1
|
Jia J, Liu Z, Wang F, Bai G. Consensus Clustering Analysis Based on Enhanced-CT Radiomic Features: Esophageal Squamous Cell Carcinoma patients' 3-Year Progression-Free Survival. Acad Radiol 2024; 31:2807-2817. [PMID: 38199900 DOI: 10.1016/j.acra.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
RATIONALE AND OBJECTIVES To assess the efficacy of consensus cluster analysis based on CT radiomics in stratifying risk and predicting postoperative progression-free survival (PFS) in patients diagnosed with esophageal squamous cell carcinoma (ESC). MATERIALS AND METHODS We conducted a retrospective study involving 546 patients diagnosed with ESC between January 2016 and March 2021. All patients underwent preoperative enhanced CT examinations. From the enhanced CT images, radiomics features were extracted, and a consensus clustering algorithm was applied to group the patients based on these features. Statistical analysis was performed to examine the relationship between the clustering results and gene protein expression, histopathological features, and patients' 3-year PFS. We applied the Kruskal-Wallis test for continuous data, chi-square or Fisher's exact tests for categorical data, and the log-rank test for PFS. RESULTS This study identified four groups: Cluster 1 (n = 100, 18.3%), Cluster 2 (n = 197, 36.1%), Cluster 3 (n = 205, 37.5%), and Cluster 4 (n = 44, 8.1%). The cancer gene Breast Cancer Susceptibility Gene 1 (BRCA1) was most highly expressed in Cluster 4 (75%), showing significant differences between the four subtypes with a P-value of 0.035. The expression of programmed death-1 (PD-1) was highest in Cluster 1 (51%), with a P-value of 0.022. Vascular invasion occurred most frequently in Cluster 2 (28.9%), with a P-value of 0.022. The majority of patients with stage T3-4 were in Cluster 2 (67%), with a P-value of 0.003. Kaplan-Meier survival analysis revealed significant differences in PFS between the four groups (P = 0.013). Among them, patients in Cluster 1 had the best prognosis, while those in Cluster 2 had the worst. CONCLUSION This study highlights the effectiveness of consensus clustering analysis based on enhanced CT radiomics features in identifying associations between radiomics features, histopathological characteristics, and prognosis in different clusters. These findings provide valuable insights for clinicians in accurately and effectively evaluating the prognosis of esophageal cancer.
Collapse
Affiliation(s)
- Jianye Jia
- The Department of Medical Imaging Center, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 West Huanghe Road, Huaian, 223300, Jiangsu, PR China
| | - Ziyan Liu
- The Department of Medical Imaging Center, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 West Huanghe Road, Huaian, 223300, Jiangsu, PR China
| | - Fen Wang
- The Department of Medical Imaging Center, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 West Huanghe Road, Huaian, 223300, Jiangsu, PR China
| | - Genji Bai
- The Department of Medical Imaging Center, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 West Huanghe Road, Huaian, 223300, Jiangsu, PR China.
| |
Collapse
|
2
|
Guo L, Liu A, Geng X, Zhao Z, Nie Y, Wang L, Liu D, Li Y, Li Y, Li D, Wang Q, Li Z, Liu X, Li M. The role of spleen radiomics model for predicting prognosis in esophageal squamous cell carcinoma patients receiving definitive radiotherapy. Thorac Cancer 2024; 15:947-964. [PMID: 38480505 PMCID: PMC11045339 DOI: 10.1111/1759-7714.15276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The spleen plays an important role in systemic antitumor immune response, but whether spleen imaging features have predictive effect for prognosis and immune status was unknown. The aim of this study was to investigate computed tomography (CT)-based spleen radiomics to predict the prognosis of patients with esophageal squamous cell carcinoma (ESCC) underwent definitive radiotherapy (dRT) and to try to find its association with systemic immunity. METHODS This retrospective study included 201 ESCC patients who received dRT. Patients were randomly divided into training (n = 142) and validation (n = 59) groups. The pre- and delta-radiomic features were extracted from enhanced CT images. LASSO-Cox regression was used to select the radiomics signatures most associated with progression-free survival (PFS) and overall survival (OS). Independent prognostic factors were identified by univariate and multivariate Cox analyses. The ROC curve and C-index were used to evaluate the predictive performance. Finally, the correlation between spleen radiomics and immune-related hematological parameters was analyzed by spearman correlation analysis. RESULTS Independent prognostic factors involved TNM stage, treatment regimen, tumor location, pre- or delta-Rad-score. The AUC of the delta-radiomics combined model was better than other models in the training and validation groups in predicting PFS (0.829 and 0.875, respectively) and OS (0.857 and 0.835, respectively). Furthermore, some spleen delta-radiomic features are significantly correlated with delta-ALC (absolute lymphocyte count) and delta-NLR (neutrophil-to-lymphocyte ratio). CONCLUSIONS Spleen radiomics is expected to be a useful noninvasive tool for predicting the prognosis and evaluating systemic immune status for ESCC patients underwent dRT.
Collapse
Affiliation(s)
- Longxiang Guo
- Department of Radiation OncologyShandong Cancer Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Ao Liu
- Department of Radiation OncologyShandong Cancer Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Radiation OncologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Xiaotao Geng
- Department of Radiation OncologyWeifang People's HospitalWeifangChina
| | - Zongxing Zhao
- Department of Radiation OncologyLiaocheng People's Hospital, Shandong First Medical UniversityLiaochengChina
| | - Yu Nie
- Department of Tumor RadiotherapyShandong Second Provincial General HospitalJi'nanChina
| | - Lu Wang
- School of Clinical Medicine, Weifang Medical UniversityWeifangChina
| | - Defeng Liu
- Department of Radiation OncologyShandong Cancer Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Yi Li
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Yuanlin Li
- School of Clinical Medicine, Weifang Medical UniversityWeifangChina
| | - Dianxing Li
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Qiankun Wang
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Zhichao Li
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Xiuli Liu
- Department of Radiation OncologyShandong Cancer Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Minghuan Li
- Department of Radiation OncologyShandong Cancer Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
3
|
Wu J, Zhou Y, Xu C, Yang C, Liu B, Zhao L, Song J, Wang W, Yang Y, Liu N. Effectiveness of CT radiomic features combined with clinical factors in predicting prognosis in patients with limited-stage small cell lung cancer. BMC Cancer 2024; 24:170. [PMID: 38310283 PMCID: PMC10838455 DOI: 10.1186/s12885-024-11862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND The prognosis of SCLC is poor and difficult to predict. The aim of this study was to explore whether a model based on radiomics and clinical features could predict the prognosis of patients with limited-stage small cell lung cancer (LS-SCLC). METHODS Simulated positioning CT images and clinical features were retrospectively collected from 200 patients with histological diagnosis of LS-SCLC admitted between 2013 and 2021, which were randomly divided into the training (n = 140) and testing (n = 60) groups. Radiomics features were extracted from simulated positioning CT images, and the t-test and the least absolute shrinkage and selection operator (LASSO) were used to screen radiomics features. We then constructed radiomic score (RadScore) based on the filtered radiomics features. Clinical factors were analyzed using the Kaplan-Meier method. The Cox proportional hazards model was used for further analyses of possible prognostic features and clinical factors to build three models including a radiomic model, a clinical model, and a combined model including clinical factors and RadScore. When a model has prognostic predictive value (AUC > 0.7) in both train and test groups, a nomogram will be created. The performance of three models was evaluated using area under the receiver operating characteristic curve (AUC) and Kaplan-Meier analysis. RESULTS A total of 1037 features were extracted from simulated positioning CT images which were contrast enhanced CT of the chest. The combined model showed the best prediction, with very poor AUC for the radiomic model and the clinical model. The combined model of OS included 4 clinical features and RadScore, with AUCs of 0.71 and 0.70 in the training and test groups. The combined model of PFS included 4 clinical features and RadScore, with AUCs of 0.72 and 0.71 in the training and test groups. T stages, ProGRP and smoke status were the independent variables for OS in the combined model, whereas T stages, ProGRP and prophylactic cranial irradiation (PCI) were the independent factors for PFS. There was a statistically significant difference between the low- and high-risk groups in the combined model of OS (training group, p < 0.0001; testing group, p = 0.0269) and PFS (training group, p < 0.0001; testing group, p < 0.0001). CONCLUSION Combined models involved RadScore and clinical factors can predict prognosis in LS-SCLC and show better performance than individual radiomics and clinical models.
Collapse
Affiliation(s)
- Jiehan Wu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Langfang Health Vocational College, Siguang Road, Guangyang District, Langfang, 065000, Hebei, China
| | - Yuntao Zhou
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Chang Xu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Chengwen Yang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Bingxin Liu
- College of Arts and Sciences, Lehigh University, 27 Memorial Drive West, Bethlehem, PA, 18015, USA
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Jiawei Song
- Department of Oncology, the People's Hospital of Ganyu District, Lianyungang, 222100, China
| | - Wei Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yining Yang
- The Department of Radiotherapy, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Ningbo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Hetian District People's Hospital, Hetian, 848000, Xinjiang, China.
| |
Collapse
|
4
|
Feng L, Zhang S, Wang C, Li S, Kan Y, Wang C, Zhang H, Wang W, Yang J. Axial Skeleton Radiomics of 18F-FDG PET/CT: Impact on Event-Free Survival Prediction in High-Risk Pediatric Neuroblastoma. Acad Radiol 2023; 30:2487-2496. [PMID: 36828720 DOI: 10.1016/j.acra.2023.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVES To construct and validate a combined model based on axial skeleton radiomics of 18F-FDG PET/CT for predicting event-free survival in high-risk pediatric neuroblastoma patients. MATERIALS AND METHODS Eighty-seven high-risk neuroblastoma patients were retrospectively enrolled in this study and randomized in a 7:3 ratio to the training and validation cohorts. The radiomics model was constructed using radiomics features that were extracted from the axial skeleton. A univariate Cox regression analysis was then performed to screen clinical risk factors associated with event-free survival for building clinical model. Radiomics features and clinical risk factors were incorporated to construct the combined model for predicting the event-free survival in high-risk neuroblastoma patients. The performance of the models was evaluated by the C-index. RESULTS Eighteen radiomics features were selected to build the radiomics model. The radiomics model achieved better event-free survival prediction than the clinical model in the training cohort (C-index: 0.846 vs. 0.612) and validation cohort (C-index: 0.754 vs. 0.579). The combined model achieved the best prognostic prediction performance with a C-index of 0.863 and 0.799 in the training and validation cohorts, respectively. CONCLUSION The combined model integrating radiomics features and clinical risk factors showed more accurate predictive performance for event-free survival in high-risk pediatric neuroblastoma patients, which helps to design individualized treatment strategies and regular follow-ups.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Shuxin Zhang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Chaoran Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Siqi Li
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Ying Kan
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Chao Wang
- SinoUnion Healthcare Inc., Beijing, China
| | - Hui Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China.
| |
Collapse
|
5
|
Zheng SJ, Zheng CP, Zhai TT, Xu XE, Zheng YQ, Li ZM, Li EM, Liu W, Xu LY. Development and Validation of a New Staging System for Esophageal Squamous Cell Carcinoma Patients Based on Combined Pathological TNM, Radiomics, and Proteomics. Ann Surg Oncol 2023; 30:2227-2241. [PMID: 36587172 DOI: 10.1245/s10434-022-13026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/06/2022] [Indexed: 01/02/2023]
Abstract
OBJECTIVE This study aimed to construct a new staging system for patients with esophageal squamous cell carcinoma (ESCC) based on combined pathological TNM (pTNM) stage, radiomics, and proteomics. METHODS This study collected patients with radiomics and pTNM stage (Cohort 1, n = 786), among whom 103 patients also had proteomic data (Cohort 2, n = 103). The Cox regression model with the least absolute shrinkage and selection operator, and the Cox proportional hazards model were used to construct a nomogram and predictive models. Concordance index (C-index) and the integrated area under the time-dependent receiver operating characteristic (ROC) curve (IAUC) were used to evaluate the predictive models. The corresponding staging systems were further assessed using Kaplan-Meier survival curves. RESULTS For Cohort 1, the RadpTNM4c staging systems, constructed based on combined pTNM stage and radiomic features, outperformed the pTNM4c stage in both the training dataset 1 (Train1; IAUC 0.711 vs. 0.706, p < 0.001) and the validation dataset 1 (Valid1; IAUC 0.695 vs. 0.659, p < 0.001; C-index 0.703 vs. 0.674, p = 0.029). For Cohort 2, the ProtRadpTNM2c staging system, constructed based on combined pTNM stage, radiomics, and proteomics, outperformed the pTNM2c stage in both the Train2 (IAUC 0.777 vs. 0.610, p < 0.001; C-index 0.898 vs. 0.608, p < 0.001) and Valid2 (IAUC 0.746 vs. 0.608, p < 0.001; C-index 0.889 vs. 0.641, p = 0.009) datasets. CONCLUSIONS The ProtRadpTNM2c staging system, based on combined pTNM stage, radiomic, and proteomic features, improves the predictive performance of the classical pTNM staging system.
Collapse
Affiliation(s)
- Shao-Jun Zheng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Surgical Oncology, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Chun-Peng Zheng
- Department of Surgical Oncology, Shantou Central Hospital, Shantou, 515041, Guangdong, China.
| | - Tian-Tian Zhai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiu-E Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ya-Qi Zheng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhi-Mao Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wei Liu
- College of Science, Heilongjiang Institute of Technology, Harbin, Heilongjiang, China
| | - Li-Yan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| |
Collapse
|