1
|
Cao Y, Yan R, Sun M, Guo J, Zhang S. Effects of exogenous chitosan concentrations on photosynthesis and functional physiological traits of hibiscus under salt stress. BMC PLANT BIOLOGY 2025; 25:419. [PMID: 40181276 PMCID: PMC11967025 DOI: 10.1186/s12870-025-06424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Soil salinity is a major barrier to plant growth and yield improvement. Chitosan, a versatile biomaterial, has shown potential in enhancing plant stress tolerance. This study evaluated the effectiveness of chitosan pretreatment in mitigating salt stress hibiscus (Hibiscus syriacus L.). Two-year-old hibiscus cuttings were treated with varying concentrations of chitosan (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L) via root irrigation and foliar spray in a 6‰ saline environment. Growth parameters, gas exchange rates, antioxidant enzyme activities, and osmotic regulatory compounds were analyzed. RESULTS The results showed that chitosan at 25 mg/L and 50 mg/L significantly improved physiological and ecological traits. These concentrations enhanced photosynthetic performance, protected photosynthetic electron transport chain, and reduced malondialdehyde (MDA) content and relative conductivity, thereby limiting cell membrane damage. Additionally, the accumulation of soluble proteins, soluble sugars, and proline increased, improving the plants' ability to cope with salt stress. Antioxidant enzyme activities, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), were notably elevated, while levels of hydrogen peroxide (H₂O₂) and superoxide anion (O₂-) decreased. CONCLUSIONS The 25 mg/L and 50 mg/L treatments had the most pronounced effects, confirming that moderate chitosan concentrations effectively alleviate salt stress in hibiscus. This study underscores the role of chitosan in enhancing salt stress adaptability, offering insights for plant protection and greening efforts.
Collapse
Affiliation(s)
- Yangfan Cao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Ruiyang Yan
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Mingcong Sun
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Jing Guo
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuyong Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
2
|
Chen AL, Lin ZJ, Chang HY, Wang TSA. Chemoselective Stabilized Triphenylphosphonium Probes for Capturing Reactive Carbonyl Species and Regenerating Covalent Inhibitors with Acrylamide Warheads in Cellulo. J Am Chem Soc 2025; 147:1518-1528. [PMID: 39730301 PMCID: PMC11744745 DOI: 10.1021/jacs.4c09727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Reactive carbonyl species (RCS) are important biomarkers of oxidative stress-related diseases because of their highly reactive electrophilic nature. Despite their potential as triggers for prodrug activation, selective labeling approaches for RCS remain limited. Here, we utilized triphenylphosphonium groups to chemoselectively capture RCS via an aqueous Wittig reaction, forming α,β-unsaturated carbonyls that enable further functionalization. We first designed native (light) and deuterated (heavy) probes to facilitate RCS metabolomic identification through distinct MS isotope patterns. This approach allowed us to capture and relatively quantify several endogenous RCS related to advanced lipoxidation/glycation end products (ALEs/AGEs). Second, we demonstrated that various endogenous RCS can trigger the in situ generation of acrylamide warheads of targeted covalent inhibitors (TCIs) with different substituents. These structural variations influence their protein binding profiles and consequently alter their cytotoxicity, which is beneficial for the development of inhibitor cocktails.
Collapse
Affiliation(s)
- Ai-Lin Chen
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Zih-Jheng Lin
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Hsiao-Yu Chang
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Tsung-Shing Andrew Wang
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| |
Collapse
|
3
|
Dong SS, Li MY, Yu XP, Kan YN, Dai XH, Zheng L, Cao HT, Duan WH, Luo EL, Zou W. Baihui-Penetrating-Qubin Acupuncture Attenuates Neurological Deficits Through SIRT1/FOXO1 Reducing Oxidative Stress and Neuronal Apoptosis in Intracerebral Hemorrhage Rats. Brain Behav 2024; 14:e70095. [PMID: 39682063 DOI: 10.1002/brb3.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a significant global disease with high mortality and disability. As of now, there is no effective therapy available. Oxidative stress and neuronal apoptosis play essential roles in ICH, determining neuronal survival. In our preliminary studies, we found that Baihui-penetrating-Qubin acupuncture could improve neurological deficits and neuropathological damage in the perihematomal area in ICH rats. The SIRT1/FOXO1 signaling pathway has been reported to mediate antioxidant and anti-neuronal apoptosis. This study aimed to investigate the effects of Baihui-penetrating-Qubin acupuncture on oxidative stress and neuronal apoptosis after ICH and the role of SIRT1/FOXO1 in acupuncture's neuroprotection. METHODS ICH rat models were established by autologous tail blood (50 µL) infusion into the caudate nucleus. EX527, SIRT1-specific inhibitor was intraperitoneally administered 3 days before ICH. Baihui-penetrating-Qubin acupuncture treatment was performed once a day for 30 min after ICH. Neurological deficits were evaluated using the modified neurological severity score (mNSS). Brain edema was evaluated using brain water content. HE staining and Nissl staining were used to evaluate neuropathological damage in the perihematomal area. Terminal deoxynucleotidyl transferase dUTP nick end labeling was used to quantify neuronal apoptosis. Specific kits were used to detect the levels of SOD, CAT, GSH-Px in the brain. The oxidative DNA damage was evaluated using enzyme-linked immunosorbent assay to detect the level of 8-hydroxyguanosine (8-OHdG). Western blot was used to evaluate the expressions of SIRT1, Ac-FOXO1, FOXO1, Bcl-2, and Bax. Immunofluorescence staining was conducted to detect the cellular localization of SIRT1. RESULTS Baihui-penetrating-Qubin acupuncture improved the neurological deficits and brain edema, reduced the pathological injury and neuronal degeneration in 3 days in the perihematomal area after ICH. Mechanistically, acupuncture reduced oxidative stress injury and neuronal apoptosis via activating SIRT1/FOXO1 pathway. The neuroprotective effects of acupuncture were abolished by injection of the SIRT1 inhibitor EX527. CONCLUSIONS Baihui-penetrating-Qubin acupuncture could reduce oxidative stress and neuronal apoptosis, at least in part, through the SIRT1/FOXO1 signaling pathway, improving neurological deficits and neuropathological damage after ICH. These findings suggest that Baihui-penetrating-Qubin acupuncture is an effective therapy for ICH, as well as targeting SIRT1 signaling to promote neuron survival could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Shan-Shan Dong
- Acupuncture and Moxibustion Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
- Second Department of Traditional Chinese Medicine, Medical School, South China Hospital, Shenzhen University, Shenzhen, P. R. China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Ming-Yue Li
- Acupuncture and Moxibustion Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| | - Xue-Ping Yu
- Acupuncture and Moxibustion Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| | - Yu-Na Kan
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, P. R. China
| | - Xiao-Hong Dai
- Acupuncture and Moxibustion Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| | - Lei Zheng
- Acupuncture and Moxibustion Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| | - Hong-Tao Cao
- Acupuncture and Moxibustion Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| | - Wen-Hui Duan
- Acupuncture and Moxibustion Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| | - En-Li Luo
- Second Department of Traditional Chinese Medicine, Medical School, South China Hospital, Shenzhen University, Shenzhen, P. R. China
| | - Wei Zou
- Acupuncture and Moxibustion Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| |
Collapse
|
4
|
Liu J, Wang H, Lu M, Tian Y, Hu T. The toxic effect of 2,6-di-tert-butylphenol on embryonic development in zebrafish (Danio rerio): Decreased survival rate, morphological abnormality, and abnormal vascular development. ENVIRONMENTAL RESEARCH 2024; 262:119881. [PMID: 39214490 DOI: 10.1016/j.envres.2024.119881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
2,6-di-tert-butylphenol (2,6-DTBP) has been used extensively in plastics, rubber and polymer phenolic antioxidants. It is discharged into the aquatic environment through industrial waste. However, the toxicity assessment of 2,6-DTBP is insufficient. Here, zebrafish embryos were used as an animal model to investigate the toxicological effects of 2,6-DTBP. The results showed that 2,6-DTBP induced mitochondrial dysfunction and reactive oxygen species accumulation, which caused apoptosis, and further led to developmental toxicity of zebrafish embryos, such as delayed incubation, reduced survival rate, and increased malformation rate and heart rate. 2,6-DTBP can also cause morphological changes in the zebrafish endothelial cell (zEC) nucleus, inhibit zEC migration, trigger abnormal angiogenesis and zEC sprouting angiogenesis, and ultimately affect vascular development. In addition, 2,6-DTBP interfered with the endogenous antioxidant system, causing changes in activities of superoxide dismutase, catalase, and glutathione S-transferase and contents of malondialdehyde and glutathione. Transcriptome sequencing showed that 2,6-DTBP altered the mRNA levels of genes associated with vascular development, oxidative stress, apoptosis, extracellular matrix components and receptors. Integrative biomarker response assessment found that 12 μM 2,6-DTBP had the highest toxicity. These results indicated that 2,6-DTBP induced apoptosis through oxidative stress, leading to toxicity of zebrafish embryo development. This study contributes to understanding the effects of environmental 2,6-DTBP exposure on early development of aquatic organisms and draws public attention to the health risks posed by chemicals in aquatic organisms.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Mingyang Lu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yuan Tian
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
5
|
Gong X, Tan Z, Xu H, Jiang X, Chen L. Paeoniflorin Attenuates Oxidative Stress and Inflammation in Parkinson's Disease by Activating the HSF1-NRF1 Axis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2131-2159. [PMID: 39663263 DOI: 10.1142/s0192415x24500824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
This study is to explore the effects of paeoniflorin (PF) on oxidative stress (OS) and inflammation in Parkinson's disease (PD) via the HSF1-NRF1 axis. SH-SY5Y cells were pretreated with PF and induced with α-synuclein preformed fibrils (PFF), followed by gain- and loss-of-function assays. Afterward, detection was conducted on cell viability, mitochondrial membrane potential ([Formula: see text]m), and reactive oxygen species (ROS), cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) levels. The binding of HSF1 to NRF1 promoter was evaluated. HSF1 and NRF1 expression was examined. Lastly, PD mouse models were established, followed by observation of the behavioral features of mice. Apoptosis; cleaved-Caspase 3, cleaved-Caspase 8, repulsive guidance molecule A (RGMa), GAP-43, and brain-derived neurotrophic factor (BDNF) expression; and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT), tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-6, and IL-10 levels were determined in mice and cells. HSF1 and NRF1 were downregulated, and HSF1 promoted NRF1 transcription and PF dose-dependently augmented HSF1 and NRF1 expression. PF dose-dependently reduced RGMa expression, ROS, MDA, TNF-α, IL-2, and IL-6 levels; mitigated apoptosis; and lowered cleaved-Caspase 3, cleaved-Caspase 8, COX-2, and iNOS expression while improving cell viability; increasing [Formula: see text]m, GAP-43, and BDNF expression; and raising SOD, GSH-Px, CAT, and IL-10 levels in PFF-induced SH-SY5Y cells. These effects were neutralized by HSF1 knockdown. In conclusion, PF dose-dependently activated the HSF1-NRF1 axis and alleviated OS and inflammation in PFF-treated mice, thereby impeding PD progression in mice.
Collapse
Affiliation(s)
- Xin Gong
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Zhijian Tan
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Henghui Xu
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Xu Jiang
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Lei Chen
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| |
Collapse
|
6
|
Zhao X, Cheng Z, Zhang H, Guo Y, Zhao L, Zhang C, Ye P, Zhang K, Ma X, Wu Q. Glucagon-Like Peptide-1 Inhibits the Progression of Abdominal Aortic Aneurysm in Mice: The Earlier, the Better. Cardiovasc Drugs Ther 2024; 38:873-884. [PMID: 37145254 DOI: 10.1007/s10557-023-07456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVES Glucagon-like peptide-1 (GLP-1) has a cardiovascular protective effect by preventing abdominal aortic aneurysm (AAA) formation. However, it is unclear at what point the agent should be administered to achieve the optimal effect. In this study, we aimed to determine whether administering the GLP-1 receptor agonist liraglutide during the earlier stages would more efficiently inhibit AAA progression in mice. METHODS Depending on the group, mice were given a daily dose of 300 μg/kg liraglutide for 28 days at 7, 14, and 28 days after aneurysm induction. The morphology of the abdominal aorta was monitored using 7.0 T magnetic resonance imaging (MRI) during the administration of liraglutide. After 28 days of administration, the AAA dilatation ratio was calculated, and histopathological examination was performed. Oxidative stress levels were evaluated by the expression of malondialdehyde (MDA) and matrix metalloproteinases (MMPs). The inflammatory response was also evaluated. RESULTS Liraglutide treatment led to a decrease in AAA formation, including a reduction in abdominal aorta expansion, elastin degradation in the elastic laminae, and vascular inflammation caused by leukocyte infiltration. The expression of MDA and the activity of MMPs (MMP-2, MMP-9) also decreased. Notably, administering liraglutide during the early stages resulted in a significant reduction in the dilatation rate of the aortic wall, as well as in MDA expression, leukocyte infiltration, and MMP activity in the vascular wall. CONCLUSIONS The GLP-1 receptor agonist liraglutide was found to inhibit AAA progression in mice by exerting anti-inflammatory and antioxidant effects, particularly during the early stages of AAA formation. Therefore, liraglutide may represent a potential pharmacological target for the treatment of AAA.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Aneurysm, Abdominal/metabolism
- Dilatation, Pathologic
- Disease Models, Animal
- Disease Progression
- Glucagon-Like Peptide 1
- Glucagon-Like Peptide-1 Receptor/agonists
- Glucagon-Like Peptide-1 Receptor/metabolism
- Liraglutide/pharmacology
- Malondialdehyde/metabolism
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice, Inbred C57BL
- Oxidative Stress/drug effects
- Time Factors
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Xinghan Zhao
- Department of Interventional therapy, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Beijing, China
| | - Zhang Cheng
- Department of Interventional therapy, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Beijing, China
| | - Hongbo Zhang
- Department of Interventional therapy, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Beijing, China
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, West China Second University Hospital, Sichuan, 610041, Chengdu, People's Republic of China
| | - Lei Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Beijing, China
| | - Chen Zhang
- Department of Interventional therapy, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Beijing, China
| | - Pengfei Ye
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kun Zhang
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, West China Second University Hospital, Sichuan, 610041, Chengdu, People's Republic of China
| | - Xiaohai Ma
- Department of Interventional therapy, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Beijing, China.
| | - Qihong Wu
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, West China Second University Hospital, Sichuan, 610041, Chengdu, People's Republic of China.
| |
Collapse
|
7
|
Liu X, Wang K, Wei L, Wang Y, Liu C, Rong X, Yan T, Shu W, Zhu B. A highly sensitive Golgi-targeted fluorescent probe for the simultaneous detection of malondialdehyde and formaldehyde in living systems and foods. Talanta 2024; 278:126427. [PMID: 38955101 DOI: 10.1016/j.talanta.2024.126427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
Malondialdehyde (MDA) and formaldehyde (FA) are highly active carbonyl substances widely present in both biological and abiotic systems. The detection of MDA and FA is of great significance for disease diagnosis and food safety monitoring. However, due to the similarity in structural properties between MDA and FA, very few probes for synergistically detecting MDA and FA were reported. In addition, functional abnormalities in the Golgi apparatus are closely related to MDA and FA, but currently there are no fluorescent probes that can detect MDA and FA in the Golgi apparatus. Therefore, we constructed a simple Golgi-targetable fluorescent probe GHA based on hydrazine moiety as the recognition site to produce a pyrazole structure after reaction with MDA and to generate a CN double bond after reaction with FA, allowing MDA and FA to be distinguished due to different emission wavelengths during the recognition process. The probe GHA has good specificity and sensitivity. Under the excitation of 350 nm, the blue fluorescence was significantly enhanced at 424 nm when the probe reacted with MDA, and the detection limit was 71 nM. At the same time, under the same excitation of 350 nm, the reaction with FA showed a significant enhancement of green fluorescence at 520 nm, with a detection limit of 12 nM for FA. And the simultaneous and high-resolution imaging of MDA and FA in the Golgi apparatus of cells was achieved. In addition, the applications of the probe GHA in food demonstrated it can provide a powerful method for food safety monitoring. In summary, this study offers a promising tool for the synergistic identification and determination of MDA and FA in the biosystem and food, facilitating the revelation of their detailed functions in Golgi apparatus and the monitoring of food safety.
Collapse
Affiliation(s)
- Xueting Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Liangchen Wei
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Yao Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China.
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Tingyi Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
8
|
Xu MZ, Li YT, Cao CQ. Physiological and gene expression responses of Protohermes xanthodes (Megaloptera: Corydalidae) larvae to imidacloprid. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:46. [PMID: 39249498 DOI: 10.1007/s00114-024-01932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Megaloptera larvae are important bioindicator species and potential resource insects. To further cultivate their economic role, their living environment must be examined in more detail. In this study, we analyzed the physiological and biochemical effects of a sublethal dose of imidacloprid, a widely used neonicotinoid insecticide, on the larvae of Protohermes xanthodes. After treatment with imidacloprid, P. xanthodes larvae exhibited clear symptoms of poisoning, including the head curling up toward the ventral surface. Additionally, the activity of acetylcholinesterase was significantly inhibited following exposure. The activities of glutathione S-transferases initially continuously increased but showed a slight decrease after 8 days. Catalase activity initially increased and then decreased following imidacloprid treatment; superoxide dismutase activity fluctuated over time, and peroxidase activity continuously increased. The expression levels of HSP70s genes were evaluated using qRT-PCR. These results indicate that P. xanthodes larvae exhibit a toxic response to imidacloprid exposure, manifested as oxidative stress, as observed through behavioral and physiological indicators.
Collapse
Affiliation(s)
- Mao-Zhou Xu
- College of Fisher and Life Science, Dalian Ocean University, Dalian, China
| | - Yu-Tong Li
- College of Fisher and Life Science, Dalian Ocean University, Dalian, China
| | - Cheng-Quan Cao
- College of Fisher and Life Science, Dalian Ocean University, Dalian, China.
| |
Collapse
|
9
|
Liu Y, Li H, Yang M, Guo J, Sun Z, Wang S, Li R, Pang X, Kim Y, Wang X, Peng Y. Sika Deer Velvet Antler Peptide Exerts Neuroprotective Effect in a Parkinson's Disease Model via Regulating Oxidative Damage and Gut Microbiota. Pharmaceuticals (Basel) 2024; 17:972. [PMID: 39065820 PMCID: PMC11280472 DOI: 10.3390/ph17070972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder globally. Recognizing the potential of velvet antler in the nervous system, as shown in numerous studies, this research was aimed at evaluating the neuroprotective effects of Sika Deer velvet antler peptide (VAP), along with the underlying mechanisms in neurotoxin-induced PD models. Initially, a peptidomic analysis of the VAP, which comprised 189 varieties of peptides, was conducted using LC-MS. Nine sequences were identified as significant using Proteome Discoverer 2.5 software. In a cellular model of PD, where PC12 cells are treated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), the administration of the VAP reduced the cell damage and apoptosis induced by MPP+. This protective effect was associated with a decrease in oxidative stress. This protective mechanism was found to be mediated through the activation of the SIRT1-dependent Akt/Nrf2/HO-1-signaling pathway. In animal models, specifically in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, the administration of the VAP effectively reduced the dopaminergic neuron damage and reversed the neurobehavioral deficits. They also diminished microglia activation and apoptosis, all without any noticeable adverse effects. Additionally, the VAP was observed to beneficially alter the gut microbiota, as marked by an increase in the abundances of Prevotellaceae, Helicobacteraceae, and Prevotella. These findings suggest that VAP exerts its neuroprotective effect against neurodegeneration by inhibiting oxidative stress and modulating gut microbiota.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| | - Hongyuan Li
- Laboratory of Chemistry Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.L.); (X.W.)
| | - Min Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| | - Jia Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| | - Zepeng Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China;
| | - Shuyue Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China;
| | - Ru Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| | - Xin Pang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China;
| | - Yumi Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Xiaohui Wang
- Laboratory of Chemistry Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.L.); (X.W.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| |
Collapse
|
10
|
Zhang N, Nao J, Dong X. Neuroprotective Mechanisms of Salidroside in Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17597-17614. [PMID: 37934032 DOI: 10.1021/acs.jafc.3c06672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that occurs in old age and pre-aging, characterized by progressive cognitive dysfunction and behavioral impairment. Salidroside (Sal) is a phenylpropanoid mainly isolated from Rhodiola species with various pharmacological effects. However, the exact anti-AD mechanism of Sal has not been clearly elucidated. This meta-analysis aims to investigate the possible mechanisms by which Sal exerts its anti-AD effects by evaluating behavioral indicators and biochemical characteristics. A total of 20 studies were included, and the results showed that the Sal treatment significantly improved behavior abnormalities in AD animal models. With regard to neurobiochemical indicators, Sal treatment could effectively increase the antioxidant enzyme superoxide dismutase, decrease the oxidative stress indicator malondialdehyde, and decrease the inflammatory indicators interleukin 1β, interleukin 6, and tumor necrosis factor α. Sal treatment was effective in reducing neuropathological indicators, such as amyloid-β levels and the number of apoptotic cells. When the relevant literature on the treatment of rodent AD models is combined with Sal, the therapeutic potential of Sal through multiple mechanisms was confirmed. However, further confirmation by higher quality studies, larger sample sizes, and more comprehensive outcome evaluations in clinical trials is needed in the future.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Seventh Clinical College of China Medical University, 24 Central Street, Xinfu District, Fushun, Liaoning 113000, People's Republic of China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110000, People's Republic of China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110000, People's Republic of China
| |
Collapse
|
11
|
Ma Y, Sun W, Ye Z, Liu L, Li M, Shang J, Xu X, Cao H, Xu L, Liu Y, Kong X, Song G, Zhang XB. Oxidative stress biomarker triggered multiplexed tool for auxiliary diagnosis of atherosclerosis. SCIENCE ADVANCES 2023; 9:eadh1037. [PMID: 37831761 PMCID: PMC10575586 DOI: 10.1126/sciadv.adh1037] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
Oxidative stress is integral in the development of atherosclerosis, but knowledge of how oxidative stress affects atherosclerosis remains insufficient. Here, we design a multiplexed diagnostic tool that includes two functions (photoacoustic imaging and urinalysis), for assessing intraplaque and urinary malondialdehyde (MDA), a well-recognized end-product of oxidative stress. Molecular design is conducted to develop the first near-infrared MDA-responsive molecule (MRM). Acid-unlocked ratiometric photoacoustic nanoprobe is designed to report intraplaque MDA, enabling it to reflect plaque burden. Furthermore, MRM is tailored for urinary MDA detection with excellent specificity in a blind study. Moreover, we found a significant difference in urinary MDA between healthy adults and atherosclerotic patients (more than 600 participants). Combining these two functions, such a multiplexed diagnostic tool can dynamically report intraplaque and systemic oxidative stress levels during atherosclerosis progression, pneumonia infection, and drug treatment in atherosclerotic mice, which is promising for the auxiliary diagnosis of atherosclerosis.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Zhifei Ye
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Liuhui Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Menghuan Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinhui Shang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinyu Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hui Cao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Li Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongchao Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangqing Kong
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
12
|
Li J, Pan L, Pan W, Li N, Tang B. Recent progress of oxidative stress associated biomarker detection. Chem Commun (Camb) 2023. [PMID: 37194341 DOI: 10.1039/d3cc00878a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Oxidative stress denotes the imbalance between the generation of reactive oxygen species (ROS) and antioxidant defenses in living organisms, participating in various pathophysiological processes and mediating the occurrence of diseases. Typically, the excessive production of ROS under oxidative stress elicits oxidative modification of biomacromolecules, including lipids, proteins and nucleic acids, leading to cell dysfunction and damage. Therefore, the analysis and detection of oxidative stress-associated biomarkers are of considerable importance to accurately reflect and evaluate the oxidative stress status. This review comprehensively elucidates the recent advances and applications of imaging probes for tracking and detecting oxidative stress-related biomarkers such as lipid peroxidation, and protein and DNA oxidation. The existing challenges and future development directions in this field are also discussed.
Collapse
Affiliation(s)
- Jingjing Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Limeng Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
13
|
Parthasarathy M, Prince SE. Andrographis paniculata (Burm.f.) Nees Alleviates Methotrexate-Induced Hepatotoxicity in Wistar Albino Rats. Life (Basel) 2023; 13:life13051173. [PMID: 37240818 DOI: 10.3390/life13051173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Andrographis paniculata is a herbal plant used in traditional medicinal approaches to treat various ailments and diseases. Methotrexate (MTX) is a clinically used immunosuppressant and anticancer drug. One of the increasing concerns with MTX use is liver toxicity. The aim of this study is to investigate the potential effect of aqueous leaf extract of Andrographis paniculata against methotrexate-induced hepatotoxicity. Wistar albino rats were grouped into five groups, and the drugs were administered. MTX (20 mg/kg b.w.) was intraperitoneally injected into rats on the ninth day alone. Aqueous leaf extract of Andrographis paniculata (500 mg/kg b.w./day) was orally administered for 10 days. We confirmed the beneficial effect of aqueous extracts of Andrographis paniculata on restoring the hepatic enzyme markers, lipid profile, antioxidant level, anti-inflammatory marker (IL-10), anti-apoptosis (bcl-2), significant suppression of inflammatory cytokines (TNF-α, and IL-6), apoptosis marker (caspase 3) and cellular tissue damage caused by MTX. Overall, we revealed that Andrographis paniculata reduces critical aspects of oxidative stress, inflammatory processes, and apoptosis, thus protecting against methotrexate-induced hepatotoxicity.
Collapse
Affiliation(s)
- Manisha Parthasarathy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
14
|
Xiong J, Ai Q, Bao L, Gan Y, Dai X, Han M, Shi Y. Dose-dependent effects of human umbilical cord-derived mesenchymal stem cell treatment in hyperoxia-induced lung injury of neonatal rats. Front Pediatr 2023; 11:1111829. [PMID: 36969270 PMCID: PMC10032376 DOI: 10.3389/fped.2023.1111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/26/2023] [Indexed: 03/29/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) are multipotent stromal cells that have been reported to possess great potential for the treatment of bronchopulmonary dysplasia (BPD). Objective Our study aims to assess the effects of three different doses of intraperitoneal administration of human umbilical cord-derived MSCs (hUC-MSCs) on a hyperoxia-induced BPD model of newborn rat. Methods Neonatal Sprague Dawley (SD) rats were reared in either hyperoxia (75% O2) or room air (RA) from postnatal days (PN) 1-14. At PN5, hUC-MSCs (1 × 106, 5× 106,or 1× 107 cells per pup) were given intraperitoneally to newborn rats exposed to 75% O2 from birth; the controls received an equal volume of normal saline (NS). At PN14, the lung tissues, serum, and bronchoalveolar fluid (BALF) were collected for histologic examination, wet/dry (W/D) weight ratio analysis, engraftment, myeoloperoxidase (MPO) activity analysis, cytokine analysis, and western blot analysis of protein expression. Results Compared to rat pups reared in RA, rat pups reared in hyperoxia had a significant lower survival rate (53.3%) (P < 0.01). Hyperoxia-exposed rats exhibited pulmonary inflammation accompanied by alveolar-capillary leakage, neutrophile infiltration, augmented myeloperoxidase (MPO) activity, prominent alveolar simplification, and increased mean linear intercept (MLI), which was ameliorated by hUC-MSCs treatment. Increased oxidative stress and inflammatory cytokine production were also reduced. Importantly, the expression of Fas, an apoptosis-associated protein that was increasingly expressed in hyperoxia-exposed rats (P < 0.05), was downregulated after administration of hUC-MSCs (P < 0.05). Conclusions Our results suggest that intraperitoneal administration of high number hUC-MSCs (1 × 107 cells) may represent an effective modality for the treatment of hyperoxia-induced BPD in neonatal rats.
Collapse
Affiliation(s)
- Jing Xiong
- Neonatal Diagnosis and Treatment Center of Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qing Ai
- Neonatal Diagnosis and Treatment Center of Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lei Bao
- Neonatal Diagnosis and Treatment Center of Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yuanshan Gan
- The Perfect Cell Biotechnology Co., Ltd, Chongqing, China
| | - Xiaoyu Dai
- The Perfect Cell Biotechnology Co., Ltd, Chongqing, China
| | - Mei Han
- The Perfect Cell Biotechnology Co., Ltd, Chongqing, China
| | - Yuan Shi
- Neonatal Diagnosis and Treatment Center of Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Correspondence: Yuan Shi
| |
Collapse
|
15
|
Wang S, Wang B, Guo G, Chen Y. Cardiac External Counterpulsation Attenuates Myocardial Injury by Regulating NRF2-mediated Ferroptosisin and Oxidative stress Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6477778. [PMID: 36262162 PMCID: PMC9576384 DOI: 10.1155/2022/6477778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022]
Abstract
Objectives To explore the role of the external counterpulsation (ECP) myocardial injury by controlling NRF2-mediated ferroptosis and oxidative stress damage in acute myocardial infarction. Methods Twenty acute myocardial infarction (AMI) participants hospitalized from January 2021 to January 2022 were enrolled. In addition, 20 healthy individuals who had a physical examination at our hospital served as normal controls. Before the AMI patients were given ECP therapy, the blood samples were collected and echocardiography was performed as the data of AMI cohort. Then, the blood samples were collected and echocardiography was performed following the ECP therapy as the data of AMI + ECP cohort. The heart function was assessed by echocardiography test. Results Our findings demonstrated that ECP could reduce heart damage in patients with AMI. In the current study, we found that ECP could reduce heart damage in patients with AMI through increasing the LV-EF% and enhancing LVEDV and LVESV, and the difference was statistically significant (P < 0.05). ECP could reduce the levels of oxidative stress and ferroptosis markers in blood samples of AMI patients, which was through the upregulation of NRF2 and HO-1 expression, and the difference was statistically significant (P < 0.05). Taken together, all data implied that ECP was able to attenuate myocardial injury by regulating NRF2-mediated ferroptosis and oxidative stress in AMI patients, and the difference was statistically significant (P < 0.05). Conclusion Our findings in this research are that cardiac ECP is able to attenuate myocardial injury by regulating NRF2-mediated ferroptosis and oxidative stress injury in AMI patients. This certainly gives the possibility of a clinically effective treatment for AMI patients, although further clinical trials need to be validated.
Collapse
Affiliation(s)
- ShiXiang Wang
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Bin Wang
- Department of Radiology, Heze Hospital of Traditional Chinese Medicine, Heze 274400, Shandong, China
| | - Guofeng Guo
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Youquan Chen
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| |
Collapse
|
16
|
Castillo G, Barrios-Arpi L, Ramos-Gonzalez M, Vidal P, Gonzales-Irribarren A, Ramos-Cevallos N, Rodríguez JL. Neurotoxicity associated with oxidative stress and inflammasome gene expression induced by allethrin in SH-SY5Y cells. Toxicol Ind Health 2022; 38:777-788. [PMID: 36074087 DOI: 10.1177/07482337221089585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pyrethroids, including allethrin, have largely been used as commercial insecticides. The toxicity of allethrin is little known, but it is assumed that, as occurs with other pyrethroids, it could cause alterations of the nervous system and pose both occupational and non-occupational health hazards. To evaluate the neurotoxicity of allethrin we used the MTT assay of SH-SY5Y neuroblastoma cells to determine cell viability. Dose-dependent reductions of cell viability served to compare the vehicle-group and the IC50 for allethrin, which was 49.19 μM. ROS production increased significantly at concentrations of 10-200 μM of allethrin, and NO levels were significantly increased by the effect of allethrin at a minimum concentration of 50 μM. Lipid peroxidation increased by the effect of allethrin at concentrations of 25, 50, 100, and 200 μM. Caspase 3/7 activity was induced by allethrin concentrations of 50, 100, and 200 μM. Here, we suggest that allethrin might affect the inflammasome complex (Caspase-1, NLRP3, and PYDC1) and apoptosis (Bax and Bcl-2) gene expression by mRNA fold change expression levels shown in Caspase-1 (2.46-fold), NLRP3 (1.57-fold), PYDC1 (1.48-fold), and Bax (2.1-fold). These results demonstrated that allethrin induced neurotoxicity effects on SH-SY5Y cells through activation of inflammasome pathways, cell death, and oxidative stress.
Collapse
Affiliation(s)
- Giovana Castillo
- Faculty of Pharmacy and Biochemistry, Research Institute Juan de Dios Guevara, 33209Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Luis Barrios-Arpi
- Animal Phisiology Laboratory, Faculty of Veterinary Medicine, 33209Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Mariella Ramos-Gonzalez
- Zootechnics and Animal Production Laboratory, Faculty of Veterinary Medicine, 33209Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Paola Vidal
- Animal Phisiology Laboratory, Faculty of Veterinary Medicine, 33209Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Alejandro Gonzales-Irribarren
- Pharmacology and Toxicology Laboratory, Faculty of Veterinary Medicine, 33209Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Norma Ramos-Cevallos
- Faculty of Pharmacy and Biochemistry, Research Institute Juan de Dios Guevara, 33209Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - José-Luis Rodríguez
- Pharmacology and Toxicology Laboratory, Faculty of Veterinary Medicine, 33209Universidad Nacional Mayor de San Marcos, Lima, Peru.,Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Dong N, Zhou PP, Li D, Zhu HS, Liu LH, Ma HX, Shi Q, Ju XL. Intratracheal administration of umbilical cord-derived mesenchymal stem cells attenuates hyperoxia-induced multi-organ injury via heme oxygenase-1 and JAK/STAT pathways. World J Stem Cells 2022; 14:556-576. [PMID: 36157523 PMCID: PMC9350625 DOI: 10.4252/wjsc.v14.i7.556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is not merely a chronic lung disease, but a systemic condition with multiple organs implications predominantly associated with hyperoxia exposure. Despite advances in current management strategies, limited progress has been made in reducing the BPD-related systemic damage. Meanwhile, although the protective effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) or their exosomes on hyperoxia-induced lung injury have been explored by many researchers, the underlying mechanism has not been addressed in detail, and few studies have focused on the therapeutic effect on systemic multiple organ injury.
AIM To investigate whether hUC-MSC intratracheal administration could attenuate hyperoxia-induced lung, heart, and kidney injuries and the underlying regulatory mechanisms.
METHODS Neonatal rats were exposed to hyperoxia (80% O2), treated with hUC-MSCs intratracheal (iT) or intraperitoneal (iP) on postnatal day 7, and harvested on postnatal day 21. The tissue sections of the lung, heart, and kidney were analyzed morphometrically. Protein contents of the bronchoalveolar lavage fluid (BALF), myeloperoxidase (MPO) expression, and malondialdehyde (MDA) levels were examined. Pulmonary inflammatory cytokines were measured via enzyme-linked immunosorbent assay. A comparative transcriptomic analysis of differentially expressed genes (DEGs) in lung tissue was conducted via RNA-sequencing. Subsequently, we performed reverse transcription-quantitative polymerase chain reaction and western blot analysis to explore the expression of target mRNA and proteins related to inflammatory and oxidative responses.
RESULTS iT hUC-MSCs administration improved pulmonary alveolarization and angiogenesis (P < 0.01, P < 0.01, P < 0.001, and P < 0.05 for mean linear intercept, septal counts, vascular medial thickness index, and microvessel density respectively). Meanwhile, treatment with hUC-MSCs iT ameliorated right ventricular hypertrophy (for Fulton’s index, P < 0.01), and relieved reduced nephrogenic zone width (P < 0.01) and glomerular diameter (P < 0.001) in kidneys. Among the beneficial effects, a reduction of BALF protein, MPO, and MDA was observed in hUC-MSCs groups (P < 0.01, P < 0.001, and P < 0.05 respectively). Increased pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin (IL)-1β, and IL-6 expression observed in the hyperoxia group were significantly attenuated by hUC-MSCs administration (P < 0.01, P < 0.001, and P < 0.05 respectively). In addition, we observed an increase in anti-inflammatory cytokine IL-10 expression in rats that received hUC-MSCs iT compared with rats reared in hyperoxia (P < 0.05). Transcriptomic analysis showed that the DEGs in lung tissues induced by hyperoxia were enriched in pathways related to inflammatory responses, epithelial cell proliferation, and vasculature development. hUC-MSCs administration blunted these hyperoxia-induced dysregulated genes and resulted in a shift in the gene expression pattern toward the normoxia group. hUC-MSCs increased heme oxygenase-1 (HO-1), JAK2, and STAT3 expression, and their phosphorylation in the lung, heart, and kidney (P < 0.05). Remarkably, no significant difference was observed between the iT and iP administration.
CONCLUSION iT hUC-MSCs administration ameliorates hyperoxia-induced lung, heart, and kidney injuries by activating HO-1 expression and JAK/STAT signaling. The therapeutic benefits of local iT and iP administration are equivalent.
Collapse
Affiliation(s)
- Na Dong
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Pan-Pan Zhou
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Dong Li
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Hua-Su Zhu
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Ling-Hong Liu
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Hui-Xian Ma
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Qing Shi
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xiu-Li Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
18
|
Wang Y, Wang C, Zhang D, Wang L, Wang H, Hu B, Bo L. Methane-rich saline protects against sepsis-associated cognitive deficits in mice. Brain Res 2022; 1791:148000. [PMID: 35780865 DOI: 10.1016/j.brainres.2022.148000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/25/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Sepsis is associated with multiple organ dysfunction, and the brain is particularly vulnerable. Sepsis-associated encephalopathy (SAE) increases the mortality of patients with sepsis; however, the pathogenesis of SAE remains unclear. Methane, the simplest aliphatic hydrocarbon, has been reported to have anti-inflammatory and organ-protective effects. This study aimed to investigate the effects of methane on the cognitive deficits in mice with experimental sepsis. We randomly divided C57BL/6 male mice into sham, cecal ligation and puncture (CLP), and CLP + methane-rich saline (MS) groups. Twenty-four hours after surgery, behavioral tests were conducted on surviving mice and the hippocampus were collected for biochemical analysis. We found that CLP resulted in cognitive deficits in septic mice. A physiological mechanistic investigation revealed that microglia in the hippocampus are largely activated, coupled with the production of inflammatory cytokines and reactive oxygen species (ROS). Notably, methane inhibited the activation of microglia in the hippocampus, reduced the severity of inflammation, diminished the generation of ROS, and ultimately alleviated behavioral impairment in septic mice. Together, these show that treatment with methane ameliorated cognitive deficits in septic mice, which is partly related to the anti-inflammatory and antioxidative effects in the hippocampus.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; Department of Anesthesiology, Women and Children's Health Care Hospital of Linyi, Linyi 276017, Shandong, China
| | - Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Dan Zhang
- Department of Anesthesiology, The Second People's Hospital of Lianyungang, Lianyungang 222006, Jiangsu, China
| | - Liping Wang
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force/Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, China
| | - Huihui Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Baoji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
19
|
Jana A, Baruah M, Samanta A. Activity-based fluorescent probes for sensing and imaging of Reactive Carbonyl species (RCSs). Chem Asian J 2022; 17:e202200044. [PMID: 35239996 DOI: 10.1002/asia.202200044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/03/2022] [Indexed: 11/08/2022]
Abstract
This review explains various strategies for developing fluorescent probes to detect reactive carbonyl species (RCS). There are sevaral number of mono and diacarbonyls among 30 varieties of reactive carbonyl species (RCSs) so far discovered, which play pivotal roles in pathological processes such as cancer, neurodegenerative diseases, cardiovascular disease, renal failure, and diabetes mellitus. These RCSs play essential roles in maintaining ion channels regulation, cellular signaling pathways, and metabolisms. Among RCSs, Carbon moxide (CO) is also utilized for its cardioprotective, anti-inflammatory, and anti-apoptotic effects. Fluorescence-based non-invasive optical tools have come out as one of the promising methods for analyzing the concentrations and co-localizations of these small metabolites. There has been a tremendous eruption in developing fluorescent probes for selective detection of specific RCSs within cellular and aqueous environments due to its high sensitivity, high spatial and temporal resolution of fluorescence imaging. Fluorescence-based sensing mechanisms such as intramolecular charge transfer (ICT), photoinduced electron transfer (PeT), excited-state intramolecular proton transfer (ESIPT), and fluorescence resonance energy transfer (FRET) are described. In particular, probes for dicarbonyls such as methylglyoxal (MGO), malondialdehyde (MDA), along with monocarbonyls that include formaldehyde (FA), carbon monoxide (CO) and phosgene are discussed. One of the most exciting advances in this review is the summary of fluorescent probes of dicarbonyl compounds.
Collapse
Affiliation(s)
- Anal Jana
- Shiv Nadar University, Chemistry, INDIA
| | | | - Animesh Samanta
- Shiv Nadar University, CHEMISTRY, NH 91, TEHSIL DADRI, GAUSTAM BUDHA NAGAR, 201314, GREATER NOIDA, INDIA
| |
Collapse
|
20
|
Zhang X, Zhang Y, Zhou M, Xie Y, Dong X, Bai F, Zhang J. DPHC From Alpinia officinarum Ameliorates Oxidative Stress and Insulin Resistance via Activation of Nrf2/ARE Pathway in db/db Mice and High Glucose-Treated HepG2 Cells. Front Pharmacol 2022; 12:792977. [PMID: 35111058 PMCID: PMC8801804 DOI: 10.3389/fphar.2021.792977] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
(R)-5-hydroxy-1,7-diphenyl-3-heptanone (DPHC) from the natural plant Alpinia officinarum has been reported to have antioxidation and antidiabetic effects. In this study, the therapeutic effect and molecular mechanism of DPHC on type 2 diabetes mellitus (T2DM) were investigated based on the regulation of oxidative stress and insulin resistance (IR) in vivo and in vitro. In vivo, the fasting blood glucose (FBG) level of db/db mice was significantly reduced with improved glucose tolerance and insulin sensitivity after 8 weeks of treatment with DPHC. In vitro, DPHC ameliorated IR because of its increasing glucose consumption and glucose uptake of IR-HepG2 cells induced by high glucose. In addition, in vitro and in vivo experiments showed that DPHC could regulate the antioxidant enzyme levels including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), thereby reducing the occurrence of oxidative stress and improving insulin resistance. Western blotting and polymerase chain reaction results showed that DPHC could promote the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), the heme oxygenase-1 (HO-1), protein kinase B (AKT), and glucose transporter type 4 (GLUT4), and reduced the phosphorylation levels of c-Jun N-terminal kinase (JNK) and insulin receptor substrate-1 (IRS-1) on Ser307 both in vivo and in vitro. These findings verified that DPHC has the potential to relieve oxidative stress and IR to cure T2DM by activating Nrf2/ARE signaling pathway in db/db mice and IR-HepG2 cells.
Collapse
Affiliation(s)
- Xuguang Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Yuxin Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Mingyan Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Yiqiang Xie
- Traditional Chinese Medicine (TCM) College, Hainan Medical University, Haikou, China
| | - Xiujuan Dong
- Traditional Chinese Medicine (TCM) College, Hainan Medical University, Haikou, China
| | - Feihu Bai
- The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Junqing Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| |
Collapse
|
21
|
Cui X, Yang Y, Zhang M, Liu S, Wang H, Jiao F, Bao L, Lin Z, Wei X, Qian W, Shi X, Su C, Qian Y. Transcriptomics and metabolomics analysis reveal the anti-oxidation and immune boosting effects of mulberry leaves in growing mutton sheep. Front Immunol 2022; 13:1088850. [PMID: 36936474 PMCID: PMC10015891 DOI: 10.3389/fimmu.2022.1088850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/21/2022] [Indexed: 03/05/2023] Open
Abstract
Introduction Currently, the anti-oxidation of active ingredients in mulberry leaves (MLs) and their forage utilization is receiving increasing attention. Here, we propose that MLs supplementation improves oxidative resistance and immunity. Methods We conducted a trial including three groups of growing mutton sheep, each receiving fermented mulberry leaves (FMLs) feeding, dried mulberry leaves (DMLs) feeding or normal control feeding without MLs. Results Transcriptomic and metabolomic analyses revealed that promoting anti-oxidation and enhancing disease resistance of MLs is attributed to improved tryptophan metabolic pathways and reduced peroxidation of polyunsaturated fatty acids (PUFAs). Furthermore, immunity was markedly increased after FMLs treatment by regulating glycolysis and mannose-6-phosphate pathways. Additionally, there was better average daily gain in the MLs treatment groups. Conclusion These findings provide new insights for understanding the beneficial effects of MLs in animal husbandry and provide a theoretical support for extensive application of MLs in improving nutrition and health care values.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chao Su
- *Correspondence: Chao Su, ; Yonghua Qian,
| | | |
Collapse
|
22
|
Zhang X, Chen G, Zhang J, Zhang B, Li L, Li X. Fermented noni (Morinda citrifolia L.) fruit juice improved oxidative stress and insulin resistance under the synergistic effect of Nrf2/ARE pathway and gut flora in db/db mice and HepG2 cells. Food Funct 2022; 13:8254-8273. [DOI: 10.1039/d2fo00595f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative stress interferes with blood glucose homeostasis, leading to insulin resistance (IR) and hyperglycemia, which eventually induces type 2 diabetes (T2DM). Fermented noni (Morinda citrifolia L.) fruit juice (FNJ) is...
Collapse
|
23
|
Inflammatory Response and Oxidative Stress as Mechanism of Reducing Hyperuricemia of Gardenia jasminoides- Poria cocos with Network Pharmacology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8031319. [PMID: 34917234 PMCID: PMC8670933 DOI: 10.1155/2021/8031319] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022]
Abstract
Hyperuricemia (HUA) is a metabolic disease, closely related to oxidative stress and inflammatory responses, caused by reduced excretion or increased production of uric acid. However, the existing therapeutic drugs have many side effects. It is imperative to find a drug or an alternative medicine to effectively control HUA. It was reported that Gardenia jasminoides and Poria cocos could reduce the level of uric acid in hyperuricemic rats through the inhibition of xanthine oxidase (XOD) activity. But there were few studies on its mechanism. Therefore, the effective ingredients in G. jasminoides and P. cocoa extracts (GPE), the active target sites, and the further potential mechanisms were studied by LC-/MS/MS, molecular docking, and network pharmacology, combined with the validation of animal experiments. These results proved that GPE could significantly improve HUA induced by potassium oxazine with the characteristics of multicomponent, multitarget, and multichannel overall regulation. In general, GPE could reduce the level of uric acid and alleviate liver and kidney injury caused by inflammatory response and oxidative stress. The mechanism might be related to the TNF-α and IL-7 signaling pathway.
Collapse
|
24
|
Zhu L, Liu Z, Ren Y, Wu X, Liu Y, Wang T, Li Y, Cong Y, Guo Y. Neuroprotective effects of salidroside on ageing hippocampal neurons and naturally ageing mice via the PI3K/Akt/TERT pathway. Phytother Res 2021; 35:5767-5780. [PMID: 34374127 DOI: 10.1002/ptr.7235] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/22/2021] [Accepted: 07/17/2021] [Indexed: 12/23/2022]
Abstract
Studies have found that salidroside, isolated from Rhodiola rosea L, has various pharmacological activities, but there have been no studies on the effects of salidroside on brain hippocampal senescence. The purpose of this study was to investigate the mechanistic role of salidroside in hippocampal neuron senescence and injury. In this study, long-term cultured primary rat hippocampal neurons and naturally aged C57 mice were treated with salidroside. The results showed that salidroside increased the viability and MAP2 expression, reduced β-galactosidase (β-gal) levels of rat primary hippocampal neurons. Salidroside also improved cognition dysfunction in ageing mice and alleviated neuronal degeneration in the ageing mice CA1 region. Moreover, salidroside decreased the levels of oxidative stress and p21, p16 protein expressions of hippocampal neurons and ageing mice. Salidroside promoted telomerase reverse transcriptase (TERT) protein expression via the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway. In conclusion, our findings suggest that salidroside has the potential to be used as a therapeutic strategy for anti-ageing and ageing-related disease treatment.
Collapse
Affiliation(s)
- Lin Zhu
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Zhenchao Liu
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Yuqian Ren
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Xiaolin Wu
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Yingjuan Liu
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Tingting Wang
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Yizhao Li
- Department of Neurology, Jinan Fanggan Rehabilitation Hospital, Jinan, China
| | - Yusheng Cong
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| |
Collapse
|
25
|
Qiang S, Li Z, Zhang L, Luo D, Geng R, Zeng X, Liang J, Li P, Fan Q. Cytotoxic Effect of Graphene Oxide Nanoribbons on Escherichia coli. NANOMATERIALS 2021; 11:nano11051339. [PMID: 34069641 PMCID: PMC8160729 DOI: 10.3390/nano11051339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
The biological and environmental toxicity of graphene and graphene derivatives have attracted great research interest due to their increasing applications. However, the cytotoxic mechanism is poorly understood. Here, we investigated the cytotoxic effect of graphene oxide nanoribbons (GORs) on Escherichia coli (E. coli) in an in vitro method. The fabricated GORs formed long ribbons, 200 nm wide. Based on the results of the MTT assay and plate-culture experiments, GORs significantly inhibited the growth and reproduction of E. coli in a concentration-dependent manner. We found that GORs stimulated E. coli to secrete reactive oxygen species, which then oxidized and damaged the bacterial cell membrane. Moreover, interaction between GORs and E. coli cytomembrane resulted in polysaccharide adsorption by GORs and the release of lactic dehydrogenase. Furthermore, GORs effectively depleted the metal ions as nutrients in the culture medium by adsorption. Notably, mechanical cutting by GORs was not obvious, which is quite different from the case of graphene oxide sheets to E. coli.
Collapse
Affiliation(s)
- Shirong Qiang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (S.Q.); (Z.L.); (L.Z.); (X.Z.)
| | - Zhengbin Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (S.Q.); (Z.L.); (L.Z.); (X.Z.)
| | - Li Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (S.Q.); (Z.L.); (L.Z.); (X.Z.)
| | - Dongxia Luo
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (R.G.); (J.L.); (P.L.); (Q.F.)
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- Correspondence: ; Tel.: +18-919081544
| | - Rongyue Geng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (R.G.); (J.L.); (P.L.); (Q.F.)
| | - Xueli Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (S.Q.); (Z.L.); (L.Z.); (X.Z.)
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (R.G.); (J.L.); (P.L.); (Q.F.)
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (R.G.); (J.L.); (P.L.); (Q.F.)
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (R.G.); (J.L.); (P.L.); (Q.F.)
| |
Collapse
|
26
|
Liu B, Wang W, Shah A, Yu M, Liu Y, He L, Dang J, Yang L, Yan M, Ying Y, Tang Z, Liu K. Sodium iodate induces ferroptosis in human retinal pigment epithelium ARPE-19 cells. Cell Death Dis 2021; 12:230. [PMID: 33658488 PMCID: PMC7930128 DOI: 10.1038/s41419-021-03520-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
Sodium iodate (SI) is a widely used oxidant for generating retinal degeneration models by inducing the death of retinal pigment epithelium (RPE) cells. However, the mechanism of RPE cell death induced by SI remains unclear. In this study, we investigated the necrotic features of cultured human retinal pigment epithelium (ARPE-19) cells treated with SI and found that apoptosis or necroptosis was not the major death pathway. Instead, the death process was accompanied by significant elevation of intracellular labile iron level, ROS, and lipid peroxides which recapitulated the key features of ferroptosis. Ferroptosis inhibitors deferoxamine mesylate (DFO) and ferrostatin-1(Fer-1) partially prevented SI-induced cell death. Further studies revealed that SI treatment did not alter GPX4 (glutathione peroxidase 4) expression, but led to the depletion of reduced thiol groups, mainly intracellular GSH (reduced glutathione) and cysteine. The study on iron trafficking demonstrated that iron influx was not altered by SI treatment but iron efflux increased, indicating that the increase in labile iron was likely due to the release of sequestered iron. This hypothesis was verified by showing that SI directly promoted the release of labile iron from a cell-free lysate. We propose that SI depletes GSH, increases ROS, releases labile iron, and boosts lipid damage, which in turn results in ferroptosis in ARPE-19 cells.
Collapse
Affiliation(s)
- Binghua Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
- Laboratory of Molecular Biology, College of Medicine, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Weiyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Arman Shah
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Meng Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Libo He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Jinye Dang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Li Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Mengli Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yuling Ying
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Zihuai Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Ke Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
27
|
In-vitro and in-vivo monitoring of gold(III) ions from intermediate metabolite of sodium aurothiomalate through water-soluble ruthenium (II) complex-based luminescent probe. Bioorg Chem 2021; 110:104749. [PMID: 33652341 DOI: 10.1016/j.bioorg.2021.104749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 02/04/2023]
Abstract
Real-time monitoring of drug metabolism in vivo is of great significance to drug development and toxicology research. The purpose of this study is to establish a rapid and visual in vivo detection method for the detection of an intermediate metabolite of the gold (I) drug. Gold (I) drugs such as sodium aurothiomalate (AuTM) have anti-inflammatory effects in the treatment of rheumatoid arthritis. Gold(III) ions (Au3+) are the intermediate metabolite of gold medicine, and they are also the leading factor of side effects in the treatment of patients. However, the rapid reduction of Au3+ to Au+ by thiol proteins in organisms limits the in-depth study of metabolism of gold drugs in vivo. Here we describe a luminescence Au3+ probe (RA) based on ruthenium (II) complex for detecting Au3+ in vitro and in vivo. RA with large Stokes shift, good water solubility and biocompatibility was successfully applied to detect Au3+ in living cells and vivo by luminescence imaging, and to trap the fluctuation of Au3+ level produced by gold (I) medicine. More importantly, the luminescent probe was used to the detection of the intermediate metabolites of gold (I) drugs for the first time. Overall, this work offers a new detection tool/method for a deeper study of gold (I) drugs metabolite.
Collapse
|
28
|
Changhong K, Peng Y, Yuan Z, Cai J. Ginsenoside Rb1 protected PC12 cells from Aβ 25-35-induced cytotoxicity via PPARγ activation and cholesterol reduction. Eur J Pharmacol 2020; 893:173835. [PMID: 33359145 DOI: 10.1016/j.ejphar.2020.173835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022]
Abstract
Accumulating evidences suggest that amyloid β (Aβ)-peptide plays a key role in pathogenesis of Alzheimer's disease (AD) through aggregation and deposition into plaques in neuronal cells. Membrane components such as cholesterol and gangliosides not only enhance the production of amyloidogenic Aβ fragments, but also appear to strengthen Aβ-membrane interaction. Ginsenoside Rb1 (GRb1) is a major active component of Panax, which is widely used to improve learning and memory. In the present study, whether ginsenoside Rb1 could protect pheochromocytoma cells (PC12 cells) from Aβ25-35-induced cytotoxicity including inhibiting cell growth, inducing apoptosis, producing reactive oxygen species (ROS), destroying the cytoskeleton and bringing about membrane toxicity was investigated. Our results indicated that ginsenoside Rb1 could serve as an agonist of peroxisom proliferator-activated receptor-γ (PPARγ) and reduce the level of cholesterol in AD model cells. Reduction of the Aβ25-35-induced cytotoxicity by lowering cholesterol was evidenced by reduction of ROS production, lipid peroxidation, and protection of cytoskeleton and membrane surface rigidity. Most importantly, the viability of PC12 cells increased from 50.42 ± 5.51% for the AD group to 102.72 ± 4.34% for the 50 μM ginsenoside Rb1 group with cholesterol reduction. Our results suggested that ginsenoside Rb1 might function as an effective candidate to promote reverse cholesterol transport and lower ROS production, therefore providing a new insight into prevention and treatment of AD.
Collapse
Affiliation(s)
- Ke Changhong
- Department of Chemistry, Jinan University, Guangzhou, 510632, China; YZ Health-tech Inc., Hengqin District, Zhuhai, 519000, China
| | - Yuan Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Zhengqiang Yuan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 51006, China.
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|