1
|
Haizan I, Choi MY, Park DH, Choi JH. Dual-target magneto-immunoassay with bifunctional nanohybrids for breast cancer exosome detection. Talanta 2025; 286:127532. [PMID: 39788070 DOI: 10.1016/j.talanta.2025.127532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Exosomes, crucial for intercellular communication, hold potential as noninvasive liquid biopsy biomarkers especially in early breast cancer detection benefitted from the distinctive "cancer signature" on their membrane surface. Yet, the present methodologies of exosomes for breast cancer detection have involved the implementation of only a single member from the tetraspanin protein group as a biomarker. Moreso, due to the high concentration of exosomes in complex body fluids, there is a compelling need to measure a small concentration of cancer-derived exosomes with a low background noise signal. In this study, we designed and characterized magnetic core-gold shell nanohybrids (mAuNHs) that function as detection and isolator probes, which were integrated in a simple colorimetric sandwich magneto-immunoassay (mLISA). The magnetic core of mAuNHs facilitates the separation of exosomes from complex samples of biological origin whereby amorphous structures were effectively removed, decreasing background signal. Meanwhile, the coalescence effect of pairing biologically abundance exosomal marker (CD9 antibody) with the cancer specific (CD24 antibody) offers a highly selective and sensitive detection of our target model, MCF7 exosomes. As a result, using our mLISA system, exosomes derived from MCF7 can be selectively recognized from other tested cancer cell lines, BT474 and PC3. Besides, as low as 37 particles/μL of limit of detection (LOD) was achieved using mLISA sensor, exhibiting a good sensitivity as compared to conventional ELISA. Overall, our proposed dual-target biosensor offers a great reduction on background noise from samples, simplicity for users as in exosome's lengthy preparation is reduced as well as good sensitivity.
Collapse
Affiliation(s)
- Izzati Haizan
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State, 54896, Republic of Korea.
| | - Min Yu Choi
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State, 54896, Republic of Korea.
| | - Dong Hyeok Park
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State, 54896, Republic of Korea.
| | - Jin-Ha Choi
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State, 54896, Republic of Korea; School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State, 54896, Republic of Korea.
| |
Collapse
|
2
|
Vafadar A, Younesi M, Babadi S, Alizadeh M, Movahedpour A, Savardashtaki A. Exosome biosensors for detection of liver cancer. Clin Chim Acta 2025; 570:120199. [PMID: 39961411 DOI: 10.1016/j.cca.2025.120199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Liver cancer is a significant global health concern due to its poor prognosis, often resulting from late-stage diagnosis and limited treatment options. While non-invasive methods such as ultrasound, blood tests (like AFP and PIVKA-II), CT scans, and MRIs are commonly employed in liver cancer diagnosis, they can occasionally be limited in sensitivity or associated with high costs. This has heightened the demand for innovative, non-invasive biomarkers that enable early and accurate diagnosis, leading to increased interest in the potential of exosomes. Exosomes are small vesicles released by cells and have the potential to serve as biomarkers for liver cancer. They contain a variety of biomolecules, including nucleic acids, proteins, and lipids, which can offer important information about cell health and disease progression. Developing fast, accurate, sensitive, and reliable techniques for detecting exosomes is essential. Biosensors, analytical tools for biological samples, have emerged as powerful instruments for analyzing exosomes. This review focuses on recent advancements in biosensor technology for exosome detection and explores future perspectives. The goal is to promote the development of innovative biosensor-based methods for detecting exosomes to enable earlier diagnosis and better clinical management of liver cancer.
Collapse
Affiliation(s)
- Asma Vafadar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Younesi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Babadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Keyvani F, GhavamiNejad P, Saleh MA, Soltani M, Zhao Y, Sadeghzadeh S, Shakeri A, Chelle P, Zheng H, Rahman FA, Mahshid S, Quadrilatero J, Rao PPN, Edginton A, Poudineh M. Integrated Electrochemical Aptamer Biosensing and Colorimetric pH Monitoring via Hydrogel Microneedle Assays for Assessing Antibiotic Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309027. [PMID: 39250329 PMCID: PMC11538706 DOI: 10.1002/advs.202309027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Current methods for therapeutic drug monitoring (TDM) have a long turnaround time as they involve collecting patients' blood samples followed by transferring the samples to medical laboratories where sample processing and analysis are performed. To enable real-time and minimally invasive TDM, a microneedle (MN) biosensor to monitor the levels of two important antibiotics, vancomycin (VAN) and gentamicin (GEN) is developed. The MN biosensor is composed of a hydrogel MN (HMN), and an aptamer-functionalized flexible (Flex) electrode, named HMN-Flex. The HMN extracts dermal interstitial fluid (ISF) and transfers it to the Flex electrode where sensing of the target antibiotics happens. The HMN-Flex performance is validated ex vivo using skin models as well as in vivo in live rat animal models. Data is leveraged from the HMN-Flex system to construct pharmacokinetic profiles for VAN and GEN and compare these profiles with conventional blood-based measurements. Additionally, to track pH and monitor patient's response during antibiotic treatment, an HMN is developed that employs a colorimetric method to detect changes in the pH, named HMN-pH assay, whose performance has been validated both in vitro and in vivo. Further, multiplexed antibiotic and pH detection is achieved by simultaneously employing the HMN-pH and HMN-Flex on live animals.
Collapse
Affiliation(s)
- Fatemeh Keyvani
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Peyman GhavamiNejad
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Mahmoud Ayman Saleh
- Department of BioengineeringMcGill University815 Sherbrooke St. WMontrealQuebecH3A 0C3Canada
| | - Mohammad Soltani
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Yusheng Zhao
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Sadegh Sadeghzadeh
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Arash Shakeri
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Pierre Chelle
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Hanjia Zheng
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Fasih A. Rahman
- Department of Kinesiology and Health SciencesUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Sarah Mahshid
- Department of BioengineeringMcGill University815 Sherbrooke St. WMontrealQuebecH3A 0C3Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health SciencesUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Praveen P. N. Rao
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Andrea Edginton
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Mahla Poudineh
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| |
Collapse
|
4
|
Neusaenger AL, Fatina C, Yu J, Yu L. Effect of Polymer Architecture and Acidic Group Density on the Degree of Salt Formation in Amorphous Solid Dispersions. Mol Pharm 2024; 21:3375-3382. [PMID: 38885189 DOI: 10.1021/acs.molpharmaceut.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Recent work has shown that an amorphous drug-polymer salt can be highly stable against crystallization under hot and humid storage conditions (e.g., 40 °C/75% RH) and provide fast release and that these advantages depend on the degree of salt formation. Here, we investigate the salt formation between the basic drug lumefantrine (LMF) and several acidic polymers: poly(acrylic acid) (PAA), hypromellose phthalate (HPMCP), hypromellose acetate succinate (HPMCAS), cellulose acetate phthalate (CAP), Eudragit L100, and Eudragit L100-55. Salt formation was performed by "slurry synthesis" where dry components were mixed at room temperature in the presence of a small quantity of an organic solvent, which was subsequently removed. This method achieved more complete salt formation than the conventional methods of hot-melt extrusion and rotary evaporation. The acidic group density of a polymer was determined by nonaqueous titration in the same solvent used for slurry synthesis; the degree of LMF protonation was determined by X-ray photoelectron spectroscopy. The polymers studied show very different abilities to protonate LMF when compared at a common drug loading, following the order PAA > (HPMCP ∼ CAP ∼ L100 ∼ L100-55) > HPMCAS, but the difference largely disappears when the degree of protonation is plotted against the concentration of the available acidic groups for reaction. This indicates that the extent of salt formation is mainly controlled by the acidic group density and is less sensitive to the polymer architecture. Our results are relevant for selecting the optimal polymer to control the degree of ionization in amorphous solid dispersions.
Collapse
Affiliation(s)
- Amy Lan Neusaenger
- School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Caroline Fatina
- School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Junguang Yu
- School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Lian Yu
- School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Yasamineh S, Nikben N, Hamed Ahmed M, Abdul Kareem R, Kadhim Al-Aridhy A, Hosseini Hooshiar M. Increasing the sensitivity and accuracy of detecting exosomes as biomarkers for cancer monitoring using optical nanobiosensors. Cancer Cell Int 2024; 24:189. [PMID: 38816782 PMCID: PMC11138050 DOI: 10.1186/s12935-024-03379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
The advancement of nanoscience and material design in recent times has facilitated the creation of point-of-care devices for cancer diagnosis and biomolecule sensing. Exosomes (EXOs) facilitate the transfer of bioactive molecules between cancer cells and diverse cells in the local and distant microenvironments, thereby contributing to cancer progression and metastasis. Specifically, EXOs derived from cancer are likely to function as biomarkers for early cancer detection due to the genetic or signaling alterations they transport as payload within the cancer cells of origin. It has been verified that EXOs circulate steadily in bodily secretions and contain a variety of information that indicates the progression of the tumor. However, acquiring molecular information and interactions regarding EXOs has presented significant technical challenges due to their nanoscale nature and high heterogeneity. Colorimetry, surface plasmon resonance (SPR), fluorescence, and Raman scattering are examples of optical techniques utilized to quantify cancer exosomal biomarkers, including lipids, proteins, RNA, and DNA. Many optically active nanoparticles (NPs), predominantly carbon-based, inorganic, organic, and composite-based nanomaterials, have been employed in biosensing technology. The exceptional physical properties exhibited by nanomaterials, including carbon NPs, noble metal NPs, and magnetic NPs, have facilitated significant progress in the development of optical nanobiosensors intended for the detection of EXOs originating from tumors. Following a summary of the biogenesis, biological functions, and biomarker value of known EXOs, this article provides an update on the detection methodologies currently under investigation. In conclusion, we propose some potential enhancements to optical biosensors utilized in detecting EXO, utilizing various NP materials such as silicon NPs, graphene oxide (GO), metal NPs, and quantum dots (QDs).
Collapse
Affiliation(s)
- Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | | | | | | - Ameer Kadhim Al-Aridhy
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | |
Collapse
|
6
|
Wei J, Zhu K, Wang T, Qi T, Wang Z, Li J, Zong S, Cui Y. Highly Accurate Profiling of Exosome Phenotypes Using Super-resolution Tricolor Fluorescence Co-localization. ACS NANO 2024; 18:10206-10215. [PMID: 38536943 DOI: 10.1021/acsnano.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Exosomes contain a wealth of proteomic information, presenting promising biomarkers for the noninvasive early diagnosis of diseases, especially cancer. However, it remains a great challenge to accurately and reliably distinguish exosomes secreted from different types of cell lines. Fluorescence immunoassay is frequently used for exosome detection. Nonspecific adsorption in immunoassays is unavoidable and affects the reliability of assay results. Despite the fact that various methods have been proposed to reduce nonspecific adsorption, a more effective method that can eliminate the influence of nonspecific adsorption is still lacking. Here, we report a more convenient way (named SR-TFC) to remove the artifacts caused by nonspecific adsorption, which combines tricolor fluorescence labeling of target exosomes, tricolor super-resolution imaging, and pixel counting. The pixel counting method (named CFPP) is realized by MATLAB and can eliminate nonspecific binding sites at the single-pixel level, which has never been achieved before and could improve the reliability of detection to the maximum extent. Furthermore, as a proof-of-concept, profiling of exosomal membrane proteins and identification of breast cancer subpopulations are demonstrated. To enable multiplex breast cancer phenotypic analysis, three kinds of specific proteins are labeled to obtain the 3D phenotypic information on various exosomes. Breast cancer subtypes can be accurately identified according to the super-resolution images of some clinically relevant exosomal proteins. Worth mentioning is that, by selecting other biomarkers, classification of other cancers could also be realized using SR-TFC. Hence, the present work holds great potential in clinical cancer diagnosis and precision medicine.
Collapse
Affiliation(s)
- Jinxiu Wei
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Tingyu Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Tongsheng Qi
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jia Li
- Department of Ultrasonography, Zhongda Hospital, Medical School Southeast University, Nanjing, Jiangsu 210009, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
7
|
Sun Z, Zhang B, Tu H, Pan C, Chai Y, Chen W. Advances in colorimetric biosensors of exosomes: novel approaches based on natural enzymes and nanozymes. NANOSCALE 2024; 16:1005-1024. [PMID: 38117141 DOI: 10.1039/d3nr05459d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exosomes are 30-150 nm vesicles derived from diverse cell types, serving as one of the most important biomarkers for early diagnosis and prognosis of diseases. However, the conventional detection method for exosomes faces significant challenges, such as unsatisfactory sensitivity, complicated operation, and the requirement of complicated devices. In recent years, colorimetric exosome biosensors with a visual readout underwent rapid development due to the advances in natural enzyme-based assays and the integration of various types of nanozymes. These synthetic nanomaterials show unique physiochemical properties and catalytic abilities, enabling the construction of exosome colorimetric biosensors with novel principles. This review will illustrate the reaction mechanisms and properties of natural enzymes and nanozymes, followed by a detailed introduction of the recent advances in both types of enzyme-based colorimetric biosensors. A comparison between natural enzymes and nanozymes is made to provide insights into the research that improves the sensitivity and convenience of assays. Finally, the advantages, challenges, and future directions of enzymes as well as exosome colorimetric biosensors are highlighted, aiming at improving the overall performance from different approaches.
Collapse
Affiliation(s)
- Zhonghao Sun
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Binmao Zhang
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Hangjia Tu
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Chuye Pan
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Yujuan Chai
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Wenwen Chen
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Magnaghi LR, Zanoni C, Alberti G, Biesuz R. The colorful world of sulfonephthaleins: Current applications in analytical chemistry for "old but gold" molecules. Anal Chim Acta 2023; 1281:341807. [PMID: 38783746 DOI: 10.1016/j.aca.2023.341807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 05/25/2024]
Abstract
Sulfonephthaleins represent one of the most common and widely employed reactive dyes in analytical chemistry, thanks to their stability, low-cost, well-visible colors, reactivity and possibilities of chemical modification. Despite being first proposed in 1916, nowadays, these molecules play a fundamental role in biological and medical applications, environmental analyses, food quality monitoring and other fields, with a particular focus on low-cost and disposable devices or methods for practical applications. Since up to our knowledge, no reviews or book chapters focused explicitly on sulfonephthaleins have ever been published, in this review, we will briefly describe sulfonephthaleins history, their acid-base properties will be discussed, and the most recent applications in different fields will be presented, focusing on the last ten years literature (2014-2023). Finally, safety and environmental issues will be briefly discussed, despite being quite controversial.
Collapse
Affiliation(s)
- Lisa Rita Magnaghi
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy; Unità di Ricerca di Pavia, INSTM, Via G. Giusti 9, 50121, Firenze, Italy.
| | - Camilla Zanoni
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Raffaela Biesuz
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy; Unità di Ricerca di Pavia, INSTM, Via G. Giusti 9, 50121, Firenze, Italy
| |
Collapse
|
9
|
Histostar-Functionalized Covalent Organic Framework for Electrochemical Detection of Exosomes. BIOSENSORS 2022; 12:bios12090704. [PMID: 36140089 PMCID: PMC9496618 DOI: 10.3390/bios12090704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Covalent organic frameworks (COFs) are gaining growing interest owing to their various structures and versatility. Since their specific physical–chemical characteristics endow them great usage potentiality in biosensing, we herein have synthesized spherical COFs with regular shape and good dispersion, which are further used for the design of a novel nanoprobe by modifying Histostar on the surface of the COFs. Moreover, we have applied a nanoprobe for the fabrication of an electrochemical biosensor to detect exosomes. Since Histostar is a special polymer, conjugated with many secondary antibodies (IgG), and HRP can increase the availability of HRP at the antigenic site, the biosensor can have a strong signal amplification ability. Meanwhile, since COFs with high porosity can be loaded with a huge amount of Histostar, the sensitivity of the biosensor can be further improved. With such a design, the proposed biosensor can achieve a low exosomes detection limit of 318 particles/µL, and a wide linear detection range from 103 particles/µL to 108 particles/µL. So, this work may offer a promising platform for the ultrasensitive detection of exosomes.
Collapse
|
10
|
Singuru MMR, Liao YC, Lin GMH, Chen WT, Lin YH, To CT, Liao WC, Hsu CH, Chuang MC. Engineered multivalent DNA capsules for multiplexed detection of genotoxicants via versatile controlled release mechanisms. Biosens Bioelectron 2022; 216:114608. [DOI: 10.1016/j.bios.2022.114608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
|