1
|
Hosny NM, Frontera A, Obaydo RH, Ali MFB. Advancing green and white assessment: DFT-assisted spectrofluorimetry for accurate favipiravir quantification in human plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:125983. [PMID: 40088839 DOI: 10.1016/j.saa.2025.125983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Recently, the recognition of computational chemistry potential is growing, because of its applicability for design of substances and studying their properties using computer programs and modelling approaches that help solve various problems. Computational chemistry is involved in the design of advanced fluorescent probes which can be employed in sensing of various analytes. Favipiravir (FVR) is an antiviral drug recommended for the treatment of COVID-19, known for its broad-spectrum activity against RNA viruses by inhibiting viral RNA-dependent RNA polymerase. This study introduces the first-ever integration of computational density functional theory (DFT) and experimental spectrofluorimetric approach to design a highly sensitive spectrofluorimetric method for estimation of FVR in its bulk form and human plasma. The DFT analysis was carried out to investigate the affinity of Zirconium (Zr4+) to FVR in aqueous solution and explore the formation of FVR-Zr4+ chelate. The combuted formation energy (ΔG = -416.5 kcal/mol) of [Zr (FVR)4]4+ complex confirmed the strong of ability of Zr4+ to recognize FVR in solution and evidenced the strong nature of the Zr4+- O and N coordination bonds. The results revealed a significant enhancement in the weak native fluorescence of FVR upon formation of the complex. Various experimental parameters were examined, further the established method was validated according to ICH standards where linearity range was achieved in the range of 0.50-200.0 ng mL-1, with low detection limit reached 32.99 pg mL-1. The developed DFT-assisted spectrofluorimetric methodology was successfully employed for FVR assessment in human plasma samples with good recoveries (98.74 -100.10 %) and relative standard deviation did not exceed 1.80 %. Moreover, the proposed method's eco-friendliness and sustainability were evaluated through four metrics (Red/Green/Blue 12 Algorithm (RGB12), Green Solvent Selection Tool (GSST), Analytical Greenness Metric (AGREE), and Analytical Greenness Metric for Sample Preparation (AGREEprep)), demonstrating its superiority over the existing methods in terms of using safer solvents, reduced sample preparation procedures, and higher overall greenness. Additionally, the high sensitivity and applicability of the proposed method to the reliable analysis of both bulk drug and plasma samples make it efficient and practical for routine FVR analysis in both pharmaceutical and clinical settings. Furthermore, this study opens new avenues for extending computational and experimental approaches to analyze FVR in real samples and explore other drug-metal interactions, contributing to advancements in drug analysis and mechanistic studies.
Collapse
Affiliation(s)
- Noha M Hosny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| | - Reem H Obaydo
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Ebla Private University, Idlib, Syria.
| | - Marwa F B Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
2
|
Kondou Y, Obataya M, Uchikura T, Momo K, Kato M. Simultaneous determination of Favipiravir and its active metabolite, Favipiravir Ribofuranosyl-5'-triphosphate, in plasma and buccal cells using HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1259:124615. [PMID: 40319565 DOI: 10.1016/j.jchromb.2025.124615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Favipiravir, recently approved for the treatment of tickborne severe fever with thrombocytopenia syndrome, is a prodrug that can be metabolized in vivo into its active phosphorylated form. Given that the accurate pharmacokinetic analysis of favipiravir and its active metabolite is crucial for dosage adjustment and, hence, therapeutic efficacy optimization, we herein developed an HPLC-based method for the simultaneous quantification of favipiravir and its active metabolite in plasma and buccal cells. Separation within 17 min was achieved using a mixed-mode C18 column with an anion-exchange functionality as the stationary phase, a phosphate buffer (pH 6.38) as the mobile phase, and gentisic acid as the internal standard. Fluorescence-based detection (excitation/emission = 370/440 nm) enabled the quantification of both compounds within the therapeutic range of 10-500 μM without interference from endogenous biological substances. The developed method, which allows for the rapid and reliable simultaneous determination of the prodrug and its active metabolite, is expected to be useful for improving the therapeutic outcome of favipiravir while minimizing side effects.
Collapse
Affiliation(s)
- Yuriko Kondou
- Department of Bioanalytical Chemistry, Showa Medical University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Moeka Obataya
- Division of Bioanalytical Chemistry, School of Pharmacy, Showa Medical University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takeshi Uchikura
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa Medical University, Hatanodai 1-5-8, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kenji Momo
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa Medical University, Hatanodai 1-5-8, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masaru Kato
- Department of Bioanalytical Chemistry, Showa Medical University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Molecular Analysis Facility, Showa Medical University, Japan.
| |
Collapse
|
3
|
Cenikli M, Mullaahmetoglu F, Ozturk R, Ozkan-Ariksoysal D. Does Favipiravir interact with DNA? Design of electrochemical DNA nanobiosensor to investigate the interaction between DNA and Favipiravir used in the treatment of COVID-19. Talanta 2025; 293:128084. [PMID: 40194460 DOI: 10.1016/j.talanta.2025.128084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
The SARS-CoV-2 (COVID-19) outbreak has presented a global challenge for both rapid diagnostic tests and therapeutic drugs. In this context, the electrochemical DNA-based biosensor was designed for the investigation of DNA and Favipiravir (FAV) which was one of the drugs used in patients infected SARS-CoV-2 during the pandemic interaction by using bare and multi-walled carbon nanotube (MWCNTs) modified disposable pencil graphite electrode (PGE) for the first time. This drug and its derivatives were used extensively during the pandemic period, and the possible effects of Favipiravir on DNA have not yet been investigated in detail with electrochemical (nano) biosensor technologies. In this study, both the standard form of FAV and the tablet form were used and tested with differential pulse voltammetry (DPV) and cyclic voltammetry (CV) to compare their effects on DNA. Besides, scanning electron microscopy (SEM) was used for the characterization of the developed MWCNTs modified electrochemical DNA biosensor. It was observed that FAV interacts with DNA and causes a significant decrease in the guanine oxidation signal at about +1.00 V. The designed MWCNT-based nanobiosensor was able to detect DNA-Favipiravir drug interaction in FAV concentration as low as 0.66 μg/mL (LOD) with a linear range from 150 to 500 μg/mL. Rapid analysis due to short interaction time (nearly 32 min) was performed.
Collapse
Affiliation(s)
- Merve Cenikli
- Faculty of Pharmacy, Ege University, Bornova, Izmir, 35100, Türkiye
| | | | - Rabia Ozturk
- Faculty of Pharmacy, Ege University, Bornova, Izmir, 35100, Türkiye
| | - Dilsat Ozkan-Ariksoysal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, 35100, Türkiye.
| |
Collapse
|
4
|
Abdelfatah RM, Abdelmomen EH, Abdelaleem EA, Abdelmoety RH, Emam AA. A newly developed high-performance thin layer chromatographic method for determination of remdesivir, favipiravir and dexamethasone, in spiked human plasma: comparison with the published methods. BMC Chem 2025; 19:7. [PMID: 39773302 PMCID: PMC11705924 DOI: 10.1186/s13065-024-01366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Co-administration of COVID-19 RNA polymerase inhibitors, remdesivir and favipiravir, has synergistic benefits. Together they reduce viral load and inflammation more effectively than either drug used alone. Corticosteroids like dexamethasone are used alongside antivirals in multidrug combination regimens. A new HPTLC method was utilized to isolate and quantitatively determine the three medicines of the COVID-19 therapeutic protocol, remdesivir, favipiravir and dexamethasone, using the anticoagulant apixaban as an internal standard in human plasma. The mobile phase system used a solvent mixture of ethyl acetate, hexane, and acetic acid (9:1:0.3, by volume). At 254 nm, well-resolved spots with Rf values of 0.3 for remdesivir, 0.64 for dexamethasone, and 0.77 for favipiravir have been observed. To ensure compliance with FDA regulations, a validation study was conducted. Quantitation limits as low as 0.1 µg/band have been achieved with remdesivir and dexamethasone, and 0.2 µg/band with favipiravir, demonstrating excellent sensitivities. From 97.07% to 102.77%, the drugs were recovered from human plasma that had been artificially spiked. The whiteness of the method has been assessed using RGB 12 algorithm and a percentage of whiteness of 95.6% has been obtained.
Collapse
Affiliation(s)
- Rehab M Abdelfatah
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Esraa H Abdelmomen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nile Valley University, Faiyum, Egypt
| | - Eglal A Abdelaleem
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Refaat H Abdelmoety
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Aml A Emam
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
5
|
Ashrafi P, Nematollahi D, Shabanloo A, Ansari A, Sadatnabi A, Sadeghinia A. Enhanced favipiravir drug degradation using the synergy of PbO 2-based anodic oxidation and Fe-MOF-based cathodic electro-Fenton. ENVIRONMENTAL RESEARCH 2024; 262:119883. [PMID: 39214488 DOI: 10.1016/j.envres.2024.119883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Favipiravir (FAV) is a widely utilized antiviral drug effective against various viruses, including SARS-CoV-2, influenza, and RNA viruses. This article aims to introduce a novel approach, known as Linear-Paired Electrocatalytic Degradation (LPED), as an efficient technique for the electrocatalytic degradation of emerging pollutants. LPED involves simultaneously utilizing a carbon-Felt/Co-PbO2 anode and a carbon-felt/Co/Fe-MOF-74 cathode, working together to degrade and mineralize FAV. The prepared anode and cathode characteristics were analyzed using XPS, SEM, EDX mapping, XRD, LSV, and CV analyses. A rotatable central composite design-based quadratic model was employed to optimize FAV degradation, yielding statistically desirable results. Under optimized conditions (pH = 5, current density = 4.2 mA/cm2, FAV concentration = 0.4 mM), individual processes of cathodic electro-Fenton and anodic oxidation with a CF/Co-PbO2 anode achieved degradation rates of 58.9% and 89.5% after 120 min, respectively. In contrast, using the LPED strategy resulted in a remarkable degradation efficiency of 98.4%. Furthermore, a cyclic voltammetric study of FAV on a glassy carbon electrode was conducted to gather additional electrochemical insights and rectify previously published data regarding redox behavior, pH-dependent properties, and adsorption activities. The research also offers a new understanding of the LPED mechanism of FAV at the surfaces of both CF/Co-PbO2 and CF/Co/Fe-MOF-74 electrodes, utilizing data from cyclic voltammetry and LC-MS techniques. The conceptual strategy of LPED is generalizable in order to the synergism of anodic oxidation and cathodic electro-Fenton for the degradation of other toxic and resistant pollutants.
Collapse
Affiliation(s)
- Parva Ashrafi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Davood Nematollahi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran.
| | - Amir Shabanloo
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Ansari
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran; Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| | - Ali Sadatnabi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Armin Sadeghinia
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| |
Collapse
|
6
|
Bai J, Jiang Y, Tan F, Zhu P, Li X, Xiong X, Wang Z, Song T, Xie B, Yang Y, Han J. Electrochemical biosensor for sensitive detection of SARS-CoV-2 gene fragments using Bi 2Se 3 topological insulator. Bioelectrochemistry 2024; 159:108748. [PMID: 38824746 DOI: 10.1016/j.bioelechem.2024.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
In this study, we have designed an electrochemical biosensor based on topological material Bi2Se3 for the sensitive detection of SARS-CoV-2 in the COVID-19 pandemic. Flake-shaped Bi2Se3 was obtained directly from high-quality single crystals using mechanical exfoliation, and the single-stranded DNA was immobilized onto it. Under optimal conditions, the peak current of the differential pulse voltammetry method exhibited a linear relationship with the logarithm of the concentration of target-complementary-stranded DNA, ranging from 1.0 × 10-15 to 1.0 × 10-11 M, with a detection limit of 3.46 × 10-16 M. The topological material Bi2Se3, with Dirac surface states, enhanced the signal-to-interference plus noise ratio of the electrochemical measurements, thereby improving the sensitivity of the sensor. Furthermore, the electrochemical sensor demonstrated excellent specificity in recognizing RNA. It can detect complementary RNA by amplifying and transcribing the initial DNA template, with an initial DNA template concentration ranging from 1.0 × 10-18 to 1.0 × 10-15 M. Furthermore, the sensor also effectively distinguished negative and positive results by detecting splitting-synthetic SARS-CoV-2 pseudovirus with a concentration of 1 copy/μL input. Our work underscores the immense potential of the electrochemical sensing platform based on the topological material Bi2Se3 in the detection of pathogens during the rapid spread of acute infectious diseases.
Collapse
Affiliation(s)
- Jiangyue Bai
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yujiu Jiang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Tan
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Zhu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuxia Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolu Xiong
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Zhiwei Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Tinglu Song
- Experimental Centre of Advanced Materials School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yanbo Yang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Junfeng Han
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
7
|
Şentürk Z. A Journey from the Drops of Mercury to the Mysterious Shores of the Brain: The 100-Year Adventure of Voltammetry. Crit Rev Anal Chem 2024; 54:1342-1353. [PMID: 35994268 DOI: 10.1080/10408347.2022.2113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Voltammetry, which is at the core of electroanalytical chemistry, is an analytical method that investigates and evaluates the current-potential relationship obtained at a given working electrode. If it is used dropping mercury as working electrode, the method is called as polarography. The current year 2022 marks the 100th anniversary of the discovery of polarography by Czech Jaroslav Heyrovský. He received the Nobel Prize in Chemistry in 1959 for this discovery and his contribution to the scientific world. A hundred years, within the endless existence of the universe is maybe nothing. A hundred years, in the history of mankind is a line, maybe a short paragraph. But, in science, a hundred years can lead to very significant advances in a field and often to the birth and establishment of an entirely new scientific discipline. Indeed, in the last hundred years, the design and use of new electrochemical devices, depending on the progress in microelectronics and computer technologies, has almost revolutionized voltammetry. Besides these developments, due to the fact that the redox (oxidation/reduction) process is very basic for living organisms; the voltammetry, especially with the beginning of the 21st century, has started to be used as a very powerful tool in neuroscience to solve the mystery of the brain (the basic problems of biomolecules with physiological and genetic importance in brain tissue). This review article is an overview of the 100-year history and fascinating development of voltammetry from Heyrovský to the present.
Collapse
Affiliation(s)
- Zühre Şentürk
- Faculty of Science, Department of Analytical Chemistry, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
8
|
Chen T, Zhang S, Zhu C, Liu C, Liu X, Hu S, Zheng D, Zhang J. Application of surfactants in the electrochemical sensing and biosensing of biomolecules and drug molecules. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3607-3619. [PMID: 38805018 DOI: 10.1039/d4ay00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Realizing sensitive and efficient detection of biomolecules and drug molecules is of great significance. Among the detection methods that have been proposed, electrochemical sensing is favored for its outstanding advantages such as simple operation, low cost, fast response and high sensitivity. The unique structure and properties of surfactants have led to a wide range of applications in the field of electrochemical sensors and biosensors for biomolecules and drug molecules. Through the comparative analysis of reported works, this paper summarizes the application modes of surfactants in electrochemical sensors and biosensors for biomolecules and drug molecules, explores the possible electrocatalytic mechanism of their action, and looks forward to the development trend of their applications. This review is expected to provide some new ideas for subsequent related research work.
Collapse
Affiliation(s)
- Tingfei Chen
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
| | - Shunrun Zhang
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
| | - Chunnan Zhu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Brain Cognitive Science(State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Chao Liu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Brain Cognitive Science(State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Xiaojun Liu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Brain Cognitive Science(State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Shengshui Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Dongyun Zheng
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Brain Cognitive Science(State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Jichao Zhang
- Wuhan Huadingcheng New Materials Co., Ltd, Wuhan 430205, China.
| |
Collapse
|
9
|
Helmy AM, Lu A, Duggal I, Rodrigues KP, Maniruzzaman M. Electromagnetic drop-on-demand (DoD) technology as an innovative platform for amorphous solid dispersion production. Int J Pharm 2024; 658:124185. [PMID: 38703932 DOI: 10.1016/j.ijpharm.2024.124185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Production of amorphous solid dispersions (ASDs) is an effective strategy to promote the solubility and bioavailability of poorly water soluble medicinal substances. In general, ASD is manufactured using a variety of classic and modern techniques, most of which rely on either melting or solvent evaporation. This proof-of-concept study is the first ever to introduce electromagnetic drop-on-demand (DoD) technique as an alternative solvent evaporation-based method for producing ASDs. Herein 3D printing of ASDs for three drug-polymer combinations (efavirenz-Eudragit L100-55, lumefantrine-hydroxypropyl methylcellulose acetate succinate, and favipiravir-polyacrylic acid) was investigated to ascertain the reliability of this technique. Polarized light microscopy, differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Fourier Transform Infrared (FTIR) spectroscopy results supported the formation of ASDs for the three drugs by means of DoD 3D printing, which significantly increases the equilibrium solubility of efavirenz from 0.03 ± 0.04 µg/ml to 21.18 ± 4.20 µg/ml, and the equilibrium solubility of lumefantrine from 1.26 ± 1.60 µg/ml to 20.21 ± 6.91 µg/ml. Overall, the reported findings show how this new electromagnetic DoD technology can have a potential to become a cutting-edge 3D printing solvent-evaporation technique for on-demand and continuous manufacturing of ASDs for a variety of drugs.
Collapse
Affiliation(s)
- Abdelrahman M Helmy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Deraya University, Minya, Egypt
| | - Anqi Lu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ishaan Duggal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kristina P Rodrigues
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677-1848, USA.
| |
Collapse
|
10
|
Zhang Z, Zheng H, Liu Y, Ma S, Feng Q, Qu J, Zhu X. Highly sensitive detection of multiple antiviral drugs using graphitized hydroxylated multi-walled carbon nanotubes/ionic liquids-based electrochemical sensors. ENVIRONMENTAL RESEARCH 2024; 249:118466. [PMID: 38354882 DOI: 10.1016/j.envres.2024.118466] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Global outbreaks and the spread of viral diseases in the recent years have led to a rapid increase in the usage of antiviral drugs (ATVs), the residues and metabolites of which are discharged into the natural environment, posing a serious threat to human health. There is an urgent need to develop sensitive and rapid detection tools for multiple ATVs. In this study, we developed a highly sensitive electrochemical sensor comprising a glassy carbon electrode (GCE) modified with graphitized hydroxylated multi-walled carbon nanotubes (G-MWCNT-OH) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6, IL) for the detection of six ATVs including famciclovir (FCV), remdesivir (REM), favipiravir (FAV), hydroxychloroquine sulfate (HCQ), cepharanthine (CEP) and molnupiravir (MOL). The morphology and structure of the G-MWCNT-OH/IL nanocomposites were characterized comprehensively, and the electroactive surface area and electron conductivity of G-MWCNT-OH/IL/GCE were determined using cyclic voltammetry and electrochemical impedance spectroscopy. The thermodynamic stability and non-covalent interactions between the G-MWCNT-OH and IL were evaluated through quantum chemical simulation calculations, and the mechanism of ATV detection using the G-MWCNT-OH/IL/GCE was thoroughly examined. The detection conditions were optimized to improve the sensitivity and stability of electrochemical sensors. Under the optimal experimental conditions, the G-MWCNT-OH/IL/GCE exhibited excellent electrocatalytic performance and detected the ATVs over a wide concentration range (0.01-120 μM). The limit of detections (LODs) were 42.3 nM, 55.4 nM, 21.9 nM, 15.6 nM, 10.6 nM, and 3.2 nM for FCV, REM, FAV, HCQ, CEP, and MOL, respectively. G-MWCNT-OH/IL/GCE was also highly stable and selective to the ATVs in the presence of multiple interfering analytes. This sensor exhibited great potential for enabling the quantitative detection of multiple ATVs in actual water environment.
Collapse
Affiliation(s)
- Zhipeng Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Huizi Zheng
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Ying Liu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Shuang Ma
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Qi Feng
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Xiaolin Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| |
Collapse
|
11
|
Shumyantseva VV, Bulko TV, Chistov AA, Kolesanova EF, Agafonova LE. Pharmacogenomic Studies of Antiviral Drug Favipiravir. Pharmaceutics 2024; 16:503. [PMID: 38675164 PMCID: PMC11053860 DOI: 10.3390/pharmaceutics16040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
In this work, we conducted a study of the interaction between DNA and favipiravir (FAV). This chemotherapeutic compound is an antiviral drug for the treatment of COVID-19 and other infections caused by RNA viruses. This paper examines the electroanalytical characteristics of FAV. The determined concentrations correspond to therapeutically significant ones in the range of 50-500 µM (R2 = 0.943). We have shown that FAV can be electro-oxidized around the potential of +0.96 V ÷ +0.98 V (vs. Ag/AgCl). A mechanism for electrochemical oxidation of FAV was proposed. The effect of the drug on DNA was recorded as changes in the intensity of electrochemical oxidation of heterocyclic nucleobases (guanine, adenine and thymine) using screen-printed graphite electrodes modified with single-walled carbon nanotubes and titanium oxide nanoparticles. In this work, the binding constants (Kb) of FAV/dsDNA complexes for guanine, adenine and thymine were calculated. The values of the DNA-mediated electrochemical decline coefficient were calculated as the ratio of the intensity of signals for the electrochemical oxidation of guanine, adenine and thymine in the presence of FAV to the intensity of signals for the electro-oxidation of these bases without drug (S, %). Based on the analysis of electrochemical parameters, values of binding constants and spectral data, intercalation was proposed as the principal mechanism of the antiviral drug FAV interaction with DNA. The interaction with calf thymus DNA also confirmed the intercalation mechanism. However, an additional mode of interaction, such as a damage effect together with electrostatic interactions, was revealed in a prolonged exposure of DNA to FAV.
Collapse
Affiliation(s)
- Victoria V. Shumyantseva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia; (T.V.B.); (A.A.C.); (E.F.K.); (L.E.A.)
- Department of Biochemistry, Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia
| | - Tatiana V. Bulko
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia; (T.V.B.); (A.A.C.); (E.F.K.); (L.E.A.)
| | - Alexey A. Chistov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia; (T.V.B.); (A.A.C.); (E.F.K.); (L.E.A.)
| | - Ekaterina F. Kolesanova
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia; (T.V.B.); (A.A.C.); (E.F.K.); (L.E.A.)
| | - Lyubov E. Agafonova
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia; (T.V.B.); (A.A.C.); (E.F.K.); (L.E.A.)
| |
Collapse
|
12
|
Madbouly EA, El-Shanawani AA, El-Adl SM, Abdelkhalek AS. Green chemometric-assisted UV-spectrophotometric methods for the determination of favipiravir, cefixime and moxifloxacin hydrochloride as an effective therapeutic combination for COVID-19; application in pharmaceutical form and spiked human plasma. BMC Chem 2024; 18:65. [PMID: 38575973 PMCID: PMC10996251 DOI: 10.1186/s13065-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
As pharmaceutical analysis progresses towards environmental sustainability, there is a growing need to enhance the safety and health conditions for analysts. Consequently, the incorporation of chemometrics into environmentally friendly analytical methods represents a promising approach. Favipiravir, cefixime, and moxifloxacin hydrochloride have been currently used in COVID-19 treatment. In this study, we develop spectrophotometric methods depending on chemometric based models to measure the levels of favipiravir, cefixime, and moxifloxacin hydrochloride in pharmaceutical preparations and spiked human plasma. It is challenging to determine favipiravir, cefixime, and moxifloxacin simultaneously because of overlap in their UV absorption spectra. Two advanced chemometric models, partial least square (PLS) and genetic algorithm (GA), have been developed to provide better predictive abilities in spectrophotometric determination of the drugs under study. The described models were created using a five-level, three-factor experimental design. The outcomes of the models have been thoroughly assessed and interpreted, and a statistical comparison with recognized values has been taken into consideration. The analytical eco-scale and the green analytical procedure index (GAPI) evaluation methods were also utilized to determine how environmentally friendly the mentioned models were. The outcomes demonstrated how well the models described complied with the environmental requirements.
Collapse
Affiliation(s)
- Eman A Madbouly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Abdalla A El-Shanawani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sobhy M El-Adl
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed S Abdelkhalek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Madbouly EA, El-Shanawani AA, El-Adl SM, Abdelkhalek AS. Eco-friendly novel deconvoluted synchronous spectrofluorimetric approach for the determination of favipiravir, levodropropizine and moxifloxacin hydrochloride as an effective therapeutic combination for COVID-19; application in laboratory prepared mixtures and spiked human plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123823. [PMID: 38181621 DOI: 10.1016/j.saa.2023.123823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
In this work, a green, fast, and simple synchronous spectrofluorimetric approach has been developed to simultaneously determine favipiravir, levodropropizine, and moxifloxacin hydrochloride as co-administered medications for COVID-19 treatment in pure form and spiked human plasma. The synchronous fluorescence spectroscopy technique to analyze the studied drugs at Δλ = 110 nm enabled the determination of levodropropizine at 360 nm. Then, applying Fourier Self-Deconvolution to each spectra to measure favipiravir and moxifloxacin hydrochloride at peak amplitudes of 431 nm and 479 nm, respectively, without any interference. Favipiravir, levodropropizine, and moxifloxacin hydrochloride could be sensitively determined using the described approach over concentration ranges of 20-300 ng/mL, 10-600 ng/mL, and 50-500 ng/mL, respectively. The method's validation was carried out effectively in accordance with guidelines recommended by the ICH. Finally, the Eco-scale and Green Analytical Procedure Index (GAPI) techniques have been used to evaluate the greenness of the proposed method.
Collapse
Affiliation(s)
- Eman A Madbouly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Abdalla A El-Shanawani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sobhy M El-Adl
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed S Abdelkhalek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Abukattab SM, Beltagi AM, Elfiky MN, El-Desoky HS. Fabrication and characterization of a novel strontium oxide-polythiophene core–shell nanocomposite for in-vitro electrochemical detection of antiplatelet cilostazol drug in formulation and human plasma. Microchem J 2024; 197:109877. [DOI: 10.1016/j.microc.2023.109877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Ahmed YM, Eldin MA, Galal A, Atta NF. Electrochemical sensor for simultaneous determination of antiviral favipiravir drug, paracetamol and vitamin C based on host-guest inclusion complex of β-CD/CNTs nanocomposite. Sci Rep 2023; 13:19910. [PMID: 37963918 PMCID: PMC10645768 DOI: 10.1038/s41598-023-45353-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Favipiravir (FVI) is extensively used as an effective medication against several diverse infectious RNA viruses. It is widely administered as an anti-influenza drug. Combination therapy formed from FVI, paracetamol (PAR) and vitamin C (VC) is needed for treating patients diseased by RNA viruses. Thus, an efficient electrochemical sensor is developed for detecting FVI in human serum samples. The sensor is fabricated by casting a thin layer of carbon nanotubes (CNTs) over a glassy carbon (GC) electrode surface followed by electrodeposition of another layer of β-cyclodextrin (β-CD). Under optimized conditions, the sensor shows excellent catalytic effect for FVI, PAR and VC oxidation in the concentration ranges (0.08 µM → 80 µM), (0.08 µM → 50 µM) and (0.8 µM → 80 µM) with low detection limits of 0.011 μM, 0.042 μM and 0.21 μM, respectively. The combined effect of host-guest interaction ability of β-CD for the drugs, and a large conductive surface area of CNTs improves the sensing performance of the electrode. The sensor exhibits stable response over 4 weeks, good reproducibility, and insignificant interference from common species present in serum samples. The reliability of using the sensor in serum samples shows good recovery of FVI, PAR and VC.
Collapse
Affiliation(s)
- Yousef M Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mahmoud A Eldin
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed Galal
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nada F Atta
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
16
|
Sharaf YA, Abd El-Fattah MH, El-Sayed HM, Hassan SA. A solvent-free HPLC method for the simultaneous determination of Favipiravir and its hydrolytic degradation product. Sci Rep 2023; 13:18512. [PMID: 37898682 PMCID: PMC10613211 DOI: 10.1038/s41598-023-45618-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023] Open
Abstract
During COVID-19 pandemic, Favipiravir (FPV) showed a great efficacy against COVID-19 virus, it produced noticeable improvements in recovery of the patients. The aim of this study was to develop a new, green and simple method for the simultaneous determination of FPV and its acid-induced degradation product (ADP) in its pure and pharmaceutical dosage forms. This method will be key for the inevitable development of FPV solution and inhaler formulations. A green micellar RP-HPLC method was developed using an RP-VDSPHERE PUR 100 column (5 µm, 250 × 4.6 mm) and an isocratic mixed micellar mobile phase composed of 0.02 M Brij-35, 0.1 M SDS and 0.01 M potassium dihydrogen orthophosphate anhydrous and adjusted to pH 3.0 with 1.0 mL min-1 flow rate. The detection was performed at 280 nm with a run time of less than six min. Under the optimized chromatographic conditions, linear relationship has been established between peak area and concentration of FPV and its ADP in the range of 5-100 and 10-100 µg mL-1 with elution time of 3.8 and 5.7 min, respectively. The developed method was validated according to the ICH guidelines and applied successfully for determination of FPV in its pharmaceutical dosage form.
Collapse
Affiliation(s)
- Yasmine Ahmed Sharaf
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mai H Abd El-Fattah
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, 12566, Egypt.
| | - Heba M El-Sayed
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Said A Hassan
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, 12566, Egypt
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
17
|
Sharaf YA, Abd El-Fattah MH, El-Sayed HM, Hegazy MA. Spectrophotometric determination of favipiravir in presence of its acid hydrolysis product. BMC Chem 2023; 17:129. [PMID: 37777796 PMCID: PMC10542695 DOI: 10.1186/s13065-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
Favipiravir (FAV) has been approved as an antiviral drug used in pandemic corona virus to treat covid-19. It has an amide moiety susceptible to hydrolysis and degradation in acid medium. Therefore, four simple, sensitive, and accurate stability indicating spectrophotometric methods have been developed for the determination of FAV in presence of its acid induced degradation product. The first method describes direct determination of FAV at 323 nm. Dual wavelength method was the second developed one for FAV quantitation by recording the absorbance difference at 322.7 and 270 nm. The third method involves using first derivative peak to peak amplitude at 338.0 and 308.0 nm, while difference spectrophotometry was the fourth suggested method, and it was based on recording the spectral changes at 361.3 nm as pH changes. The obtained calibration curves were linear over 4.0-22.0 µg/mL. Accuracy of the suggested procedures ranged from 99.11 to100.06, while precision results were from 0.80 to1.68. The developed methods were used to determine FAV in pure powdered form, laboratory-prepared mixtures with their degradation product, and pharmaceutical formulation without interference from its acidic degradation product.The greenness was assessed based on GAPI and ACREE metric and was found to be compatible and in reconciliation with green analytical chemistry concepts.
Collapse
Affiliation(s)
- Yasmine Ahmed Sharaf
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mai H Abd El-Fattah
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, Giza, 12566, Egypt.
| | - Heba M El-Sayed
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Maha A Hegazy
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
18
|
El-Sayed HM, Abdellatef HE, Hendawy HAM, El-Abassy OM, Ibrahim H. A highly sensitive and green electroanalytical method for the determination of favipiravir in pharmaceutical and biological fluids. BMC Chem 2023; 17:109. [PMID: 37653428 PMCID: PMC10472665 DOI: 10.1186/s13065-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Favipiravir is currently used for the treatment of coronavirus disease-2019 (COVID-19). OBJECTIVE A highly sensitive and eco-friendly electroanalytical method was developed to quantify favipiravir. METHOD The voltammetric method optimized a sensor composed of reduced graphene oxide / modified carbon paste electrode in the presence of an anionic surfactant, improving the favipiravir detection limit. The investigation reveals that favipiravir-oxidation is a diffusion-controlled irreversible process. The effects of various pH and scan rates on oxidation anodic peak current were investigated. RESULTS The developed method offers a wide linear dynamic range of 1.5-420 ng/mL alongside a higher sensitivity with a limit of detection in the nanogram range (0.44 ng/mL) and a limit of quantification in the low nanogram range (1.34 ng/mL). CONCLUSION The proposed method was applied for the determination of favipiravir in the dosage form, human plasma and urine samples. The developed method exhibited good selectivity in the presence of two potential electroactive biological interferants, uric acid which increases during favipiravir therapy and the recommended co-administered vitamin C. The organic solvent-free method greenness was evaluated via the Green Analytical Procedure Index, The present work offers a simple, sensitive and environment-friendly method fulfilling green chemistry concepts.
Collapse
Affiliation(s)
- Heba M El-Sayed
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hisham Ezzat Abdellatef
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | | | - Omar M El-Abassy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr, 11829, Egypt.
| | - Hany Ibrahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr, 11829, Egypt
| |
Collapse
|
19
|
Tajik S, Sharifi F, Aflatoonian B, Mohammadi SZ. An Efficient Electrochemical Sensor Based on NiCo 2O 4 Nanoplates and Ionic Liquid for Determination of Favipiravir in the Presence of Acetaminophen. BIOSENSORS 2023; 13:814. [PMID: 37622900 PMCID: PMC10452330 DOI: 10.3390/bios13080814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Based on the modification of carbon paste electrode with NiCo2O4 nanoplates and 1-hexyl-3-methylimidazolium tetrafluoroborate, a new electrochemical sensing platform for the sensing of favipiravir (a drug with potential therapeutic efficacy in treating COVID-19 patients) in the presence of acetaminophen was prepared. For determining the electrochemical behavior of favipiravir, cyclic voltammetry, differential pulse voltammetry, and chronoamperometry have been utilized. When compared to the unmodified carbon paste electrode, the results of the cyclic voltammetry showed that the proposed NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode had excellent catalytic activity for the oxidation of the favipiravir in phosphate buffer solution (pH = 7.0). This was due to the synergistic influence of 1-hexyl-3-methylimidazolium tetrafluoroborate (ionic liquid) and NiCo2O4 nanoplates. In the optimized conditions of favipiravir measurement, NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode had several benefits, such as a wide dynamic linear between 0.004 and 115.0 µM, a high sensitivity of 0.1672 µA/µM, and a small limit of detection of 1.0 nM. Furthermore, the NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode sensor presented a good capability to investigate the favipiravir and acetaminophen levels in real samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Behnaz Aflatoonian
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Sayed Zia Mohammadi
- Department of Chemistry, Payame Noor University, Tehran P.O. Box 19395-3697, Iran;
| |
Collapse
|
20
|
Imam MS, Abdelazim AH, Ramzy S, Batubara AS, Gamal M, Abdelhafiz S, Zeid AM. Adjusted green spectrophotometric determination of favipiravir and remdesivir in pharmaceutical form and spiked human plasma sample using different chemometric supported models. BMC Chem 2023; 17:89. [PMID: 37501208 PMCID: PMC10373238 DOI: 10.1186/s13065-023-01001-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The environmentally friendly design of analytical methods is gaining interest in pharmaceutical analysis to reduce hazardous environmental impacts and improve safety and health conditions for analysts. The adaptation and integration of chemometrics in the development of environmentally friendly analytical methods is strongly recommended in the hope of promising benefits. Favipiravir and remdesivir have been included in the COVID-19 treatment guidelines panel of several countries. The main objective of this work is to develop green, tuned spectrophotometric methods based on chemometric based models for the determination of favipiravir and remdesivir in spiked human plasma. The UV absorption spectra of favipiravir and remdesivir has shown overlap to some extent, making simultaneous determination difficult. Three advanced chemometric models, classical least squares, principal component regression, and partial least squares, have been developed to provide resolution and spectrophotometric determination of the drugs under study. A five-level, two-factor experimental design has been used to create the described models. The spectrally recorded data of favipiravir and remdesivir has been reviewed. The noise region has been neglected as it has a negative impact on the significant data. On the other hand, the other spectral data provided relevant information about the investigated drugs. A comprehensive evaluation and interpretation of the results of the described models and a statistical comparison with accepted values have been considered. The proposed models have been successfully applied to the spectrophotometric determination of favipiravir and remdesivir in pharmaceutical form spiked human plasma. In addition, the environmental friendliness of the described models was evaluated using the analytical eco-scale, the green analytical procedure index and the AGREE evaluation method. The results showed the compliance of the described models with the environmental characteristics.
Collapse
Affiliation(s)
- Mohamed S Imam
- Pharmacy Practice Department, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
- Clinical Pharmacy Department, National Cancer Institute, Cairo University, Fom El Khalig Square, Kasr Al-Aini Street, Cairo, 11796, Egypt
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11751, Egypt.
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Afnan S Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | | | - Abdallah M Zeid
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
21
|
Batubara AS, Abdelazim AH, Almrasy AA, Gamal M, Ramzy S. Quantitative analysis of two COVID-19 antiviral agents, favipiravir and remdesivir, in spiked human plasma using spectrophotometric methods; greenness evaluation. BMC Chem 2023; 17:58. [PMID: 37328879 DOI: 10.1186/s13065-023-00967-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
Favipiravir and remdesivir have been included in the COVID-19 treatment guidelines panel of several countries. The main objective of the current work is to develop the first validated green spectrophotometric methods for the determination of favipiravir and remdesivir in spiked human plasma. The UV absorption spectra of favipiravir and remdesivir have shown some overlap, making simultaneous determination difficult. Due to the considerable overlap, two ratio spectra manipulating spectrophotometric methods, namely, ratio difference and the first derivative of ratio spectra, enabled the determination of favipiravir and remdesivir in their pure forms and spiked plasma. The ratio spectra of favipiravir and remdesivir were derived by dividing the spectra of each drug by the suitable spectrum of another drug as a divisor to get the ratio spectra. Favipiravir was determined by calculating the difference between 222 and 256 nm of the derived ratio spectra, while calculating the difference between 247 and 271 nm of the derived ratio spectra enabled the determination of remdesivir. Moreover, the ratio spectra of every drug were transformed to the first order derivative using ∆λ = 4 and a scaling factor of 100. The first-order derivative amplitude values at 228 and 251.20 nm enabled the determination of favipiravir and remdesivir, respectively. Regarding the pharmacokinetic profile of favipiravir (Cmax 4.43 µg/mL) and remdesivir (Cmax 3027 ng/mL), the proposed methods have been successfully applied to the spectrophotometric determination of favipiravir and remdesivir in plasma matrix. Additionally, the greenness of the described methods was evaluated using three metrics systems: the national environmental method index, the analytical eco-scale, and the analytical greenness metric. The results demonstrated that the described models were in accordance with the environmental characteristics.
Collapse
Affiliation(s)
- Afnan S Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Ahmed A Almrasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| |
Collapse
|
22
|
Karakaya S, Dilgin Y. The application of multi-walled carbon nanotubes modified pencil graphite electrode for voltammetric determination of favipiravir used in COVID-19 treatment. MONATSHEFTE FUR CHEMIE 2023; 154:1-11. [PMID: 37361695 PMCID: PMC10249926 DOI: 10.1007/s00706-023-03082-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023]
Abstract
This study describes the first application of an improved procedure on a pencil graphite electrode decorated with functionalized multi-walled carbon nanotubes (f-MWCNTs/PGE) for the determination of the COVID-19 antiviral drug, favipiravir (FVP). The electrochemical behavior of FVP at f-MWCNTs/PGE was examined by cyclic voltammetry and differential pulse voltammetry (DPV) methods, and it was noted that the voltammetric response significantly increased with the modification of f -MWCNTs to the surface. The linear range and limit of detection from DPV studies were determined as 1-1500 µM and 0.27 µM, respectively. In addition, the selectivity of the method was tested toward potential interferences, which can be present in pharmaceutical and biological samples, and it was found that f-MWCNTs/PGE showed high selectivity for the determination of FVP in the presence of probable interferences. The results with high accuracies and precisions from the obtained feasibility studies also revealed that the designed procedure can be used for accurate and selective voltammetric determination of FVP in real samples. Graphical abstract
Collapse
Affiliation(s)
- Serkan Karakaya
- Chemistry Department of Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Yusuf Dilgin
- Chemistry Department of Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
23
|
Batubara AS, Ainousah BE, Ramzy S, Abdelazim AH, Gamal M, Tony RM. Synchronous spectrofluorimetric determination of favipiravir and aspirin at the nano-gram scale in spiked human plasma; greenness evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122880. [PMID: 37216820 DOI: 10.1016/j.saa.2023.122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Favipiravir and aspirin are co-administered during COVID-19 treatment to prevent venous thromboembolism. For the first time, a spectrofluorometric method has been developed for the simultaneous analysis of favipiravir and aspirin in plasma matrix at nano-gram detection limits. The native fluorescence spectra of favipiravir and aspirin in ethanol showed overlapping emission spectra at 423 nm and 403 nm, respectively, after excitation at 368 nm and 298 nm, respectively. Direct simultaneous determination with normal fluorescence spectroscopy was difficult. The use of synchronous fluorescence spectroscopy for analyzing the studied drugs in ethanol at Δλ = 80 nm improved spectral resolution and enabled the determination of favipiravir and aspirin in the plasma matrix at 437 nm and 384 nm, respectively. The method described allowed sensitive determination of favipiravir and aspirin over a concentration range of 10-500 ng/mL and 35-1600 ng/mL, respectively. The described method was validated with respect to the ICH M10 guidelines and successfully applied for the simultaneous determination of the mentioned drugs in pure form and in the spiked plasma matrix. Moreover, the compliance of the method with the concepts of environmentally friendly analytical chemistry was evaluated using two metrics, the Green Analytical Procedure Index and the AGREE tool. The results showed that the described method was consistent with the accepted metrics for green analytical chemistry.
Collapse
Affiliation(s)
- Afnan S Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Bayan E Ainousah
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Cairo, Egypt.
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Cairo, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, 62514 Beni-Suef, Egypt
| | - Rehab M Tony
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
24
|
Talay Pınar P, Uzun G, Şentürk Z. First electrochemical investigation of new generation antineoplastic agent ceritinib at a boron-doped diamond electrode based on the pre-enrichment effect of anionic surfactant. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
25
|
Cetinkaya A, Kaya SI, Ozkan SA. A Comprehensive Overview of Sensors Applications for the Diagnosis of SARS-CoV-2 and of Drugs Used in its Treatment. Crit Rev Anal Chem 2023; 54:2517-2537. [PMID: 36877165 DOI: 10.1080/10408347.2023.2186693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
During the COVID-19 process, determination-based analytical chemistry studies have had a major place at every stage. Many analytical techniques have been used in both diagnostic studies and drug analysis. Among these, electrochemical sensors are frequently preferred due to their high sensitivity, selectivity, short analysis time, reliability, ease of sample preparation, and low use of organic solvents. For the determination of drugs used in the SARS-CoV-2, such as favipiravir, molnupiravir, ribavirin, etc., electrochemical (nano)sensors are widely used in both pharmaceutical and biological samples. Diagnosis is the most critical step in the management of the disease, and electrochemical sensor tools are widely preferred for this purpose. Diagnostic electrochemical sensor tools can be biosensor-, nano biosensor-, or MIP-based sensors and utilize a wide variety of analytes such as viral proteins, viral RNA, antibodies, etc. This review overviews the sensor applications in SARS-CoV-2 in terms of diagnosis and determination of drugs by evaluating the most recent studies in the literature. In this way, it is aimed to compile the developments so far by shedding light on the most recent studies and giving ideas to researchers for future studies.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
- Graduate School of Health Sciences, Ankara University, Ankara, Türkiye
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Türkiye
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
| |
Collapse
|
26
|
Fabric phase sorptive extraction-gas chromatography-mass spectrometry for the determination of favipiravir in biological and forensic samples. ADVANCES IN SAMPLE PREPARATION 2023. [PMCID: PMC9985823 DOI: 10.1016/j.sampre.2023.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Favipiravir, a pyrazine analog, is proposed as providential antiviral agent against the COVID-19 infection during 2020 pandemic emergency. For the first time, a fabric phase sorptive extraction (FPSE) combined with gas chromatography-mass spectrometry (GC-MS) has been developed and applied for the determination of favipiravir (FAV) in biological samples (human plasma, blood and urine), pharmaceutical and forensic samples. The method comprises of extraction of FAV by FPSE followed by its derivatization with N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) and GC-MS analysis. Design of experiment-based optimization was performed using Placket-Burman Design (PBD) and Central Composite Design (CCD) for the screening of significant factors of FPSE and their optimization, respectively. Among all tested membranes, sol-gel polyethylene glycol (PEG) has offered the best extraction efficiency for FAV. Under optimum conditions, the proposed method was found to be linear in the range of 0.01–10 µg mL−1 by GC-MS. The LODs and LOQs were as low as 0.001-0.0026 μg mL−1 and 0.003-0.0086 μg mL−1, respectively by GC-MS. Intra-day and inter-day precisions were less than 5 and 10 %, respectively, showing good method precision. The proposed method has been successfully applied to detect and quantify FAV in human urine, whole blood and plasma samples along with seized forensic samples. In addition, the proposed method has been evaluated for its green character by ComplexGAPI index.
Collapse
|
27
|
Mohamed RMK, Mohamed SH, Asran AM, Alsohaimi IH, Hassan HMA, Ibrahim H, El-Wekil MM. Synergistic effect of gold nanoparticles anchored on conductive carbon black as an efficient electrochemical sensor for sensitive detection of anti-COVID-19 drug Favipiravir in absence and presence of co-administered drug Paracetamol. Microchem J 2023; 190:108696. [PMID: 37034437 PMCID: PMC10065810 DOI: 10.1016/j.microc.2023.108696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Favipiravir (FVP) is introduced as a promising newly developed antiviral drug against the coronavirus disease 2019 (COVID-19). Therefore, the accurate determination of FVP is of great significance for quality assessment and clinical diagnosis. Herein, a novel electrochemical sensing platform for FVP based on gold nanoparticles anchored conductive carbon black (Au@CCB) modified graphite nanopowder flakes paste electrode (GNFPE) was constructed. Morphological and nanostructure properties of Au@CCB have been investigated by TEM, HRTEM, and EDX methods. The morphology and electrochemical properties of Au@CCB/GNFPE were characterized by SEM, cyclic voltammetry (CV), and EIS. The Au@CCB nanostructured modified GNFPE exhibited strong electro-catalytic ability towards the oxidation of FVP. The performance of the fabricated Au@CCB/GNFPE was examined by monitoring FVP concentrations in the absence and presence of co-administered drug paracetamol (PCT) by AdS-SWV. It was demonstrated that the proposed sensor exhibited superior sensitivity, stability, and anti-interference capability for the detection of FVP. The simultaneous determination of a binary mixture containing FVP and the co-administered drug PCT using Au@CCB/GNFPE sensor is reported for the first time. Under optimized conditions, the developed sensor exhibited sensitive voltammetric responses to FVP and PCT with low detection limits of 7.5 nM and 4.3 nM, respectively. The sensing electrode was successfully used to determine FVP and PCT simultaneously in spiked human plasma and pharmaceutical preparations, and the findings were satisfactory. Finally, the fabricated sensor exhibited high sensitivity for simultaneous detection of FVP and PCT in the presence of ascorbic acid in a real sample.
Collapse
Affiliation(s)
- Rasha M K Mohamed
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Sabrein H Mohamed
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Aml M Asran
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Ibrahim H Alsohaimi
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Hossieny Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
28
|
Mete C, Pınar PT. Using a Boron‐Doped Diamond Electrode in Anionic Surfactant Media as an Improved Electrochemical Sensor for the Anticancer Drug Ibrutinib. ChemistrySelect 2023. [DOI: 10.1002/slct.202204492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cihat Mete
- Department of Analytical Chemistry Institution of Van Yuzuncu Yil University Van Yuzuncu Yil University Faculty of Pharmacy
| | - Pınar Talay Pınar
- Department of Analytical Chemistry Institution of Van Yuzuncu Yil University Van Yuzuncu Yil University Faculty of Pharmacy
| |
Collapse
|
29
|
Ali MFB, Saraya RE, El Deeb S, Ibrahim AE, Salman BI. An Innovative Polymer-Based Electrochemical Sensor Encrusted with Tb Nanoparticles for the Detection of Favipiravir: A Potential Antiviral Drug for the Treatment of COVID-19. BIOSENSORS 2023; 13:243. [PMID: 36832009 PMCID: PMC9954130 DOI: 10.3390/bios13020243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
An innovative polymer-based electro-sensor decorated with Tb nanoparticles has been developed for the first time. The fabricated sensor was utilized for trace determination of favipiravir (FAV), a recently US FDA-approved antiviral drug for the treatment of COVID-19. Different techniques, including ultraviolet-visible spectrophotometry (UV-VIS), cyclic voltammetry (CV), scanning electron microscope (SEM), X-ray Diffraction (XRD) and electrochemical impedance spectroscopy (EIS), were applied for the characterization of the developed electrode TbNPs@ poly m-THB/PGE. Various experimental variables, including pH, potential range, polymer concentration, number of cycles, scan rate and deposition time, were optimized. Moreover, different voltammetric parameters were examined and optimized. The presented SWV method showed linearity over the range of 10-150 × 10-9 M with a good correlation coefficient (R = 0.9994), and the detection limit (LOD) reached 3.1 × 10-9 M. The proposed method was applied for the quantification of FAV in tablet dosage forms and in human plasma without any interference from complex matrices, obtaining good % recovery results (98.58-101.93%).
Collapse
Affiliation(s)
- Marwa F. B. Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Roshdy E. Saraya
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port Said 42526, Egypt
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Teschnische Universität Braunschweig, 38106 Braunschweig, Germany
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port Said 42526, Egypt
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Baher I. Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
30
|
Jain B, Jain R, Jaiswal PK, Zughaibi T, Sharma T, Kabir A, Singh R, Sharma S. A Non-Instrumental Green Analytical Method Based on Surfactant-Assisted Dispersive Liquid-Liquid Microextraction-Thin-Layer Chromatography-Smartphone-Based Digital Image Colorimetry(SA-DLLME-TLC-SDIC) for Determining Favipiravir in Biological Samples. Molecules 2023; 28:529. [PMID: 36677588 PMCID: PMC9860899 DOI: 10.3390/molecules28020529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Favipiravir (FAV) has become a promising antiviral agent for the treatment of COVID-19. Herein, a green, fast, high-sample-throughput, non-instrumental, and affordable analytical method is proposed based on surfactant-assisted dispersive liquid-liquid microextraction (SA-DLLME) combined with thin-layer chromatography-digital image colourimetry (TLC-DIC) for determining favipiravir in biological and pharmaceutical samples. Triton X-100 and dichloromethane (DCM) were used as the disperser and extraction solvents, respectively. The extract obtained after DLLME procedure was spotted on a TLC plate and allowed to develop with a mobile phase of chloroform:methanol (8:2, v/v). The developed plate was photographed using a smartphone under UV irradiation at 254 nm. The quantification of FAV was performed by analysing the digital images' spots with open-source ImageJ software. Multivariate optimisation using Plackett-Burman design (PBD) and central composite design (CCD) was performed for the screening and optimisation of significant factors. Under the optimised conditions, the method was found to be linear, ranging from 5 to 100 µg/spot, with a correlation coefficient (R2) ranging from 0.991 to 0.994. The limit of detection (LOD) and limit of quantification (LOQ) were in the ranges of 1.2-1.5 µg/spot and 3.96-4.29 µg/spot, respectively. The developed approach was successfully applied for the determination of FAV in biological (i.e., human urine and plasma) and pharmaceutical samples. The results obtained using the proposed methodology were compared to those obtained using HPLC-UV analysis and found to be in close agreement with one another. Additionally, the green character of the developed method with previously reported protocols was evaluated using the ComplexGAPI, AGREE, and Eco-Scale greenness assessment tools. The proposed method is green in nature and does not require any sophisticated high-end analytical instruments, and it can therefore be routinely applied for the analysis of FAV in various resource-limited laboratories during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Bharti Jain
- Central Forensic Science Laboratory, Dakshin Marg, Sector—36A, Chandigarh 160036, India
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| | - Rajeev Jain
- Central Forensic Science Laboratory, Dakshin Marg, Sector—36A, Chandigarh 160036, India
| | - Prashant Kumar Jaiswal
- School of Earth Sciences, Department of Environmental Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305817, India
| | - Torki Zughaibi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tanvi Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Department of Pharmacy, Faculty of Allied Health Science, Daffodil International University, Dhaka 1207, Bangladesh
| | - Ritu Singh
- School of Earth Sciences, Department of Environmental Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305817, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
31
|
Erşan T, Dilgin DG, Kumrulu E, Kumrulu U, Dilgin Y. Voltammetric Determination of Favipiravir Used as an Antiviral Drug for the Treatment of Covid-19 at Pencil Graphite Electrode. ELECTROANAL 2022; 35:ELAN202200295. [PMID: 36712592 PMCID: PMC9874810 DOI: 10.1002/elan.202200295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023]
Abstract
This work describes the sensitive voltammetric determination of favipiravir (FAV) based on its reduction for the first time with a low-cost and disposable pencil graphite electrode (PGE). In addition, the determination of FAV was also performed based on its oxidation. Differential pulse (DP) voltammograms recorded in 0.5 M H2SO4 for the reduction of FAV show that peak currents increase linearly in the range of 1.0 to 600.0 μM with a limit of detection of 0.35 μM. The acceptable recovery values (98.9-106.0 %) obtained from a pharmaceutical tablet, real human urine, and artificial blood serum samples spiked with FAV confirm the high accuracy of the proposed method.
Collapse
Affiliation(s)
- Teslime Erşan
- Faculty ScienceDepartment of ChemistryÇanakkale Onsekiz Mart University17100TurkeyÇanakkale
| | - Didem Giray Dilgin
- Department of Mathematics and Science EducationFaculty of EducationÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey
| | - Elif Kumrulu
- POLİFARMA İlaç San. ve Tic. A.Ş.ErgeneTekirdağTurkey
| | - Umur Kumrulu
- POLİFARMA İlaç San. ve Tic. A.Ş.ErgeneTekirdağTurkey
| | - Yusuf Dilgin
- Faculty ScienceDepartment of ChemistryÇanakkale Onsekiz Mart University17100TurkeyÇanakkale
| |
Collapse
|
32
|
Hussain A, Khan AM. Electrochemically tracking interactions between molecular ions of sodium dodecyl sulphate and the selected amino acid at the electrode-electrolyte interface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Eryildiz B, Yavuzturk Gul B, Koyuncu I. A sustainable approach for the removal methods and analytical determination methods of antiviral drugs from water/wastewater: A review. JOURNAL OF WATER PROCESS ENGINEERING 2022; 49:103036. [PMID: 35966450 PMCID: PMC9359512 DOI: 10.1016/j.jwpe.2022.103036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/26/2022] [Accepted: 07/28/2022] [Indexed: 05/05/2023]
Abstract
In the last years, antiviral drugs especially used for the treatment of COVID-19 have been considered emerging contaminants because of their continuous occurrence and persistence in water/wastewater even at low concentrations. Furthermore, as compared to antiviral drugs, their metabolites and transformation products of these pharmaceuticals are more persistent in the environment. They have been found in environmental matrices all over the world, demonstrating that conventional treatment technologies are unsuccessful for removing them from water/wastewater. Several approaches for degrading/removing antiviral drugs have been studied to avoid this contamination. In this study, the present level of knowledge on the input sources, occurrence, determination methods and, especially, the degradation and removal methods of antiviral drugs are discussed in water/wastewater. Different removal methods, such as conventional treatment methods (i.e. activated sludge), advanced oxidation processes (AOPs), adsorption, membrane processes, and combined processes, were evaluated. In addition, the antiviral drugs and these metabolites, as well as the transformation products created as a result of treatment, were examined. Future perspectives for removing antiviral drugs, their metabolites, and transformation products were also considered.
Collapse
Affiliation(s)
- Bahriye Eryildiz
- Istanbul Technical University, Environmental Engineering Department, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Bahar Yavuzturk Gul
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- Istanbul Technical University, Environmental Engineering Department, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| |
Collapse
|
34
|
Erk N, Mehmandoust M, Soylak M. Electrochemical Sensing of Favipiravir with an Innovative Water-Dispersible Molecularly Imprinted Polymer Based on the Bimetallic Metal-Organic Framework: Comparison of Morphological Effects. BIOSENSORS 2022; 12:bios12090769. [PMID: 36140154 PMCID: PMC9496828 DOI: 10.3390/bios12090769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 05/22/2023]
Abstract
Molecularly imprinted polymers (MIPs) are widely used as modifiers in electrochemical sensors due to their high sensitivity and promise of inexpensive mass manufacturing. Here, we propose and demonstrate a novel MIP-sensor that can measure the electrochemical activity of favipiravir (FAV) as an antiviral drug, thereby enabling quantification of the concentration of FAV in biological and river water samples and in real-time. MOF nanoparticles’ application with various shapes to determine FAV at nanomolar concentrations was described. Two different MOF nanoparticle shapes (dodecahedron and sheets) were systematically compared to evaluate the electrochemical performance of FAV. After carefully examining two different morphologies of MIP-Co-Ni@MOF, the nanosheet form showed a higher performance and efficiency than the nanododecahedron. When MIP-Co/Ni@MOF-based and NIP-Co/Ni@MOF electrodes (nanosheets) were used instead, the minimum target concentrations detected were 7.5 × 10−11 (MIP-Co-Ni@MOF) and 8.17 × 10−9 M (NIP-Co-Ni@MOF), respectively. This is a significant improvement (>102), which is assigned to the large active surface area and high fraction of surface atoms, increasing the amount of greater analyte adsorption during binding. Therefore, water-dispersible MIP-Co-Ni@MOF nanosheets were successfully applied for trace-level determination of FAV in biological and water samples. Our findings seem to provide useful guidance in the molecularly imprinted polymer design of MOF-based materials to help establish quantitative rules in designing MOF-based sensors for point of care (POC) systems.
Collapse
Affiliation(s)
- Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
- Correspondence:
| | - Mohammad Mehmandoust
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri 38039, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri 38039, Turkey
- Turkish Academy of Sciences (TUBA), Ankara 06670, Turkey
| |
Collapse
|
35
|
Eryildiz B, Ozgun H, Ersahin ME, Koyuncu I. Antiviral drugs against influenza: Treatment methods, environmental risk assessment and analytical determination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115523. [PMID: 35779301 DOI: 10.1016/j.jenvman.2022.115523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Over the past few years, antiviral drugs against influenza are considered emerging contaminants since they cause environmental toxicity even at low concentrations. They have been found in environmental matrices all around the world, showing that conventional treatment methods fail to remove them from water and wastewater. In addition, the metabolites and transformation products of these drugs can be more persistent than original in the environment. Several techniques to degrade/remove antiviral drugs against influenza have been investigated to prevent this contamination. In this study, the characteristics of antiviral drugs against influenza, their measurement by analytical methods, and their removal in both water and wastewater treatment plants (WWTPs) were presented. Different treatment methods, such as traditional procedures (biological processes, filtration, coagulation, flocculation, and sedimentation), advanced oxidation processes (AOPs), adsorption and combined methods, were assessed. Ecotoxicological effects of both the antiviral drug and its metabolites as well as the transformation products formed as a result of treatment were evaluated. In addition, future perspectives for improving the removal of antiviral drugs against influenza, their metabolites and transformation products were further discussed. The research indicated that the main tested techniques in this study were ozonation, photolysis and photocatalysis. Combined methods, particularly those that use renewable energy and waste materials, appear to be the optimum approach for the treatment of effluents containing antiviral drugs against influenza. In light of high concentrations or probable antiviral resistance, this comprehensive assessment suggests that antiviral drug monitoring is required, and some of those substances may cause toxicological effects.
Collapse
Affiliation(s)
- Bahriye Eryildiz
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Hale Ozgun
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mustafa Evren Ersahin
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
36
|
El-Awady M, Elmansi H, Belal F, Shabana RA. Insights on the Quantitative Concurrent Fluorescence-Based Analysis of Anti-COVID-19 Drugs Remdesivir and Favipiravir. J Fluoresc 2022; 32:1941-1948. [PMID: 35771341 PMCID: PMC9244323 DOI: 10.1007/s10895-022-02998-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022]
Abstract
We hereby introduce a sensitive fast straightforward spectrofluorometric method for the estimation of remdesivir and favipiravir. The two drugs are prescribed in some regimens to treat COVID-19 pandemic disease, which is caused by SARS-CoV-2. The method is based on the first derivative synchronous spectrofluorimetry approach for the measurement of remdesivir and favipiravir. This was accomplished at 251 nm and 335 nm respectively using the first derivative order at delta lambda of 140 nm. A linear response with a correlation coefficient 0.9994 was achieved between the concentration and the derivative amplitudes in the ranges of 20.0-100.0 ng ml-1 and 40.0-100.0 ng ml-1 for remdesivir and favipiravir, respectively. The methods were validated for different parameters as stated by the pharmacopeial rules and were applied successfully for estimation of the studied drugs in their synthetic mixtures and in spiked human plasma samples. No significant difference was observed between the proposed and comparison methods as revealed from the analysis of data.
Collapse
Affiliation(s)
- Mohamed El-Awady
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa 11152, Mansoura, Egypt
| | - Heba Elmansi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Abo Shabana
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
37
|
Emam AA, Abdelaleem EA, Abdelmomen EH, Abdelmoety RH, Abdelfatah RM. Rapid and ecofriendly UPLC quantification of Remdesivir, Favipiravir and Dexamethasone for accurate therapeutic drug monitoring in Covid-19 Patient's plasma. Microchem J 2022; 179:107580. [PMID: 35582001 PMCID: PMC9098531 DOI: 10.1016/j.microc.2022.107580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/11/2023]
Abstract
Innovative therapeutic protocols to the rapidly spreading coronavirus disease (COVID19) epidemic is highly required all across the world. As demonstrated by clinical studies, Favipiravir (FVP) and Remdesivir (REM) are new antiviral medicines that are effective against COVID-19. REM is the first FDA approved antiviral medicine against COVID-19. In addition to antivirals, corticosteroids such as dexamethasone (DEX), and anticoagulants such as apixaban (PX) are used in multidrug combinations protocols. This work develops and validates simple and selective screening of the four medicines of COVID -19 therapeutic protocol. FVP, REM, DEX, and PX as internal standard in human plasma using UPLC method by C18 column and methanol, acetonitrile, and water acidified by orthophosphate (pH = 4) in a ratio of (15: 35: 50, by volume) as an eluate flowing at 0.3 mL/min. The eluent was detected at 240 nm. The method was linear over (0.1-10 μg/mL) for each of FVP, REM, and DEX. The validation of the UPLC method was assessed in accordance with FDA guidelines. The method can detect as low as down to 0.1 μg/mL for all. The recoveries of the drugs in spiked human plasma ranged from 97.67 to 102.98 percent. Method accuracy and precision were assessed and the drugs showed good stability. The method was proven to be green to the environment after greenness checking by greenness profile and Eco-Scale tool.
Collapse
Affiliation(s)
- Aml A. Emam
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Eglal A. Abdelaleem
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa H. Abdelmomen
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt,Corresponding author at: Faculty of pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Refaat H. Abdelmoety
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Rehab M. Abdelfatah
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
38
|
El-Wekil MM, Hayallah AM, Abdelgawad MA, Shahin RY. Nanocomposite of gold nanoparticles@nickel disulfide-plant derived carbon for molecularly imprinted electrochemical determination of favipiravir. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
39
|
Ibrahim AE, Sharaf YA, El Deeb S, Sayed RA. Analytical Performance and Greenness Evaluation of Five Multi-Level Design Models Utilized for Impurity Profiling of Favipiravir, a Promising COVID-19 Antiviral Drug. Molecules 2022; 27:3658. [PMID: 35744781 PMCID: PMC9229086 DOI: 10.3390/molecules27123658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022] Open
Abstract
In 2018, the discovery of carcinogenic nitrosamine process related impurities (PRIs) in a group of widely used drugs led to the recall and complete withdrawal of several medications that were consumed for a long time, unaware of the presence of these genotoxic PRIs. Since then, PRIs that arise during the manufacturing process of the active pharmaceutical ingredients (APIs), together with their degradation impurities, have gained the attention of analytical chemistry researchers. In 2020, favipiravir (FVR) was found to have an effective antiviral activity against the SARS-COVID-19 virus. Therefore, it was included in the COVID-19 treatment protocols and was consequently globally manufactured at large-scales during the pandemic. There is information indigence about FVR impurity profiling, and until now, no method has been reported for the simultaneous determination of FVR together with its PRIs. In this study, five advanced multi-level design models were developed and validated for the simultaneous determination of FVR and two PRIs, namely; (6-chloro-3-hydroxypyrazine-2-carboxamide) and (3,6-dichloro-pyrazine-2-carbonitrile). The five developed models were classical least square (CLS), principal component regression (PCR), partial least squares (PLS), genetic algorithm-partial least squares (GA-PLS), and artificial neural networks (ANN). Five concentration levels of each compound, chosen according to the linearity range of the target analytes, were used to construct a five-level, three-factor chemometric design, giving rise to twenty-five mixtures. The models resolved the strong spectral overlap in the UV-spectra of the FVR and its PRIs. The PCR and PLS models exhibited the best performances, while PLS proved the highest sensitivity relative to the other models.
Collapse
Affiliation(s)
- Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman;
- Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port Fuad 42526, Egypt
| | - Yasmine Ahmed Sharaf
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (Y.A.S.); (R.A.S.)
| | - Sami El Deeb
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman;
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, 38106 Braunschweig, Germany
| | - Rania Adel Sayed
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (Y.A.S.); (R.A.S.)
| |
Collapse
|
40
|
El Sharkasy ME, Tolba MM, Belal F, Walash M, Aboshabana R. Quantitative analysis of favipiravir and hydroxychloroquine as FDA-approved drugs for treatment of COVID-19 using synchronous spectrofluorimetry: application to pharmaceutical formulations and biological fluids. LUMINESCENCE 2022; 37:953-964. [PMID: 35343627 PMCID: PMC9082515 DOI: 10.1002/bio.4240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 12/02/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a contagious viral infection caused by coronavirus 2 (SARS-CoV-2) that causes severe acute respiratory syndrome. It has ravaged several countries and burdened many healthcare systems. As the process of authorizing a novel treatment for human use is extensive and involves multiple phases to obtain safety information and identify potential concerns. Therefore, the fastest and easiest choice was to use United States Food and Drug Administration (US FDA)-approved drugs such as favipiravir and hydroxychloroquine. For the simultaneous estimation of both medications, a simple synchronous spectrofluorimetric approach was established in which both drugs were measured at 372 and 323 nm, respectively in the presence of each other without interference at Δλ 60 nm. The effect of various experimental conditions on synchronous fluorescence intensities were thoroughly investigated and optimized. The maximum synchronous fluorescence intensities were obtained at pH 5.4 using acetate buffer (0.2 M, 0.5 ml) and ethanol as a diluent. Excellent linearity ranges were obtained using 1.0-18.0 ng/ml and 10.0-120.0 ng/ml for favipiravir and hydroxychloroquine, respectively. The approach exhibited high sensitivity with detection limits down to 0.25 ng/ml and 1.52 ng/ml and quantitation limits down to 0.77 ng/ml and 4.62 ng/ml, respectively. Spiking human plasma samples with the studied drugs yielded high % recoveries, allowing a significant bioanalytical application. Moreover, the method was validated according to International Conference on Harmonization guidelines and further applied to commercial pharmaceutical preparations with good results.
Collapse
Affiliation(s)
- Mona E. El Sharkasy
- Department of Pharmaceutical Analytical Chemistry, Faculty of PharmacyMansoura UniversityMansouraEgypt
| | - Manar M. Tolba
- Department of Pharmaceutical Analytical Chemistry, Faculty of PharmacyMansoura UniversityMansouraEgypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of PharmacyMansoura UniversityMansouraEgypt
| | - Mohamed Walash
- Department of Pharmaceutical Analytical Chemistry, Faculty of PharmacyMansoura UniversityMansouraEgypt
| | - Rasha Aboshabana
- Department of Pharmaceutical Analytical Chemistry, Faculty of PharmacyMansoura UniversityMansouraEgypt
| |
Collapse
|
41
|
Abdallah IA, Hammad SF, Bedair A, Abdelaziz MA, Danielson ND, Elshafeey AH, Mansour FR. A Gadolinium-Based Magnetic Ionic Liquid for Supramolecular Dispersive Liquid-Liquid Microextraction Followed by HPLC/UV for Determination of Favipiravir in Human Plasma. Biomed Chromatogr 2022; 36:e5365. [PMID: 35274347 DOI: 10.1002/bmc.5365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Abstract
Favipiravir is a potential antiviral medication that has been recently licensed for COVID-19 treatment. In this work, a gadolinium based magnetic ionic liquid was prepared and used as an extractant in dispersive liquid-liquid microextraction (DLLME) of favipiravir in human plasma. The high enriching ability of DLLME allowed determination of favipiravir in real samples using HPLC/UV with sufficient sensitivity. The effects of several variables on extraction efficiency were investigated, including type of extractant, amount of extractant, type of disperser and disperser volume. The maximum enrichment was attained using 50mg of the Gd-MIL and 150μL of tetrahydrofuran. The Gd-based MIL could form a supramolecular assembly in the presence of tetrahydrofuran, which enhanced the extraction efficiency of favipiravir. The developed method was validated according to FDA bioanalytical method validation guidelines. The coefficient of determination was found to be 0.9999, for a linear concentration range of 25 to 1.0 × 105 ng/mL. The percent recovery (accuracy) varied from 99.83 to 104.2 %, with % RSD values (precision) ranging from 4.07 to 11.84 %. Total extraction time was about 12 min and the HPLC analysis time was 5 min. The method was found simple, selective and sensitive for determination of favipiravir in real human plasma.
Collapse
Affiliation(s)
- Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mohamed A Abdelaziz
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.,Department of Chemistry and Biochemistry, Miami University, Oxford, OH
| | - Neil D Danielson
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH
| | - Ahmed H Elshafeey
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.,Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
42
|
Wang S, Wang C, Xin Y, Li Q, Liu W. Core-shell nanocomposite of flower-like molybdenum disulfide nanospheres and molecularly imprinted polymers for electrochemical detection of anti COVID-19 drug favipiravir in biological samples. Mikrochim Acta 2022; 189:125. [PMID: 35229221 PMCID: PMC8885316 DOI: 10.1007/s00604-022-05213-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
Abstract
A novel electrochemical sensor is reported for the detection of the antiviral drug favipiravir based on the core-shell nanocomposite of flower-like molybdenum disulfide (MoS2) nanospheres and molecularly imprinted polymers (MIPs). The MoS2@MIP core-shell nanocomposite was prepared via the electrodeposition of a MIP layer on the MoS2 modified electrode, using o-phenylenediamine as the monomer and favipiravir as the template. The selective binding of target favipiravir at the MoS2@MIP core-shell nanocomposite produced a redox signal in a concentration dependent manner, which was used for the quantitative analysis. The preparation process of the MoS2@MIP core-shell nanocomposite was optimized. Under the optimal conditions, the sensor exhibited a wide linear response range of 0.01 ~ 100 nM (1.57*10-6 ~ 1.57*10-2 μg mL-1) and a low detection limit of 0.002 nM (3.14*10-7 μg mL-1). Application of the sensor was demonstrated by detecting favipiravir in a minimum amount of 10 μL biological samples (urine and plasma). Satisfied results in the recovery tests indicated a high potential of favipiravir monitoring in infectious COVID-19 samples.
Collapse
Affiliation(s)
- Shuang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Chen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yuxiao Xin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qiuyun Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Weilu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
43
|
AKÇA Z, ÖZOK Hİ, YARDIM Y, ŞENTÜRK Z. Electroanalytical investigation and voltammetric quantification of antiviral drug favipiravir in the pharmaceutical formulation and urine sample using a glassy carbon electrode in anionic surfactant media. Turk J Chem 2022; 46:869-880. [PMID: 37720610 PMCID: PMC10503967 DOI: 10.55730/1300-0527.3375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/16/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
This work describes the electrochemical investigation of a promising antiviral agent, favipiravir (FAV) utilizing a nonmodified glassy carbon (GC) electrode, along with a unique voltammetric approach that can determine FAV with a good degree of accuracy, speed, and cost-effectiveness. Using cyclic voltammetry, the compound demonstrated a single well-defined and an irreversible oxidation peak at approximately +1.12 V (vs. Ag/AgCl) in Britton-Robinson (BR) buffer at pH 10.0. The synergistic effect of anionic surfactant, sodium dodecyl sulfate (SDS) on the adsorption ability of GC electrode remarkably increased the sensitivity of the stripping voltammetric measurements of FAV. Employing square-wave adsorptive stripping voltammetry at +1.17 V (vs. Ag/AgCl) (after 60 s accumulation at open-circuit condition) in BR buffer (pH 10.0) containing 3 × 10-4 M SDS, the linear relationship is found for FAV quantification in the concentration from 1.0 to 100.0 μg mL-1 (6.4 × 10-6-6.4 × 10-4 M) with a detection limit of 0.26 μg mL-1 (1.7 × 10-6 M). The proposed approach was used successfully to determine FAV in pharmaceutical formulations and model human urine samples.
Collapse
Affiliation(s)
- Zeynep AKÇA
- Department of Analytical Chemistry, Faculty of Pharmacy, Van Yüzuncü Yıl University, Van,
Turkey
| | - Hande İzem ÖZOK
- Department of Analytical Chemistry, Faculty of Pharmacy, Van Yüzuncü Yıl University, Van,
Turkey
| | - Yavuz YARDIM
- Department of Analytical Chemistry, Faculty of Pharmacy, Van Yüzuncü Yıl University, Van,
Turkey
| | - Zühre ŞENTÜRK
- Department of Analytical Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van,
Turkey
| |
Collapse
|
44
|
Özok H, Allahverdiyeva S, Yardım Y, Şentürk Z. First report for the electrooxidation of antifungal anidulafungin: Application to its voltammetric determination in parenteral lyophilized formulation using a boron‐doped diamond electrode in the presence of anionic surfactant. ELECTROANAL 2022. [DOI: 10.1002/elan.202100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Zühre Şentürk
- Yüzüncü Yıl University Faculty of Science&Letters TURKEY
| |
Collapse
|
45
|
Barzani H, Ali H, Şahin C, Kıran M, Yardım Y. A new approach for the voltammetric sensing of the phytoestrogen genistein in the urine samples at a non‐modified boron‐doped diamond electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Kanbeş Dindar Ç, Bozal‐Palabiyik B, Uslu B. Development of a Diamond Nanoparticles‐based Nanosensor for Detection and Determination of Antiviral Drug Favipiravir. ELECTROANAL 2022. [DOI: 10.1002/elan.202100571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Çiğdem Kanbeş Dindar
- Ankara University Faculty of Pharmacy Department of Analytical Chemistry 06560 Ankara Turkey
| | - Burcin Bozal‐Palabiyik
- Ankara University Faculty of Pharmacy Department of Analytical Chemistry 06560 Ankara Turkey
| | - Bengi Uslu
- Ankara University Faculty of Pharmacy Department of Analytical Chemistry 06560 Ankara Turkey
| |
Collapse
|
47
|
Noureldeen DAM, Boushra JM, Lashien AS, Hakiem AFA, Attia TZ. Novel environment friendly TLC-densitometric method for the determination of anti-coronavirus drugs "Remdesivir and Favipiravir": Green assessment with application to pharmaceutical formulations and human plasma. Microchem J 2021; 174:107101. [PMID: 34955554 PMCID: PMC8683213 DOI: 10.1016/j.microc.2021.107101] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
A great demand for discovering new therapeutic solutions has been considered all over the world for managing the rapidly progressing COVID-19 pandemic. Remdesivir (REM) and Favipiravir (FAV) are introduced as promising newly developed antiviral agents against the corona virus as evidenced by the clinical findings. Hence, the optimization of an analytical method for their simultaneous determination acquires potential importance in quality control labs and further confirmatory investigations. Herein, a green, sensitive, and selective densitometric method has been proposed and validated for determination of REM and FAV in pharmaceutical formulations and spiked human plasma on normal phase TLC plates. A solvent mixture of ethyl acetate–methanol-ammonia (8:2:0.2 by volume) has been chosen as developing mobile phase system. Well resolved spots have been detected at 235 nm with retardation factors (Rf) of 0.18 and 0.98 for REM and FAV, respectively. A validation study has been carried out in the light of ICH guidelines. Remdesivir and FAV have shown excellent sensitivities with quantitation limits down to 0.12 and 0.07 μg/band, respectively. The developed method has been successfully applied to tablet formulations and spiked plasma with excellent recoveries ranged from 97.21 to 101.31%. The greenness of the method has been evaluated using the standards of greenness profile and Eco-Scale. It has passed the four greenness profile quadrants and achieved 80 score in Eco-Scale.
Collapse
Affiliation(s)
- Deena A M Noureldeen
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - John M Boushra
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| | - Adel S Lashien
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| | - Ahmed F Abdel Hakiem
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Tamer Z Attia
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
48
|
Mehmandoust M, Khoshnavaz Y, Tuzen M, Erk N. Voltammetric sensor based on bimetallic nanocomposite for determination of favipiravir as an antiviral drug. Mikrochim Acta 2021; 188:434. [PMID: 34837114 PMCID: PMC8626286 DOI: 10.1007/s00604-021-05107-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022]
Abstract
A novel and sensitive voltammetric nanosensor was developed for the first time for trace level monitoring of favipiravir based on gold/silver core–shell nanoparticles (Au@Ag CSNPs) with conductive polymer poly (3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) and functionalized multi carbon nanotubes (F-MWCNTs) on a glassy carbon electrode (GCE). The formation of Au@Ag CSNPs/PEDOT:PSS/F-MWCNT composite was confirmed by various analytical techniques, including X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV–Vis), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (SEM). Under the optimized conditions and at a typical working potential of + 1.23 V (vs. Ag/AgCl), the Au@Ag CSNPs/PEDOT:PSS/F-MWCNT/GCE revealed linear quantitative ranges from 0.005 to 0.009 and 0.009 to 1.95 µM with a limit of detection 0.46 nM (S/N = 3) with acceptable relative standard deviations (1.1-4.9 %) for pharmaceutical formulations, urine, and human plasma samples without applying any sample pretreatment (1.12–4.93%). The interference effect of antiviral drugs, biological compounds, and amino acids was negligible, and the sensing system demonstrated outstanding reproducibility, repeatability, stability, and reusability. The findings revealed that this assay strategy has promising applications in diagnosing FAV in clinical samples, which could be attributed to the large surface area on active sites and high conductivity of bimetallic nanocomposite.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), Sakarya University, 54187, Sakarya, Turkey.
| | - Yasamin Khoshnavaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey
| | - Mustafa Tuzen
- Department of Chemistry, Faculty of Science & Arts, Tokat Gaziosmanpaşa University, Tr-60250, Tokat, Turkey
- Research Institute, Center for Environment and Water, King Fahd University of Petroleum and Materials, Dhahran, 31261, Saudi Arabia
| | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), Sakarya University, 54187, Sakarya, Turkey.
| |
Collapse
|
49
|
Unal DN, Yıldırım S, Kurbanoglu S, Uslu B. Current trends and roles of surfactants for chromatographic and electrochemical sensing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Mohamed MA, Eldin GMG, Ismail SM, Zine N, Elaissari A, Jaffrezic-Renault N, Errachid A. Innovative electrochemical sensor for the precise determination of the new antiviral COVID-19 treatment Favipiravir in the presence of coadministered drugs. J Electroanal Chem (Lausanne) 2021; 895:115422. [PMID: 34075313 PMCID: PMC8161794 DOI: 10.1016/j.jelechem.2021.115422] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Due the current pandemic of COVID-19, an urgent need is required for serious medical treatments of a huge number of patients. The world health organization (WHO) approved Favipiravir (FAV) as a medication for patients infected with corona virus. In the current study, we report the first simple electrochemical, greatly sensitive sensor using MnO2-rGO nanocomposite for the accurate determination of Favipiravir (FAV). The developed sensor showed a high improvement in the electrochemical oxidation of FAV comparing to the unmodified screen-printed electrode (SPE). The suggested platform constituents and the electrochemical measurements parameters were studied. Under optimal experimental parameters, a current response to the concentration change of FAV was found to be in the linear range of 1.0 × 10-8-5.5 × 10-5 M at pH 7.0 with a limit of detection 0.11 µM and a quantification limit of 0.33 µM. The developed platform was confirmed by the precise analysis of FAV in real samples including dosage form and plasma. The developed platform can be applied in different fields of industry quality control and clinical analysis laboratories for the FAV determination.
Collapse
Affiliation(s)
- Mona A Mohamed
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research, Egyptian Drug Authority, Giza, Egypt
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 rue de la doua, 69100 Lyon, France
| | - Ghada M G Eldin
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research, Egyptian Drug Authority, Giza, Egypt
| | - Sani M Ismail
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 rue de la doua, 69100 Lyon, France
| | - Nadia Zine
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 rue de la doua, 69100 Lyon, France
| | - Abdelhamid Elaissari
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 rue de la doua, 69100 Lyon, France
| | - Nicole Jaffrezic-Renault
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 rue de la doua, 69100 Lyon, France
| | - Abdelhamid Errachid
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 rue de la doua, 69100 Lyon, France
| |
Collapse
|