1
|
Vijayasurya, Gupta S, Shah S, Pappachan A. Drug repurposing for parasitic protozoan diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:23-58. [PMID: 38942539 DOI: 10.1016/bs.pmbts.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Protozoan parasites are major hazards to human health, society, and the economy, especially in equatorial regions of the globe. Parasitic diseases, including leishmaniasis, malaria, and others, contribute towards majority of morbidity and mortality. Around 1.1 million people die from these diseases annually. The lack of licensed vaccinations worsens the worldwide impact of these diseases, highlighting the importance of safe and effective medications for their prevention and treatment. However, the appearance of drug resistance in parasites continuously affects the availability of medications. The demand for novel drugs motivates global antiparasitic drug discovery research, necessitating the implementation of many innovative ways to maintain a continuous supply of promising molecules. Drug repurposing has come out as a compelling tool for drug development, offering a cost-effective and efficient alternative to standard de novo approaches. A thorough examination of drug repositioning candidates revealed that certain drugs may not benefit significantly from their original indications. Still, they may exhibit more pronounced effects in other disorders. Furthermore, certain medications can produce a synergistic effect, resulting in enhanced therapeutic effectiveness when given together. In this chapter, we outline the approaches employed in drug repurposing (sometimes referred to as drug repositioning), propose novel strategies to overcome these hurdles and fully exploit the promise of drug repurposing. We highlight a few major human protozoan diseases and a range of exemplary drugs repurposed for various protozoan infections, providing excellent outcomes for each disease.
Collapse
Affiliation(s)
- Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Smit Shah
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
2
|
Anjum A, Shabbir K, Din FU, Shafique S, Zaidi SS, Almari A, Alqahtani T, Maryiam A, Moneeb Khan M, Al Fatease A, Bashir S, Khan GM. Co-delivery of amphotericin B and pentamidine loaded niosomal gel for the treatment of Cutaneous leishmaniasis. Drug Deliv 2023; 30:2173335. [PMID: 36722301 PMCID: PMC9897754 DOI: 10.1080/10717544.2023.2173335] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Topical drug delivery is preferable route over systemic delivery in case of Cutaneous leishmaniasis (CL). Among the available agents, amphotericin B (AmB) and pentamidine (PTM) showed promising result against CL. However, monotherapy is associated with incidences of reoccurrence and resistance. Combination therapy is therefore recommended. Thin film hydration method was employed for amphotericin B-pentamidine loaded niosomes (AmB-PTM-NIO) preparation followed by their incorporation into chitosan gel. The optimization of AmB-PTM-NIO was done via Box Behnken Design method and in vitro and ex vivo analysis was performed. The optimized formulation indicated 226 nm particle size (PS) with spherical morphology, 0.173 polydispersity index (PDI), -36 mV zeta potential (ZP) and with entrapment efficiency (EE) of 91% (AmB) and 79% (PTM), respectively. The amphotericin B-pentamidine loaded niosomal gel (AmB-PTM-NIO-Gel) showed desirable characteristics including physicochemical properties, pH (5.1 ± 0.15), viscosity (31870 ± 25 cP), and gel spreadability (280 ± 26.46%). In vitro release of the AmB and PTM from AmB-PTM-NIO and AmB-PTM-NIO-Gel showed more prolonged release behavior as compared to their respective drug solution. Higher skin penetration, greater percentage inhibition and lower IC50 against the promastigotes shows that AmB-PTM-NIO has better antileishmanial activity. The obtained findings suggested that the developed AmB-PTM-NIO-Gel has excellent capability of permeation via skin layers, sustained release profile and augmented anti-leishmanial outcome of the incorporated drugs.
Collapse
Affiliation(s)
- Adnan Anjum
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Kanwal Shabbir
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,CONTACT Fakhar Ud Din
| | - Shumaila Shafique
- Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences Karachi
| | - Syed Saoud Zaidi
- Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences Karachi
| | - Ali H Almari
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Aleena Maryiam
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Muhammad Moneeb Khan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sidra Bashir
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Islamia College University, Peshawar, Pakistan,Gul Majid Khan Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| |
Collapse
|
3
|
Pimviriyakul P, Kapaothong Y, Tangsupatawat T. Heterologous Expression and Characterization of a Full-length Protozoan Nitroreductase from Leishmania orientalis isolate PCM2. Mol Biotechnol 2023; 65:556-569. [PMID: 36042106 DOI: 10.1007/s12033-022-00556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Abstract
Leishmaniasis, a parasitic disease found in parts of the tropics and subtropics, is caused by Leishmania protozoa infection. Nitroreductases (NTRs), enzymes involved in nitroaromatic prodrug activation, are attractive targets for leishmaniasis treatment development. In this study, a full-length recombinant NTR from the Leishmania orientalis isolate PCM2 (LoNTR), which causes severe leishmaniasis in Thailand, was successfully expressed in soluble form using chaperone co-expression in Escherichia coli BL21(DE3). The purified histidine-tagged enzyme (His6-LoNTR) had a subunit molecular mass of 36 kDa with no cofactor bound; however, the addition of exogenous flavin (either FMN or FAD) readily increased its enzyme activity. Bioinformatics analysis found that the unique N-terminal sequences of LoNTR is only present in Leishmania where the addition of this region might result in the loss of flavin binding. Either NADH or NADPH can serve as an electron donor to transfer electrons to nitrofurazone; however, NADPH was preferred. Molecular oxygen was identified as an additional electron acceptor resulting in wasteful electrons from NADPH for the main catalysis. Steady-state kinetic experiments revealed a ping-pong mechanism for His6-LoNTR with Km,NADPH, Km,NFZ, and kcat of 28 µM, 68 µM, and 0.84 min-1, respectively. Besides nitroreductase activity, His6-LoNTR also has the ability to reduce quinone derivatives. The properties of full-length His6-LoNTR were different from previously reported protozoa and bacterial NTRs in many respects. This study provides information of NTR catalysis to be developed as a potential future therapeutic target to treat leishmaniasis.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Yuvarun Kapaothong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Theerapat Tangsupatawat
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
4
|
Khan MM, Zaidi SS, Siyal FJ, Khan SU, Ishrat G, Batool S, Mustapha O, Khan S, Din FU. Statistical optimization of co-loaded rifampicin and pentamidine polymeric nanoparticles for the treatment of cutaneous leishmaniasis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Khalid H, Batool S, Din FU, Khan S, Khan GM. Macrophage targeting of nitazoxanide-loaded transethosomal gel in cutaneous leishmaniasis. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 36249328 DOI: 10.5061/dryad.cfxpnvx7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Topical delivery is preferable over systemic delivery for cutaneous leishmaniasis, because of its easy administration, reduced systemic adverse effects and low cost. Nitazoxanide (NTZ) has broad-spectrum activity against various parasites and has the potential to avoid drug resistance developed by enzymatic mutations. NTZ oral formulation is associated with severe dyspepsia and stomach pain. Herein, NTZ-transethosomes (NTZ-TES) were prepared and loaded into chitosan gel (NTZ-TEG) for topical delivery. NTZ-TES were prepared by the thin-film hydration method and optimized statistically via the Box-Behnken method. The optimized formulation indicated excellent particle size (176 nm), polydispersity index (0.093), zeta potential (-26.4 mV) and entrapment efficiency (86%). The transmission electron microscopy analysis showed spherical-sized particles and Fourier-transform infrared spectroscopy analysis indicated no interaction among the excipients. Similarly, NTZ-TEG showed optimal pH, desirable viscosity and good spreadability. NTZ-TES and NTZ-TEG showed prolonged release behaviour and higher skin penetration and deposition in the epidermal/dermal layer of skin in comparison with the NTZ-dispersion. Moreover, NTZ-TES showed higher percentage inhibition, lower half-maximal inhibitory concentration (IC50) against promastigotes and higher macrophage uptake. Additionally, skin irritation and histopathology studies indicated the safe and non-irritant behaviour of the NTZ-TEG. The obtained findings suggested the enhanced skin permeation and improved anti-leishmanial effect of NTZ when administered as NTZ-TEG.
Collapse
Affiliation(s)
- Husna Khalid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sibgha Batool
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
6
|
Khalid H, Batool S, Din FU, Khan S, Khan GM. Macrophage targeting of nitazoxanide-loaded transethosomal gel in cutaneous leishmaniasis. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 36249328 DOI: 10.6084/m9.figshare.c.6214720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Topical delivery is preferable over systemic delivery for cutaneous leishmaniasis, because of its easy administration, reduced systemic adverse effects and low cost. Nitazoxanide (NTZ) has broad-spectrum activity against various parasites and has the potential to avoid drug resistance developed by enzymatic mutations. NTZ oral formulation is associated with severe dyspepsia and stomach pain. Herein, NTZ-transethosomes (NTZ-TES) were prepared and loaded into chitosan gel (NTZ-TEG) for topical delivery. NTZ-TES were prepared by the thin-film hydration method and optimized statistically via the Box-Behnken method. The optimized formulation indicated excellent particle size (176 nm), polydispersity index (0.093), zeta potential (-26.4 mV) and entrapment efficiency (86%). The transmission electron microscopy analysis showed spherical-sized particles and Fourier-transform infrared spectroscopy analysis indicated no interaction among the excipients. Similarly, NTZ-TEG showed optimal pH, desirable viscosity and good spreadability. NTZ-TES and NTZ-TEG showed prolonged release behaviour and higher skin penetration and deposition in the epidermal/dermal layer of skin in comparison with the NTZ-dispersion. Moreover, NTZ-TES showed higher percentage inhibition, lower half-maximal inhibitory concentration (IC50) against promastigotes and higher macrophage uptake. Additionally, skin irritation and histopathology studies indicated the safe and non-irritant behaviour of the NTZ-TEG. The obtained findings suggested the enhanced skin permeation and improved anti-leishmanial effect of NTZ when administered as NTZ-TEG.
Collapse
Affiliation(s)
- Husna Khalid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sibgha Batool
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
7
|
Khalid H, Batool S, Din FU, Khan S, Khan GM. Macrophage targeting of nitazoxanide-loaded transethosomal gel in cutaneous leishmaniasis. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220428. [PMID: 36249328 PMCID: PMC9532992 DOI: 10.1098/rsos.220428] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/12/2022] [Indexed: 05/03/2023]
Abstract
Topical delivery is preferable over systemic delivery for cutaneous leishmaniasis, because of its easy administration, reduced systemic adverse effects and low cost. Nitazoxanide (NTZ) has broad-spectrum activity against various parasites and has the potential to avoid drug resistance developed by enzymatic mutations. NTZ oral formulation is associated with severe dyspepsia and stomach pain. Herein, NTZ-transethosomes (NTZ-TES) were prepared and loaded into chitosan gel (NTZ-TEG) for topical delivery. NTZ-TES were prepared by the thin-film hydration method and optimized statistically via the Box-Behnken method. The optimized formulation indicated excellent particle size (176 nm), polydispersity index (0.093), zeta potential (-26.4 mV) and entrapment efficiency (86%). The transmission electron microscopy analysis showed spherical-sized particles and Fourier-transform infrared spectroscopy analysis indicated no interaction among the excipients. Similarly, NTZ-TEG showed optimal pH, desirable viscosity and good spreadability. NTZ-TES and NTZ-TEG showed prolonged release behaviour and higher skin penetration and deposition in the epidermal/dermal layer of skin in comparison with the NTZ-dispersion. Moreover, NTZ-TES showed higher percentage inhibition, lower half-maximal inhibitory concentration (IC50) against promastigotes and higher macrophage uptake. Additionally, skin irritation and histopathology studies indicated the safe and non-irritant behaviour of the NTZ-TEG. The obtained findings suggested the enhanced skin permeation and improved anti-leishmanial effect of NTZ when administered as NTZ-TEG.
Collapse
Affiliation(s)
- Husna Khalid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sibgha Batool
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fakhar ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
8
|
Tuon FF, Dantas LR, de Souza RM, Ribeiro VST, Amato VS. Liposomal drug delivery systems for the treatment of leishmaniasis. Parasitol Res 2022; 121:3073-3082. [DOI: 10.1007/s00436-022-07659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
|
9
|
Chanmol W, Siriyasatien P, Intakhan N. In vitro anti- Leishmania activity of 8-hydroxyquinoline and its synergistic effect with amphotericin B deoxycholate against Leishmania martiniquensis. PeerJ 2022; 10:e12813. [PMID: 35111411 PMCID: PMC8781311 DOI: 10.7717/peerj.12813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023] Open
Abstract
Leishmania (Mundinia) martiniquensis is responsible for visceral leishmaniasis in patients with no known underlying immunodeficiency, and visceral or disseminated cutaneous leishmaniasis in HIV-infected patients. The available anti-Leishmania drugs for treatment have limitations such as high toxicity and variable efficacy. To improve the therapeutic index of anti-Leishmania drugs, the search for a new drug or a new natural compound in combination therapy instead of using monotherapy to reduce drug side effect and have high efficacy is required. In this study, anti-Leishmania activity of 8-hydroxyquinoline (8HQN) and its synergistic effect with amphotericin B (AmB) against L. martiniquensis were evaluated in vitro for the first time. These results showed that 8HQN presented anti-Leishmania activity against L. martiniquensis with IC50 1.60 ± 0.28 and 1.56 ± 0.02 µg/mL for promastigotes and intracellular amastigotes, respectively. The selectivity index (SI) value of 8HQN was 79.84 for promastigotes and 82.40 for intracellular amastigotes, which highlight promising results for the use of 8HQN in the treatment of L. martiniquensis-infected host cells. Interestingly, four combinations of 8HQN and AmB provided synergistic effects for intracellular amastigotes and showed no toxic effects to host cells. These results provided information of using a combination therapy in treating this Leishmania species leads to further development of therapy and can be considered as an alternative treatment for leishmaniasis.
Collapse
Affiliation(s)
- Wetpisit Chanmol
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand,Research Excellence Center for Innovation and Health Product, Walailak University, Nakhon Si Thammarat, Thailand,Hematology and Transfusion Science Research Center (HTSRC), Walailak University, Nakhon Si Thammarat, Thailand
| | - Padet Siriyasatien
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nuchpicha Intakhan
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand,Research Excellence Center for Innovation and Health Product, Walailak University, Nakhon Si Thammarat, Thailand,Hematology and Transfusion Science Research Center (HTSRC), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
10
|
Machado PDA, Gomes PS, Midlej V, Coimbra ES, de Matos Guedes HL. PF-429242, a Subtilisin Inhibitor, Is Effective in vitro Against Leishmania infantum. Front Microbiol 2021; 12:583834. [PMID: 33584607 PMCID: PMC7876069 DOI: 10.3389/fmicb.2021.583834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/06/2021] [Indexed: 01/16/2023] Open
Abstract
PF-429242 is an inhibitor of subtilisin, an important protease found in Leishmania. However, studies regarding the effect of PF-429242 on Leishmania are scarce. In this work we evaluated the antileishmanial effect of PF-429242 against Leishmania infantum and the mechanism involved in the death of the parasite. PF-429242 had low toxicity against mammalian cells (peritoneal macrophages) (CC50 = 189.07 μM) and presented activity against L. infantum promastigotes (IC50 = 2.78 μM) and intracellular amastigotes (IC50 = 14.07 μM), indicating selectivity toward the parasite. Transmission electron microscopy (TEM), as well as staining of L. infantum promastigotes with MitoTracker® Red, rhodamine 123 and MitoSOX, revealed that the mitochondria was a potential target of PF-429242. In addition, PF-429242 caused an accumulation of neutral lipids in promastigotes, which was demonstrated by Nile Red staining and TEM, and induced oxidative stress (H2DCFDA staining). Furthermore the formation of autophagic vacuoles in L. infantum promastigotes was observed by MDC staining and TEM. However, the killing induced by PF-429242 in L. infantum promastigotes appeared to be unrelated to apoptosis and/or necrosis as there was no phosphatidylserine externalization, DNA fragmentation or alterations in the permeability of the parasite plasma membrane, as assessed by annexin V-FITC, TUNEL and propidium iodide staining, respectively. The morphological and ultrastructural evaluation of the promastigotes by optical microscopy, scanning electron microscopy (SEM) and TEM, revealed the presence of parasites with flagellar defects. TEM analysis of the intracellular amastigotes indicated that mitochondrial damage and autophagy could also be involved in the death of these forms after treatment with PF-429242. In addition, PF-429242 treatment stimulated NO production from infected macrophage, but only at a high concentration (100 μM), as well as an increase of TNF levels after treatment with 10 μM of PF-429242. The compound did not stimulate ROS or IL-10 production. Together, these data highlight the antileishmanial potential of PF-429242, inducing several cellular alterations in the parasite, such as mitochondrial damage, neutral lipids accumulation, oxidative stress and autophagy which culminate in the death of L. infantum, as well as modulating host cellular responses that favor the development of an immune response against the parasite.
Collapse
Affiliation(s)
- Patrícia de Almeida Machado
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Núcleo de Pesquisa em Parasitologia (NUPEP), Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Pollyanna Stephanie Gomes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Victor Midlej
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Elaine Soares Coimbra
- Núcleo de Pesquisa em Parasitologia (NUPEP), Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Herbert Leonel de Matos Guedes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,UFRJ Campus Duque de Caxias Professor Geraldo Cidade - Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil.,Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Pinto EG, Barbosa LRS, Mortara RA, Tempone AG. Targeting intracellular Leishmania (L.) infantum with nitazoxanide entrapped into phosphatidylserine-nanoliposomes: An experimental study. Chem Biol Interact 2020; 332:109296. [PMID: 33096056 PMCID: PMC7573672 DOI: 10.1016/j.cbi.2020.109296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022]
Abstract
Leishmaniasis is a parasitic neglected tropical disease and result in a broad spectrum of clinical manifestations, ranging from a single ulceration to a progressive and fatal visceral disease. Comprising a limited and highly toxic therapeutic arsenal, new treatments are urgently needed. Targeting delivery of drugs has been a promising approach for visceral leishmaniasis (VL). Phosphatidylserine-liposomes have demonstrated superior efficacy in VL, targeting intracellular parasites in host cells through macrophage scavenger receptors. In this work, we investigated the in vitro and in vivo efficacy of the antihelminthic drug nitazoxanide in a nanoliposomal formulation against Leishmania (L.) infantum. Physicochemical parameters of liposomes containing nitazoxanide (NTZ-LP) were determined by dynamic light scattering and small angle X-ray scattering. The efficacy of the formulation was verified in an intracellular amastigote model and in an experimental hamster model. Our findings showed that NTZ-LP was able to eliminate the amastigotes inside the host cell with an IC50 value of 16 μM. NTZ-LP was labelled a fluorescent probe and by spectrofluorimetry, we observed that the infected macrophages internalized similar levels of the drug to the uninfected cells. The confocal microscopy images confirmed the uptake and demonstrated a diffuse distribution of the NTZ-LP in the cytoplasm of Leishmania-infected macrophages, with the vesicles in a closer proximity to the parasites. For the in vivo efficacy, the liposomal NTZ-LP was administrated intraperitoneally to Leishmania-infected hamsters for 10 consecutive days at 2 mg/kg/day. By qPCR we demonstrated a reduction of the parasite burden by 82% and 50% in the liver (p < 0.05) and spleen (p < 0.05), respectively. NTZ (non-liposomal) was administered at 100 mg/kg/day per oral (p.o.) for the same period, but demonstrated no efficacy. This liposomal formulation ensured a targeting delivery of NTZ to the intracellular parasites, resulting in an good efficacy at a low dose in animals, and it may represent a new candidate therapy for VL. Nanoliposomal nitazoxanide (NTZ-LP) eliminates amastigotes of Leishmania. The uptake of NTZ-LP by infected macrophages is similar to uninfected cells. NTZ-LP localizes in a closer proximity to the amastigotes inside the macrophages. NTZ-LP reduces the parasite burden by 82% (liver) and 50% (spleen) of hamsters.
Collapse
Affiliation(s)
- Erika Gracielle Pinto
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee DD1 5EH, UK
| | - Leandro R S Barbosa
- Instituto de Física, Universidade de São Paulo, Rua do Matão, 1, 05508-090, São Paulo, SP, Brazil
| | - Renato A Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu 862, 6◦ andar, 04039-02, São Paulo, SP, Brazil
| | - Andre Gustavo Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, 8(o) andar, 01246-000, São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Mesquita JT, Romanelli MM, de Melo Trinconi Trinconi Cm C, Guerra JM, Taniwaki NN, Uliana SRB, Reimão JQ, Tempone AG. Repurposing topical triclosan for cutaneous leishmaniasis: Preclinical efficacy in a murine Leishmania (L.) amazonensis model. Drug Dev Res 2020; 83:285-295. [PMID: 32767443 DOI: 10.1002/ddr.21725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 01/07/2023]
Abstract
Leishmaniasis remains an important neglected tropical infection caused by the protozoan Leishmania and affects 12 million people in 98 countries. The treatment is limited with severe adverse effects. In the search for new therapies, the drug repositioning and combination therapy have been successfully applied to neglected diseases. The aim of the present study was to evaluate the in vitro and in vivo anti-Leishmania (Leishmania) amazonensis potential of triclosan, an approved topical antimicrobial agent used for surgical procedures. in vitro phenotypic studies of drug-treated parasites were performed to evaluate the lethal action of triclosan, accompanied by an isobolographic ex-vivo analysis with the association of triclosan and miltefosine. The results showed that triclosan has activity against L. (L.) amazonensis intracellular amastigotes, with a 50% inhibitory concentration of 16 μM. By using fluorescent probes and transmission electron microscopy, a pore-forming activity of triclosan toward the parasite plasma membrane was demonstrated, leading to depolarization of the mitochondrial membrane potential and reduction of the reactive oxygen species levels in the extracellular promastigotes. The in vitro interaction between triclosan and miltefosine in the combination therapy assay was classified as additive against intracellular amastigotes. Leishmania-infected mice were treated with topical triclosan (1% base cream for 14 consecutive days), and showed 89% reduction in the parasite burden. The obtained results contribute to the investigation of new alternatives for the treatment of cutaneous leishmaniasis and suggest that the coadministration of triclosan and miltefosine should be investigated in animal models.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvia Reni Bortolin Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Quero Reimão
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí, Brazil
| | | |
Collapse
|
13
|
Novel indol-3-yl-thiosemicarbazone derivatives: Obtaining, evaluation of in vitro leishmanicidal activity and ultrastructural studies. Chem Biol Interact 2019; 315:108899. [PMID: 31738906 DOI: 10.1016/j.cbi.2019.108899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Parasitic diseases still represent serious public health problems, since the high and steady emergence of resistant strains is evident. Because parasitic infections are distributed predominantly in developing countries, less toxic, more efficient, safer and more accessible drugs have become desirable in the treatment of the infected population. This is the case of leishmaniasis, an infectious disease caused by a protozoan of the genus Leishmania sp., responsible for triggering pathological processes from the simplest to the most severe forms leading to high rates of morbidity and mortality throughout the world. In the search for new leishmanicidal drugs, the thiosemicarbazones and the indole fragments have been identified as promising structures for leishmanicidal activity. The present study proposes the synthesis and structural characterization of new indole-thiosemicarbazone derivatives (2a-j), in addition to performing in vitro evaluations through cytotoxicity assays using macrophages (J774) activity against forms of Leishmania infantum and Leishmania amazonensis promastigote as well as ultrastructural analyzes in promastigotes of L. infantum. Results show that the indole-thiosemicarbazone derivatives were obtained with yield values varying from 32.09 to 94.64%. In the evaluation of cytotoxicity, the indole-thiosemicarbazone compounds presented CC50 values between 53.23 and 357.97 μM. Concerning the evaluation against L. amazonensis promastigote forms, IC50 values ranged between 12.31 and > 481.52 μM, while the activity against L. infantum promastigotes obtained IC50 values between 4.36 and 23.35 μM. The compounds 2d and 2i tested against L. infantum were the most promising in the series, as they showed the lowest IC50 values: 5.60 and 4.36 respectively. The parasites treated with the compounds 2d and 2i showed several structural alterations, such as shrinkage of the cell body, shortening and loss of the flagellum, intense mitochondrial swelling and vacuolization of the cytoplasm leading the parasite to cellular unviability. Therefore, the indole-thiosemicarbazone compounds are promising because they yield considerable synthesis, have low cytotoxicity to mammalian cells and act as leishmanicidal agents.
Collapse
|
14
|
de Melo Mendes V, Tempone AG, Treiger Borborema SE. Antileishmanial activity of H1-antihistamine drugs and cellular alterations in Leishmania (L.) infantum. Acta Trop 2019; 195:6-14. [PMID: 31002807 DOI: 10.1016/j.actatropica.2019.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
Abstract
Leishmaniases are infectious diseases caused by protozoan parasites Leishmania and transmitted by sand flies. Drug repurposing is a therapeutic approach that has shown satisfactory results in their treatment. Analyses of antihistaminic drugs have revealed their in vitro and in vivo activity against trypanosomatids. In this way, this study evaluated the antileishmanial activity of H1-antihistamines and identified the cellular alterations in Leishmania (L.) infantum. Cinnarizine, cyproheptadine, and meclizine showed activity against promastigotes with 50% inhibitory concentration (IC50) values between 10-29 μM. These drugs also demonstrated activity and selectivity against intracellular amastigotes, with IC50 values between 20-35 μM. Fexofenadine and cetirizine lacked antileishmanial activity against both forms. Mammalian cytotoxicity studies revealed 50% cytotoxic concentration values between 52 - >200 μM. These drugs depolarized the mitochondria membrane of parasites and caused morphological alterations, including mitochondrial damage, disorganization of the intracellular content, and nuclear membrane detachment. In conclusion, the L. infantum death may be ascribed by the subcellular alterations followed by a pronounced decrease in the mitochondrial membrane potential, indicating dysfunction in the respiratory chain upon H1-antihistamine treatment. These H1-antihistamines could be used to explore new routes of cellular death in the parasite and the determination of the targets at a molecular level, would contribute to understanding the potential of these drugs as antileishmanial.
Collapse
|
15
|
Aulner N, Danckaert A, Ihm J, Shum D, Shorte SL. Next-Generation Phenotypic Screening in Early Drug Discovery for Infectious Diseases. Trends Parasitol 2019; 35:559-570. [PMID: 31176583 DOI: 10.1016/j.pt.2019.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022]
Abstract
Cell-based phenotypic screening has proven to be valuable, notably in recapitulating relevant biological conditions, for example, the host cell/pathogen niche. However, the corresponding methodological complexity is not readily compatible with high-throughput pipelines, and fails to inform either molecular target or mechanism of action, which frustrates conventional drug-discovery roadmaps. We review the state-of-the-art and emerging technologies that suggest new strategies for harnessing value from the complexity of phenotypic screening and augmenting powerful utility for translational drug discovery. Advances in cellular, molecular, and bioinformatics technologies are converging at a cutting edge where the complexity of phenotypic screening may no longer be considered a hinderance but rather a catalyst to chemotherapeutic discovery for infectious diseases.
Collapse
Affiliation(s)
- Nathalie Aulner
- Institut Pasteur Paris, UTechS-PBI/Imagopole, 25-28 rue du Docteur Roux, 75015, France
| | - Anne Danckaert
- Institut Pasteur Paris, UTechS-PBI/Imagopole, 25-28 rue du Docteur Roux, 75015, France
| | - JongEun Ihm
- Institut Pasteur Paris, UTechS-PBI/Imagopole, 25-28 rue du Docteur Roux, 75015, France
| | - David Shum
- Institut Pasteur Korea, 16 Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Spencer L Shorte
- Institut Pasteur Paris, UTechS-PBI/Imagopole, 25-28 rue du Docteur Roux, 75015, France; Institut Pasteur Korea, 16 Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
16
|
Charlton RL, Rossi-Bergmann B, Denny PW, Steel PG. Repurposing as a strategy for the discovery of new anti-leishmanials: the-state-of-the-art. Parasitology 2018; 145:219-236. [PMID: 28805165 PMCID: PMC5964475 DOI: 10.1017/s0031182017000993] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/17/2022]
Abstract
Leishmaniasis is a vector-borne neglected tropical disease caused by protozoan parasites of the genus Leishmania for which there is a paucity of effective viable non-toxic drugs. There are 1·3 million new cases each year causing considerable socio-economic hardship, best measured in 2·4 million disability adjusted life years, with greatest impact on the poorest communities, which means that desperately needed new antileishmanial treatments have to be both affordable and accessible. Established medicines with cheaper and faster development times may hold the cure for this neglected tropical disease. This concept of using old drugs for new diseases may not be novel but, with the ambitious target of controlling or eradicating tropical diseases by 2020, this strategy is still an important one. In this review, we will explore the current state-of-the-art of drug repurposing strategies in the search for new treatments for leishmaniasis.
Collapse
Affiliation(s)
- Rebecca L Charlton
- Department of Chemistry,University Science Laboratories,South Road,Durham DH1 3LE,UK
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho,Universidade Federal do Rio de Janeiro,Ilha do Fundão,CEP 21·949-900 Rio de Janeiro,RJ,Brazil
| | - Paul W Denny
- Department of Biosciences,University Science Laboratories,South Road,Durham DH1 3LE,UK
| | - Patrick G Steel
- Department of Chemistry,University Science Laboratories,South Road,Durham DH1 3LE,UK
| |
Collapse
|
17
|
Colín-Lozano B, León-Rivera I, Chan-Bacab MJ, Ortega-Morales BO, Moo-Puc R, López-Guerrero V, Hernández-Núñez E, Argüello-Garcia R, Scior T, Barbosa-Cabrera E, Navarrete-Vázquez G. Synthesis, in vitro and in vivo giardicidal activity of nitrothiazole-NSAID chimeras displaying broad antiprotozoal spectrum. Bioorg Med Chem Lett 2017. [PMID: 28645659 DOI: 10.1016/j.bmcl.2017.05.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We designed and synthesized five new 5-nitrothiazole-NSAID chimeras as analogues of nitazoxanide, using a DCC-activated amidation. Compounds 1-5 were tested in vitro against a panel of five protozoa: 2 amitochondriates (Giardia intestinalis, Trichomonas vaginalis) and 3 kinetoplastids (Leishmania mexicana, Leishmania amazonensis and Trypanosoma cruzi). All chimeras showed broad spectrum and potent antiprotozoal activities, with IC50 values ranging from the low micromolar to nanomolar order. Compounds 1-5 were even more active than metronidazole and nitazoxanide, two marketed first-line drugs against giardiasis. In particular, compound 4 (an indomethacin hybrid) was one of the most potent of the series, inhibiting G. intestinalis growth in vitro with an IC50 of 0.145μM. Compound 4 was 38-times more potent than metronidazole and 8-times more active than nitazoxanide. The in vivo giardicidal effect of 4 was evaluated in a CD-1 mouse model obtaining a median effective dose of 1.709μg/kg (3.53nmol/kg), a 321-fold and 1015-fold increase in effectiveness after intragastric administration over metronidazole and nitazoxanide, respectively. Compounds 1 and 3 (hybrids of ibuprofen and clofibric acid), showed potent giardicidal activities in the in vitro as well as in the in vivo assays after oral administration. Therefore, compounds 1-5 constitute promising drug candidates for further testing in experimental chemotherapy against giardiasis, trichomoniasis, leishmaniasis and even trypanosomiasis infections.
Collapse
Affiliation(s)
- Blanca Colín-Lozano
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Ismael León-Rivera
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Manuel Jesús Chan-Bacab
- Departamento de Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, Campeche 24039, Mexico
| | - Benjamín Otto Ortega-Morales
- Departamento de Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, Campeche 24039, Mexico
| | - Rosa Moo-Puc
- Unidad de Investigación Médica Yucatán, IMSS Mérida, Yucatán 97000, Mexico
| | - Vanessa López-Guerrero
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Emanuel Hernández-Núñez
- Cátedra CONACyT, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, 97310 Yucatán, Mexico
| | - Raúl Argüello-Garcia
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico
| | - Thomas Scior
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla 72000, Mexico
| | - Elizabeth Barbosa-Cabrera
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, IPN, Mexico City 11340, Mexico
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
18
|
Anti-apoptotic effects of Sonic hedgehog signalling through oxidative stress reduction in astrocytes co-cultured with excretory-secretory products of larval Angiostrongylus cantonensis. Sci Rep 2017; 7:41574. [PMID: 28169282 PMCID: PMC5294578 DOI: 10.1038/srep41574] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/20/2016] [Indexed: 12/21/2022] Open
Abstract
Angiostrongylus cantonensis, the rat lungworm, is an important aetiologic agent of eosinophilic meningitis and meningoencephalitis in humans. Co-culturing astrocytes with soluble antigens of A. cantonensis activated the Sonic hedgehog (Shh) signalling pathway and inhibited the apoptosis of astrocytes via the activation of Bcl-2. This study was conducted to determine the roles of the Shh signalling pathway, apoptosis, and oxidative stress in astrocytes after treatment with excretory-secretory products (ESP) from A. cantonensis fifth-stage larvae. Although astrocyte viability was significantly decreased after ESP treatment, the expression of Shh signalling pathway related proteins (Shh, Ptch-1 and Gli-1) was significantly increased. However, apoptosis in astrocytes was significantly decreased after activation of the Shh signalling pathway. Moreover, superoxide and hydrogen superoxide levels in astrocytes were significantly reduced after the activation of Shh pathway signalling due to increasing levels of the antioxidants catalase and superoxide dismutase. These findings indicate that the anti-apoptotic effects of the Shh signalling pathway in the astrocytes of mice infected with A. cantonensis are due to reduced levels of oxidative stress caused by the activation of antioxidants.
Collapse
|
19
|
Martins LF, Mesquita JT, Pinto EG, Costa-Silva TA, Borborema SET, Galisteo Junior AJ, Neves BJ, Andrade CH, Shuhaib ZA, Bennett EL, Black GP, Harper PM, Evans DM, Fituri HS, Leyland JP, Martin C, Roberts TD, Thornhill AJ, Vale SA, Howard-Jones A, Thomas DA, Williams HL, Overman LE, Berlinck RGS, Murphy PJ, Tempone AG. Analogues of Marine Guanidine Alkaloids Are in Vitro Effective against Trypanosoma cruzi and Selectively Eliminate Leishmania (L.) infantum Intracellular Amastigotes. JOURNAL OF NATURAL PRODUCTS 2016; 79:2202-2210. [PMID: 27586460 DOI: 10.1021/acs.jnatprod.6b00256] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Synthetic analogues of marine sponge guanidine alkaloids showed in vitro antiparasitic activity against Leishmania (L.) infantum and Trypanosoma cruzi. Guanidines 10 and 11 presented the highest selectivity index when tested against Leishmania. The antiparasitic activity of 10 and 11 was investigated in host cells and in parasites. Both compounds induced depolarization of mitochondrial membrane potential, upregulation of reactive oxygen species levels, and increased plasma membrane permeability in Leishmania parasites. Immunomodulatory assays suggested an NO-independent effect of guanidines 10 and 11 on macrophages. The same compounds also promoted anti-inflammatory activity in L. (L.) infantum-infected macrophages cocultived with splenocytes, reducing the production of cytokines MCP-1 and IFN-γ. Guanidines 10 and 11 affect the bioenergetic metabolism of Leishmania, with selective elimination of parasites via a host-independent mechanism.
Collapse
Affiliation(s)
- Ligia F Martins
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz , Avenida Dr. Arnaldo, 351, 8° andar, 01246-000 São Paulo, SP, Brazil
| | - Juliana T Mesquita
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz , Avenida Dr. Arnaldo, 351, 8° andar, 01246-000 São Paulo, SP, Brazil
| | - Erika G Pinto
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz , Avenida Dr. Arnaldo, 351, 8° andar, 01246-000 São Paulo, SP, Brazil
- Instituto de Medicina Tropical, Universidade de São Paulo , Avenida Dr. Enéas de Carvalho Aguiar, 470, 05403-000 São Paulo, SP, Brazil
| | - Thais A Costa-Silva
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz , Avenida Dr. Arnaldo, 351, 8° andar, 01246-000 São Paulo, SP, Brazil
| | - Samanta E T Borborema
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz , Avenida Dr. Arnaldo, 351, 8° andar, 01246-000 São Paulo, SP, Brazil
| | - Andres J Galisteo Junior
- Instituto de Medicina Tropical, Universidade de São Paulo , Avenida Dr. Enéas de Carvalho Aguiar, 470, 05403-000 São Paulo, SP, Brazil
| | - Bruno J Neves
- LabMol, Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás , Goiânia, Brazil
| | - Carolina H Andrade
- LabMol, Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás , Goiânia, Brazil
| | - Zainab Al Shuhaib
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - Elliot L Bennett
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - Gregory P Black
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - Philip M Harper
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - Daniel M Evans
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - Hisham S Fituri
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - John P Leyland
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - Claire Martin
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - Terence D Roberts
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - Andrew J Thornhill
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - Stephen A Vale
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - Andrew Howard-Jones
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - Dafydd A Thomas
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - Harri L Williams
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - Larry E Overman
- University of California, Irvine , 4042A Frederick Reines Hall, Irvine, California 92697, United States
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Patrick J Murphy
- School of Chemistry, Bangor University , Bangor, Gwynedd, Wales, U.K. LL57 2UW
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz , Avenida Dr. Arnaldo, 351, 8° andar, 01246-000 São Paulo, SP, Brazil
| |
Collapse
|
20
|
An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis. Vet Parasitol 2016; 217:81-8. [DOI: 10.1016/j.vetpar.2016.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
|
21
|
Investigation of Calcium Channel Blockers as Antiprotozoal Agents and Their Interference in the Metabolism of Leishmania (L.) infantum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1523691. [PMID: 26941821 PMCID: PMC4749844 DOI: 10.1155/2016/1523691] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/24/2015] [Indexed: 01/20/2023]
Abstract
Leishmaniasis and Chagas disease are neglected parasitic diseases endemic in developing countries; efforts to find new therapies remain a priority. Calcium channel blockers (CCBs) are drugs in clinical use for hypertension and other heart pathologies. Based on previous reports about the antileishmanial activity of dihydropyridine-CCBs, this work aimed to investigate whether the in vitro anti-Leishmania infantum and anti-Trypanosoma cruzi activities of this therapeutic class would be shared by other non-dihydropyridine-CCBs. Except for amrinone, our results demonstrated antiprotozoal activity for fendiline, mibefradil, and lidoflazine, with IC50 values in a range between 2 and 16 μM and Selectivity Index between 4 and 10. Fendiline demonstrated depolarization of mitochondrial membrane potential, with increased reactive oxygen species production in amlodipine and fendiline treated Leishmania, but without plasma membrane disruption. Finally, in vitro combinations of amphotericin B, miltefosine, and pentamidine against L. infantum showed in isobolograms an additive interaction when these drugs were combined with fendiline, resulting in overall mean sum of fractional inhibitory concentrations between 0.99 and 1.10. These data demonstrated that non-dihydropyridine-CCBs present antiprotozoal activity and could be useful candidates for future in vivo efficacy studies against Leishmaniasis and Chagas' disease.
Collapse
|
22
|
Lage PS, Chávez-Fumagalli MA, Mesquita JT, Mata LM, Fernandes SOA, Cardoso VN, Soto M, Tavares CAP, Leite JPV, Tempone AG, Coelho EAF. Antileishmanial activity and evaluation of the mechanism of action of strychnobiflavone flavonoid isolated from Strychnos pseudoquina against Leishmania infantum. Parasitol Res 2015; 114:4625-35. [PMID: 26346453 DOI: 10.1007/s00436-015-4708-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023]
Abstract
The present study aimed to investigate the in vitro antileishmanial activity of strychnobiflavone flavonoid against Leishmania infantum, as well as its mechanism of action, and evaluate the ex vivo biodistribution profile of the flavonoid in naive BALB/c mice. The antileishmanial activity (IC50 value) of strychnobiflavone against stationary promastigote and amastigote-like stages of the parasites was of 5.4 and 18.9 μM, respectively; with a 50% cytotoxic concentration (CC50) value of 125.0 μM on murine macrophages, resulting in selectivity index (SI) of 23.2 and 6.6, respectively. Amphotericin B, used as a positive control, presented SI values of 7.6 and 3.3 for promastigote and amastigote-like stages of L. infantum, respectively. The strychnobiflavone was also effective in reducing in significant levels the percentage of infected macrophages, as well as the number of amastigotes per macrophage, after the treatment of infected macrophages using the flavonoid. By using different fluorescent probes, we investigated the bioenergetics metabolism of L. infantum promastigotes and demonstrated that the flavonoid caused the depolarization of the mitochondrial membrane potential, without affecting the production of reactive oxygen species. In addition, using SYTOX(®) green as a fluorescent probe, the strychnobiflavone demonstrated no interference in plasma membrane permeability. For the ex vivo biodistribution assays, the flavonoid was labeled with technetium-(99m) and studied in a mouse model by intraperitoneal route. After a single dose administration, the scintigraphic images demonstrated a highest uptake by the liver and spleen of the animals within 60 min, resulting in low concentrations after 24 h. The present study therefore demonstrated, for the first time, the antileishmanial activity of the strychnobiflavone against L. infantum, and suggests that the mitochondria of the parasites may be the possible target organelle. The preferential distribution of this compound into the liver and spleen of the animals could warrant its employ in the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Paula S Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Juliana T Mesquita
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, São Paulo, 01246-902, São Paulo, Brazil
| | - Laís M Mata
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Simone O A Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Valbert N Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Carlos A P Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - João P V Leite
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Andre G Tempone
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, São Paulo, 01246-902, São Paulo, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil.
- Laboratório de Biotecnologia Aplicada ao Estudo das Leishmanioses, Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Mesquita JT, Tempone AG, Reimão JQ. Combination therapy with nitazoxanide and amphotericin B, Glucantime®, miltefosine and sitamaquine against Leishmania (Leishmania) infantum intracellular amastigotes. Acta Trop 2014; 130:112-6. [PMID: 24239532 DOI: 10.1016/j.actatropica.2013.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/15/2013] [Accepted: 11/05/2013] [Indexed: 01/05/2023]
Abstract
Leishmaniasis is a neglected disease that affects poorest population mainly in developing countries, representing one of the major causes of mortality and morbidity. Therefore, efforts to find new chemotherapeutics for leishmaniasis remain a priority. Previous reports demonstrated the in vitro and in vivo antileishmanial activity of nitazoxanide, an antiprotozoan agent used in the treatment of infectious diarrhea. The present work was carried out to determine the effect of nitazoxanide in combination with current antileishmanial drugs. Mouse peritoneal macrophages were infected with Leishmania (Leishmania) infantum amastigotes in order to calculate the 50% and 90% inhibitory concentration values. Drug interactions were assessed with fixed ratio isobologram method and fractional inhibitory concentrations (FIC50 and FIC90); sum of FIC (ΣFIC50 and ΣFIC90) and overall mean ΣFIC (xΣFIC50 and xΣFIC90) were calculated for each combination. The nature of interactions was classified according to the xΣFIC50 and xΣFIC90. The combination between nitazoxanide and amphotericin B, Glucantime(®), miltefosine and sitamaquine showed xΣFIC50 values of 1.13, 0.83, 1.06 and 0.94, respectively, indicating additive interaction. Considering the in vitro activity of nitazoxanide and the obtained results, further in vivo studies may be considered to evaluate possible drug interactions in visceral leishmaniasis.
Collapse
|