1
|
Han J, Zhu N, Sha J, Cai J, Cao H, Ye T, Hao L, Xu F. A highly selective electrochemical aptasensor for Pb 2+ based on molecular imprinting technology and tetrahedral DNA nanostructure. Mikrochim Acta 2025; 192:274. [PMID: 40172700 DOI: 10.1007/s00604-025-07101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/07/2025] [Indexed: 04/04/2025]
Abstract
A novel electrochemical biosensor for the detection of lead ions (Pb2+) with improved specificity and sensitivity was developed. The sensor design incorporated molecular imprinting technology, where chitosan was polymerized on the electrode surface to form a lead-specific cavity structure, thereby enhancing selectivity in complex sample matrices. Meanwhile, the tetrahedral DNA nanostructure was employed as the recognition probe to mitigate the entanglement issues commonly associated with single-stranded DNA, thus improving the sensitivity of the detection. The developed sensor exhibited a linear dynamic range from 0.050 to 2.000 μg/mL, with a limit of detection (LOD) of 0.0034 μg/mL. The aptasensor's efficacy was verified through the analysis of aquatic samples, demonstrating a high degree of reliability comparable to that of inductively coupled plasma mass spectrometry (ICP-MS).
Collapse
Affiliation(s)
- Jiaqi Han
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Nianxin Zhu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jiahao Sha
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyan Cai
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hui Cao
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Tai Ye
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Liling Hao
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Fei Xu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
2
|
Ning K, Wang Z, Qin H, Ahmed M, Azat S, Hu X, Xu Q, Yang D. Novel self-powered sandwich type Aptamer sensor for estrogen detection assisted with peroxidase mimic Cu-MOF. Food Chem 2024; 460:140780. [PMID: 39121774 DOI: 10.1016/j.foodchem.2024.140780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
A novel self-powered and flexible enzymatic biofuel cell (EBFC)-based aptasensor was developed for the sensitive and selective detection of 17 β-estradiol (E2). A flexible polyvinyl alcohol (PVA)-tannic acid‑carbon nanotube/reduced graphene oxide (PTCR) substrate was modified with gold nanoparticles (AuNPs) and thiolated aptamer 1 (Apt1) to yield Apt1@AuNPs/PTCR. A copper-based metal-organic framework (Cu-MOF) with peroxidase mimicking activity was employed to anchor glucose oxidase (GOD) and Apt2, forming the Cu-MOF@GOD/Apt2 tag. When E2 was recognized by Apt1, the anchored E2 quantitatively recognized Cu-MOF@GOD/Apt2 to create a Cu-MOF@GOD/Apt2-E2-Apt1 sandwich structure for glucose oxidation to generate electrical power. Increased E2 concentrations enhanced Cu-MOF@GOD/Apt2 capture and amplified the electrical signal. The electrical power increased linearly as the E2 concentration increased from 1.0 pM to 1.0 nM. The sensor was successfully applied to various food samples and blood serum detection. This work promoted the application of novel self-powered biosensors for food safety analysis.
Collapse
Affiliation(s)
- Kangping Ning
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zheng Wang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Honglan Qin
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Maruf Ahmed
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Seitkhan Azat
- Laboratory of Engineering Profile, Satbayev University, Almaty 050013, Kazakhstan
| | - Xiaoya Hu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qin Xu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Dandan Yang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
3
|
Li R, Li J, Lu X, Meng F, Chen J. Ultrasensitive Electrochemical Biosensor for Rapid Screening of Chemicals with Estrogenic Effect. BIOSENSORS 2024; 14:436. [PMID: 39329811 PMCID: PMC11430529 DOI: 10.3390/bios14090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Estrogenic chemicals are widely distributed and structurally diverse. They primarily disrupt estrogen-related metabolism in animals or humans by mimicking the agonistic receptor effects of natural estrogens, thereby influencing the transcription of estrogen receptors to regulate their quantity and sensitivity. This disruption of estrogen-related metabolism can lead to estrogen-related effects, posing risks to biological health, emphasizing the urgent need for simple and effective methods to screen compounds with estrogenic effects. Herein, a new electrochemical biological effect biosensor based on human estrogen receptor α (hERα) is developed, which uses hERα as the biorecognition element and employs the electroactive horseradish peroxidase (HRP) labeled 17β-estradiol (E2) multifunctional conjugate HRP-E2 as the signal-boosting element and ligand competition agent. Based on the specific ligand-receptor interaction principle between the target and nuclear receptor, by allowing the test compound to compete with HRP-E2 conjugate for binding to hERα and testing the electrocatalytic signal of the conjugate that fails to bind to the hERα estrogen receptor, rapid screening and quantitative detection of chemical substances with estrogenic effect have been achieved. The biosensor shows a wide linear range of 40 pM to 40 nM with a detection limit of 17 pM (S/N = 3) for E2, and the detection limit is 2 orders of magnitude better than that of the previously reported sensors. The biosensor based on ligand-receptor binding can not only quantitatively analyze the typical estrogen E2, but also evaluate the relative estrogen effect strength of other estrogen compounds, which has good stability and selectivity. This electrochemical sensing platform displays its promising potential for rapid screening and quantitative detection of chemicals with estrogenic effects.
Collapse
Affiliation(s)
- Ruixin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China; (R.L.); (J.C.)
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jin Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China;
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China; (R.L.); (J.C.)
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Fanli Meng
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China; (R.L.); (J.C.)
| |
Collapse
|
4
|
Wang X, Kong F, Liu Y, Lv S, Zhang K, Sun S, Liu J, Wang M, Cai X, Jin H, Yan S, Luo J. 17β-estradiol biosensors based on different bioreceptors and their applications. Front Bioeng Biotechnol 2024; 12:1347625. [PMID: 38357703 PMCID: PMC10864596 DOI: 10.3389/fbioe.2024.1347625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
17β-Estradiol (E2) is a critical sex steroid hormone, which has significant effects on the endocrine systems of both humans and animals. E2 is also believed to play neurotrophic and neuroprotective roles in the brain. Biosensors present a powerful tool to detect E2 because of their small, efficient, and flexible design. Furthermore, Biosensors can quickly and accurately obtain detection results with only a small sampling amount, which greatly meets the detection of the environment, food safety, medicine safety, and human body. This review focuses on previous studies of biosensors for detecting E2 and divides them into non-biometric sensors, enzyme biosensors, antibody biosensors, and aptamer biosensors according to different bioreceptors. The advantages, disadvantages, and design points of various bioreceptors for E2 detection are analyzed and summarized. Additionally, applications of different bioreceptors of E2 detection are presented and highlight the field of environmental monitoring, food and medicine safety, and disease detection in recent years. Finally, the development of E2 detection by biosensor is prospected.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shutong Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Jin
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing, China
| | - Shi Yan
- Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Qin Y, Liu S, Meng S, Liu D, You T. Split aptamer-based sandwich-type ratiometric biosensor for dual-modal photoelectrochemical and electrochemical detection of 17β-estradiol. Anal Chim Acta 2024; 1285:342030. [PMID: 38057051 DOI: 10.1016/j.aca.2023.342030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND As one of the most potent environmental estrogens, 17β-estradiol (E2), which can be enriched into organisms through the food chain and cause harmful biological effects in humans, has been frequently detected in the water environment of the world. High performance liquid chromatography (HPLC) and gas chromatograohy-mass spectrometry (GC/MS) have been widely used for quantification of E2. Despite excellent accuracy, tedious pretreatment and expensive instruments result in their limited application. It is clear that there is an urgent need to establish simple, sensitive and accurate methods for the determination of E2. RESULTS A split aptamer-based sandwich-type ratiometric biosensor based on split aptamer was developed by coupling photoelectrochemical and electrochemical assays for E2 detection. For analysis, the two fragments of split aptamer recognized E2 by forming sandwich structure, which triggered hybridization chain reaction (HCR) to produce double-stranded DNA (dsDNA) with CdTe quantum dots (QDs) labeled hairpin DNA. The resultant dsDNA can further absorb methylene blue (MB) to sensitize CdTe QDs for an enlarged photocurrent (IPEC) and output a redox current of IMB, and both of them acted as response signals for detection; [Fe(CN)6]3-/4- probe produced redox current of I[Fe(CN)6]3-/4- as reference signal. Using IMB/I[Fe(CN)6]3-/4- and IPEC/I[Fe(CN)6]3-/4- as yardsticks, the developed split aptamer-based sandwich-type ratiometric biosensor provides two linear ranges of 0.1-5000 pg mL-1 for IMB/I[Fe(CN)6]3-/4- and 0.1-10000 pg mL-1 for IPEC/I[Fe(CN)6]3-/4- with detection limits of 0.06 pg mL-1 and 0.02 pg mL-1, respectively. SIGNIFICANCE These results of the biosensor are benefiting from the coupling of photoelectrochemical (PEC) and electrochemical (EC) assays as well as the unique cooperative recognition mechanism of split aptamer. This method not only enabled the biosensor to be successfully applied to the determination of E2 in lake water, but also broadens the prospects for the realization of sensitive and accurate detection of E2.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shuda Liu
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shuyun Meng
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dong Liu
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Tianyan You
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
6
|
Gao T, Zhou Z, Cheng D, Liu Y, Yang H, Wang Y. Electrochemical biosensor for highly sensitive detection of cTnI based on a dual signal amplification strategy of ARGET ATRP and ROP. Talanta 2024; 266:125009. [PMID: 37531884 DOI: 10.1016/j.talanta.2023.125009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Cardiac troponin I (cTnI), a gold biomarker for the diagnosis of acute myocardial infarction (AMI), plays a vital role in the early diagnosis, treatment and prognosis analysis of AMI. In this paper, an electrochemical biosensor for the highly sensitive determination of cTnI was fabricated based on the dual signal amplification strategy of electron transfer atom transfer radical polymerization (ARGET ATRP) and ring-opening polymerization (ROP) for the first time. Briefly, the thiolate cTnI-aptamer 1, which was bonded to the electrode via Au-S bonds, specifically captured cTnI to the electrode surface. Then, cTnI-aptamer 2 (Apt2) was successfully introduced to the electrode surface to form Apt-cTnI-Apt sandwich structure. Subsequently, the initiator BIBB was connected to Apt2 through bromination reaction, and then the resulting ATRP polymer was employed as a macromolecular initiator for the succeeding reaction. Next, the monomers, α-amino acid-N-carboxylic acid anhydride ferrocene derivatives (NCA-Fc), used for the ROP reaction produced numerous electroactive polymers on the electrode surface. The dual action of ARGET ATRP and ROP significantly improved sensitivity of cTnI biosensor assay, the prepared biosensor displayed a wide linear detection range from 100 fg mL-1 to 100 ng mL-1, with a detection limit of 32.24 fg mL-1. The method exhibited favorable selectivity, simple operation and excellent stability. Furthermore, the biosensor still rendered satisfactory analytical performance in the detection of clinical serum samples, indicating the application potential in clinical diagnosis.
Collapse
Affiliation(s)
- Tianyu Gao
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhenbo Zhou
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Di Cheng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yanju Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Ying Wang
- Department of Geriatric Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
7
|
Chen Z, Liu Z, Liu J, Xiao X. Research progress in the detection of common foodborne hazardous substances based on functional nucleic acids biosensors. Biotechnol Bioeng 2023; 120:3501-3517. [PMID: 37723667 DOI: 10.1002/bit.28555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
With the further improvement of food safety requirements, the development of fast, highly sensitive, and portable methods for the determination of foodborne hazardous substances has become a new trend in the food industry. In recent years, biosensors and platforms based on functional nucleic acids, along with a range of signal amplification devices and methods, have been established to enable rapid and sensitive determination of specific substances in samples, opening up a new avenue of analysis and detection. In this paper, functional nucleic acid types including aptamers, deoxyribozymes, and G-quadruplexes which are commonly used in the detection of food source pollutants are introduced. Signal amplification elements include quantum dots, noble metal nanoparticles, magnetic nanoparticles, DNA walkers, and DNA logic gates. Signal amplification technologies including nucleic acid isothermal amplification, hybridization chain reaction, catalytic hairpin assembly, biological barcodes, and microfluidic system are combined with functional nucleic acids sensors and applied to the detection of many foodborne hazardous substances, such as foodborne pathogens, mycotoxins, residual antibiotics, residual pesticides, industrial pollutants, heavy metals, and allergens. Finally, the potential opportunities and broad prospects of functional nucleic acids biosensors in the field of food analysis are discussed.
Collapse
Affiliation(s)
- Zijie Chen
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Zhen Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Jingjing Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Xilin Xiao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, the People's Republic of China
| |
Collapse
|
8
|
Qian T, Bao J, Liu X, Oudeng G, Ye W. A "turn-on" fluorescence resonance energy transfer aptasensor based on carbon dots and gold nanoparticles for 17β-estradiol detection in sea salt. RSC Adv 2023; 13:27772-27781. [PMID: 37731834 PMCID: PMC10507534 DOI: 10.1039/d3ra05410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
17β-estradiol is abused in the food industry. Excess 17β-estradiol can disturb the endocrine system or cause many diseases including obesity, diabetes, cardiac-cerebral vascular disease, and cancers in the human body. A "turn-on" fluorescence resonance energy transfer (FRET) aptasensor based on carbon dots (CDs) and gold nanoparticles (AuNPs) was developed for the detection of 17β-estradiol. A thiol-modified oligonucleotide was conjugated to AuNPs and amino modified oligonucleotide was linked to CDs. The 17β-estradiol aptamer was hybridized with the two oligonucleotides, shortening the distance between CDs and AuNPs. With 360 nm UV light excitation, FRET occurred between CDs and AuNPs. The system was "turn-off". When 17β-estradiol was detected, the aptamer specifically bound to 17β-estradiol, and the FRET system was destroyed, leading to the "turn-on" phenomenon. The fluorescence intensity recovery was detected in the concentration range of 400 pM to 5.5 μM. The limit of detection (LOD) was 245 pM. The FRET aptasensor demonstrated good selectivity for 17β-estradiol detection. Reasonable spiked recoveries were obtained in sea salt samples. It showed the potential for estrogen detection in food safety and environmental applications.
Collapse
Affiliation(s)
- Tianrun Qian
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Food Science and Technology, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jia Bao
- The Science Technology Department of Zhejiang Province Hangzhou 310006 People's Republic of China
| | - Xuepeng Liu
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Gerile Oudeng
- Department of Hematology and Oncology, Shenzhen Children's Hospital Shenzhen 518000 People's Republic of China
| | - Weiwei Ye
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
- Ninghai ZJUT Academy of Science and Technology Ningbo 315615 People's Republic of China
| |
Collapse
|
9
|
Singh B, Bhat A, Dutta L, Pati KR, Korpan Y, Dahiya I. Electrochemical Biosensors for the Detection of Antibiotics in Milk: Recent Trends and Future Perspectives. BIOSENSORS 2023; 13:867. [PMID: 37754101 PMCID: PMC10527191 DOI: 10.3390/bios13090867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Antibiotics have emerged as ground-breaking medications for the treatment of infectious diseases, but due to the excessive use of antibiotics, some drugs have developed resistance to microorganisms. Because of their structural complexity, most antibiotics are excreted unchanged, polluting the water, soil, and natural resources. Additionally, food items are being polluted through the widespread use of antibiotics in animal feed. The normal concentrations of antibiotics in environmental samples typically vary from ng to g/L. Antibiotic residues in excess of these values can pose major risks the development of illnesses and infections/diseases. According to estimates, 300 million people will die prematurely in the next three decades (by 2050), and the WHO has proclaimed "antibiotic resistance" to be a severe economic and sociological hazard to public health. Several antibiotics have been recognised as possible environmental pollutants (EMA) and their detection in various matrices such as food, milk, and environmental samples is being investigated. Currently, chromatographic techniques coupled with different detectors (e.g., HPLC, LC-MS) are typically used for antibiotic analysis. Other screening methods include optical methods, ELISA, electrophoresis, biosensors, etc. To minimise the problems associated with antibiotics (i.e., the development of AMR) and the currently available analytical methods, electrochemical platforms have been investigated, and can provide a cost-effective, rapid and portable alternative. Despite the significant progress in this field, further developments are necessary to advance electrochemical sensors, e.g., through the use of multi-functional nanomaterials and advanced (bio)materials to ensure efficient detection, sensitivity, portability, and reliability. This review summarises the use of electrochemical biosensors for the detection of antibiotics in milk/milk products and presents a brief introduction to antibiotics and AMR followed by developments in the field of electrochemical biosensors based on (i) immunosensor, (ii) aptamer (iii) MIP, (iv) enzyme, (v) whole-cell and (vi) direct electrochemical approaches. The role of nanomaterials and sensor fabrication is discussed wherever necessary. Finally, the review discusses the challenges encountered and future perspectives. This review can serve as an insightful source of information, enhancing the awareness of the role of electrochemical biosensors in providing information for the preservation of the health of the public, of animals, and of our environment, globally.
Collapse
Affiliation(s)
- Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
- Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Abhijnan Bhat
- Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Lesa Dutta
- Department of Chemistry, Central University of Punjab, VPO Ghudda, Bathinda 151401, Punjab, India
| | - Kumari Riya Pati
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Yaroslav Korpan
- Institute of Molecular Biology and Genetics NAS of Ukraine, Department of Biomolecular Electronics, 03143 Kyiv, Ukraine
| | - Isha Dahiya
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak 124001, Haryana, India
| |
Collapse
|
10
|
Harnsoongnoen S, Loutchanwoot P, Srivilai P. Sensing High 17β-Estradiol Concentrations Using a Planar Microwave Sensor Integrated with a Microfluidic Channel. BIOSENSORS 2023; 13:bios13050541. [PMID: 37232902 DOI: 10.3390/bios13050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
The global issue of pollution caused by endocrine-disrupting chemicals (EDCs) has been gaining increasing attention. Among the EDCs of environmental concern, 17β-estradiol (E2) can produce the strongest estrogenic effects when it enters the organism exogenously through various routes and has the potential to cause harm, including malfunctions of the endocrine system and development of growth and reproductive disorders in humans and animals. Additionally, in humans, supraphysiological levels of E2 have been associated with a range of E2-dependent disorders and cancers. To ensure environmental safety and prevent potential risks of E2 to human and animal health, it is crucial to develop rapid, sensitive, low cost and simple approaches for detecting E2 contamination in the environment. A planar microwave sensor for E2 sensing is presented based on the integration of a microstrip transmission line (TL) loaded with a Peano fractal geometry with a narrow slot complementary split-ring resonator (PF-NSCSRR) and a microfluidic channel. The proposed technique offers a wide linear range for detecting E2, ranging from 0.001 to 10 mM, and can achieve high sensitivity with small sample volumes and simple operation methods. The proposed microwave sensor was validated through simulations and empirical measurements within a frequency range of 0.5-3.5 GHz. The E2 solution was delivered to the sensitive area of the sensor device via a microfluidic polydimethylsiloxane (PDMS) channel with an area of 2.7 mm2 and sample value of 1.37 µL and measured by a proposed sensor. The injection of E2 into the channel resulted in changes in the transmission coefficient (S21) and resonance frequency (Fr), which can be used as an indicator of E2 levels in solution. The maximum quality factor of 114.89 and the maximum sensitivity based on S21 and Fr at a concentration of 0.01 mM were 1746.98 dB/mM and 40 GHz/mM, respectively. Upon comparing the proposed sensor with the original Peano fractal geometry with complementary split-ring (PF-CSRR) sensors without a narrow slot, several parameters were evaluated, including sensitivity, quality factor, operating frequency, active area, and sample volume. The results showed that the proposed sensor exhibited an increased sensitivity of 6.08% and had a 40.72% higher quality factor, while the operating frequency, active area, and sample volume showed decreases of 1.71%, 25%, and 28.27%, respectively. The materials under tests (MUTs) were analyzed and categorized into groups using principal component analysis (PCA) with a K-mean clustering algorithm. The proposed E2 sensor has a compact size and simple structure that can be easily fabricated with low-cost materials. With the small sample volume requirement, fast measurement with a wide dynamic range, and a simple protocol, this proposed sensor can also be applied to measure high E2 levels in environmental, human, and animal samples.
Collapse
Affiliation(s)
- Supakorn Harnsoongnoen
- The Biomimicry for Sustainable Agriculture, Health, Environment and Energy Research Unit, Department of Physics, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150, Thailand
| | - Panida Loutchanwoot
- Department of Biology, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150, Thailand
| | - Prayook Srivilai
- Department of Biology, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150, Thailand
| |
Collapse
|
11
|
Jijana AN, Feleni U, Ndangili PM, Bilibana M, Ajayi RF, Iwuoha EI. Quantum Dot-Sensitised Estrogen Receptor-α-Based Biosensor for 17β-Estradiol. BIOSENSORS 2023; 13:242. [PMID: 36832008 PMCID: PMC9954354 DOI: 10.3390/bios13020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
17β-estradiol (E2) is an important natural female hormone that is also classified as an estrogenic endocrine-disrupting compound (e-EDC). It is, however, known to cause more damaging health effects compared to other e-EDCs. Environmental water systems are commonly contaminated with E2 that originates from domestic effluents. The determination of the level of E2 is thus very crucial in both wastewater treatment and in the aspect of environmental pollution management. In this work, an inherent and strong affinity of the estrogen receptor-α (ER-α) for E2 was used as a basis for the development of a biosensor that was highly selective towards E2 determination. A gold disk electrode (AuE) was functionalised with a 3-mercaptopropionic acid-capped tin selenide (SnSe-3MPA) quantum dot to produce a SnSe-3MPA/AuE electroactive sensor platform. The ER-α-based biosensor (ER-α/SnSe-3MPA/AuE) for E2 was produced by the amide chemistry of carboxyl functional groups of SnSe-3MPA quantum dots and the primary amines of ER-α. The ER-α/SnSe-3MPA/AuE receptor-based biosensor exhibited a formal potential (E0') value of 217 ± 12 mV, assigned as the redox potential for monitoring the E2 response using square-wave voltammetry (SWV). The response parameters of the receptor-based biosensor for E2 include a dynamic linear range (DLR) value of 1.0-8.0 nM (R2 = 0.99), a limit of detection (LOD) value of 1.69 nM (S/N = 3), and a sensitivity of 0.04 µA/nM. The biosensor exhibited high selectivity for E2 and good recoveries for E2 determination in milk samples.
Collapse
Affiliation(s)
- Abongile N. Jijana
- Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
- SensorLab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, P/Bag X6, Florida, Roodepoort, Johannesburg 1710, South Africa
| | - Peter M. Ndangili
- School of Chemistry and Material Science, The Technical University of Kenya, Nairobi P.O. Box 52428-00200, Kenya
| | - Mawethu Bilibana
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | - Rachel F. Ajayi
- SensorLab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Emmanuel I. Iwuoha
- SensorLab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
12
|
A novel electrochemical biosensor for detection of micrococcal nuclease in milk based on a U-shaped DNA structure. Talanta 2023. [DOI: 10.1016/j.talanta.2022.123989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Waifalkar PP, Noh D, Derashri P, Barage S, Oh E. Role of Estradiol Hormone in Human Life and Electrochemical Aptasensing of 17β-Estradiol: A Review. BIOSENSORS 2022; 12:1117. [PMID: 36551086 PMCID: PMC9776368 DOI: 10.3390/bios12121117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Estradiol is known as one of the most potent estrogenic endocrine-disrupting chemicals (EDCs) that may cause various health implications on human growth, metabolism regulation, the reproduction system, and possibly cancers. The detection of these EDCs in our surroundings, such as in foods and beverages, is important to prevent such harmful effects on humans. Aptamers are a promising class of bio-receptors for estradiol detection due to their chemical stability and high affinity. With the development of aptamer technology, electrochemical aptasensing became an important tool for estradiol detection. This review provides detailed information on various technological interventions in electrochemical estradiol detection in solutions and categorized the aptasensing mechanisms, aptamer immobilization strategies, and electrode materials. Moreover, we also discussed the role of estradiol in human physiology and signaling mechanisms. The level of estradiol in circulation is associated with normal and diseased conditions. The aptamer-based electrochemical sensing techniques are powerful and sensitive for estradiol detection.
Collapse
Affiliation(s)
- P. P. Waifalkar
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Daegwon Noh
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Poorva Derashri
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Panvel 410206, Maharashtra, India
| | - Sagar Barage
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Panvel 410206, Maharashtra, India
- Centre for Computational Biology and Translational Research, Amity University, Mumbai-Pune Expressway, Panvel 410206, Maharashtra, India
| | - Eunsoon Oh
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
14
|
Wang W, Zhai F, Xu F, Jia M. Enzyme-free amplified and one-step rapid detection of bisphenol A using dual-terminal labeled split aptamer probes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Rozi N, Hanifah SA, Abd Karim NH, Heng LY, Higashi SL, Ikeda M. Enhancing Electrochemical Biosensor Performance for 17β-Estradiol Determination with Short Split-Aptamers. BIOSENSORS 2022; 12:1077. [PMID: 36551044 PMCID: PMC9776344 DOI: 10.3390/bios12121077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Chronic exposure of 17β-estradiol (E2) even at low concentration can disorganize the endocrine system and lead to undesirable health problems in the long run. An electrochemical biosensor for rapid detection of E2 in water samples was successfully developed. The biosensor was based on split DNA aptamers attached onto poly (methacrylic acid-co-n butyl acrylate-succinimide) microspheres deposited on polypyrrole nanowires coated electrode (PPY/PMAA-NBA). The sandwich paired of split DNA aptamers used were truncated from 75 mer parent aptamers. These two strands of 12-mer and 14-mer split DNA aptamers were then immobilized on the PMAA-NBA microspheres. In the presence of E2, the split DNA aptamers formed an apt12-E2-apt14 complex, where the binding reaction on the electrode surface led to the detection of E2 by differential pulse voltammetry using ferrocyanide as a redox indicator. Under optimum conditions, the aptasensor detected E2 concentrations in the range of 1 × 10-4 M to 1 × 10-12 M (R2 = 0.9772) with a detection limit of 4.8 × 10-13 M. E2, which were successfully measured in a real sample with 97-104% recovery and showed a good correlation (R2 = 0.9999) with the established method, such as high-performance liquid chromatography. Interactions between short and sandwich-type aptamers (split aptamers) demonstrated improvement in aptasensor performance, especially the selectivity towards several potential interferents.
Collapse
Affiliation(s)
- Normazida Rozi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Sharina Abu Hanifah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Polymer Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nurul Huda Abd Karim
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Lee Yook Heng
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Sayuri L. Higashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masato Ikeda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
16
|
Are aptamer-based biosensing approaches a good choice for female fertility monitoring? A comprehensive review. Biosens Bioelectron 2022; 220:114881. [DOI: 10.1016/j.bios.2022.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/23/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
17
|
Automated classification of estrous stage in rodents using deep learning. Sci Rep 2022; 12:17685. [PMID: 36271290 PMCID: PMC9587051 DOI: 10.1038/s41598-022-22392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/13/2022] [Indexed: 01/18/2023] Open
Abstract
The rodent estrous cycle modulates a range of biological functions, from gene expression to behavior. The cycle is typically divided into four stages, each characterized by distinct hormone concentration profiles. Given the difficulty of repeatedly sampling plasma steroid hormones from rodents, the primary method for classifying estrous stage is by identifying vaginal epithelial cell types. However, manual classification of epithelial cell samples is time-intensive and variable, even amongst expert investigators. Here, we use a deep learning approach to achieve classification accuracy at expert level. Due to the heterogeneity and breadth of our input dataset, our deep learning approach ("EstrousNet") is highly generalizable across rodent species, stains, and subjects. The EstrousNet algorithm exploits the temporal dimension of the hormonal cycle by fitting classifications to an archetypal cycle, highlighting possible misclassifications and flagging anestrus phases (e.g., pseudopregnancy). EstrousNet allows for rapid estrous cycle staging, improving the ability of investigators to consider endocrine state in their rodent studies.
Collapse
|
18
|
Chang J, Zhou J, Gao M, Zhang H, Wang T. Research Advances in the Analysis of Estrogenic Endocrine Disrupting Compounds in Milk and Dairy Products. Foods 2022; 11:foods11193057. [PMID: 36230133 PMCID: PMC9563511 DOI: 10.3390/foods11193057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
Milk and dairy products are sources of exposure to estrogenic endocrine disrupting compounds (e-EDCs). Estrogenic disruptors can accumulate in organisms through the food chain and may negatively affect ecosystems and organisms even at low concentrations. Therefore, the analysis of e-EDCs in dairy products is of practical significance. Continuous efforts have been made to establish effective methods to detect e-EDCs, using convenient sample pretreatments and simple steps. This review aims to summarize the recently reported pretreatment methods for estrogenic disruptors, such as solid-phase extraction (SPE) and liquid phase microextraction (LPME), determination methods including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), Raman spectroscopy, and biosensors, to provide a reliable theoretical basis and operational method for e-EDC analysis in the future.
Collapse
|
19
|
Zhao L, He X, Liu Y, Wei M, Jin H. Development of a simple and rapid fluorescent aptasensor based on
DNA
tweezer. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luyang Zhao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Xing He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Yong Liu
- College of Chemistry and Chemical Engineering Henan University Kaifeng People's Republic of China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| |
Collapse
|
20
|
Liu D, Tang J, Xu H, Yuan K, Aryee AA, Zhang C, Meng H, Qu L, Li Z. Split-aptamer mediated regenerable temperature-sensitive electrochemical biosensor for the detection of tumour exosomes. Anal Chim Acta 2022; 1219:340027. [DOI: 10.1016/j.aca.2022.340027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/29/2022] [Indexed: 02/08/2023]
|
21
|
Xie Y, Wu S, Chen Z, Jiang J, Sun J. Rapid nanomolar detection of methamphetamine in biofluids via a reagentless electrochemical aptamer-based biosensor. Anal Chim Acta 2022; 1207:339742. [PMID: 35491035 DOI: 10.1016/j.aca.2022.339742] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/01/2022]
Abstract
The availability of sensing platforms able to rapidly measure abused drugs directly in biological fluids in a single step would allow performing drugged driving screening on the site. The achievement of this goal is extremely important for preventing and controlling drug abuse and crime incidence. Motived by this, we constructed a simple, cost-effective and reagentless electrochemical aptamer-based (EAB) sensor with methamphetamine (MAMP) as the target molecule. This EAB sensor produced a nanomolar level of detection accuracy in unprocessed or minimally processed bio-samples. Specifically, circular dichroic spectrum was used to confirm that the truncated aptamer from the original sequence would undergo large binding-induced conformational changes. We then engineered the aptamer to work in the EAB platform and the resulting sensor enabled sensitive and specific detection of MAMP with the detection limit of 30 nM in undiluted serum, 50 nM in undiluted urine and 20 nM in 50% saliva. The sensor has good recovery rate, implying this method has good reliability and repeatability. The detection limit is far below the clinical detection threshold, it would be hopefully used for preliminary screening of drugged driving in real world.
Collapse
Affiliation(s)
- Yu Xie
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Shenghong Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Zhimin Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Jinzhi Jiang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| | - Jianjun Sun
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
22
|
Xie P, Liu Z, Huang S, Chen J, Yan Y, Li N, Zhang M, Jin M, Shui L. A sensitive electrochemical sensor based on wrinkled mesoporous carbon nanomaterials for rapid and reliable assay of 17β-estradiol. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Wang X, Pei K, Sun H, Wang Q. A magnetic relaxation switch sensor for determination of 17β-estradiol in milk and eggs based on aptamer-functionalized Fe 3 O 4 @Au nanoparticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5697-5706. [PMID: 33786831 DOI: 10.1002/jsfa.11224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/08/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND A simple and rapid detection method for 17β-estradiol (E2 ) in complex food matrix is greatly desirable. A magnetic relaxation switch (MRS) sensor for detecting E2 based on the aptamer-functionalized gold-coated iron oxide (Fe3 O4 @Au) nanocomposite was designed in this study. Fe3 O4 @Au nanoparticles (NPs) played as a 'switch' between dispersed and aggregated states, while aptamer served as the recognition unit. RESULTS According to the sensing effect of monocomponent relaxation time (T2W ) for E2 , the volume ratio of aptamers to Fe3 O4 @Au, the sodium chloride (NaCl) concentration, the concentration of Fe3 O4 @Au@Apt, and reaction time were optimized to be 4:1, 0.03 mol L-1 , 4 μmol L-1 and 15 min, respectively. For the analysis of food sample, the E2 was quantified over a concentration range of 1 to 100 nmol L-1 with a detection limit of 7.6 nmol L-1 for milk samples, while a linearity range of 20 to 100 nmol L-1 and a detection limit of 8.57 nmol L-1 for egg samples. CONCLUSION These results exhibited that the MRS sensor could be a promising platform for the rapid detecting of E2 in food sample. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kaili Pei
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hanying Sun
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Qi Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
24
|
Chang Z, Zhu B, Liu J, Zhu X, Xu M, Travas-Sejdic J. Electrochemical aptasensor for 17β-estradiol using disposable laser scribed graphene electrodes. Biosens Bioelectron 2021; 185:113247. [PMID: 33962157 DOI: 10.1016/j.bios.2021.113247] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
17β-Estradiol (E2), the strongest of the three major physiological estrogens in females, is an important factor in the female reproductive system. The abnormal level of E2 causes health issues, such as weak bones, urinary tract infections and even depression. Here, we present a novel, sensitive and selective, electrochemical aptasensor for detection of 17β-estradiol (E2). The E2 recognition aptamer was split into two fragments: the first fragment, functionalised with adamantane, is attached to poly(β-cyclodextrin) (poly(β-CD))-modified electrode surface through host-guest interactions between the adamantane and poly(β-CD). The second fragment, labelled with gold nanoparticles, forms the stem-loop structure with the first fragment only in the presence of E2. That specific recognition process triggers the change in the electrochemical signal (a change in the peak current from reduction of AuNPs), recorded by means of differential pulse voltammetry (DPV). The feasibility of the sensing design was firstly investigated on the commercially available glass carbon electrodes (GCE), with achieved a linear detection range of 1.0 × 10-13 to 1.0 × 10-8 M and a limit of detection (LoD) 0.7 fM. The sensing methodology was then translated onto single-use, disposable, laser-scribed graphene electrodes (LSGE) on a plastic substrate. The dynamic sensing range of E2 on LSGE was found to be 1.0 × 10-13 to 1.0 × 10-9 M, with a LoD of 63.1 fM, comparable to these of GCE. The successful translation of the developed E2 aptasensor from GCE to low-cost, disposable LSGE highlights a potential of this sensing platform in commercial, portable sensing detection systems for E2 and similar targets of biological interest.
Collapse
Affiliation(s)
- Zhu Chang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Bicheng Zhu
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - JinJin Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Xu Zhu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
25
|
Feasible study on poly(Pyrrole-co-Pyrrole-3-Carboxylic Acid)-modified electrode for detection of 17β-Estradiol. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01597-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Kanoun O, Lazarević-Pašti T, Pašti I, Nasraoui S, Talbi M, Brahem A, Adiraju A, Sheremet E, Rodriguez RD, Ben Ali M, Al-Hamry A. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:4131. [PMID: 34208587 PMCID: PMC8233775 DOI: 10.3390/s21124131] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any compound that can undergo certain transformations within a potential window. It enables applications in multiple ion detection, mainly since these sensors are primarily non-specific. In this paper, we provide a survey of electrochemical sensors for the detection of water contaminants, i.e., pesticides, nitrate, nitrite, phosphorus, water hardeners, disinfectant, and other emergent contaminants (phenol, estrogen, gallic acid etc.). We focus on the influence of surface modification of the working electrodes by carbon nanomaterials, metallic nanostructures, imprinted polymers and evaluate the corresponding sensing performance. Especially for pesticides, which are challenging and need special care, we highlight biosensors, such as enzymatic sensors, immunobiosensor, aptasensors, and biomimetic sensors. We discuss the sensors' overall performance, especially concerning real-sample performance and the capability for actual field application.
Collapse
Affiliation(s)
- Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Tamara Lazarević-Pašti
- Department of Physical Chemistry, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Salem Nasraoui
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Malak Talbi
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Amina Brahem
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Anurag Adiraju
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Evgeniya Sheremet
- Research School of Physics, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Raul D. Rodriguez
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Mounir Ben Ali
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Ammar Al-Hamry
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| |
Collapse
|
27
|
Application of new aptasensor modified with nanocomposite for selective estradiol valerate determination in pharmaceutical and real biological samples. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02773-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
Farag MA, Tanios M, AlKarimy S, Ibrahim H, Guirguis HA. Biosensing approaches to detect potential milk contaminants: a comprehensive review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1169-1192. [PMID: 33989131 DOI: 10.1080/19440049.2021.1914864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Accidentally present contaminants or intentionally added adulterants in milk lead potentially to delivering not only unhealthy but seriously hazardous products. Thorough, fast and sensitive analytical tools are essential for monitoring of milk quality, and for screening of any objectionable contaminants. Biosensors represent an innovative, time-efficient and on-site solution to assess milk quality in addition to their specificity towards target analytes alongside high accuracy within such complex matrices. Most biosensors use antibodies, aptamers or enzymes as the bio-receptor and rely on optical, electrochemical or thermometric transduction to generate a signal. The simplest biosensors appear to be those based on a colorimetric assay, being simple and having a signal that can be detected visually. Electrochemical sensors are more specific and sensitive, though with more complicated designs, whereas thermometric sensors have not been thoroughly explored concerning biosensing contaminants in milk. This review discusses recent advances in the field of biosensors and analyzes the various methods of bio-recognition and transduction with regard to their advantages, limitations, and application to milk products. Additionally, challenges facing further development of these strategies to fulfil the increasing demand for fast and on-line milk quality control are also presented.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Marie Tanios
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Sara AlKarimy
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Hany Ibrahim
- Analytical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hania A Guirguis
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
29
|
Khajavian Z, Esmaelpourfarkhani M, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. A highly sensitive, simple and label-free fluorescent aptasensor for tobramycin sensing based on PicoGreen intercalation into DNA duplex regions of three-way junction origami. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Suhito IR, Koo KM, Kim TH. Recent Advances in Electrochemical Sensors for the Detection of Biomolecules and Whole Cells. Biomedicines 2020; 9:15. [PMID: 33375330 PMCID: PMC7824644 DOI: 10.3390/biomedicines9010015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Electrochemical sensors are considered an auspicious tool to detect biomolecules (e.g., DNA, proteins, and lipids), which are valuable sources for the early diagnosis of diseases and disorders. Advances in electrochemical sensing platforms have enabled the development of a new type of biosensor, enabling label-free, non-destructive detection of viability, function, and the genetic signature of whole cells. Numerous studies have attempted to enhance both the sensitivity and selectivity of electrochemical sensors, which are the most critical parameters for assessing sensor performance. Various nanomaterials, including metal nanoparticles, carbon nanotubes, graphene and its derivatives, and metal oxide nanoparticles, have been used to improve the electrical conductivity and electrocatalytic properties of working electrodes, increasing sensor sensitivity. Further modifications have been implemented to advance sensor platform selectivity and biocompatibility using biomaterials such as antibodies, aptamers, extracellular matrix (ECM) proteins, and peptide composites. This paper summarizes recent electrochemical sensors designed to detect target biomolecules and animal cells (cancer cells and stem cells). We hope that this review will inspire researchers to increase their efforts to accelerate biosensor progress-enabling a prosperous future in regenerative medicine and the biomedical industry.
Collapse
Affiliation(s)
- Intan Rosalina Suhito
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (I.R.S.); (K.-M.K.)
| | - Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (I.R.S.); (K.-M.K.)
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (I.R.S.); (K.-M.K.)
- Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung Ang University, Seoul 06974, Korea
| |
Collapse
|
31
|
Islam T, Hasan MM, Awal A, Nurunnabi M, Ahammad AJS. Metal Nanoparticles for Electrochemical Sensing: Progress and Challenges in the Clinical Transition of Point-of-Care Testing. Molecules 2020; 25:E5787. [PMID: 33302537 PMCID: PMC7763225 DOI: 10.3390/molecules25245787] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
With the rise in public health awareness, research on point-of-care testing (POCT) has significantly advanced. Electrochemical biosensors (ECBs) are one of the most promising candidates for the future of POCT due to their quick and accurate response, ease of operation, and cost effectiveness. This review focuses on the use of metal nanoparticles (MNPs) for fabricating ECBs that has a potential to be used for POCT. The field has expanded remarkably from its initial enzymatic and immunosensor-based setups. This review provides a concise categorization of the ECBs to allow for a better understanding of the development process. The influence of structural aspects of MNPs in biocompatibility and effective sensor design has been explored. The advances in MNP-based ECBs for the detection of some of the most prominent cancer biomarkers (carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), Herceptin-2 (HER2), etc.) and small biomolecules (glucose, dopamine, hydrogen peroxide, etc.) have been discussed in detail. Additionally, the novel coronavirus (2019-nCoV) ECBs have been briefly discussed. Beyond that, the limitations and challenges that ECBs face in clinical applications are examined and possible pathways for overcoming these limitations are discussed.
Collapse
Affiliation(s)
- Tamanna Islam
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Md. Mahedi Hasan
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Abdul Awal
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - A. J. Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| |
Collapse
|
32
|
Taghdisi SM, Danesh NM, Ramezani M, Alibolandi M, Nameghi MA, Gerayelou G, Abnous K. A novel electrochemical aptasensor for ochratoxin a sensing in spiked food using strand-displacement polymerase reaction. Talanta 2020; 223:121705. [PMID: 33303155 DOI: 10.1016/j.talanta.2020.121705] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Herein, an aptasensor is presented for electrochemical determination of ochratoxin A (OTA) based on nontarget-triggered production of rolling circular amplification (RCA). The surface of gold electrode is modified with thiolated complementary strand of aptamer (CS) as both capture probe and primer and OTA aptamer (Apt) as both sensing molecule and padlock probe (PLP). Following the addition of OTA, Apt/OTA conjugate is formed and detached from the electrode surface. Therefore, no RCA is produced after incubation of the modified electrode with T4 DNA ligase and phi29 DNA polymerase and a sharp current signal occurs. The analytical response ranged from 30 pM to 120 nM with detection limit of 5 pM. The designed aptasensor showed superior analytical performance in comparison with other approaches for OTA detection. Also, the approach exhibited good performance for OTA determination in spiked grape juice samples. The technique presented in this study, can be applied to develop sensors for detecting different toxins by replacing the relevant aptamers and complementary strands.
Collapse
Affiliation(s)
- Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Alinezhad Nameghi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Golara Gerayelou
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Coria‐Oriundo LL, Ceretti H, Roupioz Y, Battaglini F. Redox Polyelectrolyte Modified Gold Nanoparticles Enhance the Detection of Adenosine in an Electrochemical Split‐Aptamer Assay. ChemistrySelect 2020. [DOI: 10.1002/slct.202002488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lucy L. Coria‐Oriundo
- INQUIMAE (CONICET) Departamento de Química Inorgánica Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
- Facultad de Ciencias Universidad Nacional de Ingeniería Av. Túpac Amaru 210 Lima 25, Perú
| | - Helena Ceretti
- Universidad Nacional de Gral. Sarmiento, J. M. Gutiérrez 1150 B1613GSX, Los Polvorines, Prov. de Buenos Aires Argentina
| | - Yoann Roupioz
- Univ. Grenoble Alpes CNRS CEA SyMMES 38000 Grenoble France
| | - Fernando Battaglini
- INQUIMAE (CONICET) Departamento de Química Inorgánica Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
| |
Collapse
|
34
|
Tavana T, Rezvani AR, Karimi-Maleh H. Pt-Pd-doped NiO nanoparticle decorated at single-wall carbon nanotubes: An excellent, powerful electrocatalyst for the fabrication of An electrochemical sensor to determine nalbuphine in the presence of tramadol as two opioid analgesic drugs. J Pharm Biomed Anal 2020; 189:113397. [PMID: 32563934 DOI: 10.1016/j.jpba.2020.113397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/12/2023]
Abstract
In this study, a Pt-Pd-doped NiO nanoparticle decorated at the surface of single-wall carbon nanotubes (Pt-Pd/NiO-NPs/SWCNTs) was synthesized using a simple chemical precipitation method and characterized by XRD, TEM, and EDS methods. The results confirmed that Pt-Pd/NiO-NPs/SWCNTs were synthesized with good purity and at the nanoscale size. Moreover, a highly sensitive electroanalytical sensor was fabricated by incorporating synthesized Pt-Pd/NiO-NPs/SWCNT nanocomposites into a carbon paste electrode (CPE) in the presence of 1-ethyl-3-methylimidazolium methanesulfonate (EMICH3SO3-) as binder. The Pt-Pd/NiO-NPs/SWCNTs/EMICH3SO3-/CPE showed a powerful electro-catalytic activity for electro-oxidation of nalbuphine, and the results confirmed that the oxidation of nalbuphine was improved 6.34 times and relative oxidation potential was decreased about 110 mV compared to unmodified electrodes. The Pt-Pd/NiO-NPs/SWCNTs/EMICH3SO3-/CPE also showed good catalytic activity for the determination of nalbuphine in the presence of tramadol and the oxidation potential of these opioid analgesic drugs separated with ΔE =460 mV. In the final step, the Pt-Pd/NiO-NPs/SWCNTs/EMICH3SO3-/CPE was used to determine nalbuphine with a detection limit of 0.9 nM and tramadol with a detection limit of 50.0 nM in drug samples. The results confirmed the powerful and interesting ability of the sensor in the analysis of a real sample.
Collapse
Affiliation(s)
- Toktam Tavana
- Department of Chemistry, University of Sistan and Baluchestan, Iran
| | - Ali Reza Rezvani
- Department of Chemistry, University of Sistan and Baluchestan, Iran.
| | - Hassan Karimi-Maleh
- Nanostructure Based Biosensors Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
35
|
Recent advances in biosensors for the detection of estrogens in the environment and food. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Li Y, Liu L, Feng J, Ren X, Zhang Y, Yan T, Liu X, Wei Q. A self-powered photoelectrochemical cathodic aptasensor for the detection of 17β-estradiol based on FeOOH/In 2S 3 photoanode. Biosens Bioelectron 2020; 154:112089. [PMID: 32093896 DOI: 10.1016/j.bios.2020.112089] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 01/08/2023]
Abstract
In this work, a novel self-powered photoelectrochemical (PEC) aptasensor integrated photoanode and photocathode for the accurate and selective detection of 17β-estradiol (E2) was proposed for the first time. FeOOH/In2S3 heterojunction was built initially and used as a substitute for platinum (Pt) counter electrode. The matched band gap edge of FeOOH and In2S3 facilitated the transfer of photo-generate electrons to photoanode, while the holes left in the valence band of photocathode (CuInS2) can be attracted by the electrons flowed from the photoanode, which reduced the recombination of electron-hole pairs and promote the cathodic photocurrent. Under optimal conditions, the constructed cathodic aptasensor of E2 presented linear scope in 10 fg/mL-1 μg/mL with detection limit of 3.65 fg/mL. Besides, the cathodic aptasensor exhibited admiring selectivity, stability and reproducibility. This work verified that the cathodic photocurrent response can be regulated by the corresponding photoanode which provided a new design thought for PEC aptasensor on the basis of p-type semiconductor.
Collapse
Affiliation(s)
- Yuewen Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Lei Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jinhui Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yong Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Tao Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
37
|
Abnous K, Danesh NM, Nameghi MA, Ramezani M, Alibolandi M, Lavaee P, Taghdisi SM. An ultrasensitive electrochemical sensing method for detection of microcystin-LR based on infinity-shaped DNA structure using double aptamer and terminal deoxynucleotidyl transferase. Biosens Bioelectron 2019; 144:111674. [PMID: 31518788 DOI: 10.1016/j.bios.2019.111674] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
Abstract
This study develops a novel electrochemical sensing platform for microcystin-LR (MC-LR) detection. This aptasensor comprises the hybridization of double aptamer to its complementary strand (CS) on the surface of electrode and generation of an Infinity-shaped DNA structure in the absence of target by terminal deoxynucleotidyl transferase (TdT). The formation of Infinity-shaped construction leads to the development of an ultrasensitive aptasensor for MC-LR detection. In the presence of MC-LR, double aptamer is dissociated from its CS because of its high affinity for MC-LR and leaves the surface of electrode. Subsequently, no Infinity-shaped structure is formed following the introduction of TdT and a strong current signal is observed. The proposed method was employed for specific detection of MC-LR in the range from 60 pM to 1000 nM with a detection limit of 15 pM. The credibility of the approach was confirmed by detection of MC-LR in real samples like serum and tap water samples. This study provides a new aptasensor for detection of MC-LR as well as other toxin analysis.
Collapse
Affiliation(s)
- Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Morteza Alinezhad Nameghi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parirokh Lavaee
- Academic Center for Education, Culture and Research, Research Institute for Industrial Biotechnology, Industrial Biotechnology on Microorganisms, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
Wathudura PD, Kavinda T, Gunatilake SR. Determination of steroidal estrogens in food matrices: current status and future perspectives. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|