not well defined for non-target analysis. Parameters to evaluate analytical performance, such as accuracy, precision and selectivity, are well defined for target analysis, but remain elusive for non-target screening analysis. In this study, quality control (QC) guidelines are proposed to assure reliable data in non-target screening methodologies using a simple set of standards. Workflow reproducibility was assessed using an in-house QC mixture containing selected compounds with a wide range of polarity that can be detected either by electrospray ionization (ESI) in positive or negative mode. The analysis was performed by online solid phase extraction (SPE) liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). Data processing was done by a commercially available software, Compound Discoverer v. 3.0 using an environmental working template, which searched a multitude of databases, including Chemspider, EPA Toxcast, MzCloud among others. We have specifically evaluated method specificity, precision, accuracy and reproducibility in terms of peak area and retention time variability, true positive identification rate, intraday (within days) and interday (consecutive days) variations and the use of QC samples to reduce false positives. The method showed a satisfactory accuracy with an identification rate of ≥70% for most of the QC compounds. Precision estimated based on peak area relative standard deviation (RSD) ranged between 30 and 50% for most of the compounds. Data normalization to a single internal standard did not improve peak area variability. Retention time precision showed great repeatability and reproducibility (RSD ≤ 5%). In addition, a simple model of RT vs log Kow was designed based on our QC mixtures to efficiently reduced false positives by an average of 49.1%.
Collapse
Affiliation(s)
- Brian Ng
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America
| | - Natalia Quinete
- Southeast Environmental Research Center (SERC), Florida International University, Miami, FL, United States of America; Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, United States of America.
| | - Piero R Gardinali
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America; Southeast Environmental Research Center (SERC), Florida International University, Miami, FL, United States of America
| |
Collapse
|
9
|
Development and validation of a rapid, specific and sensitive LC-MS/MS bioanalytical method for eicosanoid quantification - assessment of arachidonic acid metabolic pathway activity in hypertensive rats. Biochimie 2020; 171-172:223-232. [PMID: 32179167 DOI: 10.1016/j.biochi.2020.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/11/2020] [Indexed: 11/23/2022]
Abstract
Lipid mediators such as eicosanoids maintain various physiological processes, and their alterations are involved in the development of numerous cardiovascular diseases. Therefore, the reliable assessment of their profile could be helpful in diagnosis as well as in eicosanoid biomarker-based treatment. Hence, the presented study aimed to develop and validate a new rapid, specific and sensitive LC-MS/MS method for quantification of arachidonic acid-derived eicosanoids in plasma, including lipid mediators generated via COX-, LOX- and CYP450-dependent pathways. The developed method features high sensitivity because the lower limit of quantification ranged from 0.05 to 0.50 ng mL-1 as well as the accuracy and precision estimated within 88.88-111.25% and 1.03-11.82%, respectively. An application of a simple and fast liquid-liquid extraction procedure for sample cleaning resulted in a highly satisfactory recovery of the analytes (>88.30%). Additionally, the method was validated using artificial plasma, an approach that enabled the elimination of the matrix effect caused by an endogenous concentration of studied lipid mediators. Importantly, the presented LC-MS/MS method allowed for simultaneous quantitative and qualitative [quan/qual] analysis of the selected eicosanoids, leading to an additional improvement of the method specificity. Moreover, the validated method was successfully applied for eicosanoid profiling in rat, mouse and human plasma samples, clearly demonstrating the heterogeneity of the profile of studied lipid mediators in those species.
Collapse
|
10
|
Mussap M, Loddo C, Fanni C, Fanos V. Metabolomics in pharmacology - a delve into the novel field of pharmacometabolomics. Expert Rev Clin Pharmacol 2020; 13:115-134. [PMID: 31958027 DOI: 10.1080/17512433.2020.1713750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Pharmacometabolomics is an emerging science pursuing the application of precision medicine. Combining both genetic and environmental factors, the so-called pharmacometabolomic approach guides patient selection and stratification in clinical trials and optimizes personalized drug dosage, improving efficacy and safety.Areas covered: This review illustrates the progressive introduction of pharmacometabolomics as an innovative solution for enhancing the discovery of novel drugs and improving research and development (R&D) productivity of the pharmaceutical industry. An extended analysis on published pharmacometabolomics studies both in animal models and humans includes results obtained in several areas such as hepatology, gastroenterology, nephrology, neuropsychiatry, oncology, drug addiction, embryonic cells, neonatology, and microbiomics.Expert opinion: a tailored, individualized therapy based on the optimization of pharmacokinetics and pharmacodynamics, the improvement of drug efficacy, and the abolition of drug toxicity and adverse drug reactions is a key issue in precision medicine. Genetics alone has become insufficient for deciphring intra- and inter-individual variations in drug-response, since they originate both from genetic and environmental factors, including human microbiota composition. The association between pharmacogenomics and pharmacometabolomics may be considered the new strategy for an in-deep knowledge on changes and alterations in human and microbial metabolic pathways due to the action of a drug.
Collapse
Affiliation(s)
- Michele Mussap
- Laboratory Unit, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Claudia Fanni
- Division of Pediatrics, Rovigo Hospital, Rovigo, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
11
|
Beccaria M, Cabooter D. Current developments in LC-MS for pharmaceutical analysis. Analyst 2020; 145:1129-1157. [DOI: 10.1039/c9an02145k] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liquid chromatography (LC) based techniques in combination with mass spectrometry (MS) detection have had a large impact on the development of new pharmaceuticals in the past decades.
Collapse
Affiliation(s)
- Marco Beccaria
- KU Leuven
- Department for Pharmaceutical and Pharmacological Sciences
- Pharmaceutical Analysis
- Leuven
- Belgium
| | - Deirdre Cabooter
- KU Leuven
- Department for Pharmaceutical and Pharmacological Sciences
- Pharmaceutical Analysis
- Leuven
- Belgium
| |
Collapse
|
12
|
Hinnenkamp V, Balsaa P, Schmidt TC. Quantitative screening and prioritization based on UPLC-IM-Q-TOF-MS as an alternative water sample monitoring strategy. Anal Bioanal Chem 2019; 411:6101-6110. [PMID: 31278550 DOI: 10.1007/s00216-019-01994-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/01/2022]
Abstract
Suspect and non-target screening based on the use of high-resolution mass spectrometry (HRMS) has become more common in water analysis over the past years. However, this only yields lists of features or suspects without quantitative information. To expand the use of HRMS data to a quantitative screening, we have developed and validated a simple and fast method for more than 140 micropollutants using ultra high-performance liquid chromatography coupled to traveling wave ion mobility quadrupole time-of-flight mass spectrometry (UPLC-IM-Q-TOF-MS). Positive findings from suspect and non-target screening can be prioritized and identified by reference standards. The quantitative screening is then performed by additional measurement of calibration standards. This is carried out by means of direct injection and external calibration, without consideration of matrix effects. For all substances, limits of quantification (LOQs) of less or equal than 100 ng/L are achieved. The calibration is carried out in a range of 100 to 1000 ng/L and the results are reported as concentration ranges, in which the concentration of the analyte in the sample is to be expected. All substances were evaluated using quadratic regressions. For the verification of the accuracy, different water matrices (drinking water, groundwater, and surface water) were spiked with five concentration levels (50 ng/L, 300 ng/L, 500 ng/L, 800 ng/L, and 2000 ng/L) and indicate that for the drinking water and groundwater sample, 97% correct assignments were found, whereas for the surface water sample, 88% correct assignments were achieved. A comparative study of water samples of various matrices was accomplished using the quantitative screening analysis method and validated target methods by means of three UPLC tandem mass spectrometry (MS/MS) methods and two gas chromatography (GC) coupled to MS and MS/MS methods. A total of 510 data could be compared, which showed a good match of both approaches in more than 80% of the results. As an alternative strategy for the monitoring of water samples by UPLC-IM-Q-TOF-MS, this method provides quantitative information about target components, besides tentatively or identified substances from suspect or non-target screening. Depending on the resulting concentration range and reporting requirements, validated target methods can be further used for the previously detected targets. Graphical abstract.
Collapse
Affiliation(s)
- Vanessa Hinnenkamp
- IWW Water Centre, Moritzstraße 26, 45476, Muelheim an der Ruhr, Germany.,Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Universitaetsstrasse 5, 45141, Essen, Germany
| | - Peter Balsaa
- IWW Water Centre, Moritzstraße 26, 45476, Muelheim an der Ruhr, Germany
| | - Torsten C Schmidt
- IWW Water Centre, Moritzstraße 26, 45476, Muelheim an der Ruhr, Germany. .,Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Universitaetsstrasse 5, 45141, Essen, Germany.
| |
Collapse
|
13
|
Rankin NJ, Burgess K, Weidt S, Wannamethee G, Sattar N, Welsh P. High-throughput quantification of carboxymethyl lysine in serum and plasma using high-resolution accurate mass Orbitrap mass spectrometry. Ann Clin Biochem 2019; 56:397-407. [PMID: 30832481 PMCID: PMC6498755 DOI: 10.1177/0004563219830432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Carboxymethyl lysine is an advanced glycation end product of interest as a potential biomarker of cardiovascular and other diseases. Available methods involve ELISA, with potential interference, or isotope dilution mass spectrometry (IDMS), with low-throughput sample preparation. METHODS A high-throughput sample preparation method based on 96-well plates was developed. Protein-bound carboxymethyl lysine and lysine were quantified by IDMS using reversed phase chromatography coupled to a high-resolution accurate mass Orbitrap Exactive mass spectrometer. The carboxymethyl lysine concentration (normalized to lysine concentration) was measured in 1714 plasma samples from the British Regional Heart Study (BRHS). RESULTS For carboxymethyl lysine, the lower limit of quantification (LLOQ) was estimated at 0.16 μM and the assay was linear between 0.25 and 10 μM. For lysine, the LLOQ was estimated at 3.79 mM, and the assay was linear between 2.5 and 100 mM. The intra-assay coefficient of variation was 17.2% for carboxymethyl lysine, 9.3% for lysine and 10.5% for normalized carboxymethyl lysine. The inter-assay coefficient of variation was 18.1% for carboxymethyl lysine, 14.8 for lysine and 16.2% for normalized carboxymethyl lysine. The median and inter-quartile range of all study samples in each batch were monitored. A mean carboxymethyl lysine concentration of 2.7 μM (IQR 2.0-3.2 μM, range 0.2-17.4 μM) and a mean normalized carboxymethyl lysine concentration of 69 μM/M lysine (IQR 54-76 μM/M, range 19-453 μM/M) were measured in the BRHS. CONCLUSION This high-throughput sample preparation method makes it possible to analyse large cohorts required to determine the potential of carboxymethyl lysine as a biomarker.
Collapse
Affiliation(s)
- Naomi J Rankin
- Institute of Cardiovascular and Medical Sciences (ICAMS), BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
- Glasgow Polyomics, University of Glasgow, Glasgow, UK
| | - Karl Burgess
- Institute of Quantitive Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Stefan Weidt
- Glasgow Polyomics, University of Glasgow, Glasgow, UK
| | - Goya Wannamethee
- Primary Care and Population Health, Royal Free Campus, University College London Medical School, London, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences (ICAMS), BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Paul Welsh
- Institute of Cardiovascular and Medical Sciences (ICAMS), BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
Li J, Wen Q, Feng Y, Zhang J, Luo Y, Tan T. Characterization of the multiple chemical components of Glechomae Herba using ultra high performance liquid chromatography coupled to quadrupole‐time‐of‐flight tandem mass spectrometry with diagnostic ion filtering strategy. J Sep Sci 2019; 42:1312-1322. [DOI: 10.1002/jssc.201801212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Junmao Li
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal MedicineJiangxi University of Traditional Chinese Medicine Nanchang P. R. China
| | - Quan Wen
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal MedicineJiangxi University of Traditional Chinese Medicine Nanchang P. R. China
| | - Yulin Feng
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal MedicineJiangxi University of Traditional Chinese Medicine Nanchang P. R. China
| | - Jing Zhang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal MedicineJiangxi University of Traditional Chinese Medicine Nanchang P. R. China
| | - Yun Luo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of EducationJiangxi University of Traditional Chinese Medicine Nanchang P. R. China
| | - Ting Tan
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal MedicineJiangxi University of Traditional Chinese Medicine Nanchang P. R. China
| |
Collapse
|