1
|
Alvarez-Mora I, Arturi K, Béen F, Buchinger S, El Mais AER, Gallampois C, Hahn M, Hollender J, Houtman C, Johann S, Krauss M, Lamoree M, Margalef M, Massei R, Brack W, Muz M. Progress, applications, and challenges in high-throughput effect-directed analysis for toxicity driver identification - is it time for HT-EDA? Anal Bioanal Chem 2025; 417:451-472. [PMID: 38992177 DOI: 10.1007/s00216-024-05424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The rapid increase in the production and global use of chemicals and their mixtures has raised concerns about their potential impact on human and environmental health. With advances in analytical techniques, in particular, high-resolution mass spectrometry (HRMS), thousands of compounds and transformation products with potential adverse effects can now be detected in environmental samples. However, identifying and prioritizing the toxicity drivers among these compounds remain a significant challenge. Effect-directed analysis (EDA) emerged as an important tool to address this challenge, combining biotesting, sample fractionation, and chemical analysis to unravel toxicity drivers in complex mixtures. Traditional EDA workflows are labor-intensive and time-consuming, hindering large-scale applications. The concept of high-throughput (HT) EDA has recently gained traction as a means of accelerating these workflows. Key features of HT-EDA include the combination of microfractionation and downscaled bioassays, automation of sample preparation and biotesting, and efficient data processing workflows supported by novel computational tools. In addition to microplate-based fractionation, high-performance thin-layer chromatography (HPTLC) offers an interesting alternative to HPLC in HT-EDA. This review provides an updated perspective on the state-of-the-art in HT-EDA, and novel methods/tools that can be incorporated into HT-EDA workflows. It also discusses recent studies on HT-EDA, HT bioassays, and computational prioritization tools, along with considerations regarding HPTLC. By identifying current gaps in HT-EDA and proposing new approaches to overcome them, this review aims to bring HT-EDA a step closer to monitoring applications.
Collapse
Affiliation(s)
- Iker Alvarez-Mora
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany.
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - Katarzyna Arturi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Frederic Béen
- KWR Water Research Institute, Nieuwegein, the Netherlands
- Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sebastian Buchinger
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BfG), Koblenz, Germany
| | | | | | - Meike Hahn
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BfG), Koblenz, Germany
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zürich, Switzerland
| | - Corine Houtman
- Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- The Water Laboratory, Haarlem, the Netherlands
| | - Sarah Johann
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| | - Marja Lamoree
- Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Maria Margalef
- Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Riccardo Massei
- Department of Monitoring and Exploration Technologies, Research Data Management Team (RDM), Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
- Department of Ecotoxicology, Group of Integrative Toxicology (iTox), Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| | - Werner Brack
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - Melis Muz
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| |
Collapse
|
2
|
Bergmann AJ, Masset T, Breider F, Dudefoi W, Schirmer K, Ferrari BJD, Vermeirssen ELM. Estrogenic, Genotoxic, and Antibacterial Effects of Chemicals from Cryogenically Milled Tire Tread. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1962-1972. [PMID: 39031710 DOI: 10.1002/etc.5934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 07/22/2024]
Abstract
Tire and road wear particles (TRWP) contain complex mixtures of chemicals and release them to the environment, and potential toxic effects of these chemicals still need to be characterized. We used a standardized surrogate for TRWP, cryogenically milled tire tread (CMTT), to isolate and evaluate effects of tire-associated chemicals. We examined organic chemical mixtures extracted and leached from CMTT for the toxicity endpoints genotoxicity, estrogenicity, and inhibition of bacterial luminescence. The bioassays were performed after chromatographic separation on high-performance thin-layer chromatography (HPTLC) plates. Extracts of CMTT were active in all three HPTLC bioassays with two estrogenic zones, two genotoxic zones, and two zones inhibiting bacterial luminescence. Extracts of CMTT artificially aged with thermooxidation were equally bioactive in each HPTLC bioassay. Two types of aqueous leachates of unaged CMTT, simulating either digestion by fish or contact with sediment and water, contained estrogenic chemicals and inhibitors of bacterial luminescence with similar profiles to those of CMTT extracts. Of 11 tested tire-associated chemicals, two were estrogenic, three were genotoxic, and several inhibited bacterial luminescence. 1,3-Diphenylguanidine, transformation products of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, and benzothiazoles were especially implicated through comparison to HPTLC retention factors in the CMTT samples. Other bioactive bands in CMTT samples did not correspond to any target chemicals. Tire particles clearly contain and can leach complex mixtures of toxic chemicals to the environment. Although some known chemicals contribute to estrogenic, genotoxic, and antibacterial hazards, unidentified toxic chemicals are still present and deserve further investigation. Overall, our study expands the understanding of potential adverse effects from tire particles and helps improve the link between those effects and the responsible chemicals. Environ Toxicol Chem 2024;43:1962-1972. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Alan J Bergmann
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland
| | - T Masset
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - F Breider
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - W Dudefoi
- Department Environmental Toxicology, Eawag, Dübendorf, Switzerland
| | - K Schirmer
- Department Environmental Toxicology, Eawag, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETHZ, Zürich, Switzerland
- Laboratory of Environmental Toxicology, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - B J D Ferrari
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland
- Swiss Centre for Applied Ecotoxicology, Lausanne, Switzerland
| | | |
Collapse
|
3
|
Rosenberger T, Bell AM, Reifferscheid G, Smith KEC, Schäffer A, Ternes TA, Buchinger S. Extrapolation of cytotoxic masked effects in planar in vitro assays. Anal Bioanal Chem 2024; 416:3519-3532. [PMID: 38656365 PMCID: PMC11525312 DOI: 10.1007/s00216-024-05302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
The masking of specific effects in in vitro assays by cytotoxicity is a commonly known phenomenon. This may result in a partial or complete loss of effect signals. For common in vitro assays, approaches for identifying and quantifying cytotoxic masking are partly available. However, a quantification of cytotoxicity-affected signals is not possible. As an alternative, planar bioassays that combine high-performance thin layer chromatography with in vitro assays, such as the planar yeast estrogen screen (p-YES), might allow for a quantification of cytotoxically affected signals. Affected signals form a typical ring structure with a supressed or completely lacking centre that results in a double peak chromatogram. This study investigates whether these double peaks can be used for fitting a peak function to extrapolate the theoretical, unaffected signals. The precision of the modelling was evaluated for four individual peak functions, using 42 ideal, undistorted peaks from estrogenic model compounds in the p-YES. Modelled ED50-values from bisphenol A (BPA) experiments with cytotoxically disturbed signals were 13 times higher than for the apparent data without compensation for cytotoxicity (320 ± 63 ng versus 24 ± 17 ng). This finding has a high relevance for the modelling of mixture effects according to concentration addition that requires unaffected, complete dose-response relationships. Finally, we applied the approach to results of a p-YES assay on leachate samples of an elastomer material used in water engineering. In summary, the fitting approach enables the quantitative evaluation of cytotoxically affected signals in planar in vitro assays and also has applications for other fields of chemical analysis like distorted chromatography signals.
Collapse
Affiliation(s)
- Timothy Rosenberger
- Department G - Qualitative Hydrology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Anna Maria Bell
- Department G - Qualitative Hydrology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Georg Reifferscheid
- Department G - Qualitative Hydrology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Kilian E C Smith
- Environmental Chemistry - Department of Water, Environment, Construction and Safety, University of Applied Sciences Magdeburg-Stendal, Breitscheidstraße 2, 39114, Magdeburg, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Thomas A Ternes
- Department G - Qualitative Hydrology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Sebastian Buchinger
- Department G - Qualitative Hydrology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany.
| |
Collapse
|
4
|
Ronzheimer A, Ringelmann AE, Morlock GE. Fast and sustainable planar yeast-based bioassay for endocrine disruptors in complex mixtures: Start of cell cultivation to result within one day. Talanta 2024; 272:125746. [PMID: 38447467 DOI: 10.1016/j.talanta.2024.125746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
High-performance thin-layer chromatography hyphenated with planar multiplex bioassays and high-resolution tandem mass spectrometry contributes to the non-target detection or even identification of active compounds in complex mixtures such as food, feed, cosmetics, commodities, and environmental samples. It can be used to discover previously unknown harmful or active substances in complex samples and to tentatively assign molecular formulas. This method is already faster than the commonly used in vitro assays along with liquid chromatographic separations, but overnight cell cultivation still prevents a planar bioassay from being performed within one day. There is also still potential for optimization in terms of sustainability. To achieve this, the planar bioassay protocols for the detection of androgen-like and estrogen-like compounds were harmonized. The successful minimization of the cell culture volume enabled accelerated cell cultivation, which allowed the bioassay to be performed within one day. This was considered a milestone achieved, as up to 23 samples per plate can now be analyzed from the start of cultivation to the biological endpoint on the same day. Doubling the substrate amount and increasing the pH of the silica gel layer led to a more sensitive and selective bioassay due to the enhanced fluorescence of the formed end-product. The faster and more sustainable bioassay protocol was applied to complex samples such as sunscreen and red wine to detect estrogen-like compounds. The developed method was validated by comparison with a standard method.
Collapse
Affiliation(s)
- Alisa Ronzheimer
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Anne E Ringelmann
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gertrud E Morlock
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Senckenbergstr. 3, 35390, Giessen, Germany.
| |
Collapse
|
5
|
Abu-Rmailah N, Moscovici L, Riegraf C, Atias H, Buchinger S, Reifferscheid G, Belkin S. Enhanced Detection of Estrogen-like Compounds by Genetically Engineered Yeast Sensor Strains. BIOSENSORS 2024; 14:193. [PMID: 38667186 PMCID: PMC11048378 DOI: 10.3390/bios14040193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
The release of endocrine-disrupting compounds (EDCs) to the environment poses a health hazard to both humans and wildlife. EDCs can activate or inhibit endogenous endocrine functions by binding hormone receptors, leading to potentially adverse effects. Conventional analytical methods can detect EDCs at a high sensitivity and precision, but are blind to the biological activity of the detected compounds. To overcome this limitation, yeast-based bioassays have previously been developed as a pre-screening method, providing an effect-based overview of hormonal-disruptive activity within the sample prior to the application of analytical methods. These yeast biosensors express human endocrine-specific receptors, co-transfected with the relevant response element fused to the specific fluorescent protein reporter gene. We describe several molecular manipulations of the sensor/reporter circuit in a Saccharomyces cerevisiae bioreporter strain that have yielded an enhanced detection of estrogenic-like compounds. Improved responses were displayed both in liquid culture (96-well plate format) as well as in conjunction with sample separation using high-performance thin-layer chromatography (HPTLC). The latter approach allows for an assessment of the biological effect of individual sample components without the need for their chemical identification at the screening stage.
Collapse
Affiliation(s)
- Nidaa Abu-Rmailah
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (N.A.-R.); (L.M.); (H.A.)
| | - Liat Moscovici
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (N.A.-R.); (L.M.); (H.A.)
| | - Carolin Riegraf
- Federal Institute of Hydrology (BfG), Department Biochemistry, Ecotoxicology, 56068 Koblenz, Germany; (C.R.); (S.B.); (G.R.)
| | - Hadas Atias
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (N.A.-R.); (L.M.); (H.A.)
| | - Sebastian Buchinger
- Federal Institute of Hydrology (BfG), Department Biochemistry, Ecotoxicology, 56068 Koblenz, Germany; (C.R.); (S.B.); (G.R.)
| | - Georg Reifferscheid
- Federal Institute of Hydrology (BfG), Department Biochemistry, Ecotoxicology, 56068 Koblenz, Germany; (C.R.); (S.B.); (G.R.)
| | - Shimshon Belkin
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (N.A.-R.); (L.M.); (H.A.)
| |
Collapse
|
6
|
Bergmann AJ, Breitenbach M, Muñoz C, Simon E, McCombie G, Biedermann M, Schönborn A, Vermeirssen EL. Towards detecting genotoxic chemicals in food packaging at thresholds of toxicological concern using bioassays with high-performance thin-layer chromatography. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Mazzeo DEC, Dombrowski A, Oliveira FA, Levy CE, Oehlmann J, Marchi MRR. Endocrine disrupting activity in sewage sludge: Screening method, microbial succession and cost-effective strategy for detoxification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117207. [PMID: 36621316 DOI: 10.1016/j.jenvman.2022.117207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Sewage sludge (SS) presents a high agronomic potential due to high concentrations of organic matter and nutrients, encouraging its recycling as a soil conditioner. However, the presence of toxic substances can preclude this use. To enable the safe disposal of this waste in agriculture, SS requires additional detoxification to decrease the environmental risks of this practice. Although some alternatives have been proposed in this sense, little attention is provided to eliminating endocrine-disrupting chemicals (EDCs). To fill this gap, this study aimed to develop effective and low-cost technology to eliminate EDCs from SS. For this, a detoxification process combining microorganisms and biostimulating agents (soil, sugarcane bagasse, and coffee grounds) was performed for 2, 4, and 6 months with aerobic and anaerobic SSs. The (anti-)estrogenic, (anti-)androgenic, retinoic-like, and dioxin-like activities of SSs samples were verified using yeast-based reporter-gene assays to prove the effectiveness of the treatments. A fractionation procedure of samples, dividing the target sample extract into several fractions according to their polarity, was conducted to decrease the matrix complexity and facilitate the identification of EDCs. A decrease in the abundance and microbial diversity of the SS samples was noted along the biostimulation with the predominance of filamentous fungal species over yeasts and gram-positive bacteria and non-fermenting rods over enterobacteria. Among the 9 EDCs quantified by LC-ESI-MS/MS, triclosan and alkylphenols presented the highest concentrations in both SS. Before detoxification, the studied SSs induced significant agonistic activity, especially at the human estrogen receptor α (hERα) and the human aryl hydrocarbon receptor (AhR). The raw anaerobic sludge also activated the androgen (hAR), retinoic acid (RARα), and retinoid X (RXRα) receptors. However, no significant endocrine-disrupting activities were observed after the SS detoxification, showing that the technology applied here efficiently eliminates receptor-mediated toxicity.
Collapse
Affiliation(s)
- Dânia Elisa C Mazzeo
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Federal University of São Carlos - UFSCAR, Araras, Brazil.
| | - Andrea Dombrowski
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Germany
| | - Flávio Andrade Oliveira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas - UNICAMP, Rua Alexander Fleming, 105, 13081-970, Campinas, SP, Brazil
| | - Carlos Emílio Levy
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas - UNICAMP, Rua Alexander Fleming, 105, 13081-970, Campinas, SP, Brazil
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Germany
| | - Mary Rosa R Marchi
- Department of Analytical Chemistry, Institute of Chemistry, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| |
Collapse
|
8
|
Schreiner T, Morlock GE. Investigation of the estrogenic potential of 15 rosé, white and red wines via effect-directed ten-dimensional hyphenation. J Chromatogr A 2023; 1690:463775. [PMID: 36641942 DOI: 10.1016/j.chroma.2023.463775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Wine is consumed for thousands of years all over the world, however, its estrogenic potential is still underexplored. A non-target effect-directed screening was developed to reveal estrogen-like and antiestrogen-like compounds in 15 rosé, white and red wine samples of different origin and grape variety. Normal-phase high-performance thin-layer chromatography multi-imaging detection (NP-HPTLC-UV/Vis/FLD) was combined with the planar yeast estrogen screen (pYES) bioassay or the duplex planar yeast antagonist estrogen screen (pYAES) bioassay on the same adsorbent surface. Up to nine estrogen-like compound zones were detected and further characterized via heart-cut elution from the planar bioautogram to orthogonal reversed phase high-performance liquid chromatography (RP-HPLC) coupled with diode array detection (DAD) and high-resolution tandem mass spectrometry (HRMS/MS). Among the tentatively assigned estrogen-like substances, the HRMS/MS signals pointed to hexylresorcinol and diethyl esters from organic acids for the first time. This highlights the method suitability for non-target complex mixture screening and rapid dereplication. The 10D hyphenation NP-HPTLC-UV/Vis/FLD-pYAES-heart cut-RP-HPLC-DAD-HRMS/MS proved to be an efficient and powerful tool for detecting estrogens as well as antiestrogens in the matrix-rich wine samples. High-throughput capability and substantial reduction in the required resources for analysis were demonstrated by this straightforward hyphenation, if compared to bioassay-guided fractionation. The 10D information (via orthogonal chromatographic, versatile spectrometric and duplex endocrine activity data) obtained during a single chromatographic run for many samples in parallel was advantageous for the tentative molecule assignment.
Collapse
Affiliation(s)
- Tamara Schreiner
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany
| | - Gertrud E Morlock
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany.
| |
Collapse
|
9
|
Wilson ID, Poole CF. Planar chromatography - Current practice and future prospects. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1214:123553. [PMID: 36495686 DOI: 10.1016/j.jchromb.2022.123553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Planar chromatography, in the form of thin-layer or high-performance thin-layer chromatography (TLC, HPTLC), continues to provide a robust and widely used separation technique. It is unrivaled as a simple and rapid qualitative method for mixture analysis, or for finding bioactive components in mixtures. The format of TLC/HPTLC also provides a unique method for preserving the separation, enabling further investigation of components of interest (including quantification/structure determination) separated in both time and space from the original analysis. The current practice of planar chromatography and areas of development of the technology are reviewed and promising future directions in the use of TLC/HPTLC are outlined.
Collapse
Affiliation(s)
- Ian D Wilson
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Burlington Danes Building, Du Cane Road, London W12 0NN, UK.
| | - Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
10
|
Planar chromatography-bioassays for the parallel and sensitive detection of androgenicity, anti-androgenicity and cytotoxicity. J Chromatogr A 2022; 1684:463582. [DOI: 10.1016/j.chroma.2022.463582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022]
|
11
|
Cabezudo I, Salazar MO, Ramallo IA, Furlan RLE. Effect-directed analysis in food by thin-layer chromatography assays. Food Chem 2022; 390:132937. [PMID: 35569399 DOI: 10.1016/j.foodchem.2022.132937] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Thin-layer chromatography (TLC) is widely used for food analysis and quality control. As an open chromatographic system, TLC is compatible with microbial-, biochemical-, and chemical-based derivatization methods. This compatibility makes it possible to run in situ bioassays directly on the plate to obtain activity-profile chromatograms, i.e., the effect-directed analysis of the sample. Many of the properties that can be currently measured using this assay format are related to either desired or undesired features for food related products. The TLC assays can detect compounds related to the stability of foods (antioxidant, antimicrobial, antibrowning, etc.), contaminants (antibiotics, pesticides, estrogenic compounds, etc.), and compounds that affect the absorption, metabolism or excretion of nutrients and metabolites or could improve the consumers health (enzyme inhibitors). In this article, different food related TLC-assays are reviewed. The different detection systems used, the way in which they are applied as well as selected examples are discussed.
Collapse
Affiliation(s)
- Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - Mario O Salazar
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - I Ayelen Ramallo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - Ricardo L E Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
12
|
Schreiner T, Ronzheimer A, Friz M, Morlock G. Multiplex planar bioassay with reduced diffusion on normal phase, identifying androgens, verified antiandrogens and synergists in botanicals via 12D hyphenation. Food Chem 2022; 395:133610. [DOI: 10.1016/j.foodchem.2022.133610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 01/07/2023]
|
13
|
Recent Advances in Sampling and Sample Preparation for Effect-Directed Environmental Analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Kruse S, Pierre F, Morlock GE. Effects of the Probiotic Activity of Bacillus subtilis DSM 29784 in Cultures and Feeding Stuff. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11272-11281. [PMID: 34546731 DOI: 10.1021/acs.jafc.1c04811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The European Union banned the usage of antibiotic growth promoters in animal production. The probiotic microorganism of the genus Bacillus appeared to be an attractive candidate to replace antibiotics. The Bacillus subtilis DSM 29784 is one of these strains. To date, the probiotic effect has not been completely understood, but it is supposed that the effect depends on metabolites of the microorganism. Imaging high-performance thin-layer chromatography (HPTLC) is a powerful tool to visualize differences in the metabolite profile of bacteria with high genetic similarity to allow a better understanding of the probiotic effect. In comparison to other bacteria, especially these bacterial cells were more robust to harsh cultivation conditions and produced a higher level of antioxidants or bioactive substances such as surfactin. HPTLC enabled the comparison of pure cell cultures to the spore cultivation in the feed, and the results explain and support the probiotic effect.
Collapse
Affiliation(s)
- Stefanie Kruse
- Institute of Nutritional Science, Chair of Food Science, and Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany
| | - Francis Pierre
- Adisseo France S.A.S, Immeuble Anthony Parc 2, 10 Place du Général de Gaulle, Antony 92160, France
| | - Gertrud E Morlock
- Institute of Nutritional Science, Chair of Food Science, and Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany
| |
Collapse
|
15
|
Bell AM, Keltsch N, Schweyen P, Reifferscheid G, Ternes T, Buchinger S. UV aged epoxy coatings - Ecotoxicological effects and released compounds. WATER RESEARCH X 2021; 12:100105. [PMID: 34189451 PMCID: PMC8219897 DOI: 10.1016/j.wroa.2021.100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Organic coatings can guarantee long-term protection of steel structures due to causing a physical barrier against water and oxygen. Because of their mechanical properties and resistances to heat and chemicals, epoxy resin-based coatings are widely used for corrosion protection. Despite of the aromatic backbone and the resulting susceptibility to UV degradation, epoxy resins are frequently used as binding agent in top layers of anti-corrosion coating systems. Consequently, these organic polymers are directly exposed to sunlight and thus UV radiation. The present study was designed to investigate if toxic effects of epoxy resin-based-coatings are changed by UV-A irradiation. For this purpose, two epoxide-based top coatings were examined with and without UV aging for their bacterial toxicity and estrogenicity. In addition, chemical analyses were performed to identify released compounds as well as photolytic degradation products and to assign toxic effects to individual substances. UV-A irradiation of epoxy resin based top coatings resulted in an overall decrease of acute and specific ecotoxicological effects but as well to the formation of toxic transformation products. Both, in leachates of untreated and UV-A irradiated coatings, 4tBP was identified as the main driver of estrogenicity and toxicity to luminescent bacteria. BPA and structural analogs contributing to estrogenic effects in leachates were formed by UV-A irradiation. The combination of HPTLC coupled bioassays and LC-MS analyses supported the identification of bioactive compounds in terms of an effect-directed analysis. The present findings indicate that epoxide-based coatings are less suitable for the application as top coatings and more UV stable coatings like aliphatic polyurethanes should be preferred.
Collapse
Affiliation(s)
| | | | | | | | | | - Sebastian Buchinger
- Corresponding author at: Federal Institute of Hydrology, Department G3 - Biochemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz, Germany.
| |
Collapse
|
16
|
Riegraf C, Reifferscheid G, Moscovici L, Shakibai D, Hollert H, Belkin S, Buchinger S. Coupling high-performance thin-layer chromatography with a battery of cell-based assays reveals bioactive components in wastewater and landfill leachates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112092. [PMID: 33690008 DOI: 10.1016/j.ecoenv.2021.112092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Over the last two decades, effect-directed analysis (EDA) gained importance as a seminal screening tool for tracking biological effects of environmental organic micro-pollutants (MPs). As EDA using high-performance liquid chromatography and bioassays is costly and time consuming, recent implementations of this approach have combined high-performance thin-layer chromatography (HPTLC) with effect-based methods (EBMs) using cell-based bioassays, enabling the detection of estrogenic, androgenic, genotoxic, photosystem II (PSII)- inhibiting, and dioxin-like sample components on a HPTLC plate. In the present study, the developed methodologies were applied as a HPTLC-based bioassay battery, to investigate toxicant elimination efficiency of wastewater treatment plants (WWTPs), and to characterize the toxic potential of landfill leachates. Activity levels detected in untreated landfill leachates, expressed as reference compound equivalence (EQ) concentration, were up to 16.8 µg β-naphthoflavone-EQ L-1 (indicating the degree of dioxin-like activity), 1.9 µg estradiol-EQ L-1 (estrogenicity) and 8.3 µg diuron-EQ L‑1 (PSII-inhibition), dropping to maximal concentrations of 47 ng β-naphthoflavone-EQ L-1, 0.7 µg estradiol-EQ L-1 and 53.1 ng diuron-EQ L-1 following treatment. Bisphenol A (BPA) is suggested to be the main contributor to estrogenic activity, with concentrations determined by the planar yeast estrogen screen corresponding well to results from chemical analysis. In the investigated WWTP samples, a decrease of estrogenic activity of 6-100% was observed following treatment for most of the active fractions, except of a 20% increase in one fraction (Rf = 0.568). In contrast, androgenicity with concentrations up to 640 ng dihydrotestosterone-EQ L-1 was completely removed by treatment. Interestingly, genotoxic activity increased over the WWTP processes, releasing genotoxic fractions into receiving waters. We propose this combined HPTLC and EBM battery to contribute to an efficient, cheap, fast and robust screening of environmental samples; such an assay panel would allow to gain an estimate of potential biological effects for prioritization prior to substance identification, and its routine application will support an inexpensive identification of the toxicity drivers as a first tier in an EDA strategy.
Collapse
Affiliation(s)
- Carolin Riegraf
- Federal Institute of Hydrology, Department G3 Biochemistry and Ecotoxicology, Am Mainzer Tor 1, D-56068 Koblenz, Germany; RWTH Aachen University, Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany
| | - Georg Reifferscheid
- Federal Institute of Hydrology, Department G3 Biochemistry and Ecotoxicology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Liat Moscovici
- Hebrew University of Jerusalem, Institute of Life Sciences, Department of Plant and Environmental Sciences, Jerusalem 9190401, Israel
| | - Dror Shakibai
- Hebrew University of Jerusalem, Institute of Life Sciences, Department of Plant and Environmental Sciences, Jerusalem 9190401, Israel
| | - Henner Hollert
- RWTH Aachen University, Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, D-60438 Frankfurt am Main, Germany
| | - Shimshon Belkin
- Hebrew University of Jerusalem, Institute of Life Sciences, Department of Plant and Environmental Sciences, Jerusalem 9190401, Israel
| | - Sebastian Buchinger
- Federal Institute of Hydrology, Department G3 Biochemistry and Ecotoxicology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
| |
Collapse
|
17
|
Baetz N, Rothe L, Wirzberger V, Sures B, Schmidt TC, Tuerk J. High-performance thin-layer chromatography in combination with a yeast-based multi-effect bioassay to determine endocrine effects in environmental samples. Anal Bioanal Chem 2021; 413:1321-1335. [PMID: 33388849 DOI: 10.1007/s00216-020-03095-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022]
Abstract
Effect-directed analysis (EDA) that combines effect-based methods (EBMs) with high-performance thin-layer chromatography (HPTLC) is a useful technique for spatial, temporal, and process-related effect evaluation and may provide a link between effect testing and responsible substance identification. In this study, a yeast multi endocrine-effect screen (YMEES) for the detection of endocrine effects is combined with HPTLC. Simultaneous detection of estrogenic, androgenic, and gestagenic effects on the HPTLC plate is achieved by mixing different genetically modified Arxula adeninivorans yeast strains, which contain either the human estrogen, androgen, or progesterone receptor. Depending on the yeast strain, different fluorescent proteins are formed when an appropriate substance binds to the specific hormone receptor. This allows to measure hormonal effects at different wavelengths. Two yeast cell application approaches, immersion and spraying, are compared. The sensitivity and reproducibility of the method are shown by dose-response investigations for reference compounds. The spraying approach indicated similar sensitivities and higher precisions for the tested hormones compared to immersion. The EC10s for estrone (E1), 17β-estradiol (E2), 17α-ethinylestradiol (EE2), 5α-dihydrotestosterone (DHT), and progesterone (P4) were 95, 1.4, 10, 7.4, and 15 pg/spot, respectively. Recovery rates of E1, E2, EE2, DHT, and P4 between 88 and 120% show the usability of the general method in combination with sample enrichment by solid phase extraction (SPE). The simultaneous detection of estrogenic, androgenic, and gestagenic effects in wastewater and surface water samples demonstrates the successful application of the YMEES in such matrices. This promising method allows us to identify more than one endocrine effect on the same HPTLC plate, which saves time and material. The method could be used for comparison, evaluation, and monitoring of different river sites and wastewater treatment steps and should be tested in further studies.
Collapse
Affiliation(s)
- Nicolai Baetz
- Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58 - 60, 47229, Duisburg, Germany
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Louisa Rothe
- Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Vanessa Wirzberger
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Bernd Sures
- Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Jochen Tuerk
- Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58 - 60, 47229, Duisburg, Germany.
- Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany.
| |
Collapse
|
18
|
Moscovici L, Riegraf C, Abu-Rmailah N, Atias H, Shakibai D, Buchinger S, Reifferscheid G, Belkin S. Yeast-Based Fluorescent Sensors for the Simultaneous Detection of Estrogenic and Androgenic Compounds, Coupled with High-Performance Thin Layer Chromatography. BIOSENSORS-BASEL 2020; 10:bios10110169. [PMID: 33171672 PMCID: PMC7695312 DOI: 10.3390/bios10110169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/20/2023]
Abstract
The persistence of endocrine disrupting compounds (EDCs) throughout wastewater treatment processes poses a significant health threat to humans and to the environment. The analysis of EDCs in wastewater remains a challenge for several reasons, including (a) the multitude of bioactive but partially unknown compounds, (b) the complexity of the wastewater matrix, and (c) the required analytical sensitivity. By coupling biological assays with high-performance thin-layer chromatography (HPTLC), different samples can be screened simultaneously, highlighting their active components; these may then be identified by chemical analysis. To allow the multiparallel detection of diverse endocrine disruption activities, we have constructed Saccharomyces cerevisiae-based bioreporter strains, responding to compounds with either estrogenic or androgenic activity, by the expression of green (EGFP), red (mRuby), or blue (mTagBFP2) fluorescent proteins. We demonstrate the analytical potential inherent in combining chromatographic compound separation with a direct fluorescent signal detection of EDC activities. The applicability of the system is further demonstrated by separating influent samples of wastewater treatment plants, and simultaneously quantifying estrogenic and androgenic activities of their components. The combination of a chemical separation technique with an optical yeast-based bioassay presents a potentially valuable addition to our arsenal of environmental pollution monitoring tools.
Collapse
Affiliation(s)
- Liat Moscovici
- Department of Plant and Environmental Sciences, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (L.M.); (N.A.-R.); (H.A.); (D.S.)
| | - Carolin Riegraf
- Department Biochemistry, Ecotoxicology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany; (C.R.); (S.B.); (G.R.)
- RWTH Aachen University, Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany
| | - Nidaa Abu-Rmailah
- Department of Plant and Environmental Sciences, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (L.M.); (N.A.-R.); (H.A.); (D.S.)
| | - Hadas Atias
- Department of Plant and Environmental Sciences, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (L.M.); (N.A.-R.); (H.A.); (D.S.)
| | - Dror Shakibai
- Department of Plant and Environmental Sciences, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (L.M.); (N.A.-R.); (H.A.); (D.S.)
| | - Sebastian Buchinger
- Department Biochemistry, Ecotoxicology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany; (C.R.); (S.B.); (G.R.)
| | - Georg Reifferscheid
- Department Biochemistry, Ecotoxicology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany; (C.R.); (S.B.); (G.R.)
| | - Shimshon Belkin
- Department of Plant and Environmental Sciences, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (L.M.); (N.A.-R.); (H.A.); (D.S.)
- Correspondence: ; Tel.: +972-2-6584192
| |
Collapse
|
19
|
Zhang T, Liang Y, Zhang J. Natural and synthetic compounds as dissociated agonists of glucocorticoid receptor. Pharmacol Res 2020; 156:104802. [DOI: 10.1016/j.phrs.2020.104802] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
|
20
|
Klingelhöfer I, Hockamp N, Morlock GE. Non-targeted detection and differentiation of agonists versus antagonists, directly in bioprofiles of everyday products. Anal Chim Acta 2020; 1125:288-298. [PMID: 32674775 DOI: 10.1016/j.aca.2020.05.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022]
Abstract
Xenoestrogens exert antiandrogenic effects on the human androgen receptor. In the analytical field, such antagonists block the detection of testosterone and falsify results obtained by sum parameter assays. Currently, such agonistic versus antagonistic effects are not differentiated in complex mixtures. Oppositely acting hormonal effects present in products of everyday use can only be differentiated after tedious fractionation and isolation of the individual compounds along with subjection of each fraction/compound to the status quo bioassay testing. However, such long-lasting procedures are not suited for routine. Hence, we developed a fast bioanalytical tool that figures out agonists versus antagonists directly in complex mixtures. Exemplarily, 8 cosmetics and 15 thermal papers were analyzed. The determined antagonistic potentials of active compounds found were comparable to the ones of known antagonists (in reference shown for bisphenol A, 4-n-nonylphenol and four parabens). Relevant biological/chromatographic parameters such as cell viability, culture conditions, dose response curves, limits of biological detection/quantification and working range (shown for testosterone, dihydrotestosterone, nandrolone and trenbolone) were investigated to obtain the best sensitivity of the biological detection. The developed and validated method was newly termed reversed phase high-performance thin-layer chromatography planar yeast ant-/agonistic androgen screen (RP-HPTLC-pYAAS bioassay). Results were also compared with the RP-HPTLC-Aliivibrio fischeri bioassay (applied on RP plates for the first time). As proof-of-concept, the transfer to another bioassay (RP-HPTLC-pYES) was successfully demonstrated, analogously termed RP-HPTLC-pYAES bioassay detecting anti-/estrogens (exemplarily shown for evaluation of 4 pharmaceuticals used in breast cancer treatment). The new imaging concept provides (1) detection and differentiation of individual agonistic versus antagonistic effects in the bioprofiles, (2) bioanalytical quantification of their activity potential by scanning densitometry and (3) characterization of unknown bioactive compound zones by hyphenation to high-resolution mass spectrometry. Depending on the hormonal bioassay, 15 samples were analyzed in parallel within 5 h or 6 h (calculated as 20 or 24 min per sample). For the first time, piezoelectric spraying of the yeast cells was successfully demonstrated for the planar yeast-based bioassays.
Collapse
Affiliation(s)
- Ines Klingelhöfer
- Chair of Food Science, Institute of Nutritional Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Nele Hockamp
- Chair of Food Science, Institute of Nutritional Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gertrud E Morlock
- Chair of Food Science, Institute of Nutritional Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
21
|
Endocrine Disruptors Induced Distinct Expression of Thyroid and Estrogen Receptors in Rat versus Mouse Primary Cerebellar Cell Cultures. Brain Sci 2019; 9:brainsci9120359. [PMID: 31817561 PMCID: PMC6955918 DOI: 10.3390/brainsci9120359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Abstract
The endocrine system of animals consists of fine-tuned self-regulating mechanisms that maintain the hormonal and neuronal milieu during tissue development. This complex system can be influenced by endocrine disruptors (ED)—substances that can alter the hormonal regulation even in small concentrations. By now, thousands of substances—either synthesized by the plastic, cosmetic, agricultural, or medical industry or occurring naturally in plants or in polluted groundwater—can act as EDs. Their identification and testing has been a hard-to-solve problem; Recent indications that the ED effects may be species-specific just further complicated the determination of biological ED effects. Here we compare the effects of bisphenol-A, zearalenone, and arsenic (well-known EDs) exerted on mouse and rat neural cell cultures by measuring the differences of the ED-affected neural estrogen- and thyroid receptors. EDs alters the receptor expression in a species-like manner detectable in the magnitude as well as in the nature of biological responses. It is concluded that the interspecies differences (or species specificity) in ED effects should be considered in the future testing of ED effects.
Collapse
|