1
|
Grossman BD, Beyene BG, Tekle B, Sakowicz W, Ji X, Camacho JM, Vaishnav N, Ahmed A, Bhandari N, Desai K, Hardy J, Hollman NM, Marchant J, Summers MF. Optimized Preparation of Segmentally Labeled RNAs for NMR Structure Determination. J Mol Biol 2025; 437:169073. [PMID: 40054730 PMCID: PMC11964825 DOI: 10.1016/j.jmb.2025.169073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
RNA structures are significantly underrepresented in public repositories (∼ 100-fold compared to proteins) despite their importance for mechanistic understanding and for development of structure prediction/validation tools. A substantial portion of deposited RNA structures have been determined by NMR (∼30%), but most comprise fewer than 60 nucleotides due to complications associated with NMR signal overlap. A promising approach for applying NMR to larger RNAs involves use of a mutated DNA polymerase (TGK) that can extend "primer" RNA strands generated independently by synthetic or enzymatic methods [Haslecker et al., Nature Commun. 2023]. In attempts to employ this technology, we uncovered sequence- and enzyme-dependent complications for most constructs examined that prohibited preparation of homogeneous samples. By using TGK extension efficiency and NMR as guides, we identified non-templated run-on by wild-type T7-RNA polymerase (RNAPWT) as the primary source of product heterogeneity. Use of 2'-O-methylated DNA templates did not prevent RNAPWT run-on for most constructs examined. However, primer RNAs with appropriate 3' end homogeneity were obtained in high yield using a recently described T7 RNAP mutant designed for improved immunogenic behavior. Minor spectral heterogeneity sometimes observed for 3' residues, caused by partial premature TGK termination, could be moved to sites downstream of the RNA region of interest by employing extended template DNAs that encode additional non-interacting 3' nucleotides. We additionally present an approach for large-scale synthesis of homogeneous template DNA required for TGK extension. With these modifications, segmentally labeled RNAs appropriate for high resolution structural studies are now routinely obtainable.
Collapse
Affiliation(s)
- Brian D Grossman
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Bethel G Beyene
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Bersabel Tekle
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - William Sakowicz
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Xinjie Ji
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Joshua Miguele Camacho
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Nandini Vaishnav
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Amina Ahmed
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Naman Bhandari
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Kush Desai
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Josiah Hardy
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Nele M Hollman
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Jan Marchant
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Michael F Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
2
|
Garanin A, Shalaev A, Zabegina L, Kadantseva E, Sharonova T, Malek A. Specific Aspects of SELEX Protocol: Different Approaches for ssDNA Generation. Methods Protoc 2025; 8:36. [PMID: 40278510 PMCID: PMC12029403 DOI: 10.3390/mps8020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Synthetic DNA aptamers are a class of molecules with potential applications in medicine, serving as molecular sensors or ligands for targeted drug delivery. Systematic evolution of ligands by exponential enrichment (SELEX) is a technology for selecting functional aptamers that was first reported three decades ago and has been actively developed since. SELEX involves multiple iterations of two fundamental steps: (i) target affinity-based partitioning of aptamers from a random library and (ii) amplification of selected aptamers by PCR, followed by isolation of single-stranded DNA (ssDNA). SELEX protocols have diversified considerably, with numerous variations possible for each step. This heterogeneity makes it challenging to identify optimal methods. Comparative analysis of different approaches for the major stages of SELEX is therefore of considerable practical importance. METHODS Four widely used methods for ssDNA generation were performed in parallel: (a) PCR followed by digestion of the antisense strand with exonuclease lambda, (b) PCR with an extended primer followed by size-dependent strand separation using denaturing PAGE, (c) asymmetric PCR, and (d) asymmetric PCR with a primer-blocker. RESULTS The specificity, efficiency, reproducibility, and duration of each method were compared. CONCLUSIONS Asymmetric PCR with a primer-blocker yielded the most favorable results.
Collapse
Affiliation(s)
| | | | | | | | | | - Anastasia Malek
- Subcellular Technology Lab, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg 197758, Russia; (A.G.); (A.S.); (L.Z.); (E.K.); (T.S.)
| |
Collapse
|
3
|
Harkai Á, Beck YK, Tory A, Mészáros T. Selection of streptococcal glucan-binding protein C specific DNA aptamers to inhibit biofilm formation. Int J Biol Macromol 2025; 288:138579. [PMID: 39657876 DOI: 10.1016/j.ijbiomac.2024.138579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/13/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Streptococcus mutans is a commensal oral bacterium, yet its capacity for extensive biofilm formation is a major contributor to dental caries. This study presents a novel biofilm inhibition strategy by targeting GbpC, a cornerstone protein in S. mutans biofilm architecture, with specific DNA aptamers. Using SELEX (Systematic Evolution of Ligands by EXponential enrichment), we selectively targeted the extracellular domain of GbpC while incorporating structurally similar antigen I/II protein and a GbpC-deficient S. mutans strain as counter-targets to ensure high specificity. Aptamer selection was further refined through a panning method that combined primer-blocked asymmetric PCR with AlphaScreen technology. Detailed binding analyses via biolayer interferometry and microscale thermophoresis confirmed the interaction between top aptamer candidates and GbpC. Functional assays demonstrated that two lead aptamers evidently inhibited biofilm formation in wild-type S. mutans without affecting the GbpC-deficient strain, highlighting the aptamers' specificity. These results confirm that the selected aptamers retain specificity even in the complex bacterial culture matrix, validating the efficacy of our selection approach. Notably, these aptamers represent the first instance of using DNA aptamers to inhibit S. mutans biofilm formation by disrupting glucan binding. These aptamers hold promise as lead molecules for the development of biofilm-targeting therapies in dental care.
Collapse
Affiliation(s)
- Ákos Harkai
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Tűzoltó street 37-47., 1094 Budapest, Hungary
| | - Yoon Kee Beck
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Tűzoltó street 37-47., 1094 Budapest, Hungary
| | - Anna Tory
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Tűzoltó street 37-47., 1094 Budapest, Hungary
| | - Tamás Mészáros
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Tűzoltó street 37-47., 1094 Budapest, Hungary.
| |
Collapse
|
4
|
Wu SW, Hsieh CY, Liu BH, Lin XJ, Yu FY. Novel antibody- and aptamer-based approaches for sensitive detection of mycotoxin fusaric acid in cereal. Food Chem 2025; 463:141245. [PMID: 39298849 DOI: 10.1016/j.foodchem.2024.141245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
This study presents the first successful generation of polyclonal antibodies (pAbs) and oligonucleotide aptamers specifically targeting fusaric acid (FA). Utilizing these pAbs and aptamers, three highly sensitive and specific assays were developed for the detection of FA in cereals with limits of detection (LOD) ranging from 5 to 50 ng/g: an antibody-based enzyme-linked immunosorbent assay (ELISA), an aptamer-based enzyme-linked aptamer-sorbent assay (ELASA), and a hybrid enzyme-linked aptamer-antibody sandwich assay (ELAAA). The recovery rates of FA in spiked cereal samples ranged from 87 % to 112 % across all assays. Analysis of 15 cereal feed samples revealed FA contamination levels of 459 to 1743 ng/g (ELISA), 427 to 1960 ng/g (ELASA), and 381 to 1987 ng/g (ELAAA). These results were further validated by HPLC analysis, confirming high consistency within developed assays. Overall, the ELISA, ELASA, and ELAAA are promising tools for the rapid detection of FA, significantly contributing to food safety monitoring.
Collapse
Affiliation(s)
- Shih-Wei Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei 100, Taiwan
| | - Chia-Yu Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei 100, Taiwan
| | - Xin-Jie Lin
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan.
| |
Collapse
|
5
|
Khera HK, Mishra R. Nucleic Acid Based Testing (NABing): A Game Changer Technology for Public Health. Mol Biotechnol 2024; 66:2168-2200. [PMID: 37695473 DOI: 10.1007/s12033-023-00870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Timely and accurate detection of the causal agent of a disease is crucial to restrict suffering and save lives. Mere symptoms are often not enough to detect the root cause of the disease. Better diagnostics applied for screening at a population level and sensitive detection assays remain the crucial component of disease surveillance which may include clinical, plant, and environmental samples, including wastewater. The recent advances in genome sequencing, nucleic acid amplification, and detection methods have revolutionized nucleic acid-based testing (NABing) and screening assays. A typical NABing assay consists of three modules: isolation of the nucleic acid from the collected sample, identification of the target sequence, and final reading the target with the help of a signal, which may be in the form of color, fluorescence, etc. Here, we review current NABing assays covering the different aspects of all three modules. We also describe the frequently used target amplification or signal amplification procedures along with the variety of applications of this fast-evolving technology and challenges in implementation of NABing in the context of disease management especially in low-resource settings.
Collapse
Affiliation(s)
- Harvinder Kour Khera
- Tata Institute for Genetics and Society, New inStem Building NCBS Campus, GKVK Post, Bellary Road, Bengaluru, 560065, India.
| | - Rakesh Mishra
- Tata Institute for Genetics and Society, New inStem Building NCBS Campus, GKVK Post, Bellary Road, Bengaluru, 560065, India.
- CSIR-Centre for Cellular and Molecular Biology, Uppal Rd, IICT Colony, Habsiguda, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
6
|
Percze K, Harkai Á, Mészáros T. A Cost-Effective Approach for Single-Stranded DNA Amplification Using Primer-Blocked Asymmetric PCR. Curr Protoc 2024; 4:e1125. [PMID: 39228270 DOI: 10.1002/cpz1.1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
In vitro amplification of single-stranded oligonucleotide libraries presents a significant challenge due to the potential for excessive byproduct formation. This phenomenon largely affects the quality of the ssDNAs created using the most commonly used methods, e.g., asymmetric PCR, biotin-streptavidin separation, or lambda exonuclease digestion of dsDNA. Here, we describe an improved protocol that combines primer-blocked asymmetric PCR (PBA-PCR) with emulsion PCR and a cost-effective downstream process that altogether alleviates byproduct formation without distorting the sequence space of the ssDNA library. In PBA-PCR, the reaction mixture is complemented with a 3'-phosphate-blocked limiting primer that decreases mispriming, thus reducing polymerization of DNA byproducts. The downstream process includes mixing of the PBA-PCR product with excess reverse complement of the 3'-phosphate-blocked limiting primer and removal of dsDNA strands via biotin-streptavidin separation, yielding purified ssDNAs. In conclusion, we have devised a universally applicable approach for simple and cost-effective production of ssDNA libraries and unique ssDNA sequences with on-demand labeling. Our protocol could be beneficial for a variety of uses, such as generating aptamer libraries for SELEX, creating unique molecular identifiers for a wide range of sequencing applications, providing donor DNA for CRISPR-Cas9 systems, developing scaffold nanostructures, and enabling DNA-based data storage. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Amplification of ssDNA libraries using PBA-PCR Alternate Protocol 1: Amplification of ssDNA libraries using emulsion PBA-PCR with a simplified extraction of PBA-PCR products Basic Protocol 2: Purification of PBA-PCR products to remove dsDNA and conversion of 3'-blocked primer to double-stranded complexes Alternate Protocol 2: Purification of PBA-PCR products to remove both dsDNA and blocking primers from the reaction mixture Support Protocol: Analysis of PBA-PCR products by gel electrophoresis.
Collapse
Affiliation(s)
- Krisztina Percze
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Ákos Harkai
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Tamás Mészáros
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Wen K, Meng X, Lara K, Lin Q. Cost-effective evaluation of Aptamer candidates in SELEX-based Aptamer isolation. Talanta 2024; 275:126103. [PMID: 38663069 DOI: 10.1016/j.talanta.2024.126103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
Aptamers are short, single-stranded nucleic acids with high affinity and specificity for various targets, making them valuable in diagnostics and therapeutics. Their isolation traditionally involves a time-consuming and costly process called SELEX. While SELEX methods have evolved to improve binding and amplification, the crucial step of aptamer identification from sequencing data remains expensive and often overlooked. Common identification methods require modification of aptamer candidates with labels like biotin or fluorescent dyes, which becomes costly and cumbersome for high-throughput sequencing data. This paper presents an efficient and cost-effective approach to streamline aptamer identification. It employs asymmetric polymerase chain reaction (PCR) to generate modified single-stranded DNA copies of aptamer candidates, simplifying the modification process. By using excess modified forward primers and limited reverse primers, this method reduces costs since only unmodified candidates need to be synthesized initially. The approach was demonstrated with an IgE protein aptamer and successfully applied to identify aptamers from a pool of 12 candidates against a monoclonal antibody. The validity of the results was further confirmed through the direct synthesis of fluorophore-conjugated aptamer candidates, yielding consistent outcomes while reducing the cost by threefold. This approach addresses a critical bottleneck in aptamer discovery by significantly reducing the time and cost associated with aptamer identification, facilitating aptamer-based research and making aptamers more accessible for various applications in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Kechun Wen
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Xin Meng
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Kathie Lara
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
8
|
Marpaung DSS, Sinaga AOY, Damayanti D, Taharuddin T. Bridging biological samples to functional nucleic acid biosensor applications: current enzymatic-based strategies for single-stranded DNA generation. ANAL SCI 2024; 40:1225-1237. [PMID: 38607600 DOI: 10.1007/s44211-024-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
The escalating threat of emerging diseases, often stemming from contaminants and lethal pathogens, has precipitated a heightened demand for sophisticated diagnostic tools. Within this landscape, the functional nucleic acid (FNA) biosensor, harnessing the power of single-stranded DNA (ssDNA), has emerged as a preeminent choice for target analyte detection. However, the dependence on ssDNA has raised difficulties in realizing it in biological samples. Therefore, the production of high-quality ssDNA from biological samples is critical. This review aims to discuss strategies for generating ssDNA from biological samples for integration into biosensors. Several innovative strategies for ssDNA generation have been deployed, encompassing techniques, such as asymmetric PCR, Exonuclease-PCR, isothermal amplification, biotin-streptavidin PCR, transcription-reverse transcription, ssDNA overhang generation, and urea denaturation PAGE. These approaches have been seamlessly integrated with biosensors for biological sample analysis, ushering in a new era of disease detection and monitoring. This amalgamation of ssDNA generation techniques with biosensing applications holds significant promise, not only in improving the speed and accuracy of diagnostic processes but also in fortifying the global response to deadly diseases, thereby underlining the pivotal role of cutting-edge biotechnology in public health and disease prevention.
Collapse
Affiliation(s)
- David Septian Sumanto Marpaung
- Department of Biosystems Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia.
| | - Ayu Oshin Yap Sinaga
- Department of Biology, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Damayanti Damayanti
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Taharuddin Taharuddin
- Department of Chemical Engineering, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No.1, Gedong Meneng, Kec. Rajabasa, Kota Bandar Lampung, Lampung, 35141, Indonesia
| |
Collapse
|
9
|
Liu Y, Liu Y, Guo L, Wu Y, Wang Y, Xu L, Xu M, Huang S, Chen P, Wang T, Huang Q, Li Q. Multiplex Asymmetric PCR by Combining the Amplification Refractory Mutation System with the Homo-Tag-Assisted Nondimer System. Anal Chem 2024; 96:9200-9208. [PMID: 38771984 DOI: 10.1021/acs.analchem.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Asymmetric PCR is widely used to produce single-stranded amplicons (ss-amplicons) for various downstream applications. However, conventional asymmetric PCR schemes are susceptible to events that affect primer availability, which can be exacerbated by multiplex amplification. In this study, a new multiplex asymmetric PCR approach that combines the amplification refractory mutation system (ARMS) with the homo-Tag-assisted nondimer system (HANDS) is described. ARMS-HANDS (A-H) PCR utilizes equimolar-tailed forward and reverse primers and an excess Tag primer. The tailed primer pairs initiate exponential symmetric amplification, whereas the Tag primer drives linear asymmetric amplification along fully matched strands but not one-nucleotide mismatched strands, thereby generating excess ss-amplicons. The production of ss-amplicons is validated using agarose gel electrophoresis, sequencing, and melting curve analysis. Primer dimer alleviation is confirmed by both the reduced Loss function value and a 20-fold higher sensitivity in an 11-plex A-H PCR assay than in an 11-plex conventional asymmetric PCR assay. Moreover, A-H PCR demonstrates unbiased amplification by its allele quantitative ability in correct identification of all 31 trisomy 21 samples among 342 clinical samples. A-H PCR is a new generation of multiplex asymmetric amplification approach with various applications, especially when sensitive and quantitative detection is required.
Collapse
Affiliation(s)
- Ying Liu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yinghua Liu
- Centre for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Liu Guo
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yazhe Wu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yafang Wang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Lingzhen Xu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Mingzhu Xu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Siyu Huang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ping Chen
- NHC Key Laboratory of Thalassemia Medicine, Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, Guangxi Key Laboratory of Thalassemia Research, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ting Wang
- Centre for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Qiuying Huang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qingge Li
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
10
|
Li S, Tan W, Jia X, Miao Q, Liu Y, Yang D. Recent advances in the synthesis of single-stranded DNA in vitro. Biotechnol J 2024; 19:e2400026. [PMID: 38622795 DOI: 10.1002/biot.202400026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
Single-stranded DNA (ssDNA) is the foundation of modern biology, with wide applications in gene editing, sequencing, DNA information storage, and materials science. However, synthesizing ssDNA with high efficiency, high throughput, and low error rate in vitro remains a major challenge. Various methods have been developed for ssDNA synthesis, and some significant results have been achieved. In this review, six main methods were introduced, including solid-phase oligonucleotide synthesis, terminal deoxynucleotidyl transferase-based ssDNA synthesis, reverse transcription, primer exchange reaction, asymmetric polymerase chain reaction, and rolling circle amplification. The advantages and limitations of each method were compared, as well as illustrate their representative achievements and applications. Especially, rolling circle amplification has received significant attention, including ssDNA synthesis, assembly, and application based on recent work. Finally, the future challenges and opportunities of ssDNA synthesis were summarized and discussed. Envisioning the development of new methods and significant progress will be made in the near future with the efforts of scientists around the world.
Collapse
Affiliation(s)
- Shuai Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, P.R. China
| | - Wei Tan
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, P.R. China
| | - Xuemei Jia
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, P.R. China
| | - Qing Miao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, P.R. China
| | - Ying Liu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, P.R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, P.R. China
| |
Collapse
|
11
|
Zheng M, Ye J, Liu H, Wu Y, Shi Y, Xie Y, Wang S. FAM Tag Size Separation-Based Capture-Systematic Evolution of Ligands by Exponential Enrichment for Sterigmatocystin-Binding Aptamers with High Specificity. Anal Chem 2024; 96:710-720. [PMID: 38175632 DOI: 10.1021/acs.analchem.3c03675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sterigmatocystin (ST) is a known toxin whose aptamer has rarely been reported because ST is a water-insoluble small-molecule target with few active sites, leading to difficulty in obtaining its aptamer using traditional target fixation screening methods. To obtain aptamer for ST, we incorporated FAM tag size separation into the capture-systematic evolution of ligands by exponential enrichment and combined it with molecular activation for aptamer screening. The screening process was monitored using a quantitative polymerase chain reaction fluorescence amplification curve and recovery of negative-, counter-, and positive-selected ssDNA. The affinity and specificity of the aptamer were verified by constructing an aptamer-affinity column, and the binding sites were predicted using molecular docking simulations. The results showed that the Kd value of the H Seq02 aptamer was 25.3 nM. The aptamer-affinity column based on 2.3 nmol of H Seq02 exhibited a capacity of about 80 ng, demonstrating better specificity than commercially available antibody affinity columns. Molecular simulation docking predicted the binding sites for H Seq02 and ST, further explaining the improved specificity. In addition, circular dichroism and isothermal titration calorimetry were used to verify the interaction between the aptamer and target ST. This study lays the foundation for the development of a new ST detection method.
Collapse
Affiliation(s)
- Mengyao Zheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Jin Ye
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Yu Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yakun Shi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Yanli Xie
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Songxue Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| |
Collapse
|
12
|
Haslecker R, Pham VV, Glänzer D, Kreutz C, Dayie TK, D'Souza VM. Extending the toolbox for RNA biology with SegModTeX: a polymerase-driven method for site-specific and segmental labeling of RNA. Nat Commun 2023; 14:8422. [PMID: 38110450 PMCID: PMC10728113 DOI: 10.1038/s41467-023-44254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
RNA performs a wide range of functions regulated by its structure, dynamics, and often post-transcriptional modifications. While NMR is the leading method for understanding RNA structure and dynamics, it is currently limited by the inability to reduce spectral crowding by efficient segmental labeling. Furthermore, because of the challenging nature of RNA chemistry, the tools being developed to introduce site-specific modifications are increasingly complex and laborious. Here we use a previously designed Tgo DNA polymerase mutant to present SegModTeX - a versatile, one-pot, copy-and-paste approach to address these challenges. By precise, stepwise construction of a diverse set of RNA molecules, we demonstrate the technique to be superior to RNA polymerase driven and ligation methods owing to its substantially high yield, fidelity, and selectivity. We also show the technique to be useful for incorporating some fluorescent- and a wide range of other probes, which significantly extends the toolbox of RNA biology in general.
Collapse
Affiliation(s)
- Raphael Haslecker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Vincent V Pham
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Glänzer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Theodore Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20782, USA
| | - Victoria M D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
13
|
Percze K, Tolnai ZJ, Eleveld M, Ou L, Du H, Olia AS, Kwong PD, de Jonge MI, Mészáros T. Tryptophan-like side chain holding aptamers inhibit respiratory syncytial virus infection of lung epithelial cells. Sci Rep 2023; 13:9403. [PMID: 37296186 PMCID: PMC10251311 DOI: 10.1038/s41598-023-36428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of serious and even fatal acute lower respiratory tract infections in infants and in the elderly. Potent RSV neutralization has been achieved by antibodies that selectively bind the prefusion form of the viral fusion (F) protein. We hypothesised that similar potent neutralization could be achieved using F protein targeting aptamers. Aptamers have yet to reach their translational potential for therapeutics or diagnostics due to their short half-life and limited range of target-aptamer interactions; these shortcomings can, however, be ameliorated by application of amino acid-like side chain holding nucleotides. In this study, a stabilized version of the prefusion RSV F protein was targeted by aptamer selection using an oligonucleotide library holding a tryptophan-like side chain. This process resulted in aptamers that bound the F protein with high affinity and differentiated between its pre- and postfusion conformation. Identified aptamers inhibited viral infection of lung epithelial cells. Moreover, introduction of modified nucleotides extended aptamer half-lives. Our results suggest that targeting aptamers to the surface of viruses could yield effective drug candidates, which could keep pace with the continuously evolving pathogens.
Collapse
Affiliation(s)
- Krisztina Percze
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Zoltán János Tolnai
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Marc Eleveld
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Haijuan Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marien I de Jonge
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tamás Mészáros
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
14
|
Zhang C, Zheng T, Ma Q, Yang L, Zhang M, Wang J, Teng X, Miao Y, Lin HC, Yang Y, Han D. Logical Analysis of Multiple Single-Nucleotide-Polymorphisms with Programmable DNA Molecular Computation for Clinical Diagnostics. Angew Chem Int Ed Engl 2022; 61:e202117658. [PMID: 35137499 DOI: 10.1002/anie.202117658] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 11/07/2022]
Abstract
Analyzing complex single-nucleotide-polymorphism (SNP) combinations in the genome is important for research and clinical applications, given that different SNP combinations can generate different phenotypic consequences. Recent works have shown that DNA-based molecular computing is powerful for simultaneously sensing and analyzing complex molecular information. Here, we designed a switching circuit-based DNA computational scheme that can integrate the sensing of multiple SNPs and simultaneously perform logical analysis of the detected SNP information to directly report clinical outcomes. As a demonstration, we successfully achieved automatic and accurate identification of 21 different blood group genotypes from 83 clinical blood samples with 100 % accuracy compared to sequencing data in a more rapid manner (3 hours). Our method enables a new mode of automatic and logical sensing and analyzing subtle molecular information for clinical diagnosis, as well as guiding personalized medication.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Tingting Zheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qian Ma
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Linlin Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mingzhi Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junyan Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoyan Teng
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 201306, China
| | - Yanyan Miao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hsiao-Chu Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
15
|
Zhang C, Zheng T, Ma Q, Yang L, Zhang M, Wang J, Teng X, Miao Y, Lin H, Yang Y, Han D. Logical Analysis of Multiple Single‐Nucleotide‐Polymorphisms with Programmable DNA Molecular Computation for Clinical Diagnostics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Tingting Zheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Qian Ma
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Linlin Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Mingzhi Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junyan Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiaoyan Teng
- Department of Laboratory Medicine Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 201306 China
| | - Yanyan Miao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Hsiao‐chu Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yang Yang
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
16
|
Lyu N, Rajendran VK, Li J, Engel A, Molloy MP, Wang Y. Highly specific detection of KRAS single nucleotide polymorphism by asymmetric PCR/SERS assay. Analyst 2021; 146:5714-5721. [PMID: 34515700 DOI: 10.1039/d1an01108a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The molecular diagnosis of KRAS mutations has become crucial for clinical decision-making in colorectal cancer (CRC) treatments. Currently, the common methods for detecting mutations are based on quantitative PCR, DNA sequencing and droplet digital PCR (ddPCR), which require expensive specialized equipment and testing reagents. Herein, we propose a simple and specific strategy by integrating asymmetric PCR with surface-enhanced Raman spectroscopy (Asy-PCR/SERS) for the detection of KRAS G12V mutation, one of the most common driver mutations in CRC. To discriminate mutant targets from non-targets, Asy-PCR was applied to obtain single-stranded DNA (ssDNA) with unequal amounts of forward and reverse primers, subsequently, detection of the target mutant ssDNA amplicons was attempted by hybridization with Raman reporter-coded and allele-specific oligonucleotide-functionalized gold nanoparticles (SERS nanotags). The oligo encoding of the KRAS G12V mutant sequence could be identified by using a portable Raman spectrometer where the characteristic spectra of SERS nanotags indicate the presence of mutant targets. The Asy-PCR/SERS method showed high specificity and sensitivity for identifying as few as 0.1% mutant alleles of KRAS G12V mutation from non-target sequences. Using colorectal polyp biopsies, we demonstrated that Asy-PCR/SERS assay could distinguish KRAS G12V (c.35G > T) and KRAS G12D (c.35G > A) which occur at the same nucleotide location. As KRAS G12V is a driver oncogene in other cancers including lung, pancreatic, ovarian and endometrial cancers, the proposed assay shows great potential for application in additional tumor streams.
Collapse
Affiliation(s)
- Nana Lyu
- ARC Centre of Excellence for Nanoscale BioPhotonics and Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Vinoth Kumar Rajendran
- ARC Centre of Excellence for Nanoscale BioPhotonics and Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Jun Li
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, The University of Sydney, NSW 2006, Australia.
| | - Alexander Engel
- Department of Colorectal Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia.,Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Mark P Molloy
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, The University of Sydney, NSW 2006, Australia.
| | - Yuling Wang
- ARC Centre of Excellence for Nanoscale BioPhotonics and Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
17
|
Yoo E, Choe D, Shin J, Cho S, Cho BK. Mini review: Enzyme-based DNA synthesis and selective retrieval for data storage. Comput Struct Biotechnol J 2021; 19:2468-2476. [PMID: 34025937 PMCID: PMC8113751 DOI: 10.1016/j.csbj.2021.04.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022] Open
Abstract
The market for using and storing digital data is growing, with DNA synthesis emerging as an efficient way to store massive amounts of data. Storing information in DNA mainly consists of two steps: data writing and reading. The writing step requires encoding data in DNA, building one nucleotide at a time as a form of single-stranded DNA (ssDNA). Once the data needs to be read, the target DNA is selectively retrieved and sequenced, which will also be in the form of an ssDNA. Recently, enzyme-based DNA synthesis is emerging as a new method to be a breakthrough on behalf of decades-old chemical synthesis. A few enzymatic methods have been presented for data memory, including the use of terminal deoxynucleotidyl transferase. Besides, enzyme-based amplification or denaturation of the target strand into ssDNA provides selective access to the desired dataset. In this review, we summarize diverse enzymatic methods for either synthesizing ssDNA or retrieving the data-containing DNA.
Collapse
Affiliation(s)
- Eojin Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jongoh Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
18
|
Enhanced asymmetric blocked qPCR method for affordable detection of point mutations in KRAS oncogene. Anal Bioanal Chem 2021; 413:2961-2969. [PMID: 33619642 DOI: 10.1007/s00216-021-03229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
An accurate genetic diagnostic is key for adequate patient management and the suitability of healthcare systems. The scientific challenge lies in developing methods to discriminate those patients with certain genetic variations present in tumor cells at low concentrations. We report a method called enhanced asymmetric blocked qPCR (EAB-qPCR) that promotes the blocker annealing against the primer-template hybrid controlling thermal cycling and reaction conditions with nonmodified oligonucleotides. Real-time fluorescent amplification curves of wild-type alleles were delayed by about eight cycles for EAB-qPCR, compared to conventional blocked qPCR approaches. This method reduced the amplification of native DNA variants (blocking percentage 99.7%) and enabled the effective enrichment of low-level DNA mutations. Excellent performance was estimated for the detection of mutated alleles in sensitivity (up to 0.5% mutant/total DNA) and reproducibility terms, with a relative standard deviation below 2.8%. The method was successfully applied to the mutational analysis of metastatic colorectal carcinoma from biopsied tissues. The determined single-nucleotide mutations in the KRAS oncogene (codon 12-13) totally agreed with those obtained from next-generation sequencing. EAB-qPCR is an accurate cheap method and can be easily incorporated into daily routine to detect mutant alleles. Hence, these features are especially interesting to facilitate the diagnosis and prognosis of several clinical diseases.
Collapse
|
19
|
Allele-Specific PCR for KRAS Mutation Detection Using Phosphoryl Guanidine Modified Primers. Diagnostics (Basel) 2020; 10:diagnostics10110872. [PMID: 33114622 PMCID: PMC7692470 DOI: 10.3390/diagnostics10110872] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Establishing the Kirsten rat sarcoma (KRAS) mutational status is essential in terms of managing patients with various types of cancer. Allele-specific real-time polymerase chain reaction (AS-PCR) is a widely used method for somatic mutations detection. To improve the limited sensitivity and specificity, several blocking methods have been introduced in AS-PCR to block the amplification of wild-type templates. Herein, we used a novel modified oligonucleotide with internucleotide phosphates reshaped 1,3-dimethyl-2-imino-imidazolidine moieties (phosphoryl guanidine (PG) groups) as primers and blockers in the AS-PCR method. Four common KRAS mutations were chosen as a model to demonstrate the advantages of the PG primers and blockers utilizing a customized PCR protocol. The methods were evaluated on plasmid model systems providing a KRAS mutation detection limit of 20 copies of mutant DNA in a proportion as low as 0.1% of the total DNA, with excellent specificity. PG-modification can serve as the universal additional mismatch-like disturbance to increase the discrimination between wild-type and mutated DNA. Moreover, PG can serve to increase primer specificity by a synergetic effect with additional mismatch and would greatly facilitate medical research.
Collapse
|
20
|
Nehdi A, Samman N, Aguilar-Sánchez V, Farah A, Yurdusev E, Boudjelal M, Perreault J. Novel Strategies to Optimize the Amplification of Single-Stranded DNA. Front Bioeng Biotechnol 2020; 8:401. [PMID: 32432100 PMCID: PMC7214742 DOI: 10.3389/fbioe.2020.00401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
The generation of single stranded DNA plays a key role in in vitro selection of DNA aptamers and in other molecular techniques such as DNA sequencing and microarrays. Here we describe three novel methodologies for ssDNA production and amplification. Furthermore, we describe some previously unnoticed aspects of random DNA amplification. Our results showed that in asymmetric PCR the addition of a high melting temperature reverse primer blocked at its 3' end by a dideoxy nucleotide drives the reaction further toward ssDNA production. We demonstrated also that incorporation of internally inverted nucleotide/(s) in one primer can be used as a new method of polymerization termination. Using such modified primer, the PCR product includes two complementary DNA strands having different lengths and separable from one another by denaturing gel electrophoresis. In addition, we showed that nicking enzymes can be used to cleave the undesirable strand allowing the isolation of the target ssDNA strand.
Collapse
Affiliation(s)
- Atef Nehdi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Life Sciences, Faculty of Sciences of Gabes, University of Gabes, Gabes, Tunisia.,Medical Research Core Facility and Platforms, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Nosaibah Samman
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Medical Research Core Facility and Platforms, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | | | - Azer Farah
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Emre Yurdusev
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Mohamed Boudjelal
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Medical Research Core Facility and Platforms, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | | |
Collapse
|
21
|
Hao M, Qiao J, Qi H. Current and Emerging Methods for the Synthesis of Single-Stranded DNA. Genes (Basel) 2020; 11:E116. [PMID: 31973021 PMCID: PMC7073533 DOI: 10.3390/genes11020116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/21/2022] Open
Abstract
Methods for synthesizing arbitrary single-strand DNA (ssDNA) fragments are rapidly becoming fundamental tools for gene editing, DNA origami, DNA storage, and other applications. To meet the rising application requirements, numerous methods have been developed to produce ssDNA. Some approaches allow the synthesis of freely chosen user-defined ssDNA sequences to overcome the restrictions and limitations of different length, purity, and yield. In this perspective, we provide an overview of the representative ssDNA production strategies and their most significant challenges to enable the readers to make informed choices of synthesis methods and enhance the availability of increasingly inexpensive synthetic ssDNA. We also aim to stimulate a broader interest in the continued development of efficient ssDNA synthesis techniques and improve their applications in future research.
Collapse
Affiliation(s)
- Min Hao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
22
|
Redcenko O, Draberova L, Draber P. Carboxymethylcellulose enhances the production of single-stranded DNA aptamers generated by asymmetric PCR. Anal Biochem 2019; 589:113502. [PMID: 31704088 DOI: 10.1016/j.ab.2019.113502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Nucleic acid aptamers are single-stranded (ss)DNA or RNA oligonucleotides that can take various conformations and bind specifically and with high affinity to selected targets. While the introduction of SELEX (systematic evolution of ligands by exponential enrichment) revolutionized the production of the aptamers, this procedure is impeded by the formation of undesirable by-products reflecting hybridization among complementary oligonucleotides in the ssDNA libraries during asymmetric PCR. To reduce nonspecific amplification we tested cellulose-derived compounds and found that sodium carboxymethylcellulose (CMC) at a concentration 0.05%-0.2% efficiently suppressed production of undesirable large DNA amplicons during asymmetric PCR in the course of SELEX. Formation of the PCR by-products was reduced by CMCs of low and medium viscosity more than by CMCs of high viscosity, and all of them bound to DNA oligonucleotides as determined by electrophoresis in agarose gels. In contrast to CMC, methylcellulose did not reduce the formation of the PCR by-products and did not bind to DNA. DNA aptamers selected in the presence of CMC could be used directly in enzyme-linked immunosorbent-like assay. The combined data suggest that CMC binds weekly to DNA oligonucleotides through hydroxyl groups and in this way inhibits low-affinity DNA-DNA hybridization and enhances the production of specific amplicons in asymmetric PCR.
Collapse
Affiliation(s)
- Oleksij Redcenko
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 14220, Prague, Czech Republic
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 14220, Prague, Czech Republic
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 14220, Prague, Czech Republic.
| |
Collapse
|
23
|
Komarova N, Kuznetsov A. Inside the Black Box: What Makes SELEX Better? Molecules 2019; 24:E3598. [PMID: 31591283 PMCID: PMC6804172 DOI: 10.3390/molecules24193598] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
Aptamers are small oligonucleotides that are capable of binding specifically to a target, with impressive potential for analysis, diagnostics, and therapeutics applications. Aptamers are isolated from large nucleic acid combinatorial libraries using an iterative selection process called SELEX (Systematic Evolution of Ligands by EXponential enrichment). Since being implemented 30 years ago, the SELEX protocol has undergone many modifications and improvements, but it remains a laborious, time-consuming, and costly method, and the results are not always successful. Each step in the aptamer selection protocol can influence its results. This review discusses key technical points of the SELEX procedure and their influence on the outcome of aptamer selection.
Collapse
Affiliation(s)
- Natalia Komarova
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, Moscow 124498, Russia.
| | - Alexander Kuznetsov
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, Moscow 124498, Russia.
| |
Collapse
|