1
|
Di Matteo G, Grassi S, Emanuele MC, Scioli G, Brigante FI, Bontempo L, Ingallina C, Guillou C, Sobolev AP, Mannina L. Current applications of benchtop FT-NMR in food science: From quality control to adulteration detection. Food Res Int 2025; 209:116327. [PMID: 40253215 DOI: 10.1016/j.foodres.2025.116327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/22/2025] [Accepted: 03/30/2025] [Indexed: 04/21/2025]
Abstract
The introduction of benchtop FT-NMR spectrometers in recent years represents a remarkable innovation in various fields, including the food sector. Modern benchtop FT-NMR spectrometers are low-field instruments, with a magnetic field ranging from 1 T to 2.35 T (1H resonance frequency from 43 MHz to 100 MHz), characterized by compact design, ease of use, and low maintenance costs. As in the case of high-field NMR instruments, benchtop NMR spectra (obtained by Fourier transformation) contain important information useful for compound identification and quantification. In this review, a description of the fundamental steps useful both to acquire benchtop NMR spectra and to treat the obtained data is reported together with a wide range of applications in the food field. In particular, peculiar aspects of commercial benchtop instruments as well as NMR data acquisition, processing and treatment are reviewed reporting also a practical pipeline and a list of good practices for benchtop NMR applications. Benchtop FT-NMR applications, mainly focused on food adulteration detection and quality control, are discussed here using targeted, metabolomic, and fingerprinting approaches. Finally, the industrial applicability of benchtop NMR methods in either static or continuous mode is reported.
Collapse
Affiliation(s)
- Giacomo Di Matteo
- Department of Chemistry and Technology of Drugs, Food Chemistry Lab, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Fondazione OnFoods, via Università 12, Parma 43121, Italy.
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Maria Carmela Emanuele
- Ufficio Laboratori - Agenzia delle Dogane e dei Monopoli, via M. Carucci 71, 00143 Roma, Italy.
| | - Giuseppe Scioli
- Magnetic Resonance Laboratory "Segre-Capitani", Institute for Biological Systems, National Research Council (CNR), Via Salaria km 29.300, 00015 Monterotondo, Italy.
| | - Federico Ivan Brigante
- Fondazione OnFoods, via Università 12, Parma 43121, Italy; Traceability Unit, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Luana Bontempo
- Fondazione OnFoods, via Università 12, Parma 43121, Italy; Traceability Unit, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Cinzia Ingallina
- Department of Chemistry and Technology of Drugs, Food Chemistry Lab, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Fondazione OnFoods, via Università 12, Parma 43121, Italy.
| | - Claude Guillou
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - Anatoly P Sobolev
- Magnetic Resonance Laboratory "Segre-Capitani", Institute for Biological Systems, National Research Council (CNR), Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Food Chemistry Lab, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Fondazione OnFoods, via Università 12, Parma 43121, Italy.
| |
Collapse
|
2
|
Mahler L, Tasdemir E, Nickisch‐Hartfiel A, Mayer C, Jaeger M. Monitoring of the Biotechnological Production of Dihydroxyacetone Using a Low-Field 1H NMR Spectrometer. Biotechnol Bioeng 2025; 122:561-569. [PMID: 39658966 PMCID: PMC11808440 DOI: 10.1002/bit.28901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024]
Abstract
The concept of sustainable production necessitates the utilization of waste and by-products as raw materials, the implementation of biotechnological processes, and the introduction of automated real-time monitoring for efficient use of resources. One example is the biocatalyzed conversion of the reusable by-product glycerin by acetic acid bacteria to dihydroxyacetone (DHA), which is of great importance to the cosmetic industry. The application of compact spectrometers enables the rapid measurement of samples while simultaneously reducing the consumption of resources and energy. Yet, this approach requires comprehensive data preprocessing and, on occasion, multivariate data analysis. For the process monitoring of the production of DHA, a low-field 1H nuclear magnetic resonance (NMR) spectrometer was implemented in on-line mode. Small-volume samples were taken from a bypass and transferred to the spectrometer by an autosampler. Complete analysis within minutes allowed real-time process control. To this purpose, reliable automated spectral preprocessing preceded the creation of a univariate model. The model enabled the acquisition of process knowledge from chemical kinetics and facilitated the tracking of both substrate and product concentrations, requiring independent calibration. As a second multivariate approach, principal component analysis was utilized to monitor the process in a semi-quantitative manner without the necessity for calibration. The results of this study are beneficial for real-time monitoring applications with the objective of exerting control over the process in question while minimizing expenditure.
Collapse
Affiliation(s)
- Lukas Mahler
- Department of Physical ChemistryUniversity Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
- Department of Chemistry and ILOCNiederrhein University of Applied SciencesKrefeldNorth Rhine‐WestphaliaGermany
| | - Ebru Tasdemir
- Department of Chemistry and ILOCNiederrhein University of Applied SciencesKrefeldNorth Rhine‐WestphaliaGermany
| | - Anna Nickisch‐Hartfiel
- Department of Chemistry and ILOCNiederrhein University of Applied SciencesKrefeldNorth Rhine‐WestphaliaGermany
| | - Christian Mayer
- Department of Physical ChemistryUniversity Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Martin Jaeger
- Department of Chemistry and ILOCNiederrhein University of Applied SciencesKrefeldNorth Rhine‐WestphaliaGermany
| |
Collapse
|
3
|
Veliparambil Subrahmanian M, Vuckovic I, Macura S, Veglia G. Detection of Exchangeable Protons in NMR Metabolomic Analysis Using AI-Designed Water Irradiation Devoid Pulses. Anal Chem 2025; 97:3412-3417. [PMID: 39905912 DOI: 10.1021/acs.analchem.4c05530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
1H NMR spectroscopy has enabled the quantitative profiling of metabolites in various biofluids, emerging as a possible diagnostic tool for metabolic disorders and other diseases. To boost the signal-to-noise ratio and detect proton resonances near the water signal, current 1H NMR experiments require solvent suppression schemes (e.g., presaturation, jump-and-return, WATERGATE, excitation sculpting, etc.). Unfortunately, these techniques affect the quantitative assessment of analytes containing exchangeable protons. To address this issue, we introduce two new one-dimensional (1D) 1H NMR techniques that eliminate the water signal, preserving the intensities of exchangeable protons. Using GENETICS-AI, a software that combines an evolutionary algorithm and artificial intelligence, we tailored new water irradiation devoid (WADE) pulses and optimized the 1D 1H NOESY sequence for metabolomic analysis. When applied to human urine samples, kidney tissue extract, and plasma, the WADE technique allowed for accurate measurement of typical metabolites and direct quantification of urea, which is usually challenging to measure using standard NMR experiments. We anticipate that these new NMR techniques will significantly improve the accuracy and reliability of metabolite quantitative assessment for a wide range of biological fluids.
Collapse
Affiliation(s)
- Manu Veliparambil Subrahmanian
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ivan Vuckovic
- Metabolomics Core, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Slobodan Macura
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Bahti A, Telfah A, Hergenröder R, Suter D. NMR Spectral Editing, Water Suppression, and Dipolar Decoupling in Low-Field NMR Spectroscopy Using Optimal Control Pulses and Multiple-Pulse Sequence. Anal Chem 2025; 97:1983-1991. [PMID: 39840918 DOI: 10.1021/acs.analchem.3c05226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Spectral dispersion in low-field nuclear magnetic resonance (NMR) can significantly affect NMR spectral analysis, particularly when studying complex mixtures like metabolic profiling of biological samples. To address signal superposition in these spectra, we employed spectral editing with selective excitation pulses, proving it to be a suitable approach. Optimal control pulses were implemented in low-field NMR and demonstrated their capability to selectively excite and eliminate specific amino acids, such as phenylalanine and taurine, either individually or simultaneously. The broadening of NMR signals in viscous samples, like bio samples, due to homonuclear dipolar coupling often leads to loss of spectral details, impacting spectral assignments. Therefore, in this work, the multiple-pulse WAHUHA sequence at both high and low field NMR was employed resulting in approximately 63 and 25% reduction in line widths respectively, evident from line width changes in the NMR spectra. The effectiveness of this process was validated by comparing its performance with that of magic angle spinning NMR. Additionally, water suppression was achieved through selective excitation by adding a term representing the water signal to the overall Hamiltonian, expressing the water signal peak frequency, and covering adjacent frequencies on both sides of the water peak within the water signal.
Collapse
Affiliation(s)
- Ahmed Bahti
- Experimental Physics III, TU Dortmund University, Dortmund 44227, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund 44139, Germany
| | - Ahmad Telfah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
- Department of Physics, University of Nebraska at Omaha, Omaha Nebraska 68182, United States
| | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund 44139, Germany
| | - Dieter Suter
- Experimental Physics III, TU Dortmund University, Dortmund 44227, Germany
| |
Collapse
|
5
|
Zhang C, Wang Y, Yin Z, Yan Y, Wang Z, Wang H. Quantitative characterization of the crosslinking degree of hydroxypropyl guar gum fracturing fluid by low-field NMR. Int J Biol Macromol 2024; 277:134445. [PMID: 39098685 DOI: 10.1016/j.ijbiomac.2024.134445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/19/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
As a widely used water-based fracturing fluid, the performance of hydroxypropyl guar gum fracturing fluid is closely related to the degree of crosslinking, the quantitative characterization of which can reveal a detailed crosslinking mechanism and guide the preparation of fracturing fluid gels with an excellent performance. However, the commonly used high-temperature rheology method for evaluating the performance of fracturing fluids only qualitatively reflects the degree of crosslinking. In this study, low-field nuclear magnetic resonance (LF-NMR) was used to characterize the degree of crosslinking in guar gum fracturing fluid gels. The spin-spin relaxation time of the H proton in guar gum was molecularly analyzed using LF-NMR. The viscoelastic properties met the requirements when the crosslinking degree of the gel was 88-94 %. The transformation of the linear structure into a membrane structure during the crosslinking process of the guar gum fracturing fluid was confirmed by freeze-drying and scanning electron microscopy (SEM) from a microscopic perspective. The changing trend of the microstructure and viscoelastic properties of the fracturing fluid gel under different crosslinker dosages was consistent with changes in the degree of crosslinking. The LF-NMR test process is non-destructive to the gel structure, and the test results demonstrate good accuracy and repeatability.
Collapse
Affiliation(s)
- Chuanbao Zhang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China; College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yanling Wang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China; College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Zichen Yin
- Jinan Vocational College, Jinan 250103, PR China
| | - Yujie Yan
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China; College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Ziyue Wang
- The University of North Carolina at Chapel Hill, 216 Lenoir Dr, Chapel Hill NC27599, USA
| | - Hangyu Wang
- The University of North Carolina at Chapel Hill, 216 Lenoir Dr, Chapel Hill NC27599, USA
| |
Collapse
|
6
|
Tadiello L, Halse ME, Beweries T. Improved on-line benchtop 31P NMR reaction monitoring via Multi-Resonance SHARPER. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39042022 DOI: 10.1039/d4ay00948g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
On-line reaction monitoring of hydrogenation reactions featuring oxygen-sensitive organometallic complexes is done via a 31P benchtop NMR spectrometer using the Multi-Resonance Sensitive Homogeneous And Resolved PEaks in Real time (MR-SHARPER) sequence. Signal enhancement generated by MR-SHARPER enables monitoring of reactivity on the order of minutes that could not be followed with traditional 31P{1H} NMR detection.
Collapse
Affiliation(s)
- Laura Tadiello
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
- Department of Chemistry, University of York, YO10 5DD, York, UK.
| | - Meghan E Halse
- Department of Chemistry, University of York, YO10 5DD, York, UK.
| | - Torsten Beweries
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| |
Collapse
|
7
|
Pellizzari J, Soong R, Downey K, Biswas RG, Kock FC, Steiner K, Goerling B, Haber A, Decker V, Busse F, Simpson M, Simpson A. Slice through the water-Exploring the fundamental challenge of water suppression for benchtop NMR systems. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:463-473. [PMID: 38282484 DOI: 10.1002/mrc.5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Benchtop NMR provides improved accessibility in terms of cost, space, and technical expertise. In turn, this encourages new users into the field of NMR spectroscopy. Unfortunately, many interesting samples in education and research, from beer to whole blood, contain significant amounts of water that require suppression in 1H NMR in order to recover sample information. However, due to the significant reduction in chemical shift dispersion in benchtop NMR systems, the sample signals are much closer to the water resonance compared to those in a corresponding high-field NMR spectrum. Therefore, simply translating solvent suppression experiments intended for high-field NMR instruments to benchtop NMR systems without careful consideration can be problematic. In this study, the effectiveness of several popular water suppression schemes was evaluated for benchtop NMR applications. Emphasis is placed on pulse sequences with no, or few, adjustable parameters making them easy to implement. These fall into two main categories: (1) those based on Pre-SAT including Pre-SAT, PURGE, NOESY-PR, and g-NOESY-PR and (2) those based on binomial inversion including JRS and W5-WATERGATE. Among these schemes, solvent suppression sequences based on Pre-SAT offer a general approach for easy solvent suppression for samples with higher analyte concentrations (sucrose standard and Redbull™). However, for human urine, binomial-like sequences were required. In summary, it is demonstrated that highly efficient water suppression approaches can be implemented on benchtop NMR systems in a simple manner, despite the limited spectral dispersion, further illustrating the potential for widespread implementation of these approaches in education and research.
Collapse
Affiliation(s)
| | - Ronald Soong
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Katelyn Downey
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Flavio C Kock
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | | | | | | | | | - Myrna Simpson
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Andre Simpson
- University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Lin X, Chen Y, Huang C, Feng X, Chen B, Huang Y, Chen Z. CTCOSY-JRES: A high-resolution three-dimensional NMR method for unveiling J-couplings. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107675. [PMID: 38631172 DOI: 10.1016/j.jmr.2024.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Two-dimensional (2D) J-resolved spectroscopy provides valuable information on J-coupling constants for molecular structure analysis by resolving one-dimensional (1D) spectra. However, it is challenging to decipher the J-coupling connectivity in 2D J-resolved spectra because the J-coupling connectivity cannot be directly provided. In addition, 2D homonuclear correlation spectroscopy (COSY) can directly elucidate molecular structures by tracking the J-coupling connectivity between protons. However, this method is limited by the problem of spectral peak crowding and is only suitable for simple sample systems. To fully understand the intuitive coupling relationship and coupling constant information, we propose a three-dimensional (3D) COSY method called CTCOSY-JRES (Constant-Time COrrelation SpectroscopY and J-REsolved Spectroscopy) in this paper. By combining the J-resolved spectrum with the constant-time COSY technique, a doubly decoupled COSY spectrum can be provided while preserving the J-coupling constant along an additional dimension, ensuring high-resolution analysis of J-coupling connectivity and J-coupling information. Moreover, compression sensing and fold-over correction techniques are introduced to accelerate experimental acquisition. The CTCOSY-JRES method has been successfully validated in a variety of sample systems, including industrial, agricultural, and biopharmaceutical samples, revealing complex coupling interactions and providing deeper insights into the resolution of molecular structures.
Collapse
Affiliation(s)
- Xiaoqing Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Yulei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Chengda Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaozhen Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Bo Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
9
|
Phuong J, Romero Z, Hasse H, Münnemann K. Polarization transfer methods for quantitative analysis of flowing mixtures with benchtop 13C NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:398-411. [PMID: 38114253 DOI: 10.1002/mrc.5417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023]
Abstract
Benchtop NMR spectroscopy is attractive for process monitoring; however, there are still drawbacks that often hamper its use, namely, the comparatively low spectral resolution in 1H NMR, as well as the low signal intensities and problems with the premagnetization of flowing samples in 13C NMR. We show here that all these problems can be overcome by using 1H-13C polarization transfer methods. Two ternary test mixtures (one with overlapping peaks in the 1H NMR spectrum and one with well-separated peaks, which was used as a reference) were studied with a 1 T benchtop NMR spectrometer using the polarization transfer sequence PENDANT (polarization enhancement that is nurtured during attached nucleus testing). The mixtures were analyzed quantitatively in stationary as well as in flow experiments by PENDANT enhanced 13C NMR experiments, and the results were compared with those from the gravimetric sample preparation and from standard 1H and 13C NMR spectroscopy. Furthermore, as a proxy for a process monitoring application, continuous dilution experiments were carried out, and the composition of the mixture was monitored in a flow setup by 13C NMR benchtop spectroscopy with PENDANT. The results demonstrate the high potential of polarization transfer methods for applications in quantitative process analysis with benchtop NMR instruments, in particular with flowing samples.
Collapse
Affiliation(s)
- Johnnie Phuong
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern, Germany
- Laboratory of Advanced Spin Engineering - Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Zeno Romero
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern, Germany
- Laboratory of Advanced Spin Engineering - Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern, Germany
- Laboratory of Advanced Spin Engineering - Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Kerstin Münnemann
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern, Germany
- Laboratory of Advanced Spin Engineering - Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
10
|
Bornemann-Pfeiffer M, Meyer K, Lademann J, Kraume M, Maiwald M. Contributions towards variable temperature shielding for compact NMR instruments. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:259-268. [PMID: 37438985 DOI: 10.1002/mrc.5379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
The application of compact NMR instruments to hot flowing samples or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is not designed for such temperature compensation. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements through thermography, a model predictive control was set up to minimise any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, extend the application of compact NMR instruments to flowing sample temperatures that differ from the magnet temperature.
Collapse
Affiliation(s)
- Martin Bornemann-Pfeiffer
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
- Chair of Chemical and Process Engineering, Technical University Berlin, Berlin, Germany
| | - Klas Meyer
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| | - Jeremy Lademann
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| | - Matthias Kraume
- Chair of Chemical and Process Engineering, Technical University Berlin, Berlin, Germany
| | - Michael Maiwald
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| |
Collapse
|
11
|
Araneda JF, Leclerc MC, Riegel SD. Benchtop nuclear magnetic resonance performance evaluation according to ASTM E691-22 on a population of instruments: Molar substitution determination in hydroxypropyl betadex as a case study for use in quality control environments. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:222-235. [PMID: 37021658 DOI: 10.1002/mrc.5351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The inclusion of quantitative nuclear magnetic resonance (qNMR) spectroscopy in industry has historically been stifled by a lack of accessibility, caused in-part by the large costs of traditional high-field spectrometers, the maintenance required for these, and the expertise necessary to manage and use them. In recent years, the emergence of benchtop NMR technology, an accessible, affordable, and automatable alternative, has led to a more feasible incorporation of NMR into quality control spaces, an area traditionally reserved for other techniques such as gas chromatography and liquid chromatography, which are routinely combined with detection techniques such as mass spectrometry. While these techniques are commonly used in analyzer-type applications using gold standard methods of analysis, wherein an instrument is dedicated to performing specific assays, this remains uncommon for NMR. Herein, we perform a full method verification using benchtop qNMR on a population of benchtop NMR instruments according to the ASTM designation E691-22, a standard used to determine the precision of a test method. To our knowledge, this is the first published example of this type of study for benchtop NMR spectroscopy. For this work, a total of five analysts performed assays on 23 different benchtop NMR instruments for the analysis of hydroxypropyl betadex according to the USP-NF method, and the results are compared using a variety of statistical methods. The results of this work demonstrate that benchtop NMR technology is effective and robust under repeatability and reproducibility conditions and is a powerful tool for these types of routine quality control analyses.
Collapse
Affiliation(s)
- Juan F Araneda
- Nanalysis Corp, 1-4600 5 St NE, Calgary, Alberta, T2E 7C3, Canada
| | | | - Susanne D Riegel
- Nanalysis Corp, 1-4600 5 St NE, Calgary, Alberta, T2E 7C3, Canada
| |
Collapse
|
12
|
Pereira TC, Cruz AG, Guimarães JT, Cravotto G, Flores EMM. Ultrasonication for honey processing and preservation: A brief overview. Food Res Int 2023; 174:113579. [PMID: 37986447 DOI: 10.1016/j.foodres.2023.113579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Honey is a food product consumed all over the world. Besides its nutritional properties, honey presents antibacterial, antioxidant, and wound-healing properties. To ensure that the final product meets qualitative and microbiological standards, honey treatment is of great importance. Conventional honey treatment is based on the heating of honey samples for decrystallization and bacteria and yeast inactivation. However, conventional heating can cause negative effects on honey quality, such as the formation of toxic compounds, reduction of enzyme activity, and loss of antioxidant and antimicrobial properties. The application of ultrasonic waves has demonstrated interesting effects on honey processing. Ultrasound (US) treatment can lead to the fragmentation of glucose crystals in crystalized honey and has little effect on its properties. In addition to inactivating microorganisms, US-assisted honey processing also preserves phenolic compounds content and antimicrobial properties. However, there is still limited information about honey sonication. The aim of the present review is to comprehensively show the possibilities of US application in honey processing and its effects on honey properties.
Collapse
Affiliation(s)
- Thiago C Pereira
- Departament of Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Adriano G Cruz
- Department of Food Technology, Federal University Fluminense, Niterói, Brazil
| | - Jonas T Guimarães
- Department of Food, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Erico M M Flores
- Departament of Chemistry, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
13
|
Telfah A, Bahti A, Kaufmann K, Ebel E, Hergenröder R, Suter D. Low-field NMR with multilayer Halbach magnet and NMR selective excitation. Sci Rep 2023; 13:21092. [PMID: 38036555 PMCID: PMC10689796 DOI: 10.1038/s41598-023-47689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
This study introduces a low-field NMR spectrometer (LF-NMR) featuring a multilayer Halbach magnet supported by a combined mechanical and electrical shimming system. This setup offers improved field homogeneity and sensitivity compared to spectrometers relying on typical Halbach and dipole magnets. The multilayer Halbach magnet was designed and assembled using three nested cylindrical magnets, with an additional inner Halbach layer that can be rotated for mechanical shimming. The coils and shim-kernel of the electrical shimming system were constructed and coated with layers of zirconia, thermal epoxy, and silver-paste resin to facilitate passive heat dissipation and ensure mechanical and thermal stability. Furthermore, the 7-channel shim coils were divided into two parts connected in parallel, resulting in a reduction of joule heating temperatures from 96.2 to 32.6 °C. Without the shimming system, the Halbach magnet exhibits a field inhomogeneity of approximately 140 ppm over the sample volume. The probehead was designed to incorporate a solenoidal mini coil, integrated into a single planar board. This design choice aimed to enhance sensitivity, minimize [Formula: see text] inhomogeneity, and reduce impedance discrepancies, transmission loss, and signal reflections. Consequently, the resulting linewidth of water within a 3 mm length and 2.4 mm inner diameter sample volume was 4.5 Hz. To demonstrate the effectiveness of spectral editing in LF-NMR applications at 29.934 MHz, we selectively excited hydroxyl and/or methyl protons in neat acetic acid using optimal control pulses calculated through the Krotov algorithm.
Collapse
Affiliation(s)
- Ahmad Telfah
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139, Dortmund, Germany
- Nanotechnology Center, The University of Jordan, Amman, 11942, Jordan
- Department of Physics, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Ahmed Bahti
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139, Dortmund, Germany.
- Experimental Physics III, TU Dortmund University, 44227, Dortmund, Germany.
| | - Katharina Kaufmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139, Dortmund, Germany
| | - Enno Ebel
- Fachhochschule Dortmund-University of Applied Sciences and Arts, 44139, Dortmund, Germany
| | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139, Dortmund, Germany
| | - Dieter Suter
- Experimental Physics III, TU Dortmund University, 44227, Dortmund, Germany.
| |
Collapse
|
14
|
Stocchero M, Cannet C, Napoli C, Demetrio E, Baraldi E, Giordano G. Low-Field Benchtop NMR to Discover Early-Onset Sepsis: A Proof of Concept. Metabolites 2023; 13:1029. [PMID: 37755309 PMCID: PMC10535760 DOI: 10.3390/metabo13091029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
Low-field (LF) benchtop NMR is a new family of instruments available on the market, promising for fast metabolic fingerprinting and targeted quantification of specific metabolites despite a lack of sensitivity and resolution with respect to high-field (HF) instruments. In the present study, we evaluated the possibility to use the urinary metabolic fingerprint generated using a benchtop LF NMR instrument for an early detection of sepsis in preterm newborns, considering a cohort of neonates previously investigated by untargeted metabolomics based on Mass Spectrometry (MS). The classifier obtained behaved similarly to that based on MS, even if different classes of metabolites were taken into account. Indeed, investigating the regions of interest mainly related to the development of sepsis by a HF NMR instrument, we discovered a set of relevant metabolites associated to sepsis. The set included metabolites that were not detected by MS, but that were reported as relevant in other published studies. Moreover, a strong correlation between LF and HF NMR spectra was observed. The high reproducibility of the NMR spectra, the interpretability of the fingerprint in terms of metabolites and the ease of use make LF benchtop NMR instruments promising in discovering early-onset sepsis.
Collapse
Affiliation(s)
- Matteo Stocchero
- Women's and Children's Health Department, University of Padova, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy
| | | | | | | | - Eugenio Baraldi
- Women's and Children's Health Department, University of Padova, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy
| | - Giuseppe Giordano
- Women's and Children's Health Department, University of Padova, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy
| |
Collapse
|
15
|
Galvan D, de Aguiar LM, Bona E, Marini F, Killner MHM. Successful combination of benchtop nuclear magnetic resonance spectroscopy and chemometric tools: A review. Anal Chim Acta 2023; 1273:341495. [PMID: 37423658 DOI: 10.1016/j.aca.2023.341495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Low-field nuclear magnetic resonance (NMR) has three general modalities: spectroscopy, imaging, and relaxometry. In the last twelve years, the modality of spectroscopy, also known as benchtop NMR, compact NMR, or just low-field NMR, has undergone instrumental development due to new permanent magnetic materials and design. As a result, benchtop NMR has emerged as a powerful analytical tool for use in process analytical control (PAC). Nevertheless, the successful application of NMR devices as an analytical tool in several areas is intrinsically linked to its coupling with different chemometric methods. This review focuses on the evolution of benchtop NMR and chemometrics in chemical analysis, including applications in fuels, foods, pharmaceuticals, biochemicals, drugs, metabolomics, and polymers. The review also presents different low-resolution NMR methods for spectrum acquisition and chemometric techniques for calibration, classification, discrimination, data fusion, calibration transfer, multi-block and multi-way.
Collapse
Affiliation(s)
- Diego Galvan
- Chemistry Institute, Universidade Federal de Mato Grosso do Sul (UFMS), 79070-900, Campo Grande, MS, Brazil; Chemistry Departament, Universidade Estadual de Londrina (UEL), 86.057-970, Londrina, PR, Brazil.
| | | | - Evandro Bona
- Post-Graduation Program of Food Technology (PPGTA), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Campo Mourão, 87301-899, Campo Mourão, PR, Brazil; Post-Graduation Program of Chemistry (PPGQ), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Curitiba, 80230-901, Curitiba, PR, Brazil
| | - Federico Marini
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mário Henrique M Killner
- Chemistry Departament, Universidade Estadual de Londrina (UEL), 86.057-970, Londrina, PR, Brazil
| |
Collapse
|
16
|
Tang B, Chong K, Ragauskas AJ, Evans R. Quantitative Low-Field 19 F Nuclear Magnetic Resonance Analysis of Carbonyl Groups in Pyrolysis Oils. CHEMSUSCHEM 2023; 16:e202300625. [PMID: 37318880 DOI: 10.1002/cssc.202300625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
Pyrolysis bio-oils, one of the products of lignocellulosic biomass pyrolysis, have the potential to be widely used as fuels. The chemical composition of bio-oils is very complicated as they contain hundreds, if not thousands, of different, mostly oxygen-containing, compounds with a wide distribution of physical properties, chemical structures, and concentrations. Detailed knowledge of bio-oil composition is crucial for optimizing both the pyrolysis processes and for any subsequent upgrading into a more viable fuel resource. Here we report the successful use of low-field, or benchtop, nuclear magnetic resonance (NMR) spectrometers in the analysis of pyrolysis oils. Pyrolysis oils from four different feedstocks were derivatized and analyzed using 19 F NMR techniques. The NMR results compare favorably with titrations for total carbonyl content. In addition, the benchtop NMR spectrometer proves able to reveal key spectral features, thus allowing the quantification of different carbonyl groups, such as aldehydes, ketones and quinones. Benchtop NMR spectrometers are typically compact, cheaper than their superconducting counterparts and do not require cryogens. Their use will make NMR analysis of pyrolysis oils easier and more accessible to a wide range of different potential users.
Collapse
Affiliation(s)
- Bridget Tang
- Aston Institute of Materials Research, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Katie Chong
- Energy and Bioproducts Research Institute, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee, 37996, United States
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37771, United States
| | - Robert Evans
- Aston Institute of Materials Research, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| |
Collapse
|
17
|
Dunlap JH, Ethier JG, Putnam-Neeb AA, Iyer S, Luo SXL, Feng H, Garrido Torres JA, Doyle AG, Swager TM, Vaia RA, Mirau P, Crouse CA, Baldwin LA. Continuous flow synthesis of pyridinium salts accelerated by multi-objective Bayesian optimization with active learning. Chem Sci 2023; 14:8061-8069. [PMID: 37538827 PMCID: PMC10395269 DOI: 10.1039/d3sc01303k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/19/2023] [Indexed: 08/05/2023] Open
Abstract
We report a human-in-the-loop implementation of the multi-objective experimental design via a Bayesian optimization platform (EDBO+) towards the optimization of butylpyridinium bromide synthesis under continuous flow conditions. The algorithm simultaneously optimized reaction yield and production rate (or space-time yield) and generated a well defined Pareto front. The versatility of EDBO+ was demonstrated by expanding the reaction space mid-campaign by increasing the upper temperature limit. Incorporation of continuous flow techniques enabled improved control over reaction parameters compared to common batch chemistry processes, while providing a route towards future automated syntheses and improved scalability. To that end, we applied the open-source Python module, nmrglue, for semi-automated nuclear magnetic resonance (NMR) spectroscopy analysis, and compared the acquired outputs against those obtained through manual processing methods from spectra collected on both low-field (60 MHz) and high-field (400 MHz) NMR spectrometers. The EDBO+ based model was retrained with these four different datasets and the resulting Pareto front predictions provided insight into the effect of data analysis on model predictions. Finally, quaternization of poly(4-vinylpyridine) with bromobutane illustrated the extension of continuous flow chemistry to synthesize functional materials.
Collapse
Affiliation(s)
- John H Dunlap
- Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson AFB OH 45433 USA
- UES, Inc. Dayton OH 45431 USA
| | - Jeffrey G Ethier
- Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson AFB OH 45433 USA
- UES, Inc. Dayton OH 45431 USA
| | - Amelia A Putnam-Neeb
- Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson AFB OH 45433 USA
- National Research Council Research Associate, Air Force Research Laboratory Wright-Patterson AFB OH 45433 USA
| | - Sanjay Iyer
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Shao-Xiong Lennon Luo
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Haosheng Feng
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | | | - Abigail G Doyle
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095 USA
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Richard A Vaia
- Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson AFB OH 45433 USA
| | - Peter Mirau
- Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson AFB OH 45433 USA
| | - Christopher A Crouse
- Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson AFB OH 45433 USA
| | - Luke A Baldwin
- Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson AFB OH 45433 USA
| |
Collapse
|
18
|
Wu B, Aspers RLEG, Kentgens APM, Zhao EW. Operando benchtop NMR reveals reaction intermediates and crossover in redox flow batteries. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 351:107448. [PMID: 37099853 DOI: 10.1016/j.jmr.2023.107448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/29/2023]
Abstract
Redox flow batteries (RFBs) provide a promising battery technology for grid-scale energy storage. High-field operando NMR analyses of RFBs have yielded useful insight into their working mechanisms and helped improve battery performance. Nevertheless, the high cost and large footprint of a high-field NMR system limit its implementation by a wider electrochemistry community. Here, we demonstrate an operando NMR study of an anthraquinone/ferrocyanide-based RFB on a low-cost and compact 43 MHz benchtop system. The chemical shifts induced by bulk magnetic susceptibility effects differ remarkably from those obtained in high-field NMR experiments, due to the different orientations of the sample relative to the external magnetic field. We apply Evans method to estimate the concentrations of paramagnetic anthraquinone radical and ferricyanide anions. The degradation of 2,6-dihydroxy-anthraquinone (DHAQ) to 2,6-dihydroxy-anthrone and 2,6-dihydroxy-anthranol has been quantified. We further identified the impurities commonly present in the DHAQ solution to be acetone, methanol and formamide. The crossover of DHAQ and impurity molecules through the sseparation Nafion® membrane was captured and quantified, and a negative correlation between the molecular size and crossover rate was established. We show that a benchtop NMR system has sufficient spectral and temporal resolution and sensitivity for the operando study of RFBs, and anticipate a broad application of operando benchtop NMR methods for studying flow electrochemistry targeted for different applications.
Collapse
Affiliation(s)
- Bing Wu
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands
| | - Ruud L E G Aspers
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands
| | - Arno P M Kentgens
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands
| | - Evan Wenbo Zhao
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands.
| |
Collapse
|
19
|
Alonso-Moreno P, Rodriguez I, Izquierdo-Garcia JL. Benchtop NMR-Based Metabolomics: First Steps for Biomedical Application. Metabolites 2023; 13:614. [PMID: 37233655 PMCID: PMC10223723 DOI: 10.3390/metabo13050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Nuclear magnetic resonance (NMR)-based metabolomics is a valuable tool for identifying biomarkers and understanding the underlying metabolic changes associated with various diseases. However, the translation of metabolomics analysis to clinical practice has been limited by the high cost and large size of traditional high-resolution NMR spectrometers. Benchtop NMR, a compact and low-cost alternative, offers the potential to overcome these limitations and facilitate the wider use of NMR-based metabolomics in clinical settings. This review summarizes the current state of benchtop NMR for clinical applications where benchtop NMR has demonstrated the ability to reproducibly detect changes in metabolite levels associated with diseases such as type 2 diabetes and tuberculosis. Benchtop NMR has been used to identify metabolic biomarkers in a range of biofluids, including urine, blood plasma and saliva. However, further research is needed to optimize the use of benchtop NMR for clinical applications and to identify additional biomarkers that can be used to monitor and manage a range of diseases. Overall, benchtop NMR has the potential to revolutionize the way metabolomics is used in clinical practice, providing a more accessible and cost-effective way to study metabolism and identify biomarkers for disease diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Pilar Alonso-Moreno
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
| | - Ignacio Rodriguez
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose Luis Izquierdo-Garcia
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
20
|
Song Z, Ohnishi Y, Osada S, Gan L, Jiang J, Hu Z, Kumeta H, Kumaki Y, Yokoi Y, Nakamura K, Ayabe T, Yamauchi K, Aizawa T. Application of Benchtop NMR for Metabolomics Study Using Feces of Mice with DSS-Induced Colitis. Metabolites 2023; 13:metabo13050611. [PMID: 37233652 DOI: 10.3390/metabo13050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Nuclear magnetic resonance (NMR)-based metabolomics, which comprehensively measures metabolites in biological systems and investigates their response to various perturbations, is widely used in research to identify biomarkers and investigate the pathogenesis of underlying diseases. However, further applications of high-field superconducting NMR for medical purposes and field research are restricted by its high cost and low accessibility. In this study, we applied a low-field, benchtop NMR spectrometer (60 MHz) employing a permanent magnet to characterize the alterations in the metabolic profile of fecal extracts obtained from dextran sodium sulfate (DSS)-induced ulcerative colitis model mice and compared them with the data acquired from high-field NMR (800 MHz). Nineteen metabolites were assigned to the 60 MHz 1H NMR spectra. Non-targeted multivariate analysis successfully discriminated the DSS-induced group from the healthy control group and showed high comparability with high-field NMR. In addition, the concentration of acetate, identified as a metabolite with characteristic behavior, could be accurately quantified using a generalized Lorentzian curve fitting method based on the 60 MHz NMR spectra.
Collapse
Affiliation(s)
- Zihao Song
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Yuki Ohnishi
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | | | - Li Gan
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Jiaxi Jiang
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Zhiyan Hu
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Hiroyuki Kumeta
- Advanced NMR Facility, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Yasuhiro Kumaki
- High-Resolution NMR Laboratory, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Yokoi
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Kazuo Yamauchi
- Instrumental Analysis Section, Okinawa Institute of Science and Technology, Onna 904-0495, Japan
| | - Tomoyasu Aizawa
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
- Advanced NMR Facility, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0808, Japan
| |
Collapse
|
21
|
Chen R, Singh P, Su S, Kocalar S, Wang X, Mandava N, Venkatesan S, Ferguson A, Rao A, Le E, Rojas C, Njoo E. Benchtop 19F Nuclear Magnetic Resonance (NMR) Spectroscopy Provides Mechanistic Insight into the Biginelli Condensation toward the Chemical Synthesis of Novel Trifluorinated Dihydro- and Tetrahydropyrimidinones as Antiproliferative Agents. ACS OMEGA 2023; 8:10545-10554. [PMID: 36969393 PMCID: PMC10034998 DOI: 10.1021/acsomega.3c00290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Benchtop nuclear magnetic resonance (NMR) spectroscopy has enabled the monitoring and optimization of chemical transformations while simultaneously providing kinetic, mechanistic, and structural insight into reaction pathways with quantitative precision. Moreover, benchtop NMR proton lock capabilities further allow for rapid and convenient monitoring of various organic reactions in real time, as the use of deuterated solvents is not required. The complementary role of 19F NMR-based kinetic monitoring in the fluorination of bioactive compounds has many benefits in the drug discovery process since fluorinated motifs additionally improve drug pharmacology. In this study, 19F NMR spectroscopy was utilized to monitor the synthesis of novel trifluorinated analogs of monastrol, a small molecule dihydropyrimidinone kinesin-Eg5 inhibitor, and to probe the mechanism of the Biginelli cyclocondensation, a multicomponent reaction used to synthesize dihydropyrimidinone and tetrahydropyrimidinones through a Bronsted- or Lewis-acid catalyzed cyclocondensation between ethyl acetoacetate, thiourea, and an aryl aldehyde. In the present study, a trifluorinated ketoester serves a dual purpose as being the source of the trifluoromethyl group in our fluorinated dihydropyrimidinones and as a spectroscopic handle for real-time reaction monitoring and tracking of reactive intermediates by 19F NMR. Further, upon extending this workflow to a diverse array of 3- and 4-substituted aryl aldehydes, we were able to derive Hammett linear free energy relationships (LFER) to determine stereoelectronic effects of para- and meta-substituted aryl aldehydes to corresponding reaction rates and mechanistic routes. In addition, we used density functional theory (DFT) calculations to corroborate our experimental results through the thermodynamic values of key intermediates in each mechanism. Finally, these studies culminate in the synthesis of a novel trifluorinated analog of monastrol and its subsequent biological evaluation in vitro. More broadly, we show an application of benchtop 19F NMR spectroscopy as an analytical tool in the real-time investigation of a mechanistically and chemically complex multicomponent reaction mixture.
Collapse
Affiliation(s)
- Rosie Chen
- Department of Chemistry,
Biochemistry and Physics, Aspiring Scholars
Directed Research Program, Fremont, California 94539, United States
| | - Pratyush Singh
- Department of Chemistry,
Biochemistry and Physics, Aspiring Scholars
Directed Research Program, Fremont, California 94539, United States
| | - Sarah Su
- Department of Chemistry,
Biochemistry and Physics, Aspiring Scholars
Directed Research Program, Fremont, California 94539, United States
| | - Selin Kocalar
- Department of Chemistry,
Biochemistry and Physics, Aspiring Scholars
Directed Research Program, Fremont, California 94539, United States
| | - Xina Wang
- Department of Chemistry,
Biochemistry and Physics, Aspiring Scholars
Directed Research Program, Fremont, California 94539, United States
| | - Neha Mandava
- Department of Chemistry,
Biochemistry and Physics, Aspiring Scholars
Directed Research Program, Fremont, California 94539, United States
| | - Srishti Venkatesan
- Department of Chemistry,
Biochemistry and Physics, Aspiring Scholars
Directed Research Program, Fremont, California 94539, United States
| | - Adrienne Ferguson
- Department of Chemistry,
Biochemistry and Physics, Aspiring Scholars
Directed Research Program, Fremont, California 94539, United States
| | - Aishi Rao
- Department of Chemistry,
Biochemistry and Physics, Aspiring Scholars
Directed Research Program, Fremont, California 94539, United States
| | - Emma Le
- Department of Chemistry,
Biochemistry and Physics, Aspiring Scholars
Directed Research Program, Fremont, California 94539, United States
| | - Casey Rojas
- Department of Chemistry,
Biochemistry and Physics, Aspiring Scholars
Directed Research Program, Fremont, California 94539, United States
| | - Edward Njoo
- Department of Chemistry,
Biochemistry and Physics, Aspiring Scholars
Directed Research Program, Fremont, California 94539, United States
| |
Collapse
|
22
|
Low-Field Benchtop NMR Spectroscopy for Quantification of Aldehydic Lipid Oxidation Products in Culinary Oils during Shallow Frying Episodes. Foods 2023; 12:foods12061254. [PMID: 36981180 PMCID: PMC10048026 DOI: 10.3390/foods12061254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: Toxic aldehydic lipid oxidation products (LOPs) arise from the thermo-oxidative deterioration of unsaturated fatty acids present in heated culinary oils when exposed to high-temperature frying episodes, and currently these effects represent a major public health concern. Objectives: In this study, we investigated the applications of low-field (LF), benchtop NMR analysis to detect and quantify toxic aldehyde species in culinary oils following their exposure to laboratory-simulated shallow frying episodes (LSSFEs) at 180 °C. Four culinary oils of variable fatty acid (FA) composition were investigated to determine the analytical capabilities of the LF NMR instrument. Oil samples were also analysed using a medium-field (400 MHz) NMR facility for comparative purposes. Results: Aldehydes were quantified as total saturated and total α,β-unsaturated classes. The time-dependent production of α,β-unsaturated aldehydes decreased in the order chia > rapeseed ≈ soybean > olive oils, as might be expected from their polyunsaturated and monounsaturated FA (PUFA and MUFA, respectively) contents. A similar but inequivalent trend was found for saturated aldehyde concentrations. These data strongly correlated with medium-field 1H NMR data obtained, although LF-determined levels were significantly lower in view of its inability to detect or quantify the more minor oxygenated aldehydic LOPs present. Lower limit of detection (LLOD) values for this spectrometer were 0.19 and 0.18 mmol/mol FA for n-hexanal and trans-2-octenal, respectively. Aldehydic lipid hydroperoxide precursors of aldehydic LOPs were also detectable in LF spectra. Conclusions: We therefore conclude that there is scope for application of these smaller, near-portable NMR facilities for commercial or ‘on-site’ quality control determination of toxic aldehydic LOPs in thermally stressed frying oils.
Collapse
|
23
|
Silva Terra AI, Rossetto M, Dickson CL, Peat G, Uhrín D, Halse ME. Enhancing 19F Benchtop NMR Spectroscopy by Combining para-Hydrogen Hyperpolarization and Multiplet Refocusing. ACS MEASUREMENT SCIENCE AU 2023; 3:73-81. [PMID: 36817010 PMCID: PMC9936801 DOI: 10.1021/acsmeasuresciau.2c00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/18/2023]
Abstract
Benchtop NMR spectrometers provide a promising alternative to high-field NMR for applications that are limited by instrument size and/or cost. 19F benchtop NMR is attractive due to the larger chemical shift range of 19F relative to 1H and the lack of background signal in most applications. However, practical applications of benchtop 19F NMR are limited by its low sensitivity due to the relatively weak field strengths of benchtop NMR spectrometers. Here we present a sensitivity-enhancement strategy that combines SABRE (Signal Amplification By Reversible Exchange) hyperpolarization with the multiplet refocusing method SHARPER (Sensitive, Homogeneous, And Resolved PEaks in Real time). When applied to a range of fluoropyridines, SABRE-SHARPER achieves overall signal enhancements of up to 5700-fold through the combined effects of hyperpolarization and line-narrowing. This approach can be generalized to the analysis of mixtures through the use of a selective variant of the SHARPER sequence, selSHARPER. The ability of SABRE-selSHARPER to simultaneously boost sensitivity and discriminate between two components of a mixture is demonstrated, where selectivity is achieved through a combination of selective excitation and the choice of polarization transfer field during the SABRE step.
Collapse
Affiliation(s)
| | | | - Claire L. Dickson
- EaStCHEM
School of Chemistry, University of Edinburgh, EdinburghEH9 3FJ, U.K.
| | - George Peat
- EaStCHEM
School of Chemistry, University of Edinburgh, EdinburghEH9 3FJ, U.K.
| | - Dušan Uhrín
- EaStCHEM
School of Chemistry, University of Edinburgh, EdinburghEH9 3FJ, U.K.
| | - Meghan E. Halse
- Department
of Chemistry, University of York, YorkYO10 5DD, U.K.
| |
Collapse
|
24
|
Draper SL, McCarney ER. Benchtop nuclear magnetic resonance spectroscopy in forensic chemistry. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:106-129. [PMID: 34286862 DOI: 10.1002/mrc.5197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique well known for its ability to elucidate structures and analyse mixtures and its quantitative nature. However, the cost and maintenance of high field NMR instruments prevent its widespread use by forensic chemists. The introduction of benchtop NMR spectrometers to the market operating at 40-80 MHz have a small footprint, are easy to use and cost much less than high field instruments, which makes them well suited to meet the needs of forensic chemists. These modern low field spectrometers are often capable of running multiple nuclei including 1 H, 13 C, 19 F and 31 P; 2D NMR experiments and advanced experiments such as solvent suppression and diffusion-ordered spectroscopy (DOSY) are possible. This has resulted in a number of publications in the area of forensic chemistry using benchtop NMR spectroscopy in the last 5 years that was previously missing from the literature. This mini review summarises this research including examples of benchtop NMR being used to identify and quantify compounds relevant to forensics and some advanced methods that may be used to overcome some of the limitations of these instruments for forensic analysis. Further validation and automation are likely required for widespread uptake of benchtop NMR in industry; however, it has been demonstrated as a useful complement to other analytical techniques commonplace of forensic laboratories.
Collapse
Affiliation(s)
- Sarah L Draper
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
25
|
Edgar M, Kuhn S, Page G, Grootveld M. Computational simulation of 1 H NMR profiles of complex biofluid analyte mixtures at differential operating frequencies: Applications to low-field benchtop spectra. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:1097-1112. [PMID: 34847251 DOI: 10.1002/mrc.5236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Estimations of accurate and reliable NMR chemical shift values, coupling patterns and constants within a reasonable timeframe remain significantly challenging, and the unavailability of reliable software strategies for the prediction of low-field (e.g., 60 MHz) spectra from those acquired at higher operating frequencies hampers their direct comparison. Hence, this study explored the applications of accessible software options for predicting these parameters in the 1 H NMR profiles of analytes as a function of magnetic field strength; this was performed for individual analytes and also for complex biofluid matrices featured in metabolomics investigations. For this purpose, results from the very first successful experimental acquisition and simulation of the 1 H NMR profiles of intact human salivary supernatant samples on a 60 MHz benchtop spectrometer were evaluated. Using salivary metabolite concentrations determined at 400 MHz, it was demonstrated that simulation of the low-field spectra of five biomolecules with the most prominent 1 H resonances detectable allowed multiple component fits to be applied to experimental spectra. Hence, these salivary 1 H NMR profiles could be successfully predicted throughout the 45-600 MHz operating frequency range. With the exception of propionate resonance multiplets, which revealed more complex coupling patterns at low field and required more astute computational and fitting options, valuable quantitative metabolomics data on salivary acetate, formate, methanol and glycine could be attained from low-field spectrometres. These studies are both timely and pertinent in view of the recent advancement of low-field benchtop NMR facilities for diagnostically significant biomarker tracking in biofluids. Experiments performed with added ammonium chloride to facilitate the release of salivary metabolites from biopolymer binding sites provided evidence that a small but nevertheless significant proportion of propionate, but not lactate, was bound to such sites, an observation of much relevance to biomolecule quantification in salivary metabolomics investigations.
Collapse
Affiliation(s)
- Mark Edgar
- Department of Chemistry, University of Loughborough, Loughborough, UK
| | - Stefan Kuhn
- School of Computer Science and Informatics, De Montfort University, Leicester, UK
| | - Georgina Page
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
26
|
Sobolev AP, Ingallina C, Spano M, Di Matteo G, Mannina L. NMR-Based Approaches in the Study of Foods. Molecules 2022; 27:7906. [PMID: 36432006 PMCID: PMC9697393 DOI: 10.3390/molecules27227906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
In this review, the three different NMR-based approaches usually used to study foodstuffs are described, reporting specific examples. The first approach starts with the food of interest that can be investigated using different complementary NMR methodologies to obtain a comprehensive picture of food composition and structure; another approach starts with the specific problem related to a given food (frauds, safety, traceability, geographical and botanical origin, farming methods, food processing, maturation and ageing, etc.) that can be addressed by choosing the most suitable NMR methodology; finally, it is possible to start from a single NMR methodology, developing a broad range of applications to tackle common food-related challenges and different aspects related to foods.
Collapse
Affiliation(s)
- Anatoly P. Sobolev
- Magnetic Resonance Laboratory “Segre-Capitani”, Institute for Biological Systems, CNR, Via Salaria, Km 29.300, 00015 Monterotondo, Italy
| | - Cinzia Ingallina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Mattia Spano
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Di Matteo
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Mannina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
27
|
Napolitano JG, Yang C, Conklin B, He Y, Ochoa JL. Toward the Development of Rapid, Automated Identification Tests for Neat Organic Liquids Using Benchtop NMR Instrumentation. Anal Chem 2022; 94:16095-16102. [DOI: 10.1021/acs.analchem.2c03276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- José G. Napolitano
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Cassie Yang
- Analytical Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Breanna Conklin
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yan He
- Analytical Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jessica L. Ochoa
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
28
|
Duchowny A, Ortiz Restrepo SA, Kern S, Adams A. Quantification of PVC plasticizer mixtures by compact proton NMR spectroscopy and indirect hard modeling. Anal Chim Acta 2022; 1229:340384. [PMID: 36156235 DOI: 10.1016/j.aca.2022.340384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
A novel approach is introduced for the fast, reliable, and low-cost recognition and quantification of plasticizers in plasticizers mixtures. It uses benchtop 1H NMR spectroscopy and indirect hard modeling, a mechanistic multivariate regression technique. The approach is demonstrated on five different PVC plasticizers having similar spectral signatures in proton NMR spectra. With only 16 scans per spectrum, i.e., 2 min 40 s measurement time, quantification limits down to 0.14 mg mL-1, or 0.35 wt% plasticizer in PVC, were achieved. Apart from the rapid data acquisition, the use of spectral hard modeling enabled the quantification of plasticizer mixtures while using only 4 to 6 training samples per component. Despite strongly overlapping signals in the NMR spectra, various plasticizers were differentiated and quantified, as exemplarily demonstrated for binary mixtures. A commercial PVC specimen with three different layers was also examined, confirming the applicability of benchtop NMR spectroscopy. Additionally, the use of the proposed method to validate official regulations concerning the plasticizer content in PVC is assessed. The presented results demonstrate that the combination of benchtop NMR and spectral hard modeling is a very promising analytical tool for rapid PVC plasticizer recognition and quantification with high analytical throughput. Moreover, the results indicate a high potential for benchtop NMR and spectral hard modeling for microchemical analysis, even for complex samples.
Collapse
Affiliation(s)
- Anton Duchowny
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Templergraben 55, 52056, Aachen, Germany
| | | | - Simon Kern
- S-PACT GmbH, Burtscheider Str. 1, 52064, Aachen, Germany
| | - Alina Adams
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Templergraben 55, 52056, Aachen, Germany.
| |
Collapse
|
29
|
Tadiello L, Drexler HJ, Beweries T. Low-Field Flow 31P NMR Spectroscopy for Organometallic Chemistry: On-Line Analysis of Highly Air-Sensitive Rhodium Diphosphine Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Tadiello
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hans-Joachim Drexler
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Torsten Beweries
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
30
|
Nasir M, Shoaib M, Hassan MU, Anwar MS. Design and implementation of a versatile magnetic field mapper for 3D volumes. HARDWAREX 2022; 12:e00356. [PMID: 36117542 PMCID: PMC9471446 DOI: 10.1016/j.ohx.2022.e00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic field mapping is an essential step in research, manufacturing, and maintenance. It helps one find out what's under the surface of any object and identify areas of high-flux density. Our magnetic field mapper is easy-to-use and has a user-friendly interface. It comprises a triple axis Hall effect-based magnetometer, meaning that it can measure the strength of magnetic fields in 3D. It is made up of three Hall sensors which are mounted on a triple-slot sensor probe which in turn is attached to translation stages allowing motion in three dimensions. The translation in X and Y motion (independent) is from - 50 to + 50 mm while in Z is from - 150 to + 150 mm with a nominal resolution of 0.1 mm. The height of the magnetometer is 1000 mm and it's originally designed for mapping the magnetic field of permanent magnet assemblies for low-field and mobile magnetic resonance scanners. Sometimes, you need to find out how strong the magnetic field in a particular region is or you may want to measure all the three components of the magnetic flux density to find out the homogeneity or isotropy of the field. In high resonant NMR spectroscopy, the magnetic field needs to be highly uniform and homogeneous and to assess such a field, we need a device which can measure the magnetic field, precisely, accurately and reproducibly. The proposed field mapper is useful in all of these situations. It is low cost and easy to manufacture. The maximum measurable magnetic field is ± 2 T. Furthermore, all the material required for building this device is easily accessible.
Collapse
Affiliation(s)
- Muhammad Nasir
- Department of Physics, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS) Opposite Sector U, DHA, Lahore 54792, Pakistan
| | - Muhammad Shoaib
- Department of Physics, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS) Opposite Sector U, DHA, Lahore 54792, Pakistan
| | - Muhammad Umar Hassan
- Department of Physics, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS) Opposite Sector U, DHA, Lahore 54792, Pakistan
| | - Muhammad Sabieh Anwar
- Department of Physics, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS) Opposite Sector U, DHA, Lahore 54792, Pakistan
| |
Collapse
|
31
|
Parameter Visualization of Benchtop Nuclear Magnetic Resonance Spectra toward Food Process Monitoring. Processes (Basel) 2022. [DOI: 10.3390/pr10071264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Low-cost and user-friendly benchtop low-field nuclear magnetic resonance (NMR) spectrometers are typically used to monitor food processes in the food industry. Because of excessive spectral overlap, it is difficult to characterize food mixtures using low-field NMR spectroscopy. In addition, for standard compounds, low-field benchtop NMR data are typically unavailable compared to high-field NMR data, which have been accumulated and are reusable in public databases. This work focused on NMR parameter visualization of the chemical structure and mobility of mixtures and the use of high-field NMR data to analyze benchtop NMR data to characterize food process samples. We developed a tool to easily process benchtop NMR data and obtain chemical shifts and T2 relaxation times of peaks, as well as transform high-field NMR data into low-field NMR data. Line broadening and time–frequency analysis methods were adopted for data processing. This tool can visualize NMR parameters to characterize changes in the components and mobilities of food process samples using benchtop NMR data. In addition, assignment errors were smaller when the spectra of standard compounds were identified by transferring the high-field NMR data to low-field NMR data rather than directly using experimentally obtained low-field NMR spectra.
Collapse
|
32
|
Sun Y, Kong L, Zhang AH, Han Y, Sun H, Yan GL, Wang XJ. A Hypothesis From Metabolomics Analysis of Diabetic Retinopathy: Arginine-Creatine Metabolic Pathway May Be a New Treatment Strategy for Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:858012. [PMID: 35399942 PMCID: PMC8987289 DOI: 10.3389/fendo.2022.858012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic retinopathy is one of the serious complications of diabetes, which the leading causes of blindness worldwide, and its irreversibility renders the existing treatment methods unsatisfactory. Early detection and timely intervention can effectively reduce the damage caused by diabetic retinopathy. Metabolomics is a branch of systems biology and a powerful tool for studying pathophysiological processes, which can help identify the characteristic metabolic changes marking the progression of diabetic retinopathy, discover potential biomarkers to inform clinical diagnosis and treatment. This review provides an update on the known metabolomics biomarkers of diabetic retinopathy. Through comprehensive analysis of biomarkers, we found that the arginine biosynthesis is closely related to diabetic retinopathy. Meanwhile, creatine, a metabolite with arginine as a precursor, has attracted our attention due to its important correlation with diabetic retinopathy. We discuss the possibility of the arginine-creatine metabolic pathway as a therapeutic strategy for diabetic retinopathy.
Collapse
Affiliation(s)
- Ye Sun
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Kong
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guang-Li Yan
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| |
Collapse
|
33
|
Zhao J, Wang M, Saroja SG, Khan IA. NMR technique and methodology in botanical health product analysis and quality control. J Pharm Biomed Anal 2022; 207:114376. [PMID: 34656935 DOI: 10.1016/j.jpba.2021.114376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Botanicals have played an important role in maintaining human health and well-being throughout history. During the past few decades in particular, the use of botanical health products has gained more popularity. Whereas, quality, safety and efficacy concerns have continuously been critical issues due to the intrinsic chemical complexity of botanicals. Chemical analytical technologies play an imperative role in addressing these issues. Nuclear magnetic resonance (NMR) spectroscopy has proven to be a powerful and useful tool for the investigation of botanical health products. In this review, NMR techniques and methodologies that have been successfully applied to the research and development of botanical health products in all stages, from plants to products, are discussed and summarized. Furthermore, applications of NMR together with other analytical techniques in a variety of domains of botanical health products investigation, such as plant species differentiation, adulteration detection, and bio-activity evaluation, are discussed and illustrated with typical examples. This article provides an overview of the potential uses of NMR techniques and methodologies in an attempt to further promote their recognition and utilization in the field of botanical health products analysis and quality control.
Collapse
Affiliation(s)
- Jianping Zhao
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, US Department of Agriculture, University, MS 38677, USA
| | - Seethapathy G Saroja
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
34
|
Grootveld M. Evidence-Based Challenges to the Continued Recommendation and Use of Peroxidatively-Susceptible Polyunsaturated Fatty Acid-Rich Culinary Oils for High-Temperature Frying Practises: Experimental Revelations Focused on Toxic Aldehydic Lipid Oxidation Products. Front Nutr 2022; 8:711640. [PMID: 35071288 PMCID: PMC8769064 DOI: 10.3389/fnut.2021.711640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023] Open
Abstract
In this manuscript, a series of research reports focused on dietary lipid oxidation products (LOPs), their toxicities and adverse health effects are critically reviewed in order to present a challenge to the mindset supporting, or strongly supporting, the notion that polyunsaturated fatty acid-laden frying oils are "safe" to use for high-temperature frying practises. The generation, physiological fates, and toxicities of less commonly known or documented LOPs, such as epoxy-fatty acids, are also considered. Primarily, an introduction to the sequential autocatalytic peroxidative degradation of unsaturated fatty acids (UFAs) occurring during frying episodes is described, as are the potential adverse health effects posed by the dietary consumption of aldehydic and other LOP toxins formed. In continuance, statistics on the dietary consumption of fried foods by humans are reviewed, with a special consideration of French fries. Subsequently, estimates of human dietary aldehyde intake are critically explored, which unfortunately are limited to acrolein and other lower homologues such as acetaldehyde and formaldehyde. However, a full update on estimates of quantities derived from fried food sources is provided here. Further items reviewed include the biochemical reactivities, metabolism and volatilities of aldehydic LOPs (the latter of which is of critical importance regarding the adverse health effects mediated by the inhalation of cooking/frying oil fumes); their toxicological actions, including sections focussed on governmental health authority tolerable daily intakes, delivery methods and routes employed for assessing such effects in animal model systems, along with problems encountered with the Cramer classification of such toxins. The mutagenicities, genotoxicities, and carcinogenic potential of aldehydes are then reviewed in some detail, and following this the physiological concentrations of aldehydes and their likely dietary sources are considered. Finally, conclusions from this study are drawn, with special reference to requirements for (1) the establishment of tolerable daily intake (TDI) values for a much wider range of aldehydic LOPs, and (2) the performance of future nutritional and epidemiological trials to explore associations between their dietary intake and the incidence and severity of non-communicable chronic diseases (NCDs).
Collapse
Affiliation(s)
- Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
35
|
Nitschke P, Lodge S, Hall D, Schaefer H, Spraul M, Embade N, Millet O, Holmes E, Wist J, Nicholson JK. Direct low field J-edited diffusional proton NMR spectroscopic measurement of COVID-19 inflammatory biomarkers in human serum. Analyst 2022; 147:4213-4221. [DOI: 10.1039/d2an01097f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A JEDI NMR pulse experiment incorporating relaxation, diffusion and J-modulation peak editing was implemented at a low field (80 MHz) spectrometer system to quantify two recently discovered plasma markers of SARS-CoV-2 infection and general inflammation.
Collapse
Affiliation(s)
- Philipp Nitschke
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA6150, Australia
| | - Samantha Lodge
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA6150, Australia
| | - Drew Hall
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA6150, Australia
| | - Hartmut Schaefer
- Bruker Biospin GmbH, Rudolf-Plank Strasse 23, 76275 Ettlingen, Germany
| | - Manfred Spraul
- Bruker Biospin GmbH, Rudolf-Plank Strasse 23, 76275 Ettlingen, Germany
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160, Derio, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160, Derio, Spain
| | - Elaine Holmes
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA6150, Australia
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Julien Wist
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA6150, Australia
- Chemistry Department, Universidad del Valle, Cali 76001, Colombia
| | - Jeremy K. Nicholson
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA6150, Australia
- Institute of Global Health Innovation, Faculty of Medicine, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London, SW7 2NA, UK
| |
Collapse
|
36
|
Wann AI, Percival BC, Woodason K, Gibson M, Vincent S, Grootveld M. Comparative 1H NMR-Based Chemometric Evaluations of the Time-Dependent Generation of Aldehydic Lipid Oxidation Products in Culinary Oils Exposed to Laboratory-Simulated Shallow Frying Episodes: Differential Patterns Observed for Omega-3 Fatty Acid-Containing Soybean Oils. Foods 2021; 10:2481. [PMID: 34681530 PMCID: PMC8535530 DOI: 10.3390/foods10102481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 12/31/2022] Open
Abstract
Soybean oil is the second most exported oil from the United States and South America, and is widely marketed as a cooking oil product containing numerous health benefits for human consumers. However, culinary oils with high polyunsaturated fatty acid (PUFA) contents, are known to produce high quantities of lipid oxidation products (LOPs), including toxic aldehydes upon exposure to high-temperature frying episodes. Previous studies have demonstrated causal links between aldehyde ingestion and inhalation with deleterious health perturbations, including mutagenic and carcinogenic effects, along with cardiovascular and teratogenic actions. In this study, aldehydic LOPs were detected and quantified in commercially available samples of soybean, avocado, corn and extra-virgin olive oil products before and after their exposure to laboratory-simulated laboratory frying episodes (LSSFEs) using high-resolution 1H nuclear magnetic resonance (NMR) analysis. Results acquired demonstrated that PUFA-rich soybean and corn oils gave rise to the highest concentrations of oil aldehydes from the thermo-oxidation of unsaturated fatty acids, whereas monounsaturated fatty acid (MUFA)-laden avocado and olive oils were much more resistant to this peroxidation process, as expected. Multivariate chemometrics analyses provided evidence that an orthogonal component pattern of aldehydic LOPs featuring low-molecular-mass n-alkanals such as propanal, and 4-oxo-alkanals, arises from thermo-oxidation of the ω-3 fatty acid (FA) linolenic acid (present in soybean oils at levels of ca. 7% (w/w)), was able to at least partially distinguish this oil from corresponding samples of thermally-stressed corn oil. Despite having a similar total PUFA level, corn oil has only a negligible ω-3 FA content, and therefore generated significantly lower levels of these two aldehyde classes. In view of the adverse health effects associated with dietary LOP ingestion, alternative methodologies for the incorporation of soybean oils within high-temperature frying practices are proposed.
Collapse
Affiliation(s)
- Angela I. Wann
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.I.W.); (B.C.P.); (K.W.); (M.G.); (S.V.)
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, River House, 53–57 High Street, Kingston upon Thames KT1 1LQ, UK
| | - Benita C. Percival
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.I.W.); (B.C.P.); (K.W.); (M.G.); (S.V.)
| | - Katy Woodason
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.I.W.); (B.C.P.); (K.W.); (M.G.); (S.V.)
| | - Miles Gibson
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.I.W.); (B.C.P.); (K.W.); (M.G.); (S.V.)
| | - Siâny Vincent
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.I.W.); (B.C.P.); (K.W.); (M.G.); (S.V.)
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.I.W.); (B.C.P.); (K.W.); (M.G.); (S.V.)
| |
Collapse
|
37
|
Anaraki MT, Lysak DH, Downey K, Kock FVC, You X, Majumdar RD, Barison A, Lião LM, Ferreira AG, Decker V, Goerling B, Spraul M, Godejohann M, Helm PA, Kleywegt S, Jobst K, Soong R, Simpson MJ, Simpson AJ. NMR spectroscopy of wastewater: A review, case study, and future potential. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:121-180. [PMID: 34852923 DOI: 10.1016/j.pnmrs.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
NMR spectroscopy is arguably the most powerful tool for the study of molecular structures and interactions, and is increasingly being applied to environmental research, such as the study of wastewater. With over 97% of the planet's water being saltwater, and two thirds of freshwater being frozen in the ice caps and glaciers, there is a significant need to maintain and reuse the remaining 1%, which is a precious resource, critical to the sustainability of most life on Earth. Sanitation and reutilization of wastewater is an important method of water conservation, especially in arid regions, making the understanding of wastewater itself, and of its treatment processes, a highly relevant area of environmental research. Here, the benefits, challenges and subtleties of using NMR spectroscopy for the analysis of wastewater are considered. First, the techniques available to overcome the specific challenges arising from the nature of wastewater (which is a complex and dilute matrix), including an examination of sample preparation and NMR techniques (such as solvent suppression), in both the solid and solution states, are discussed. Then, the arsenal of available NMR techniques for both structure elucidation (e.g., heteronuclear, multidimensional NMR, homonuclear scalar coupling-based experiments) and the study of intermolecular interactions (e.g., diffusion, nuclear Overhauser and saturation transfer-based techniques) in wastewater are examined. Examples of wastewater NMR studies from the literature are reviewed and potential areas for future research are identified. Organized by nucleus, this review includes the common heteronuclei (13C, 15N, 19F, 31P, 29Si) as well as other environmentally relevant nuclei and metals such as 27Al, 51V, 207Pb and 113Cd, among others. Further, the potential of additional NMR methods such as comprehensive multiphase NMR, NMR microscopy and hyphenated techniques (for example, LC-SPE-NMR-MS) for advancing the current understanding of wastewater are discussed. In addition, a case study that combines natural abundance (i.e. non-concentrated), targeted and non-targeted NMR to characterize wastewater, along with in vivo based NMR to understand its toxicity, is included. The study demonstrates that, when applied comprehensively, NMR can provide unique insights into not just the structure, but also potential impacts, of wastewater and wastewater treatment processes. Finally, low-field NMR, which holds considerable future potential for on-site wastewater monitoring, is briefly discussed. In summary, NMR spectroscopy is one of the most versatile tools in modern science, with abilities to study all phases (gases, liquids, gels and solids), chemical structures, interactions, interfaces, toxicity and much more. The authors hope this review will inspire more scientists to embrace NMR, given its huge potential for both wastewater analysis in particular and environmental research in general.
Collapse
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Flávio Vinicius Crizóstomo Kock
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Department of Chemistry, Federal University of São Carlos-SP (UFSCar), São Carlos, SP, Brazil
| | - Xiang You
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Rudraksha D Majumdar
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Andersson Barison
- NMR Center, Federal University of Paraná, CP 19081, 81530-900 Curitiba, PR, Brazil
| | - Luciano Morais Lião
- NMR Center, Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Venita Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Toronto M9P 3V6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl Jobst
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada.
| |
Collapse
|
38
|
Kikuchi J, Yamada S. The exposome paradigm to predict environmental health in terms of systemic homeostasis and resource balance based on NMR data science. RSC Adv 2021; 11:30426-30447. [PMID: 35480260 PMCID: PMC9041152 DOI: 10.1039/d1ra03008f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
The environment, from microbial ecosystems to recycled resources, fluctuates dynamically due to many physical, chemical and biological factors, the profile of which reflects changes in overall state, such as environmental illness caused by a collapse of homeostasis. To evaluate and predict environmental health in terms of systemic homeostasis and resource balance, a comprehensive understanding of these factors requires an approach based on the "exposome paradigm", namely the totality of exposure to all substances. Furthermore, in considering sustainable development to meet global population growth, it is important to gain an understanding of both the circulation of biological resources and waste recycling in human society. From this perspective, natural environment, agriculture, aquaculture, wastewater treatment in industry, biomass degradation and biodegradable materials design are at the forefront of current research. In this respect, nuclear magnetic resonance (NMR) offers tremendous advantages in the analysis of samples of molecular complexity, such as crude bio-extracts, intact cells and tissues, fibres, foods, feeds, fertilizers and environmental samples. Here we outline examples to promote an understanding of recent applications of solution-state, solid-state, time-domain NMR and magnetic resonance imaging (MRI) to the complex evaluation of organisms, materials and the environment. We also describe useful databases and informatics tools, as well as machine learning techniques for NMR analysis, demonstrating that NMR data science can be used to evaluate the exposome in both the natural environment and human society towards a sustainable future.
Collapse
Affiliation(s)
- Jun Kikuchi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Shunji Yamada
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
- Prediction Science Laboratory, RIKEN Cluster for Pioneering Research 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe 650-0047 Japan
- Data Assimilation Research Team, RIKEN Center for Computational Science 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
39
|
Abstract
Benchtop nuclear magnetic resonance (NMR) spectroscopy uses small permanent magnets to generate magnetic fields and therefore offers the advantages of operational simplicity and reasonable cost, presenting a viable alternative to high-field NMR spectroscopy. In particular, the use of benchtop NMR spectroscopy for rapid in-field analysis, e.g., for quality control or forensic science purposes, has attracted considerable attention. As benchtop NMR spectrometers are sufficiently compact to be operated in a fume hood, they can be efficiently used for real-time reaction and process monitoring. This review introduces the recent applications of benchtop NMR spectroscopy in diverse fields, including food science, pharmaceuticals, process and reaction monitoring, metabolomics, and polymer materials.
Collapse
|
40
|
Palma M, Bledsoe JW, Tavares LC, Romano N, Small BC, Viegas I, Overturf K. Digesta and Plasma Metabolomics of Rainbow Trout Strains with Varied Tolerance of Plant-Based Diets Highlights Potential for Non-Lethal Assessments of Enteritis Development. Metabolites 2021; 11:metabo11090590. [PMID: 34564406 PMCID: PMC8470503 DOI: 10.3390/metabo11090590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/12/2023] Open
Abstract
The replacement of fishmeal in aquafeeds is essential to the sustainability of aquaculture. Besides the procurement of alternative protein sources, fish can also be selected for better performance on plant-based alternative diets. Rainbow trout (Oncorhynchus mykiss) is one such species in which the strain ARS-Sel has been selected for higher growth and enhanced utilization when fed soy-based diets. The aim of this study was to compare fish growth and plasma and digesta metabolomes between ARS-Sel and two commercial strains (CS-1 and CS-2), when fed plant-protein (PM) and fishmeal-based (FM) diets, and to correlate them with the onset of enteritis. An NMR-metabolomics approach was taken to assess plasma and digesta metabolite profiles. Diet and strain showed significant effects on fish growth, with the ARS-Sel fish receiving the PM diet reaching the highest final weight at sampling. Multivariate analysis revealed differences between plasma and digesta metabolite profiles of ARS-Sel and CS (CS-1 considered together with CS-2) PM-fed groups in the early stages of enteritis development, which was confirmed by intestinal histology. As reported in previous studies, the ARS-Sel strain performed better than the commercial strains when fed the PM diet. Our findings also suggest that metabolomic profiles of plasma and digesta, samples of which can be obtained through non-lethal methods, offer valuable insight in monitoring the occurrence of enteritis in carnivorous aquaculture species due to plant-based diets.
Collapse
Affiliation(s)
- Mariana Palma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal;
| | - Jacob W. Bledsoe
- ARS-USDA, Hagerman Fish Culture Experiment Station, Hagerman, ID 83332, USA; (J.W.B.); (K.O.)
| | - Ludgero C. Tavares
- CIVG—Vasco da Gama Research Center, University School Vasco da Gama—EUVG, 3020-210 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Nicholas Romano
- Center of Excellence in Aquaculture & Fisheries Center, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA;
| | - Brian C. Small
- Aquaculture Research Institute, Hagerman Fish Culture Experiment Station, University of Idaho, Hagerman, ID 83332, USA;
| | - Ivan Viegas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal;
- Correspondence:
| | - Ken Overturf
- ARS-USDA, Hagerman Fish Culture Experiment Station, Hagerman, ID 83332, USA; (J.W.B.); (K.O.)
| |
Collapse
|
41
|
Trinklein TJ, Thapa M, Lanphere LA, Frost JA, Koresch SM, Aldstadt JH. Sequential injection analysis coupled to on-line benchtop proton NMR: Method development and application to the determination of synthetic cathinones in seized drug samples. Talanta 2021; 231:122355. [PMID: 33965022 DOI: 10.1016/j.talanta.2021.122355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Synthetic cathinones are a class of new psychoactive substances (NPS), an emerging group of analogues to traditional illicit drugs which are functionalized to circumvent legal regulations. The analytical investigation of NPS by traditional methods, such as gas chromatography-mass spectrometry (GC-MS), is challenging because newly emerging NPS may not yet appear in spectral libraries and because of the inability to determine certain positional isomers. Low-field or "benchtop" proton nuclear magnetic resonance spectroscopy (NMR) is an alternative that provides significant qualitative information but is particularly susceptible to matrix interferences. To this end, the development of a Sequential Injection Analysis (SIA) method which uses solid-phase extraction (SPE) to remove interfering matrix components prior to NMR determination is described. Factors including the type of SPE sorbent, column dimensions, and sample loading and elution conditions were examined. Several cathinone simulants (primary, secondary, and tertiary amines), "DEA exempt" cathinone standards, as well as authentic case samples were studied. The selectivity of the SIA-NMR-UV method was investigated against a broad range of "cutting agents" and was found to successfully remove all compounds tested with the exception of other basic drugs (e.g., acetaminophen). The limit of detection and reproducibility of the method were optimized using a Plackett-Burman screening design and Sequential Simplex optimization. Using a UV detector for dual (in series) quantification, the multivariate-optimized method produced a method limit of detection (3σ) for the cathinone simulant Phenylpropanolamine (PPA) of 23 μmol L-1, and a calibration model, in terms of UV peak area, of Area = 0.19 [PPA, mmol L-1] - 0.04. The optimized method generated ~2 mL of waste per day, and had a footprint of ~1 m2 Finally, the multivariate-optimized SIA-NMR-UV method was successfully applied to several more case samples and the cathinones were definitively identified.
Collapse
Affiliation(s)
- Timothy J Trinklein
- Department of Chemistry & Biochemistry, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - Malati Thapa
- Department of Chemistry & Biochemistry, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - Lexie A Lanphere
- Department of Chemistry & Biochemistry, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - John A Frost
- Molecular Spectroscopy Group, Thermo Fisher Scientific, Inc., Madison, WI, USA
| | | | - Joseph H Aldstadt
- Department of Chemistry & Biochemistry, University of Wisconsin Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
42
|
Kim HM, Kang JS. Metabolomic Studies for the Evaluation of Toxicity Induced by Environmental Toxicants on Model Organisms. Metabolites 2021; 11:485. [PMID: 34436425 PMCID: PMC8402193 DOI: 10.3390/metabo11080485] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Environmental pollution causes significant toxicity to ecosystems. Thus, acquiring a deeper understanding of the concentration of environmental pollutants in ecosystems and, clarifying their potential toxicities is of great significance. Environmental metabolomics is a powerful technique in investigating the effects of pollutants on living organisms in the environment. In this review, we cover the different aspects of the environmental metabolomics approach, which allows the acquisition of reliable data. A step-by-step procedure from sample preparation to data interpretation is also discussed. Additionally, other factors, including model organisms and various types of emerging environmental toxicants are discussed. Moreover, we cover the considerations for successful environmental metabolomics as well as the identification of toxic effects based on data interpretation in combination with phenotype assays. Finally, the effects induced by various types of environmental toxicants in model organisms based on the application of environmental metabolomics are also discussed.
Collapse
Affiliation(s)
- Hyung Min Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
43
|
Bahti A, Telfah A, Lambert J, Hergenröder R, Suter D. Optimal control pulses for subspectral editing in low field NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 328:106993. [PMID: 34029798 DOI: 10.1016/j.jmr.2021.106993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/14/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Low field NMR is an inexpensive and low footprint technique to obtain physical, chemical, electronic and structural information on small molecules, but suffers from poor spectral dispersion, especially when applied to the analysis of mixtures. Subspectral editing employing optimal control pulses is a suitable approach to cope with the severe signal superpositions in complex mixture spectra at low field. In this contribution, the use of optimal control pulses is demonstrated to be feasible at a field strength as low as 0.5 T. The optimal control pulse shapes were calculated using the Krotov algorithm. Downsizing the complexity of the algorithm from exponential to polynomial is shown to be possible by using a system approach with each system corresponding to a (small) molecule. In this way compound selective excitation pulses can be calculated. The signals of substructures of the cyclopentenone molecule were excited using optimal control pulses calculated by the Krotov algorithm demonstrating the feasibility of subspectral editing. Likewise, for a mixture of benzoic acid and alanine, editing of the signals of either benzoic acid or alanine employing optimal control pulses was shown to be possible. The obtained results are very promising and can be extended to the targeted analysis of complex mixtures such as biofluids or metabolic samples at low field strengths opening access for benchtop NMR to point of care settings.
Collapse
Affiliation(s)
- A Bahti
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany; Experimental Physics III, TU Dortmund University, 44227 Dortmund, Germany.
| | - A Telfah
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - J Lambert
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - R Hergenröder
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany.
| | - D Suter
- Experimental Physics III, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
44
|
Galvan D, Tanamati AAC, Casanova F, Danieli E, Bona E, Killner MHM. Compact low-field NMR spectroscopy and chemometrics applied to the analysis of edible oils. Food Chem 2021; 365:130476. [PMID: 34237562 DOI: 10.1016/j.foodchem.2021.130476] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/08/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
Compact nuclear magnetic resonance (NMR) spectroscopy combined with chemometric tools opens new perspectives for NMR use. This work compares the potential of 43, 60 and 400 MHz NMR spectroscopy for quality control of edible oils. Partial least squares regression (PLSR) and support vector regression (SVR) models built on the three NMR devices had equivalent performances for fatty acids and iodine value, and the models built with the low field spectra were equivalent to the high field. Moreover, performances for calibration indicated that most of the models built with medium/or high-resolution fields presented reproducibility values lower than the minimum accepted by the American Oil Chemists' Society (AOCS). Compared to classical methods, this new approach allows the application of medium resolution devices as a sample screening tool in analytical laboratories since it allows the spectrum obtention in a few seconds, without the need for sample preparation or the use of deuterated solvents.
Collapse
Affiliation(s)
- Diego Galvan
- Departamento de Química, Universidade Estadual de Londrina, 86.057-970 Londrina, Brazil.
| | - Ailey Aparecida Coelho Tanamati
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná, Câmpus - Campo Mourão, 87.301 899 Campo Mourão, Brazil
| | | | | | - Evandro Bona
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná, Câmpus - Campo Mourão, 87.301 899 Campo Mourão, Brazil
| | | |
Collapse
|
45
|
Compact NMR Spectroscopy for Low-Cost Identification and Quantification of PVC Plasticizers. Molecules 2021; 26:molecules26051221. [PMID: 33668752 PMCID: PMC7956471 DOI: 10.3390/molecules26051221] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Polyvinyl chloride (PVC), one of the most important polymer materials nowadays, has a large variety of formulations through the addition of various plasticizers to meet the property requirements of the different fields of applications. Routine analytical methods able to identify plasticizers and quantify their amount inside a PVC product with a high analysis throughput would promote an improved understanding of their impact on the macroscopic properties and the possible health and environmental risks associated with plasticizer leaching. In this context, a new approach to identify and quantify plasticizers employed in PVC commodities using low-field NMR spectroscopy and an appropriate non-deuterated solvent is introduced. The proposed method allows a low-cost, fast, and simple identification of the different plasticizers, even in the presence of a strong solvent signal. Plasticizer concentrations below 2 mg mL-1 in solution corresponding to 3 wt% in a PVC product can be quantified in just 1 min. The reliability of the proposed method is tested by comparison with results obtained under the same experimental conditions but using deuterated solvents. Additionally, the type and content of plasticizer in plasticized PVC samples were determined following an extraction procedure. Furthermore, possible ways to further decrease the quantification limit are discussed.
Collapse
|
46
|
Date Y, Wei F, Tsuboi Y, Ito K, Sakata K, Kikuchi J. Relaxometric learning: a pattern recognition method for T 2 relaxation curves based on machine learning supported by an analytical framework. BMC Chem 2021; 15:13. [PMID: 33610164 PMCID: PMC7897374 DOI: 10.1186/s13065-020-00731-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/15/2020] [Indexed: 11/10/2022] Open
Abstract
Nuclear magnetic resonance (NMR)-based relaxometry is widely used in various fields of research because of its advantages such as simple sample preparation, easy handling, and relatively low cost compared with metabolomics approaches. However, there have been no reports on the application of the T2 relaxation curves in metabolomics studies involving the evaluation of metabolic mixtures, such as geographical origin determination and feature extraction by pattern recognition and data mining. In this study, we describe a data mining method for relaxometric data (i.e., relaxometric learning). This method is based on a machine learning algorithm supported by the analytical framework optimized for the relaxation curve analyses. In the analytical framework, we incorporated a variable optimization approach and bootstrap resampling-based matrixing to enhance the classification performance and balance the sample size between groups, respectively. The relaxometric learning enabled the extraction of features related to the physical properties of fish muscle and the determination of the geographical origin of the fish by improving the classification performance. Our results suggest that relaxometric learning is a powerful and versatile alternative to conventional metabolomics approaches for evaluating fleshiness of chemical mixtures in food and for other biological and chemical research requiring a nondestructive, cost-effective, and time-saving method. ![]()
Collapse
Affiliation(s)
- Yasuhiro Date
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Feifei Wei
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuuri Tsuboi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kengo Ito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kenji Sakata
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. .,Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. .,Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
47
|
Araneda JF, Hui P, Leskowitz GM, Riegel SD, Mercado R, Green C. Lithium-7 qNMR as a method to quantify lithium content in brines using benchtop NMR. Analyst 2021; 146:882-888. [PMID: 33236728 DOI: 10.1039/d0an02088e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel 7Li quantitative NMR (qNMR) method to analyze lithium was developed to determine the lithium content in real brine samples using benchtop NMR instruments. The method was validated, and limits of detection and quantification of 40 and 100 ppm, respectively, were determined. Linearity, precision, and bias were also experimentally determined, and the results are presented herein. The results were compared to those obtained using atomic absorption (AA) spectroscopy, currently one of the few validated methods for the quantification of lithium. The method provides both accurate and precise results, as well as excellent correlation with AA. The absence of matrix effects, combined with no need for sample preparation or deuterated solvents, shows potential applicability in the mining industry.
Collapse
Affiliation(s)
- Juan F Araneda
- Nanalysis Corp., 1-4600 5 St NE, Calgary, AB T2E 7C3, Canada.
| | | | | | | | | | | |
Collapse
|
48
|
van Beek TA. Low-field benchtop NMR spectroscopy: status and prospects in natural product analysis †. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:24-37. [PMID: 31989704 DOI: 10.1002/pca.2921] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/14/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Since a couple of years, low-field (LF) nuclear magnetic resonance (NMR) spectrometers (40-100 MHz) have re-entered the market. They are used for various purposes including analyses of natural products. Similar to high-field instruments (300-1200 MHz), modern LF instruments can measure multiple nuclei and record two-dimensional (2D) NMR spectra. OBJECTIVE To review the commercial availability as well as applications, advantages, limitations, and prospects of LF-NMR spectrometers for the purpose of natural products analysis. METHOD Commercial LF instruments were compared. A literature search was performed for articles using and discussing modern LF-NMR. Next, the articles relevant to natural products were read and summarised. RESULTS Seventy articles were reviewed. Most appeared in 2018 and 2019. Low costs and ease of operation are most often mentioned as reasons for using LF-NMR. CONCLUSION As the spectral resolution of LF instruments is limited, they are not used for structure elucidation of new natural products but rather applied for quality control (QC), forensics, food and health research, process control and teaching. Chemometric data handling is valuable. LF-NMR is a rapidly developing niche and new instruments keep being introduced.
Collapse
Affiliation(s)
- Teris André van Beek
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, WE Wageningen, The Netherlands
| |
Collapse
|
49
|
Bernard GM, Michaelis VK. Lead-207 NMR spectroscopy at 1.4 T: Application of benchtop instrumentation to a challenging I = ½ nucleus. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1203-1212. [PMID: 32364623 DOI: 10.1002/mrc.5036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The practicality of obtaining liquid- and solid-state 207 Pb nuclear magnetic resonance (NMR) spectra with a low permanent-field magnet is investigated. Obtaining 207 Pb NMR spectra of salts in solution is shown to be viable for samples as dilute as 0.05 M. The concentration dependence of the 207 Pb chemical shifts for lead nitrate was investigated; the results are comparable with those obtained with high-field instruments. Likewise, the isotope effect of substituting D2 O for H2 O as the solvent was investigated and found to be comparable with those reported previously. Obtaining solid-state 207 Pb NMR spectra is challenging, but we demonstrate the ability to obtain such spectra for three unique solid samples. An axially symmetric 207 Pb powder pattern for lead nitrate and the powder pattern expected for lead chloride reveal linewidths dominated by shielding anisotropy, while 207 Pb-35/37 Cl J-coupling dominates in the methylammonium lead chloride perovskite material. Finally, recent innovations and the future potential of the instruments are considered.
Collapse
Affiliation(s)
- Guy M Bernard
- Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Vladimir K Michaelis
- Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
50
|
Nakashima Y. Development of a hand-held magnetic resonance sensor for the nondestructive quantification of fat and lean meat of fresh tuna. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00539-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
For the in-situ nondestructive fat quantification of fresh tuna meat, an original lightweight (5.7 kg) hand-held sensor that consists of a planar radio-frequency coil and a single-sided magnetic circuit was developed as a subunit of a time-domain proton magnetic resonance (MR) scanner system. The investigation depth of the sensor unit is 12 mm, which is sufficient to probe the meat section beneath thick skin with scales and the underlying subcutaneous fat layer of large fish such as tuna. The scanner was successfully applied in a laboratory to a fillet of a bluefin tuna (Thunnus thynnus) to measure meat sections 12 mm beneath the skin. The required measurement time was 100 s for each section. The results of MR scan at 11 locations on the fillet were compared with those of conventional destructive food analysis. Reasonable agreement with an error (root-mean-square residual) of as small as 1.8 wt% was obtained for fat quantification. The time-domain MR relaxometry for the same tuna fillet also allowed lean meat quantification with a small root-mean-square residual of 6.7 wt%.
Collapse
|