1
|
Automated CNN-Based Analysis Versus Manual Analysis for MR Elastography in Nonalcoholic Fatty Liver Disease: Inter-method Agreement and Fibrosis Stage Discriminative Performance. AJR Am J Roentgenol 2022; 219:224-232. [PMID: 35107306 DOI: 10.2214/ajr.21.27135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Histological fibrosis stage is the most important prognostic factor in chronic liver disease. MR elastography (MRE) is the most accurate noninvasive method for detecting and staging liver fibrosis. Although accurate, manual ROI-based MRE analysis is complex, time consuming, requires specialized readers, and prone to methodologic variability and suboptimal inter-reader agreement. Objectives: To develop an automated convolutional neural network (CNN)-based method for liver MRE analysis, evaluate its agreement with manual ROI-based analysis, and assess its discriminative performance for dichotomized fibrosis stages using histology as reference standard. Methods: In this retrospective cross-sectional study, 675 participants who underwent MRE using different MRI systems and field strengths at 28 imaging sites from five multicenter international clinical trials of nonalcoholic steatohepatitis were included for algorithm development and internal testing of agreement between automated CNN- and manual ROI-based analyses. Eighty-one patients (52 women, 29 men; mean age, 54 years) who underwent MRE using a single 3-Tesla system and liver biopsy for clinical purposes at a single institution were included for external testing of agreement and assessment of fibrosis stage discriminative performance. Agreement was evaluated using intra-class correlation coefficients (ICC). 95% CIs were computed using bootstrapping. Discriminative performance of each method for dichotomized histologic fibrosis stage was evaluated by AUC and compared using bootstrapping. Results: Mean CNN- and manual ROI-based stiffness measurements ranged from 3.21 to 3.34 kPa in trial participants and from 3.30 to 3.45 kPa in clinical patients. ICC for CNN- and manual ROI-based measurements was 0.98 (95% CI, 0.978-0.98) in trial participants and 0.99 (95% CI: 0.98-0.99) in clinical patients. AUC for classification of dichotomized fibrosis stage ranged from 0.89-0.93 for CNN- and 0.87-0.93 for manual ROI-based analyses (p=.23-.75). Conclusion: Stiffness measurements using the automated CNN-based method agreed strongly with manual ROIbased analysis across MRI systems and field strengths, with excellent discriminative performance for histology-determined dichotomized fibrosis stages in external testing. Clinical Impact: Given the high incidence of chronic liver disease worldwide, it is important that noninvasive tools to assess fibrosis are applied reliably across different settings. CNN-based analysis is feasible and may reduce reliance on expert image analysts.
Collapse
|
2
|
Pan L, Valdeig S, Kägebein U, Qing K, Fetics B, Roth A, Nevo E, Hensen B, Weiss CR, Wacker FK. Integration and evaluation of a gradient-based needle navigation system for percutaneous MR-guided interventions. PLoS One 2020; 15:e0236295. [PMID: 32706813 PMCID: PMC7380643 DOI: 10.1371/journal.pone.0236295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
The purpose of the present study was to integrate an interactive gradient-based needle navigation system and to evaluate the feasibility and accuracy of the system for real-time MR guided needle puncture in a multi-ring phantom and in vivo in a porcine model. The gradient-based navigation system was implemented in a 1.5T MRI. An interactive multi-slice real-time sequence was modified to provide the excitation gradients used by two sets of three orthogonal pick-up coils integrated into a needle holder. Position and orientation of the needle holder were determined and the trajectory was superimposed on pre-acquired MR images. A gel phantom with embedded ring targets was used to evaluate accuracy using 3D distance from needle tip to target. Six punctures were performed in animals to evaluate feasibility, time, overall error (target to needle tip) and system error (needle tip to the guidance needle trajectory) in vivo. In the phantom experiments, the overall error was 6.2±2.9 mm (mean±SD) and 4.4±1.3 mm, respectively. In the porcine model, the setup time ranged from 176 to 204 seconds, the average needle insertion time was 96.3±40.5 seconds (min: 42 seconds; max: 154 seconds). The overall error and the system error was 8.8±7.8 mm (min: 0.8 mm; max: 20.0 mm) and 3.3±1.4 mm (min: 1.8 mm; max: 5.2 mm), respectively.
Collapse
Affiliation(s)
- Li Pan
- Siemens Healthineers, Baltimore, MD, United States of America
| | - Steffi Valdeig
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States of America
| | - Urte Kägebein
- Department of Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE–Research Campus: Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
| | - Kun Qing
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States of America
- Siemens Corporate Technology, Baltimore, MD, United States of America
| | - Barry Fetics
- Robin Medical Inc., Baltimore, MD, United States of America
| | - Amir Roth
- Robin Medical Inc., Baltimore, MD, United States of America
| | - Erez Nevo
- Robin Medical Inc., Baltimore, MD, United States of America
| | - Bennet Hensen
- Department of Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE–Research Campus: Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
- * E-mail:
| | - Clifford R. Weiss
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States of America
| | - Frank K. Wacker
- Department of Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE–Research Campus: Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
| |
Collapse
|
3
|
Krishnamurthy R, Thompson BL, Shankar A, Gariepy CE, Potter CJ, Fung BR, Hu HH. Magnetic Resonance Elastography of the Liver in Children and Adolescents: Assessment of Regional Variations in Stiffness. Acad Radiol 2020; 27:e109-e115. [PMID: 31412984 DOI: 10.1016/j.acra.2019.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Abstract
RATIONALE AND OBJECTIVES We describe our experience in measuring parenchyma stiffness across the liver Couinaud segments in lieu of the conventional practice of using a single slice-wise "global" region-of-interest. We hypothesize that the heterogeneous nature of fibrosis can lead to regional stiffness within the organ, and that it can be reflected by Couinaud segment-based magnetic resonance elastography measurements. MATERIALS AND METHODS This retrospective study involved from 173 patients (116 males, 57 females, 1.0-22.5 years, 14.7 ± 3.5 years) who underwent exams between June 2017 and September 2018. Liver stiffness across the eight Couinaud segments was measured in addition to a single-slice global measurement by two analysts. Inter- and intrarater analysis was performed in a subset of 20 cases. Individual segment stiffness values, the average across the segments, and the coefficients of variation (CoV) were compared to global single-slice-derived values using linear and Lin's concordance correlation coefficients. Linear correlations between stiffness values versus age, gender, and body-mass-index (BMI) were also evaluated. RESULTS We observed CoVs ranging from 3.1%-79.2%, 17.2 ± 7.2%. The CoV was not correlated with age or BMI (r2 < 0.01, p = 0.99 for both). The CoV did not differ between males (17.1 ± 5.6%) and females (17.3 ± 9.8%) (p = 0.88). There were no correlations between global stiffness versus age (r2 = 0.02, p = 0.84) or BMI (r2 = 0.03, p = 0.68). A range of 0.58-0.86 was observed for Lin's concordance correlation coefficient between segmental stiffness, the average stiffness across segments, and global stiffness. Segments II and VII had the highest frequency of being the stiffest Couinaud segment. The average stiffness across the segments correlated strongly with the single-slice global measurement (r2 = 0.88, p< 0.01). CONCLUSION There exists potential variations in parenchyma stiffness across the liver Couinaud segments, which may reflect the heterogeneous nature of fibrosis. This variation can potentially provide additional diagnostic and clinical information.
Collapse
Affiliation(s)
- Ramkumar Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205
| | - Benjamin L Thompson
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205
| | - Anand Shankar
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205
| | - Cheryl E Gariepy
- Department of Gastroenterology and Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, Ohio
| | - Carol J Potter
- Department of Gastroenterology and Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, Ohio
| | - Bonita R Fung
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Houchun H Hu
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205.
| |
Collapse
|
4
|
Garteiser P, Doblas S, Van Beers BE. Magnetic resonance elastography of liver and spleen: Methods and applications. NMR IN BIOMEDICINE 2018; 31:e3891. [PMID: 29369503 DOI: 10.1002/nbm.3891] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/16/2017] [Accepted: 12/04/2017] [Indexed: 05/06/2023]
Abstract
The viscoelastic properties of the liver and spleen can be assessed with magnetic resonance elastography (MRE). Several actuators, MRI acquisition sequences and reconstruction algorithms have been proposed for this purpose. Reproducible results are obtained, especially when the examination is performed in standard conditions with the patient fasting. Accurate staging of liver fibrosis can be obtained by measuring liver stiffness or elasticity with MRE. Moreover, emerging evidence shows that assessing the tissue viscous parameters with MRE is useful for characterizing liver inflammation, non-alcoholic steatohepatitis, hepatic congestion, portal hypertension, and hepatic tumors. Further advances such as multifrequency acquisitions and compression-sensitive MRE may provide novel quantitative markers of hepatic and splenic mechanical properties that may improve the diagnosis of hepatic and splenic diseases.
Collapse
Affiliation(s)
- Philippe Garteiser
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, UMR 1149 INSERM-University Paris Diderot, Paris, France
| | - Sabrina Doblas
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, UMR 1149 INSERM-University Paris Diderot, Paris, France
| | - Bernard E Van Beers
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, UMR 1149 INSERM-University Paris Diderot, Paris, France
- Department of Radiology, Beaujon University Hospital Paris Nord, Clichy, France
| |
Collapse
|
5
|
|
6
|
Abstract
The diagnostics of diffuse liver disease traditionally rely on liver biopsies and histopathological analysis of tissue specimens. However, a liver biopsy is invasive and carries some non-negligible risks, especially for patients with decreased liver function and those requiring repeated follow-up examinations. Over the last decades, magnetic resonance imaging (MRI) has developed into a valuable tool for the non-invasive characterization of focal liver lesions and diseases of the bile ducts. Recently, several MRI methods have been developed and clinically evaluated that also allow the diagnostics and staging of diffuse liver diseases, e.g. non-alcoholic fatty liver disease, hepatitis, hepatic fibrosis, liver cirrhosis, hemochromatosis and hemosiderosis. The sequelae of diffuse liver diseases, such as a decreased liver functional reserve or portal hypertension, can also be detected and quantified by modern MRI methods. This article provides the reader with the basic principles of functional MRI of the liver and discusses the importance in a clinical context.
Collapse
|
7
|
Tan CH, Venkatesh SK. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions. Gut Liver 2016; 10:672-686. [PMID: 27563019 PMCID: PMC5003189 DOI: 10.5009/gnl15492] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/29/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022] Open
Abstract
Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including nonalcoholic fatty liver disease, will be elaborated.
Collapse
Affiliation(s)
- Cher Heng Tan
- Department of Diagnostic Radiology, Tan Tock Seng Hospital,
Singapore
| | | |
Collapse
|
8
|
Magnetic Resonance Elastography for the Evaluation of Liver Fibrosis in Chronic Hepatitis B and C by Using Both Gradient-Recalled Echo and Spin-Echo Echo Planar Imaging: A Prospective Study. Am J Gastroenterol 2016; 111:823-33. [PMID: 26977760 DOI: 10.1038/ajg.2016.56] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/02/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Magnetic resonance elastography (MRE) with three-dimensional spin-echo echo planar imaging (3D-SE-EPI) is a newly emerging noninvasive method for assessing liver fibrosis. We hypothesized that 3D-SE-EPI might have better diagnostic accuracy than conventional two-dimensional gradient-recalled echo (2D-GRE). METHODS We prospectively included 179 consecutive patients with chronic hepatitis B (CHB) or C (CHC) who underwent both MRE and liver biopsy. Liver stiffness was measured by both 3D-SE-EPI and 2D-GRE for staging biopsy-proven liver fibrosis (using METAVIR scores). A receiver-operating characteristic analysis using the area under the receiver-operating characteristic curve (AUC) was used to compare the diagnostic performance in predicting liver fibrosis between these two techniques, and compared them to serum markers of fibrosis. RESULTS The technical failure rate of 3D-SE-EPI (2.2%, n=4/179) was lower compared with 2D-GRE (8.3%, n=15/179). The stiffness measured by 3D-SE-EPI was slightly lower compared with 2D-GRE, with the mean difference of 0.57 kPa (Bland and Altman plot, 95% limits of agreement: -0.32 and 1.45 kPa). AUCs for the characterization of ≥F1, ≥F2, ≥F3, and F4 were 0.957 (95% confidence interval (CI): 0.913-0.983), 0.971 (0.932-0.991), 0.991 (0.961-0.999), and 0.979 (0.942-0.995) for 3D-SE-EPI, which was slightly higher compared with the AUCs for 2D-GRE at each fibrosis stage (0.948 (0.901-0.977), 0.959 (0.915-0.981), 0.979 (0.943-0.995), and 0.976 (0.938-0.994), respectively), although none reached statistical significance (P=0.160-0.585). In an "intention-to-diagnose" analysis, the diagnostic accuracy (the proportion of well-classified patients) by EPI (86.7-91.3%, n=169) was higher compared with GRE (80.9-82.1%, n=158) after applying optimal cutoffs. Both 3D-SE-EPI and 2D-GRE performed better than serum fibrosis markers. CONCLUSIONS With respect to 2D-GRE, 3D-SE-EPI has the advantage of lower failure rate with equivalent high diagnostic performance for staging liver fibrosis in CHB/CHC patients, and thus more helpful for those challenging cases in 2D-GRE.
Collapse
|
9
|
Witzenburg CM, Barocas VH. A nonlinear anisotropic inverse method for computational dissection of inhomogeneous planar tissues. Comput Methods Biomech Biomed Engin 2016; 19:1630-46. [PMID: 27140845 DOI: 10.1080/10255842.2016.1176154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Quantification of the mechanical behavior of soft tissues is challenging due to their anisotropic, heterogeneous, and nonlinear nature. We present a method for the 'computational dissection' of a tissue, by which we mean the use of computational tools both to identify and to analyze regions within a tissue sample that have different mechanical properties. The approach employs an inverse technique applied to a series of planar biaxial experimental protocols. The aggregated data from multiple protocols provide the basis for (1) segmentation of the tissue into regions of similar properties, (2) linear analysis for the small-strain behavior, assuming uniform, linear, anisotropic behavior within each region, (3) subsequent nonlinear analysis following each individual experimental protocol path and using local linear properties, and (4) construction of a strain energy data set W(E) at every point in the material by integrating the differential stress-strain functions along each strain path. The approach has been applied to simulated data and captures not only the general nonlinear behavior but also the regional differences introduced into the simulated tissue sample.
Collapse
Affiliation(s)
- Colleen M Witzenburg
- a Department of Mechanical Engineering , University of Minnesota , Minneapolis , MN , USA
| | - Victor H Barocas
- b Department of Biomedical Engineering , University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
10
|
Low G, Kruse SA, Lomas DJ. General review of magnetic resonance elastography. World J Radiol 2016; 8:59-72. [PMID: 26834944 PMCID: PMC4731349 DOI: 10.4329/wjr.v8.i1.59] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/14/2015] [Accepted: 12/04/2015] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing “virtual palpation”, MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration.
Collapse
|
11
|
Witzenburg CM, Dhume RY, Lake SP, Barocas VH. Automatic Segmentation of Mechanically Inhomogeneous Tissues Based on Deformation Gradient Jump. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:29-41. [PMID: 26168433 PMCID: PMC4739827 DOI: 10.1109/tmi.2015.2453316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Variations in properties, active behavior, injury, scarring, and/or disease can all cause a tissue's mechanical behavior to be heterogeneous. Advances in imaging technology allow for accurate full-field displacement tracking of both in vitro and in vivo deformation from an applied load. While detailed strain fields provide some insight into tissue behavior, material properties are usually determined by fitting stress-strain behavior with a constitutive equation. However, the determination of the mechanical behavior of heterogeneous soft tissue requires a spatially varying constitutive equation (i.e., one in which the material parameters vary with position). We present an approach that computationally dissects the sample domain into many homogeneous subdomains, wherein subdomain boundaries are formed by applying a betweenness based graphical analysis to the deformation gradient field to identify locations with large discontinuities. This novel partitioning technique successfully determined the shape, size and location of regions with locally similar material properties for: (1) a series of simulated soft tissue samples prescribed with both abrupt and gradual changes in anisotropy strength, prescribed fiber alignment, stiffness, and nonlinearity, (2) tissue analogs (PDMS and collagen gels) which were tested biaxially and speckle tracked (3) and soft tissues which exhibited a natural variation in properties (cadaveric supraspinatus tendon), a pathologic variation in properties (thoracic aorta containing transmural plaque), and active behavior (contracting cardiac sheet). The routine enables the dissection of samples computationally rather than physically, allowing for the study of small tissues specimens with unknown and irregular inhomogeneity.
Collapse
Affiliation(s)
- Colleen M. Witzenburg
- University of Minnesota, Minneapolis, MN 55455 USA and is now with the University of Virginia, Charlottesville, VA 22908 USA
| | | | - Spencer P. Lake
- University of Minnesota, Minneapolis, MN 55455 USA as is now with Washington University, St. Louis, MO 63130 USA
| | | |
Collapse
|
12
|
Closed-Bore Interventional MRI: Percutaneous Biopsies and Ablations. AJR Am J Roentgenol 2015; 205:W400-10. [DOI: 10.2214/ajr.15.14732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Wang Q, Li J, An S, Chen Y, Jiang C, Wang X. Magnetic resonance-guided regional gene delivery strategy using a tumor stroma-permeable nanocarrier for pancreatic cancer. Int J Nanomedicine 2015; 10:4479-90. [PMID: 26203245 PMCID: PMC4508066 DOI: 10.2147/ijn.s84930] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Gene therapy is a very promising technology for treatment of pancreatic ductal adenocarcinoma (PDAC). However, its application has been limited by the abundant stromal response in the tumor microenvironment. The aim of this study was to prepare a dendrimer-based gene-free loading vector with high permeability in the tumor stroma and explore an imaging-guided local gene delivery strategy for PDAC to promote the efficiency of targeted gene delivery. METHODS The experimental protocol was approved by the animal ethics committee of Zhongshan Hospital, Fudan University. Third-generation dendrigraft poly-L-lysines was selected as the nanocarrier scaffold, which was modified by cell-penetrating peptides and gadolinium (Gd) chelates. DNA plasmids were loaded with these nanocarriers via electrostatic interaction. The cellular uptake and loaded gene expression were examined in MIA PaCa-2 cell lines in vitro. Permeability of the nanoparticles in the tumor stroma and transfected gene distribution in vivo were studied using a magnetic resonance imaging-guided delivery strategy in an orthotopic nude mouse model of PDAC. RESULTS The nanocarriers were synthesized with a dendrigraft poly-L-lysine to polyethylene glycol to DTPA ratio of 1:3.4:8.3 and a mean diameter of 110.9±7.7 nm. The luciferases were strictly expressed in the tumor, and the luminescence intensity in mice treated by Gd-DPT/plasmid luciferase (1.04×10(4)±9.75×10(2) p/s/cm(2)/sr) was significantly (P<0.05) higher than in those treated with Gd-DTPA (9.56×10(2)±6.15×10 p/s/cm(2)/sr) and Gd-DP (5.75×10(3)± 7.45×10(2) p/s/cm(2)/sr). Permeability of the nanoparticles modified by cell-penetrating peptides was superior to that of the unmodified counterpart, demonstrating the improved capability of nanoparticles for diffusion in tumor stroma on magnetic resonance imaging. CONCLUSION This study demonstrated that an image-guided gene delivery system with a stroma-permeable gene vector could be a potential clinically translatable gene therapy strategy for PDAC.
Collapse
Affiliation(s)
- Qingbing Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, People’s Republic of China
| | - Jianfeng Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Sai An
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Yi Chen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Xiaolin Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
14
|
Abstract
In this article, functional magnetic resonance (MR) imaging techniques in the abdomen are discussed. Diffusion-weighted imaging (DWI) increases the confidence in detecting and characterizing focal hepatic lesions. The potential uses of DWI in kidneys, adrenal glands, bowel, and pancreas are outlined. Studies have shown potential use of quantitative dynamic contrast-enhanced MR imaging parameters, such as K(trans), in predicting outcomes in cancer therapy. MR elastography is considered to be a useful tool in staging liver fibrosis. A major issue with all functional MR imaging techniques is the lack of standardization of the protocol.
Collapse
Affiliation(s)
- Kumar Sandrasegaran
- Department of Radiology, Indiana University School of Medicine, 550 N University Blvd, UH 0279, Indianapolis, IN 46202, USA.
| |
Collapse
|
15
|
Girometti R, Como G, Bazzocchi M, Zuiani C. Post-operative imaging in liver transplantation: State-of-the-art and future perspectives. World J Gastroenterol 2014; 20:6180-6200. [PMID: 24876739 PMCID: PMC4033456 DOI: 10.3748/wjg.v20.i20.6180] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Orthotopic liver transplantation (OLT) represents a major treatment for end-stage chronic liver disease, as well as selected cases of hepatocellular carcinoma and acute liver failure. The ever-increasing development of imaging modalities significantly contributed, over the last decades, to the management of recipients both in the pre-operative and post-operative period, thus impacting on graft and patients survival. When properly used, imaging modalities such as ultrasound, multidetector computed tomography, magnetic resonance imaging (MRI) and procedures of direct cholangiography are capable to provide rapid and reliable recognition and treatment of vascular and biliary complications occurring after OLT. Less defined is the role for imaging in assessing primary graft dysfunction (including rejection) or chronic allograft disease after OLT, e.g., hepatitis C virus (HCV) recurrence. This paper: (1) describes specific characteristic of the above imaging modalities and the rationale for their use in clinical practice; (2) illustrates main imaging findings related to post-OLT complications in adult patients; and (3) reviews future perspectives emerging in the surveillance of recipients with HCV recurrence, with special emphasis on MRI.
Collapse
|