1
|
Yadav SK, Yadav AK, Kaushik A, Solanki PR. Functionalized graphitic carbon nitride as an efficient electro-analytical platform for the label-free electrochemical sensing of interleukin-8 in saliva samples. NANOSCALE 2025; 17:7926-7944. [PMID: 40017315 DOI: 10.1039/d4nr02039a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A correlation between the emerging high case fatality rate of head and neck cancer and its propensity to migrate metastatically to other parts of the body makes it a significant global danger. It raises the demand for low-level detection, which is useful for early-stage diagnostics. Graphitic carbon nitride (g-C3N4) has recently garnered considerable attention as a promising nanomaterials for biosensor due to its exceptional redox behavior, electrochemical activity, and abundance of electroactive sites. The current study presents research outcomes regarding the development of an ultra-sensitive platform for detecting interleukin-8 (IL8), a cytokine associated with oral cancer. This investigation involves fabricating the platform using 3-aminopropyl trimethoxysilane (APTES)-functionalized g-C3N4 and assessing its efficacy in both laboratory-made and real samples. The process of g-C3N4 synthesis involved the thermal pyrolysis of urea without any add-on material. Moreover, the APTES@g-C3N4 nanomaterial was subjected to electrophoretic deposition onto an ITO-coated glass electrode. The fabricated APTES@g-C3N4/ITO electrode was covalently immobilized by the EDC and NHS chemical reaction in conjunction with anti-interleukin-8 (anti-IL8) antibodies. Before using these sensors for interleukin-8 (IL8) sensing, the anti-IL8/APTES@g-C3N4/ITO electrode was treated with bovine serum albumin (BSA) molecules utilized to obstruct non-targeted areas. Such a fabricated BSA/anti-IL8/APTES@g-C3N4/ITO electrochemical immunosensing bioelectrode was characterized by various analytical, morphological, and electrochemical techniques to confirm the stepwise fabrication of the sensor. BSA/anti-IL8/APTES@g-C3N4/ITO demonstrates a noticeable DPV based electrochemical response as a function of IL8 in the concentration ranging from 500 fg mL-1 to 160 ng mL-1. This BSA/anti-IL8/APTES@g-C3N4/ITO also exhibits a lower limit of detection (LOD) of 0.04 ng mL-1, a sensitivity of 0.015 mA log10 [ng mL-1] cm-2, and stability for up to 10 weeks. The biosensor demonstrates excellent performance in analyzing real samples, indicating its practical utility. This efficacy can be attributed to the abundance of electroactive sites, confined electronic structures, and strong interactions among the active g-C3N4 matrix, anti-IL8 molecules, and IL8 molecules. Our findings are essential for advancing early and point-of-care diagnostics, where quick turnaround times and great sensitivity are critical.
Collapse
Affiliation(s)
- Sumit K Yadav
- NanoBio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
- University Department of Biotechnology, Vinoba Bhave University, Hazaribagh, Jharkhand 825301, India
| | - Amit K Yadav
- NanoBio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland 33805, FL, USA
| | - Pratima R Solanki
- NanoBio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
2
|
Yi Z, Zhang Y, Gao X, Li S, Li K, Xiong C, Huang G, Zhang J. Sensitive electrochemical immunosensor for rapid detection of Salmonella in milk using polydopamine/CoFe-MOFs@Nafion modified gold electrode. Int J Food Microbiol 2024; 425:110870. [PMID: 39151230 DOI: 10.1016/j.ijfoodmicro.2024.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Food contaminated by pathogenic bacteria poses a serious threat to human health. Consequently, we used Salmonella as a model and developed an electrochemical immunosensor based on a polydopamine/CoFe-MOFs@Nafion nanocomposite for the detection of Salmonella in milk. The CoFe-MOFs exhibit good stability, large specific surface area, and high porosity. However, after modification on the electrode surface, they were prone to detachment. This issue was effectively mitigated by incorporating Nafion into the nanocomposite. A polydopamine (PDA) film was deposited onto the surface of CoFe-MOFs@Nafion through cyclic voltammetry (CV), accompanied by an investigation into the polymerization mechanism of the PDA film. PDA contains a substantial number of quinone functional groups, which can covalently bind to amino or sulfhydryl groups via Michael addition reaction or Schiff base reaction, thereby immobilizing anti-Salmonella antibodies onto the modified electrode surface. Under the optimal experimental conditions, the Salmonella concentration exhibited a good linear relationship within the range of 1.38 × 102 to 1.38 × 108 CFU mL-1, with a detection limit of 1.38 × 102 CFU mL-1. Furthermore, the constructed immunosensor demonstrated good specificity, stability, and reproducibility, offering a novel approach for the rapid detection of foodborne pathogens.
Collapse
Affiliation(s)
- Zhibin Yi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yu Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaoyu Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Shuang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Kexin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
3
|
Çevik K, Yildiz İ, Yildiz A, Nas MS, Alma MH, Calimli MH. PdRuO 2/PVP nanomaterial as a highly selective, stable, and applicable potentiometric sensor for the detection of Cr 3. Mikrochim Acta 2024; 191:467. [PMID: 39023534 PMCID: PMC11258173 DOI: 10.1007/s00604-024-06543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
PdRuO2/PVP nanomaterial was synthesized using a straightforward method and characterized using advanced analytical methods such as TEM, XRD, XPS, elemental mapping and SEM. The synthesized PdRuO2/PVP nanomaterial was used as an ionophore in potentiometric sensor electrodes and successfully adapted to Cr3+ ion detection in a large number of aqueous samples. Several experimental parameters of the PdRuO2/PVP sensor such as potentiometric behavior, selectivity, repeatability, response time, pH, titration, and recovery in real samples were investigated. Potentiometric behavioral characteristics were performed in the concentration range 1 × 10-6-1.0 × 10-1 M. The repeated experiments performed six times showed that there was no deviation in the measurements. The limit of detection of the PdRuO2/PVP potentiometric sensor was very low with a value of 8.6 × 10-8 M. The potentiometric measurements showed that the synthesized PdRuO2/PVP ionophore was highly effective in detecting Cr3+ in a wide pH range of 2.0-8.0 and was found to have a shelf life of over 1 year. As a result, the synthesized PdRuO2/PVP electrode material was found to be highly selective, stable, and applicable for Cr3+ detection.
Collapse
Affiliation(s)
- Kenan Çevik
- Department of Secondary Science and Mathematics Education, Department of Chemistry Education, Faculty of Education, Yuzuncu Yil University, Van, Türkiye
| | - İlyas Yildiz
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, 60000, Türkiye
| | - Adnan Yildiz
- Department of Secondary Science and Mathematics Education, Department of Chemistry Education, Faculty of Education, Yuzuncu Yil University, Van, Türkiye
| | - Mehmet Salih Nas
- Research Laboratory Application and Research Center (ALUM), Iğdır University, Igdir, TR, 76000, Türkiye
- Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir University, Igdir, TR, 76000, Türkiye
| | - Mehmet Hakki Alma
- Research Laboratory Application and Research Center (ALUM), Iğdır University, Igdir, TR, 76000, Türkiye
| | - Mehmet Harbi Calimli
- Research Laboratory Application and Research Center (ALUM), Iğdır University, Igdir, TR, 76000, Türkiye.
- Department of Medical Services and Techniques, Tuzluca Vocational School, Iğdır University, Igdir, TR, 76000, Türkiye.
| |
Collapse
|
4
|
Hui K, Liu T, Yang ML, Tian AX, Ying J. Four polyoxomolybdated-based 3D compounds as supercapacitors and amperometric sensors. Mikrochim Acta 2024; 191:410. [PMID: 38900272 DOI: 10.1007/s00604-024-06457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Four polyoxomolybdated compounds based on Tetp (Tetp = 4-[4-(2-Thiophen-2-yl-ethyl)-4H-[1, 2, 4]triazole-3-yl]-pyridine), namely [Zn(Tetp)2(H2O)2][(β-Mo8O26)0.5] (Zn-Mo8), [Co(Tetp)2(H2O)2][(β-Mo8O26)0.5] (Co-Mo8), [Cu4(Tetp)6(H2O)2]{H3[K(H2O)3](θ-Mo8O26)(Mo12O40)}·8H2O (Cu-Mo20) and [Cu3(Tetp)3][PMo12O40]·H2O (Cu-PMo12) are synthesized by hydrothermal methods and are used as electrode materials for supercapacitors(SCs) and electrochemical sensors. Inserting polyoxometalates (POMs) with redox active sites into transition metal compounds (TMCs) can improve the internal ion/electron transfer rate, thus effectively enhancing the electrochemical performance. Compared with the parent POMs, four compounds exhibit excellent electrochemical properties. In particular, Cu-PMo12 shows an excellent specific capacitance (812.3 F g-1 at 1 A g-1) and stability (94.42%), as well as a wide detection range (0.05 to 1250 µM) and a low detection limit (0.057 µM) for NO2- sensing.
Collapse
Affiliation(s)
- Kaili Hui
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Mengle L Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China.
| | - Aixiang X Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China.
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China
| |
Collapse
|
5
|
Liu Z, Niu R, Li M, Li Z, Guo Y. A colorimetric and electrochemical dual-mode Hg 2+ sensor utilizing oxidase-like activity arising from the combination of Hg 2+ and palladium metal-organic framework@graphene. Mikrochim Acta 2024; 191:352. [PMID: 38806756 DOI: 10.1007/s00604-024-06438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Developing convenient and reliable methods for Hg2+ monitoring is highly important. Some precious metal nanomaterials with intriguing peroxidase-like activity have been used for highly sensitive Hg2+ detection. However, H2O2 must be added during these detections, which impedes practical applications of Hg2+ sensors due to its susceptible decomposition by environmental factors. Herein, we discovered that the combination of Hg2+ and palladium metal-organic framework@graphene (Pd-MOF@GNs) exhibits oxidase-like activity (OXD). In the absence of H2O2, this activity not only catalyzes the oxidation of chromogenic substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) or o-phenylenediamine (OPD) to produce a color change but also enhances the electrical signals during OPD oxidation. Based on these properties, an effective and convenient dual-mode colorimetric and electrochemical sensor for Hg2+ has been developed. The colorimetric and amperometric linear relationships for Hg2+ were 0.045 μM-0.25 mM and 0.020 μM-2.0 mM, respectively. The proposed strategy shows good recovery in real sample tests, indicating promising prospects for multiple environmental sample detection of Hg2+ without relying on H2O2. The colorimetric and electrochemical dual-mode Hg2+ sensor is expected to hold great potentials in applications such as environmental monitoring, rapid field detection, and integration into smartphone detection of Hg2+.
Collapse
Affiliation(s)
- Zhiguang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Ruxia Niu
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Miaomiao Li
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Zhiping Li
- Institute of Judicial Identification Techniques for Environmental Damage, Shanxi University and Shanxi Unisdom Testing Technology Co., Ltd., Taiyuan, 030006, China
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
6
|
Yin H, Bai X, Zhang F, Yang Z. Dual single atomic Ni sites constructing Janus hollow graphene for boosting electrochemical sensing of glucose. Mikrochim Acta 2024; 191:314. [PMID: 38720024 DOI: 10.1007/s00604-024-06377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/20/2024] [Indexed: 06/11/2024]
Abstract
Single atom catalysts (SACs) have attracted attention due to their excellent catalysis activity under specific reactions and conditions. However, the low density of SACs greatly limits catalytic performance. The three-dimensional graphene hollow nanospheres (GHSs) with very thin shell structure can be used as excellent carrier materials. Not only can its outer surface be used to anchor metal single atoms, but its inner surface can also provide rich sites. Here, a novel step-by-step assembly strategy is reported to anchor nickel single atoms (Ni SAs) on the inner and outer surfaces of GHSs (Ni SAs/GHSs/Ni SAs), which significantly increases the loading capacity of Ni SAs (4.8 wt%). Compared to conventional materials that only anchor Ni SAs to the outer surface of the carrier (Ni SAs/GHSs), Ni SAs/GHSs/Ni SAs exhibits significantly higher electrocatalytic activity toward glucose oxidation in alkaline media. The sensitivity of Ni SAs/GHSs/Ni SAs/GCE is nearly five times higher than that of Ni SAs/GHSs/GCE. Moreover, the sensor based on Ni SAs/GHSs/Ni SAs can detect glucose in a wide concentration range of 0.8 µM-1.1244 mM with a low detection limit of 0.19 µM (S/N = 3). This study not only provides an effective sensing material for glucose detection, but also opens a new avenue to construct high-density metal SACs.
Collapse
Affiliation(s)
- Hang Yin
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, People's Republic of China
| | - Xiao Bai
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, People's Republic of China
| | - Fanjun Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, People's Republic of China
| | - Ziyin Yang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, People's Republic of China.
| |
Collapse
|
7
|
Kaur R, Rana S, Kaur R, Jyoti, Kaur N, Singh B. Bio-mimetic selectivity in Hg 2+ sensing developed via electro-copolymerized PEDOT and benzothiazole-Au nanoparticles composite. Mikrochim Acta 2023; 190:396. [PMID: 37715841 DOI: 10.1007/s00604-023-05972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/27/2023] [Indexed: 09/18/2023]
Abstract
To eliminate the potential health risks of mercury, development of stable and selective mercury sensor with high sensitivity is the need of the hour. To address this, a novel PEDOT-AA-BTZ-Au-based Hg2+ selective, hybrid electrochemical sensor has been designed by following a simple protocol for electrode fabrication. The electrode was designed by carefully optimizing the onset oxidation potential of supramolecule 2-(anthracen-9-yl)benzo[d]thiazole (AA-BTZ) and conducting polymer poly-(3,4-ethylenedioxythiophene) (PEDOT), using copolymerization approach followed by dropcasting of gold nanoparticles (AuNPs). The designed electrode offered synergistic effects thus augmenting the electrical conductivity and adsorption capacity as depicted by its porous surface morphology. The highly sensitive analytical signal was generated by sulphur pockets present in AA-BTZ and PEDOT conducting framework. This is further complemented by the selectivity offered by the soft interactions between AuNPs and Hg2+ resulting in a low detection limit of 0.60 nM. The prepared system was further utilized for sensing Hg2+ ion in real systems including lake water and cosmetic samples. Low interference from other ions and better reproducibility further established the suitability of the designed transducer system for future on-site sensing.
Collapse
Affiliation(s)
- Randeep Kaur
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
| | - Shweta Rana
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India.
| | - Ranjeet Kaur
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
- University Centre for Research & Development (UCRD), Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Jyoti
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
| | - Navneet Kaur
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
| | - Bhupender Singh
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
- Department of Chemistry, Pandit Neki Ram Sharma Government College Rohtak, Rohtak, Haryana, 124001, India
| |
Collapse
|
8
|
Rodrigues BS, Vicente MRS, Souza JS. Investigating the role of microwave thermal and non-thermal effects on WO 3-graphene oxide composite synthesis. RSC Adv 2023; 13:26794-26803. [PMID: 37681050 PMCID: PMC10481384 DOI: 10.1039/d3ra04113a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
The effects of microwave-assisted synthesis on the morphology and crystalline structure of WO3-graphene oxide (GO) composites have been investigated. Using two different microwave reactors, evidence supports that thermal and non-thermal effects significantly influence the properties of the synthesized materials. The findings reveal that the microwave cavity geometry affects how the microwaves are "delivered" to the reactional cavity as a function of time; it also orientates the growth process of the WO3 particles. Consequently, the crystalline structure and morphology are affected. As a result, the WO3-GO composites produced using a CEM reactor exhibit a rounded shape and hexagonal phase of WO3, besides enhanced reduction of GO. Whereas the composites made using an Anton-Paar reactor are composed of sheets and flowers of WO3 with hexagonal, triclinic and/or WO3 hydrate structures and cause a lower reduction on the GO.
Collapse
Affiliation(s)
- Bárbara S Rodrigues
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André 09210-580 SP Brazil
| | - Marcos R S Vicente
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André 09210-580 SP Brazil
| | - Juliana S Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André 09210-580 SP Brazil
| |
Collapse
|
9
|
Pakdel H, Galstyan V, D'Arco A, Mancini T, Lupi S, Moumen A, Borsi M, Comini E. Synthesis of WO3 nanopowder using a green surfactant for efficient gas sensing applications. CERAMICS INTERNATIONAL 2023; 49:30501-30509. [DOI: 10.1016/j.ceramint.2023.06.314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Çapar N, Polat İ, Yola BB, Atar N, Yola ML. A novel molecular imprinted QCM sensor based on MoS 2NPs-MWCNT nanocomposite for zearalenone determination. Mikrochim Acta 2023; 190:262. [PMID: 37329340 DOI: 10.1007/s00604-023-05842-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Zearalenone (ZEN) is a mycotoxin that has a carcinogenic effect and is often found at a high rate in frequently consumed foods. In this study, a characteristic molecular imprinted quartz crystal microbalance (QCM) sensor based on molybdenum disulfide nanoparticle (MoS2NPs)-multiwalled carbon nanotube (MWCNT) nanocomposite (MoS2NPs-MWCNTs) is presented for selective determination of ZEA in rice samples. Firstly, molybdenum disulfide nanoparticle (MoS2NP)-multiwalled carbon nanotube nanocomposites were characterized by using microscopic, spectroscopic, and electrochemical techniques. Then, ZEA-imprinted QCM chip was prepared in the presence of methacryloylamidoglutamicacid (MAGA) as monomer, N,N'-azobisisobutyronitrile (AIBN) as initiator, and ZEA as target molecule by using UV polymerization. The sensor revealed a linearity toward ZEA in the range 1.0-10.0 ng L-1 with a detection limit (LOD) of 0.30 ng L-1. The high repeatability, reusability, selectivity, and stability of the developed sensor enable reliable ZEA detection in rice samples.
Collapse
Affiliation(s)
- Nesrin Çapar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey
| | - İlknur Polat
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Bahar Bankoğlu Yola
- Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Necip Atar
- Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey.
| |
Collapse
|
11
|
Uçar A, Aydoğdu Tığ G, Er E. Recent advances in two dimensional nanomaterial-based electrochemical (bio)sensing platforms for trace-level detection of amino acids and pharmaceuticals. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Shao Y, Wang P, Zheng R, Zhao Z, An J, Hao C, Kang M. Preparation of molecularly imprinted ratiometric fluorescence sensor for visual detection of tetrabromobisphenol A in water samples. Mikrochim Acta 2023; 190:161. [PMID: 36976361 DOI: 10.1007/s00604-023-05745-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
A sensitive molecularly imprinted ratiometric fluorescence sensor was constructed for the first time to visually detect tetrabromobisphenol A (TBBPA). The blue fluorescent carbon quantum dots (CQDs) were coated with SiO2 through the reverse microemulsion method to obtain a stable internal reference signal CQDs@SiO2. The ratiometric fluorescence sensor was finally prepared using red fluorescent CdTe QDs as the response signal in the presence of CQDs@SiO2. When the molecularly imprinted polymers were combined with TBBPA, the fluorescence of CdTe QDs (Ex = 365 nm, Em = 665 nm) was rapidly quenched, while that of CQDs (Ex = 365 nm, Em = 441 nm) remained stable, resulting in a noticeable fluorescence color change. Moreover, the fluorescence intensity ratio (I665/I441)0/(I665/I441) of the sensor showed a linear response to TBBPA in the concentration range 0.1 to 10 μM with a low detection limit of 3.8 nM. The prepared sensor was successfully applied to detect TBBPA in water samples. The recoveries were in the range 98.2-103%, with relative standard deviations lower than 2.5%. Furthermore, a fluorescent test strip for visual monitoring of TBBPA was constructed to streamline the procedure. The excellent results demonstrate that the prepared test strip has a broad prospect for the offline detection of pollutants.
Collapse
Affiliation(s)
- Yanming Shao
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China.
| | - Peng Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Rui Zheng
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Zhizhen Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Jun An
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Caifeng Hao
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Mengyi Kang
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| |
Collapse
|
13
|
Gold nanostar and graphitic carbon nitride nanocomposite for serotonin detection in biological fluids and human embryonic kidney cell microenvironment. Mikrochim Acta 2023; 190:45. [PMID: 36602584 DOI: 10.1007/s00604-022-05612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023]
Abstract
A nanosensor comprising of gold nanostars (Au-Nstars)-graphitic carbon nitride (g-C3N4) nanocomposite layered on a glassy carbon electrode (GCE) to detect serotonin (ST) in various body fluids has been fabricated. The nanocomposite and the sensing platform have been thoroughly characterized with UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray photoelectron spectroscopy (EDX), and electrochemical techniques such as cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The designed ST detection probe has achieved a linear dynamic range (LDR) in the range 5 × 10-7 and 1 × 10-3 M with a limit of detection (LOD) of 15.1 nM (RSD < 3.3%). The ST detection capability of the fabricated sensor ranges between the normal and several abnormal pathophysiological situations. The sensor effectively detects ST in real matrices such as urine and blood serum, thus, showing its direct diagnostic applicability. Additionally, the sensor has been tested in the microenvironment of human embryonic kidney (HEK) cells to assess the possibility of ST secretion in cell lines. Interferences because of co-existing molecules have been evaluated, and the shelf-life of the fabricated sensor has been obtained as 8 weeks.
Collapse
|
14
|
Gu C, Wang Z, Pan Y, Zhu S, Gu Z. Tungsten-based Nanomaterials in the Biomedical Field: A Bibliometric Analysis of Research Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204397. [PMID: 35906814 DOI: 10.1002/adma.202204397] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Tungsten-based nanomaterials (TNMs) with diverse nanostructures and unique physicochemical properties have been widely applied in the biomedical field. Although various reviews have described the application of TNMs in specific biomedical fields, there are still no comprehensive studies that summarize and analyze research trends of the field as a whole. To identify and further promote the development of biomedical TNMs, a bibliometric analysis method is used to analyze all relevant literature on this topic. First, general bibliometric distributions of the dataset by year, country, institute, referenced source, and research hotspots are recognized. Next, a comprehensive review of the subjectively recognized research hotspots in various biomedical fields, including biological sensing, anticancer treatments, antibacterials, and toxicity evaluation, is provided. Finally, the prospects and challenges of TNMs are discussed to provide a new perspective for further promoting their development in biomedical research.
Collapse
Affiliation(s)
- Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Wang
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Yawen Pan
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
A sensing platform based on Cu-MOF encapsulated Dawson-type polyoxometalate crystal material for electrochemical detection of xanthine. Mikrochim Acta 2022; 190:24. [PMID: 36515741 DOI: 10.1007/s00604-022-05601-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
A promising sensing platform based on polyoxometalate-based metal-organic framework (POMOF) was established for sensitive electrochemical detection of xanthine (XA). In the unique structure of POMOF, the Dawson polyoxoanions P2W18 were encapsulated into 3D open copper-mixed ligand nanotube framework Cu-MOF, in which the cavity of the metal-organic framework provides a specific shelter to prevent the aggregation and loss of polyoxometalate in electrocatalytic reactions; meanwhile, unsaturated Cu(II) active sites of Cu-MOF can also serve as electrocatalytic active center. The POMOF-based sensor (CuMOFP2W18/XC-72R) was fabricated by using acetylene black (XC-72R) as a support material to enhance the conductivity of POMOF. The performances of the POMOF-based sensor were studied by using different electrochemical testing methods. The composite displayed remarkable electrocatalytic activity for the oxidation of XA due to the synergistic effect of polyoxometalate (POM) and metal-organic framework (MOF). The electrochemical sensor demonstrated a wide linear range (0.5 μM-240 μM), low detection limit (0.26 μM), and excellent selectivity for detecting XA. Furthermore, the composite further demonstrated excellent reproducibility and great stability. More importantly, the proposed sensor was utilized to detect XA in real samples, which may provide a new way for early disease diagnosis.
Collapse
|
16
|
Preparation and performance of WO3/rGO modified carbon sensor for enhanced electrochemical detection of triclosan. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Mehmood S, Khan FU, Shah MN, Ma J, Yang Y, Li G, Xu W, Zhao X, He W, Pan X. A novel room-temperature formaldehyde gas sensor based on walnut-like WO3 modification on Ni–graphene composites. Front Chem 2022; 10:971859. [PMID: 36157033 PMCID: PMC9500379 DOI: 10.3389/fchem.2022.971859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Ternary composite with great modulation of electron transfers has attracted a lot of attention from the field of high-performance room-temperature (RT) gas sensing. Herein, walnut-like WO3-Ni–graphene ternary composites were successfully synthesized by the hydrothermal method for formaldehyde (HCHO) sensing at RT. The structural and morphological analyses were carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). SEM and TEM studies confirmed that walnut-like WO3 nanostructures with an average size of 53 ± 23 nm were functionalized. The Raman and XPS results revealed that, due to the deformation of the O-W-O lattice, surface oxygen vacancies Ov and surface-adsorbed oxygen species Oc were present. The gas-sensing measurement shows that the response of the WO3-Ni-Gr composite (86.8%) was higher than that of the Ni-Gr composite (22.7%) for 500 ppm HCHO at RT. Gas-sensing enhancement can be attributed to a p-n heterojunction formation between WO3 and Ni-Gr, Oc, spill-over effect of Ni decoration, and a special walnut-like structure. Moreover, long term stability (%R = 61.41 ± 1.66) for 30 days and high selectivity in the presence of other gases against HCHO suggested that the proposed sensor could be an ideal candidate for future commercial HCHO-sensing in a real environment.
Collapse
Affiliation(s)
- Shahid Mehmood
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Faheem Ullah Khan
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Muhmmad Naeem Shah
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Junxian Ma
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Yatao Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Guijun Li
- Key Labortary of Optoelectronics Devices and System of Ministry of Education and Guangdong Province, College of Physics and Optoelctronics Engineering, Shenzhen University, Shenzhen, China
| | - Wei Xu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
- Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojin Zhao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Wei He
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Xiaofang Pan
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
- *Correspondence: Xiaofang Pan,
| |
Collapse
|
18
|
Imani R, Shabani-Nooshabadi M, Ziaie N. Fabrication of a sensitive sensor for electrochemical detection of diltiazem in presence of methyldopa. CHEMOSPHERE 2022; 297:134170. [PMID: 35247446 DOI: 10.1016/j.chemosphere.2022.134170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/07/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Diltiazem (DTZ) is one of the most important drugs in blood pressure that is used to treat cardiovascular diseases. With this overuse of this drug and its use for suicide, swelling and neck cramps and fever has made it important to measure it. So, this paper will give an account of modification of carbon paste electrode with the ternary-nanocomposite including reduced-graphene oxide (rGO), cadmium oxide and 1-ethyl 3- methyl imidazole chloride as ionic liquid for using the determination of DTZ in blood serum samples. Characterization of the synthesized rGO, cadmium oxide, and modified electrodes and their electrochemical performance were studied by, scanning electron microscopy, and X-ray diffraction, electrochemical impedance spectroscopy, and voltammetry technique. The improvement of the DTZ oxidation current by modified electrode originated from the increased electrode surface area. The optimized method was validated and the results showed that LOD = 3 nM and good linearity. Also, a linear concentration range of 0.01-150 μM with a LOD of 0.03 μM in presence methyldopa were achieved based on the electrochemical investigations. The prepared sensor showed good repeatability (RSD = 2.26%) and selectivity for DTZ determination in the real samples (relative recovery of 93-102%).
Collapse
Affiliation(s)
- Razieh Imani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Mehdi Shabani-Nooshabadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran; Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, Iran.
| | - Neda Ziaie
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
19
|
Zhou Y, She X, Wu Q, Xiao J, Peng T. Monoclinic WO3 nanosheets-carbon nanotubes nanocomposite based electrochemical sensor for sensitive detection of bisphenol A. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Abstract
Healthcare is undergoing large transformations, and it is imperative to leverage new technologies to support the advent of personalized medicine and disease prevention. It is now well accepted that the levels of certain biological molecules found in blood and other bodily fluids, as well as in exhaled breath, are an indication of the onset of many human diseases and reflect the health status of the person. Blood, urine, sweat, or saliva biomarkers can therefore serve in early diagnosis of diseases such as cancer, but also in monitoring disease progression, detecting metabolic disfunctions, and predicting response to a given therapy. For most point-of-care sensors, the requirement that patients themselves can use and apply them is crucial not only regarding the diagnostic part, but also at the sample collection level. This has stimulated the development of such diagnostic approaches for the non-invasive analysis of disease-relevant analytes. Considering these timely efforts, this review article focuses on novel, sensitive, and selective sensing systems for the detection of different endogenous target biomarkers in bodily fluids as well as in exhaled breath, which are associated with human diseases.
Collapse
|
21
|
Selkirk A, Zeki Bas S, Cummins C, Aslan E, Patir IH, Zhussupbekova A, Prochukhan N, Borah D, Paiva A, Ozmen M, Morris MA. Block Copolymer Templated WO3 Surface Nanolines as Catalysts for Enhanced Epinephrine Sensing and the Oxygen Evolution Reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrew Selkirk
- University of Dublin Trinity College 1 College GreenDublin 2 Dublin IRELAND
| | - Salih Zeki Bas
- Selçuk Üniversitesi: Selcuk Universitesi Chemistry TURKEY
| | - Cian Cummins
- Trinity College: The University of Dublin Trinity College Chemistry IRELAND
| | - Emre Aslan
- Selçuk Üniversitesi: Selcuk Universitesi Biochemistry TURKEY
| | | | | | - Nadezda Prochukhan
- Trinity College: The University of Dublin Trinity College Chemistry IRELAND
| | - Dipu Borah
- Trinity College: The University of Dublin Trinity College Chemistry IRELAND
| | - Aislan Paiva
- Trinity College: The University of Dublin Trinity College Chemistry IRELAND
| | - Mustafa Ozmen
- Selçuk Üniversitesi: Selcuk Universitesi Chemistry TURKEY
| | - Michael A. Morris
- Trinity College: The University of Dublin Trinity College Chemistry IRELAND
| |
Collapse
|
22
|
Palladium Nanoparticle-Modified Carbon Spheres @ Molybdenum Disulfide Core-Shell Composite for Electrochemically Detecting Quercetin. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quercetin (QR), abundant in plants, is used to treat colitis and gastric ulcer and is also a promising anticancer agent. To quantificationally detect QR, a sensitive electrochemical sensor was fabricated by palladium nanoparticles loaded on carbon sphere @ molybdenum disulfide nanosheet core-shell composites (Cs@MoS2-Pd NPs). The Cs@MoS2-Pd NPs worked to remedy the shortcomings of MoS2 and exhibited good catalytic activity to QR. The oxidation reaction of QR on Cs@MoS2-Pd NPs/GCE involved two electrons and two protons. Furthermore, the molecular surface for electrostatic potential, Laplacian bond order, and Gibbs free energy were computationally simulated to speculate the order and site of the oxidation of QR. The results showed that the 4′ O–H and 3′ O–H broke successively during the oxidation reaction. When the concentration of QR was within 0.5 to 12 μM, the fabricated sensor could achieve linear detection, and the detection limit was 0.02 μM (S/N = 3). In addition, the sensor possessed good selectivity, repeatability, and stability, which has a broad prospect in practical application.
Collapse
|
23
|
Synthesis and fabrication of 2D Tungsten trioxide nanosheets based platform for impedimetric sensing of cardiac biomarker. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Nehru R, Hsu YF, Wang SF, Dong CD, Govindasamy M, Habila MA, AlMasoud N. Graphene oxide@Ce-doped TiO 2 nanoparticles as electrocatalyst materials for voltammetric detection of hazardous methyl parathion. Mikrochim Acta 2021; 188:216. [PMID: 34052922 DOI: 10.1007/s00604-021-04847-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/05/2021] [Indexed: 01/09/2023]
Abstract
A sensitive voltammetric sensor has been developed for hazardous methyl parathion detection (MP) using graphene oxide@Ce-doped TiO2 nanoparticle (GO@Ce-doped TiO2 NP) electrocatalyst. The GO@Ce-doped TiO2 NPs were prepared through the sol-gel method and characterized by various physicochemical and electrochemical techniques. The GO@Ce-doped TiO2 NP-modified glassy carbon electrode (GCE) addresses excellent electrocatalytic activity towards MP detection for environmental safety and protection. The developed strategy of GO@Ce-doped TiO2 NPs at GCE surfaces for MP detection achieved excellent sensitivity (2.359 μA μM-1 cm-2) and a low detection limit (LOD) 0.0016 μM with a wide linear range (0.002 to 48.327 μM). Moreover, the fabricated sensor shows high selectivity and long-term stability towards MP detection; this significant electrode further paves the way for real-time monitoring of environmental quantitative samples with satisfying recoveries.
Collapse
Affiliation(s)
- Raja Nehru
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan.,Sustainable Environmental Research Center, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan.
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan.
| | - Cheng-Di Dong
- Sustainable Environmental Research Center, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| | - Mani Govindasamy
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Mohamed A Habila
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| |
Collapse
|
25
|
Topal BD, Sener CE, Kaya B, Ozkan SA. Nano-sized Metal and Metal Oxide Modified Electrodes for Pharmaceuticals Analysis. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200513110313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
:
The electrochemical analysis offers a number of important advantages such as providing
information on pharmaceuticals analysis and their in vivo redox processes and pharmacological activity.
The interest in developing electrochemical sensing devices for use in clinical assays is growing rapidly.
Metallic nanoparticles can be synthesized and modified with various chemical functional groups,
which allow them to be conjugated with antibodies, ligands, and drugs of interest.
:
In this article, the novel developments to enhance the performance of sensor modified with metal nanoparticles
of pharmaceuticals were reviewed. A discussion of the properties of metal nanostructures
and their application in drug analysis is presented. Their application as a modifier agent in determining
low levels of drugs in pharmaceutical dosage forms and biological samples is discussed. It has been
found that the electrocatalytic effect of the electrode, sensitivity and selectivity were increased using
various working electrodes modified with nano-sized metal, metal oxide and metal/metal oxide
particles.
Collapse
Affiliation(s)
- Burcu Dogan Topal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| | - Ceren Elif Sener
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| | - Basak Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| | - Sibel Aysıl Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| |
Collapse
|
26
|
Ansari S, Ansari MS, Satsangee SP, Jain R. Bi 2O 3/ZnO nanocomposite: Synthesis, characterizations and its application in electrochemical detection of balofloxacin as an anti-biotic drug. J Pharm Anal 2021; 11:57-67. [PMID: 33717612 PMCID: PMC7930882 DOI: 10.1016/j.jpha.2020.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 11/23/2022] Open
Abstract
In the present work, a chemically modified electrode has been fabricated utilizing Bi2O3/ZnO nanocomposite. The nanocomposite was synthesized by simple sonochemical method and characterized for its structural and morphological properties by using XRD, FESEM, EDAX, HRTEM and XPS techniques. The results clearly indicated co-existence of Bi2O3 and ZnO in the nanocomposite with chemical interaction between them. Bi2O3/ZnO nanocomposite based glassy carbon electrode (GCE) was utilized for sensitive voltammetric detection of an anti-biotic drug (balofloxacin). The modification amplified the electroactive surface area of the sensor, thus providing more sites for oxidation of analyte. Cyclic and square wave voltammograms revealed that Bi2O3/ZnO modified electrode provides excellent electrocatalytic action towards balofloxacin oxidation. The current exhibited a wide linear response in concentration range of 150-1000 nM and detection limit of 40.5 nM was attained. The modified electrode offered advantages in terms of simplicity of preparation, fair stability (RSD 1.45%), appreciable reproducibility (RSD 2.03%) and selectivity. The proposed sensor was applied for determining balofloxacin in commercial pharmaceutical formulations and blood serum samples with the mean recoveries of 99.09% and 99.5%, respectively.
Collapse
Affiliation(s)
- Sana Ansari
- Department of Chemistry, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - M. Shahnawaze Ansari
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Soami P. Satsangee
- Department of Chemistry, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Rajeev Jain
- School of Studies in Chemistry, Jiwaji University, Gwalior, 474011, India
| |
Collapse
|
27
|
El Mhammedi MA, Saqrane S, Lahrich S, Laghrib F, El Bouabi Y, Farahi A, Bakasse M. Current Trends in Analytical Methods for the Determination of Hydroxychloroquine and Its Application as Treatment for COVID‐19. ChemistrySelect 2020. [DOI: 10.1002/slct.202003361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Moulay Abderrahim El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Sanaa Saqrane
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Sara Lahrich
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Fathellah Laghrib
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Younes El Bouabi
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Abdelfettah Farahi
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Mina Bakasse
- Chouaib Doukkali University Faculty of Sciences Laboratory of Organic Bioorganic Chemistry and Environment El Jadida Morocco
| |
Collapse
|
28
|
Ilager D, Seo H, Shetti NP, Kalanur SS, Aminabhavi TM. Electrocatalytic detection of herbicide, amitrole at WO 3·0.33H 2O modified carbon paste electrode for environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140691. [PMID: 32663688 DOI: 10.1016/j.scitotenv.2020.140691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/07/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollution by the heavy usage of pesticides has been a pandemic issue in view of the rising farming operations for increasing the crop yield to meet the requirements of food chain supply. Throughout the world, environmental pollution by the presence of pesticides, particularly the use of herbicides in large quantities to protect the crops, has posed many environmental issues. In this research, an electrochemical sensor based on tungsten oxide hydrates (WO3·0.33H2O) nanorod modified carbon paste electrode (CPE) was developed for the detection of herbicide, amitrole (AMT) by the cyclic voltammeter. Hydrothermally synthesized and characterized WO3·0.33H2O nanorod was found to be sensitive towards the detection of AMT due to its superior sensing property as the sensor showed enhanced current and catalytic property when used in phosphate buffer solution (PBS) of pH 5.0 by the cyclic voltammetric (CV) and square wave voltammetric (SWV) techniques. The influence of electro kinetic parameters viz., scan rate, pH, accumulation time and temperature with respect to AMT oxidation was studied using CV. The linearity range was in between 1.0 × 10-8 M and 24 × 10-5 M and limit of detection (LOD) and limit of quantification (LOQ) was calculated to be 2.33 nM and 7.8 nM respectively. The proposed simple method demonstrated the potential applicability to detect AMT from the soil and water samples.
Collapse
Affiliation(s)
- Davalasab Ilager
- Center for Electrochemical Science & Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580 030, Karnataka, India
| | - Hyungtak Seo
- Department of Materials Science & Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Nagaraj P Shetti
- Center for Electrochemical Science & Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580 030, Karnataka, India.
| | - Shankara S Kalanur
- Department of Materials Science & Engineering, Ajou University, Suwon 16499, Republic of Korea.
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, SET's College of Pharmacy, Dharwad 580 002, Karnataka, India
| |
Collapse
|
29
|
Carbon dots doped tungstic anhydride on graphene oxide nanopanels: A new picomolar-range creatinine selective enzymeless electrochemical sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:111010. [DOI: 10.1016/j.msec.2020.111010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
|
30
|
Khan A, Bhosale N, Mali S, Hong C, Kadam AV. Reduced graphene oxide layered WO3 thin film with enhanced electrochromic properties. J Colloid Interface Sci 2020; 571:185-193. [DOI: 10.1016/j.jcis.2020.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023]
|
31
|
Nehru R, Gopi PK, Chen SM. Enhanced sensing of hazardous 4-nitrophenol by a graphene oxide–TiO2 composite: environmental pollutant monitoring applications. NEW J CHEM 2020. [DOI: 10.1039/c9nj06176b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The accurate detection of hazardous 4-nitrophenol (4-NP) is deemed essential for the environment and human health.
Collapse
Affiliation(s)
- Raja Nehru
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Praveen Kumar Gopi
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| |
Collapse
|
32
|
Wu M, Wang X, Shan J, Zhou H, Shi Y, Li M, Liu L. Sensitive and Selective Electrochemical Sensor Based on Molecularly Imprinted Polypyrrole Hybrid Nanocomposites for Tetrabromobisphenol A Detection. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1617298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Min Wu
- School of Food and Environment, Dalian University of Technology, Panjin, China
| | - Xue Wang
- School of Food and Environment, Dalian University of Technology, Panjin, China
| | - Jiajia Shan
- School of Food and Environment, Dalian University of Technology, Panjin, China
| | - Hao Zhou
- School of Food and Environment, Dalian University of Technology, Panjin, China
| | - Yaru Shi
- School of Food and Environment, Dalian University of Technology, Panjin, China
| | - Mengjia Li
- School of Food and Environment, Dalian University of Technology, Panjin, China
| | - Lifen Liu
- School of Food and Environment, Dalian University of Technology, Panjin, China
| |
Collapse
|