1
|
Liu CM, Huang BY, Hua ZD, Jia W, Zhi-Yu L. Characterization of Mass Spectrometry Fragmentation Patterns Under Electron-Activated Dissociation (EAD) for Rapid Structure Identification of Nitazene Analogs. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e10030. [PMID: 40130801 DOI: 10.1002/rcm.10030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/08/2025] [Accepted: 03/08/2025] [Indexed: 03/26/2025]
Abstract
RATIONATE The emergence of synthetic opioids represents a complex and concerning development in the field of new psychoactive substances (NPSs). Nitazene analogs, also known as nitazenes or 2-benzylbenzimidazole derivatives, represent a recently emerging and popular subgroup of opioid receptor agonists. This study's streamlined approach aims to facilitate rapid and accurate structural elucidation of emerging nitazene analogs. METHOD Ultra high-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-QTOF-MS) with positive electrospray ionization (ESI) was employed to characterize 11 nitazene analogs. The mass spectrometry fragmentation pathways of the characteristic fragment ions under electron-activated dissociation (EAD) mode for nitazene analogs were determined from the high-resolution MS data. RESULTS In the MS1 spectra under ESI, single-charge protonated molecular ion [M + H]+ and double charge ion [M + 2H]2+ were detected. The characteristic product ions in the MS2 spectra under the EAD mode were double charged free radical fragment ions [M + H]•2+, which were produced through the removal of one electron from the protonated molecular ions, alkyl amino side chain fragment ions, benzyl side chain fragment ions, methylene amino ions, and fragment ions formed by loss of the alkyl side chain from the protonated molecular ions. CONCLUSIONS The fragmentation pathways of the main fragment ions were elucidated based on the EAD-MS2 spectra. Based on the summarized mass spectrometry characteristics of nitazene analogs, a flowchart was developed to guide the structure prediction of novel nitazene derivatives encountered in forensic casework. EAD was recognized as a perfect technique for accurate structure prediction and identification of new emerging nitazene analogs.
Collapse
Affiliation(s)
- Cui-Mei Liu
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Bo-Yu Huang
- China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhen-Dong Hua
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Wei Jia
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Li Zhi-Yu
- China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Zahn E, Xie Y, Liu X, Karki R, Searfoss RM, de Luna Vitorino FN, Lempiäinen JK, Gongora J, Lin Z, Zhao C, Yuan ZF, Garcia BA. Development of a High-Throughput Platform for Quantitation of Histone Modifications on a New QTOF Instrument. Mol Cell Proteomics 2025; 24:100897. [PMID: 39708910 PMCID: PMC11787651 DOI: 10.1016/j.mcpro.2024.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Histone post-translational modifications (PTMs) regulate gene expression patterns through epigenetic mechanisms. The five histone proteins (H1, H2A, H2B, H3, and H4) are extensively modified, with over 75 distinct modification types spanning more than 200 sites. Despite strong advances in mass spectrometry (MS)-based approaches, identification and quantification of modified histone peptides remains challenging because of factors, such as isobaric peptides, pseudo-isobaric PTMs, and low stoichiometry of certain marks. Here, we describe the development of a new high-throughput method to identify and quantify over 150 modified histone peptides by LC-MS. Fast gradient microflow liquid chromatography and variable window sequential windows acquisition of all theoretical spectra data-independent acquisition on a new quadrupole time-of-flight platform is compared to a previous method using nanoflow LC-MS on an Orbitrap hybrid. Histones extracted from cells treated with either a histone deacetylase inhibitor or transforming growth factor-beta 1 were analyzed by data-independent acquisition on two mass spectrometers: an Orbitrap Exploris 240 with a 55-min nanoflow LC gradient and the SCIEX ZenoTOF 7600 with a 10-min microflow gradient. To demonstrate the reproducibility and speed advantage of the method, 100 consecutive injections of one sample were performed in less than 2 days on the quadrupole time-of-flight platform. The result is the comprehensive characterization of histone PTMs achieved in less than 20 min of total run time using only 200 ng of sample. Results for drug-treated histone samples are comparable to those produced by the previous method and can be achieved using less than one-third of the instrument time.
Collapse
Affiliation(s)
- Emily Zahn
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, United States
| | - Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, United States; State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xingyu Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, United States
| | - Rashmi Karki
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, United States
| | - Richard M Searfoss
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, United States
| | - Francisca N de Luna Vitorino
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, United States
| | - Joanna K Lempiäinen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, United States
| | - Joanna Gongora
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, United States
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, United States
| | - Chenfeng Zhao
- Department of Computer Science and Engineering, Washington University in St Louis, St Louis, Missouri, United States
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, United States.
| |
Collapse
|
3
|
Green CR, Kolar MJ, McGregor GH, Nelson AT, Wallace M, Metallo CM. Quantifying acyl-chain diversity in isobaric compound lipids containing monomethyl branched-chain fatty acids. J Lipid Res 2024; 65:100677. [PMID: 39490922 PMCID: PMC11621494 DOI: 10.1016/j.jlr.2024.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Compound lipids comprise a diverse group of metabolites present in living systems, and metabolic- and environmentally-driven structural distinctions across this family are increasingly linked to biological function. However, methods for deconvoluting these often isobaric lipid species are lacking or require specialized instrumentation. Notably, acyl-chain diversity within cells may be influenced by nutritional states, metabolic dysregulation, or genetic alterations. Therefore, a reliable, validated method of quantifying structurally similar even-, odd-, and branched-chain acyl groups within intact compound lipids will be invaluable for gaining molecular insights into their biological functions. Here we demonstrate the chromatographic resolution of isobaric lipids containing distinct combinations of straight-chain and branched-chain acyl groups via ultra-high-pressure liquid chromatography (UHPLC)-mass spectrometry (MS) using a C30 liquid chromatography column. Using metabolically engineered adipocytes lacking branched-keto acid dehydrogenase A (Bckdha), we validate this approach through a combination of fatty acid supplementation and metabolic tracing using monomethyl branched-chain fatty acids and valine. We observe the resolution of numerous isobaric triacylglycerols and other compound lipids, demonstrating the resolving utility of this method. This approach adds to the toolbox for laboratories to quantify and characterize acyl chain diversity across the lipidome.
Collapse
Affiliation(s)
- Courtney R Green
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA
| | - Matthew J Kolar
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA; Department of Dermatology, University of California, San Diego, CA, USA
| | - Grace H McGregor
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA
| | - Andrew T Nelson
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Christian M Metallo
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA.
| |
Collapse
|
4
|
Gessler A, Wieloch T, Saurer M, Lehmann MM, Werner RA, Kammerer B. The marriage between stable isotope ecology and plant metabolomics - new perspectives for metabolic flux analysis and the interpretation of ecological archives. THE NEW PHYTOLOGIST 2024; 244:21-31. [PMID: 39021246 DOI: 10.1111/nph.19973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Even though they share many thematical overlaps, plant metabolomics and stable isotope ecology have been rather separate fields mainly due to different mass spectrometry demands. New high-resolution bioanalytical mass spectrometers are now not only offering high-throughput metabolite identification but are also suitable for compound- and intramolecular position-specific isotope analysis in the natural isotope abundance range. In plant metabolomics, label-free metabolic pathway and metabolic flux analysis might become possible when applying this new technology. This is because changes in the commitment of substrates to particular metabolic pathways and the activation or deactivation of others alter enzyme-specific isotope effects. This leads to differences in intramolecular and compound-specific isotope compositions. In plant isotope ecology, position-specific isotope analysis in plant archives informed by metabolic pathway analysis could be used to reconstruct and separate environmental impacts on complex metabolic processes. A technology-driven linkage between the two disciplines could allow us to extract information on environment-metabolism interaction from plant archives such as tree rings but also within ecosystems. This would contribute to a holistic understanding of how plants react to environmental drivers, thus also providing helpful information on the trajectories of the vegetation under the conditions to come.
Collapse
Affiliation(s)
- Arthur Gessler
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092, Zurich, Switzerland
- Ecosystem Ecology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Thomas Wieloch
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, 90736, Umeå, Sweden
| | - Matthias Saurer
- Ecosystem Ecology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Marco M Lehmann
- Ecosystem Ecology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Roland A Werner
- Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Bernd Kammerer
- Core Competence Metabolomics, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
5
|
Che P, Chang C, Buzzini P, Stegemann L, Kool J, Davidson JT, Kohler I. Identification of synthetic cathinone positional isomers using electron activated dissociation mass spectrometry. Anal Chim Acta 2024; 1319:342949. [PMID: 39122291 DOI: 10.1016/j.aca.2024.342949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Synthetic cathinones (SCs) are a large category of new psychoactive substances (NPS), which pose a serious threat to public health due to limited information about their toxicology and pharmacology. Many SCs are closely related in their chemical structures, with some substances being positional isomers. In this study, we propose a new workflow for the identification of SC isomers using liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS2) combined with electron activated dissociation (EAD) and chemometrics. Differentiation between isomeric SCs is essential for both legislative and public safety reasons, since minor differences in their molecular structures may change their legal status and pharmacological profiles. RESULTS The workflow was optimized using ring-substituted isomers of methylmethcathinones, methylethcathinones, and chloromethcathinones. The kinetic energy in the EAD cell was investigated at three levels (i.e., 15, 18, and 20 eV) for each group. Two data analysis methods (i.e., t-distributed stochastic neighbor embedding [t-SNE] and a Random Forest [RF] algorithm) were applied using the obtained EAD mass spectral data. The three sets of ring-substituted SCs were clearly distinguished using t-SNE and an RF algorithm. Moreover, the RF approach resulted in a 97 % classification accuracy for isomer identification using various combinations of compounds, isomers, and electron kinetic energies. This workflow was subsequentially applied to the analysis of 26 blind street samples, resulting in a 92 % classification accuracy for isomer identification. However, the accuracy varied based on the kinetic electron energy. A subset of the original data set, focusing on 15-eV data only, was used, resulting in a classification accuracy of 100 %. SIGNIFICANCE This study presents the first LC-HRMS2 workflow based on EAD and chemometrics, which resulted in a classification accuracy of 100 % of authentic street samples. The developed LC-HRMS2 workflow demonstrates that EAD product ions and their characteristic ion ratios can be successfully used to identify ring-substituted positional isomers of SCs.
Collapse
Affiliation(s)
- Peng Che
- Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Christina Chang
- Sam Houston State University, Department of Forensic Science, Huntsville, TX, USA
| | - Patrick Buzzini
- Sam Houston State University, Department of Forensic Science, Huntsville, TX, USA
| | - Lavinia Stegemann
- Drugs Information and Monitoring System (DIMS), Drug Monitoring and Policy, Trimbos Institute, Utrecht, the Netherlands
| | - Jeroen Kool
- Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - J Tyler Davidson
- Sam Houston State University, Department of Forensic Science, Huntsville, TX, USA.
| | - Isabelle Kohler
- Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands; Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
He Y, Hou P, Long Z, Zheng Y, Tang C, Jones E, Diao X, Zhu M. Application of Electro-Activated Dissociation Fragmentation Technique to Identifying Glucuronidation and Oxidative Metabolism Sites of Vepdegestrant by Liquid Chromatography-High Resolution Mass Spectrometry. Drug Metab Dispos 2024; 52:634-643. [PMID: 38830773 DOI: 10.1124/dmd.124.001661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 06/05/2024] Open
Abstract
Drug metabolite identification is an integrated part of drug metabolism and pharmacokinetics studies in drug discovery and development. Definitive identification of metabolic modification sides of test compounds such as screening metabolic soft spots and supporting metabolite synthesis are often required. Currently, liquid chromatography-high resolution mass spectrometry is the dominant analytical platform for metabolite identification. However, the interpretation of product ion spectra generated by commonly used collision-induced disassociation (CID) and higher-energy collisional dissociation (HCD) often fails to identify locations of metabolic modifications, especially glucuronidation. Recently, a ZenoTOF 7600 mass spectrometer equipped with electron-activated dissociation (EAD-HRMS) was introduced. The primary objective of this study was to apply EAD-HRMS to identify metabolism sites of vepdegestrant (ARV-471), a model compound that consists of multiple functional groups. ARV-471 was incubated in dog liver microsomes and 12 phase I metabolites and glucuronides were detected. EAD generated unique product ions via orthogonal fragmentation, which allowed for accurately determining the metabolism sites of ARV-471, including phenol glucuronidation, piperazine N-dealkylation, glutarimide hydrolysis, piperidine oxidation, and piperidine lactam formation. In contrast, CID and HCD spectral interpretation failed to identify modification sites of three O-glucuronides and three phase I metabolites. The results demonstrated that EAD has significant advantages over CID and HCD in definitive structural elucidation of glucuronides and phase I metabolites although the utility of EAD-HRMS in identifying various types of drug metabolites remains to be further evaluated. SIGNIFICANCE STATEMENT: Definitive identification of metabolic modification sites by liquid chromatography-high resolution mass spectrometry is highly needed in drug metabolism research, such as screening metabolic soft spots and supporting metabolite synthesis. However, commonly used collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) fragmentation techniques often fail to provide critical information for definitive structural elucidation. In this study, the electron-activated dissociation (EAD) was applied to identifying glucuronidation and oxidative metabolism sites of vepdegestrant, which generated significantly better results than CID and HCD.
Collapse
Affiliation(s)
- Yifei He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Pengyi Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Zhimin Long
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Yuandong Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Chongzhuang Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Elliott Jones
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Mingshe Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| |
Collapse
|
7
|
Brunet TA, Clément Y, Calabrese V, Lemoine J, Geffard O, Chaumot A, Degli-Esposti D, Salvador A, Ayciriex S. Concomitant investigation of crustacean amphipods lipidome and metabolome during the molting cycle by Zeno SWATH data-independent acquisition coupled with electron activated dissociation and machine learning. Anal Chim Acta 2024; 1304:342533. [PMID: 38637034 DOI: 10.1016/j.aca.2024.342533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND DIA (Data-Independent Acquisition) is a powerful technique in Liquid Chromatography coupled with high-resolution tandem Mass Spectrometry (LC-MS/MS) initially developed for proteomics studies and recently emerging in metabolomics and lipidomics. It provides a comprehensive and unbiased coverage of molecules with improved reproducibility and quantitative accuracy compared to Data-Dependent Acquisition (DDA). Combined with the Zeno trap and Electron-Activated Dissociation (EAD), DIA enhances data quality and structural elucidation compared to conventional fragmentation under CID. These tools were applied to study the lipidome and metabolome of the freshwater amphipod Gammarus fossarum, successfully discriminating stages and highlighting significant biological features. Despite being underused, DIA, along with the Zeno trap and EAD, holds great potential for advancing research in the omics field. RESULTS DIA combined with the Zeno trap enhances detection reproducibility compared to conventional DDA, improving fragmentation spectra quality and putative identifications. LC coupled with Zeno-SWATH-DIA methods were used to characterize molecular changes in reproductive cycle of female gammarids. Multivariate data analysis including Principal Component Analysis and Partial Least Square Discriminant Analysis successfully identified significant features. EAD fragmentation helped to identify unknown features and to confirm their molecular structure using fragmentation spectra database annotation or machine learning. EAD database matching accurately annotated five glycerophospholipids, including the position of double bonds on fatty acid chain moieties. SIRIUS database predicted structures of unknown features based on experimental fragmentation spectra to compensate for database incompleteness. SIGNIFICANCE Reproducible detection of features and confident identification of putative compounds are pivotal stages within analytical pipelines. The DIA approach combined with Zeno pulsing enhances detection sensitivity and targeted fragmentation with EAD in positive polarity provides orthogonal fragmentation information. In our study, Zeno-DIA and EAD thereby facilitated a comprehensive and insightful exploration of pertinent biological molecules associated with the reproductive cycle of gammarids. The developed methodology holds great promises for identifying informative biomarkers on the health status of an environmental sentinel species.
Collapse
Affiliation(s)
- Thomas Alexandre Brunet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Yohann Clément
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Valentina Calabrese
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Jérôme Lemoine
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625, Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625, Villeurbanne, France
| | | | - Arnaud Salvador
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Sophie Ayciriex
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France.
| |
Collapse
|
8
|
Calabrese V, Brunet TA, Degli-Esposti D, Chaumot A, Geffard O, Salvador A, Clément Y, Ayciriex S. Electron-activated dissociation (EAD) for the complementary annotation of metabolites and lipids through data-dependent acquisition analysis and feature-based molecular networking, applied to the sentinel amphipod Gammarus fossarum. Anal Bioanal Chem 2024:10.1007/s00216-024-05232-w. [PMID: 38492024 DOI: 10.1007/s00216-024-05232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
The past decades have marked the rise of metabolomics and lipidomics as the -omics sciences which reflect the most phenotypes in living systems. Mass spectrometry-based approaches are acknowledged for both quantification and identification of molecular signatures, the latter relying primarily on fragmentation spectra interpretation. However, the high structural diversity of biological small molecules poses a considerable challenge in compound annotation. Feature-based molecular networking (FBMN) combined with database searches currently sets the gold standard for annotation of large datasets. Nevertheless, FBMN is usually based on collision-induced dissociation (CID) data, which may lead to unsatisfying information. The use of alternative fragmentation methods, such as electron-activated dissociation (EAD), is undergoing a re-evaluation for the annotation of small molecules, as it gives access to additional fragmentation routes. In this study, we apply the performances of data-dependent acquisition mass spectrometry (DDA-MS) under CID and EAD fragmentation along with FBMN construction, to perform extensive compound annotation in the crude extracts of the freshwater sentinel organism Gammarus fossarum. We discuss the analytical aspects of the use of the two fragmentation modes, perform a general comparison of the information delivered, and compare the CID and EAD fragmentation pathways for specific classes of compounds, including previously unstudied species. In addition, we discuss the potential use of FBMN constructed with EAD fragmentation spectra to improve lipid annotation, compared to the classic CID-based networks. Our approach has enabled higher confidence annotations and finer structure characterization of 823 features, including both metabolites and lipids detected in G. fossarum extracts.
Collapse
Affiliation(s)
- Valentina Calabrese
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France.
| | - Thomas Alexandre Brunet
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France
| | | | - Arnaud Chaumot
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, 69625, Villeurbanne, France
| | - Olivier Geffard
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, 69625, Villeurbanne, France
| | - Arnaud Salvador
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France
| | - Yohann Clément
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France
| | - Sophie Ayciriex
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France.
| |
Collapse
|