1
|
Hernández-Flores A, Elías-Díaz D, Cubillo-Cervantes B, Ibarra-Cerdeña CN, Morán D, Arnal A, Chaves A. Fighting Strategies Against Chagas' Disease: A Review. Pathogens 2025; 14:183. [PMID: 40005558 PMCID: PMC11858460 DOI: 10.3390/pathogens14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a significant public health challenge, particularly in Latin America, where it is one of the most neglected diseases and is primarily transmitted by triatomine insects. The disease exhibits complexity due to its diverse transmission routes, including vectorial and non-vectorial mechanisms such as blood transfusions and congenital transmission. Effective monitoring and control strategies are critical to mitigating its impact. This review focuses on current monitoring and control efforts, emphasizing the importance of enhanced surveillance systems, improved risk assessments, and integrated vector control programs. Surveillance plays a pivotal role in early detection and timely intervention, particularly in endemic regions, while vector control remains central to reducing transmission. Moreover, the development of novel diagnostic tools, treatments, and vaccines is a crucial step in advancing control efforts. This review also highlights the involvement of local governments, international organizations, and civil society in executing these strategies, stressing the need for sustained political commitment to ensure the success of public health programs. By addressing key challenges in monitoring, control, and prevention, this review aims to provide insights and recommendations to further global efforts in reducing the burden of Chagas disease.
Collapse
Affiliation(s)
- Andrea Hernández-Flores
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Av. Universidad #3000, Mexico City 04510, Mexico; (A.H.-F.); (A.A.)
| | - Debora Elías-Díaz
- Sistema de Estudios de Posgrado Posgrado en Biología, Universidad de Costa Rica, San José 11501-206, Costa Rica; (D.E.-D.); (B.C.-C.)
| | - Bernadeth Cubillo-Cervantes
- Sistema de Estudios de Posgrado Posgrado en Biología, Universidad de Costa Rica, San José 11501-206, Costa Rica; (D.E.-D.); (B.C.-C.)
| | - Carlos N. Ibarra-Cerdeña
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Mérida, Merida 97205, Mexico;
| | - David Morán
- Unidad de Ecología y Epidemiología, Programa Arbovirus y Zoonoses, Centro para Estudios de Salud, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala;
| | - Audrey Arnal
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Av. Universidad #3000, Mexico City 04510, Mexico; (A.H.-F.); (A.A.)
- MIVEGEC, IRD, CNRS, Université de Montpellier, 34394 Montpellier, France
- International Joint Laboratory IRD/UNAM ELDORADO, Merida 97205, Mexico
| | - Andrea Chaves
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT, Conare, San José 1174-1200, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José 11501-206, Costa Rica
| |
Collapse
|
2
|
Dzul-Huchim VM, Rosado-Vallado M, Euan-Canto A, Torres-Romero J, Ortega-Lopez J, Cruz-Chan JV, Villanueva-Lizama LE, Arana-Argáez V. Immunomodulatory activity of Trypanosoma cruzi recombinant antigen combination TSA-1-C4 and Tc24-C4 induce activation of macrophages and CD8 + T cells. Parasitol Res 2025; 124:12. [PMID: 39853538 PMCID: PMC11761814 DOI: 10.1007/s00436-025-08453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
Chagas disease is a chronic infection caused by the protozoan parasite, Trypanosoma cruzi, with limited benefits of the currently available anti-parasitic chemotherapeutic approaches to halt the progression of heart disease. Recombinant TSA-1-C4 and Tc24-C4 proteins have been developed as promising antigen candidates for therapeutic vaccines, leading to propose them in combination as a bivalent recombinant protein strategy. In this study, we evaluated the immunomodulatory effect of the combined TSA-1-C4 and Tc24-C4 recombinant proteins by in vitro assays using murine macrophages. Macrophages from naïve Balb/c mice were isolated and stimulated with TSA-1-C4 plus Tc24-C4 recombinant proteins, hence, supernatants were recovered to measure host NO, H2O2, as well as, TNF-α, IL-1β, IL-6 and IL-10 cytokine responses. Later, stimulated macrophages were co-cultured with CD8+ T cells from naïve mice, and inflammatory cytokine-profiles were measured from supernatants. We observed that combining both antigens promotes the activation of host macrophages by NO and H2O2 release; moreover, these macrophages also induced considerable pro-inflammatory immune-responses mediated by TNF-, IL-1β and IL-6 cytokines compared to either TSA-1-C4 or Tc24-C4 stimulated macrophages. In addition, naïve CD8+ T cells in presence of TSA-1-C4 plus Tc24-C4 stimulated-macrophages similarly boosted the pro-inflammatory immune profile by significant production of IFN-γ and TNF-α cytokines. These results support immunological advantages for the use of TSA-1-C4 and Tc24-C4 combination as vaccine candidates against T. cruzi.
Collapse
Affiliation(s)
- Victor Manuel Dzul-Huchim
- Centro de Investigaciones Regionales (C.I.R.) Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40 Colonia Inalámbrica, Mérida, Yucatán, C.P. 97069, Mexico
| | - Miguel Rosado-Vallado
- Centro de Investigaciones Regionales (C.I.R.) Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40 Colonia Inalámbrica, Mérida, Yucatán, C.P. 97069, Mexico
| | - Antonio Euan-Canto
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40 Colonia Inalámbrica, Mérida, Yucatán, C.P. 97069, Mexico
| | - Julio Torres-Romero
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40 Colonia Inalámbrica, Mérida, Yucatán, C.P. 97069, Mexico
| | - Jaime Ortega-Lopez
- Centro de Investigación y Estudios Avanzados (CINVESTAV), del Instituto Politécnico Nacional (I.P.N.), San Pedro Zacatenco Gustavo A. Madero, Ciudad de México, C.P. 07360, Mexico
| | - Julio Vladimir Cruz-Chan
- Centro de Investigaciones Regionales (C.I.R.) Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40 Colonia Inalámbrica, Mérida, Yucatán, C.P. 97069, Mexico
| | - Liliana Estefania Villanueva-Lizama
- Centro de Investigaciones Regionales (C.I.R.) Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40 Colonia Inalámbrica, Mérida, Yucatán, C.P. 97069, Mexico
| | - Victor Arana-Argáez
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40 Colonia Inalámbrica, Mérida, Yucatán, C.P. 97069, Mexico.
| |
Collapse
|
3
|
Pacini MF, Bulfoni Balbi C, Dinatale B, Farré C, Cacik P, Gonzalez FB, Marcipar I, Pérez AR. Intranasal Trans-Sialidase Vaccine Mitigates Acute and Chronic Pathology in a Preclinical Oral Chagas Disease Model. Vaccines (Basel) 2024; 12:1171. [PMID: 39460337 PMCID: PMC11511307 DOI: 10.3390/vaccines12101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, leads to severe complications in 30% of infected individuals, including acute myocarditis and chronic fibrosing cardiomyopathy. Despite the significant burden of this disease, there is currently no licensed vaccine available to prevent it. This study aimed to evaluate the mucosal and systemic immunogenicity as well as the prophylactic efficacy of a mucosal vaccine candidate and its impact on both acute and chronic cardiomyopathy. The results showed that the nasal administration of trans-sialidase (TS) plus c-di-AMP (TS+A) vaccine elicited a NALT expression of IFN-γ, IL-17a and IL-4 mRNA as well as a nasal-specific production of IgA. An in vivo challenge with TS also triggered increased proliferation of lymphocytes from the NALT, sentinel cervical lymph node, and spleen. TS+A immunization increased the plasma levels of Th1/Th2/Th17 cytokines and elicited an evident cellular response by which to judge enhanced delayed-type hypersensitivity responses following a TS footpad challenge. After oral infection, TS+A-vaccinated mice showed significantly reduced parasitemia and parasite load in the heart, muscles and intestines, while markers of hepatic and muscle damage as well as clinical manifestations of acute infection were strongly diminished. TS+A also attenuated acute myocarditis and the expression of inflammatory markers in the heart. The protection conferred by TS+A extended into the chronic phase, where it resulted in a clear reduction in chronic myocarditis, fibrosis and functional electrocardiographic abnormalities, associated with a decreased expression of the pro-fibrotic TGF-β. These results revealed that it is possible to develop a mucosal vaccine against T. cruzi based on TS and c-di-AMP that is capable of reducing the development of Chagas cardiomyopathy, the hallmark of Chagas disease.
Collapse
Affiliation(s)
- Maria Florencia Pacini
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario 2000, Argentina; (M.F.P.); (C.B.B.); (B.D.); (C.F.); (F.B.G.)
| | - Camila Bulfoni Balbi
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario 2000, Argentina; (M.F.P.); (C.B.B.); (B.D.); (C.F.); (F.B.G.)
| | - Brenda Dinatale
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario 2000, Argentina; (M.F.P.); (C.B.B.); (B.D.); (C.F.); (F.B.G.)
| | - Cecilia Farré
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario 2000, Argentina; (M.F.P.); (C.B.B.); (B.D.); (C.F.); (F.B.G.)
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Paula Cacik
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina; (P.C.); (I.M.)
| | - Florencia Belén Gonzalez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario 2000, Argentina; (M.F.P.); (C.B.B.); (B.D.); (C.F.); (F.B.G.)
| | - Iván Marcipar
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina; (P.C.); (I.M.)
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario 2000, Argentina; (M.F.P.); (C.B.B.); (B.D.); (C.F.); (F.B.G.)
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
4
|
Pinazo MJ, Malchiodi E, Ioset JR, Bivona A, Gollob KJ, Dutra WO. Challenges and advancements in the development of vaccines and therapies against Chagas disease. THE LANCET. MICROBE 2024; 5:100972. [PMID: 39303738 DOI: 10.1016/j.lanmic.2024.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, presents a substantial global health burden, affecting millions of individuals worldwide and posing a continual risk of infection. Despite the high mortality and morbidity rates, effective vaccines to prevent infection by the parasite remain elusive, and the drugs currently available are suboptimal. Understanding the intricate dynamics of parasite-host interactions and the resulting immune responses, which contribute to both protection and pathology, is crucial for the development of effective vaccines and therapies against Chagas disease. In this Series paper, we discuss the challenges associated with discovering and translating prophylactic and therapeutic strategies from the laboratory bench to clinical application. We highlight ongoing efforts in vaccine and new drug development, with a focus on more advanced candidates for vaccines and drugs. We also discuss potential solutions, emphasising the importance of collaborative research efforts, sustained funding, and a comprehensive understanding of host-parasite interactions and immunopathology to advance the development of new vaccines and therapies against Chagas disease.
Collapse
Affiliation(s)
| | - Emilio Malchiodi
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU) and Instituto de Microbiologia y Parasitologia Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | | | - Augusto Bivona
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU) and Instituto de Microbiologia y Parasitologia Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Kenneth J Gollob
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Belo Horizonte, Brazil
| | - Walderez O Dutra
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Belo Horizonte, Brazil; Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
5
|
Farani PSG, Jones KM, Poveda C. Treatments and the Perspectives of Developing a Vaccine for Chagas Disease. Vaccines (Basel) 2024; 12:870. [PMID: 39203996 PMCID: PMC11359273 DOI: 10.3390/vaccines12080870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Chagas disease (CD) treatment and vaccine development are critical due to the significant health burden caused by the disease, especially in Latin America. Current treatments include benznidazole and nifurtimox, which are most effective in the acute phase of the disease but less so in the chronic phase, often with significant side effects. Here, using the available literature, we summarize the progress in vaccine development and new treatments that promise to reduce CD incidence and improve the quality of life for those at risk, particularly in endemic regions. New treatment options, such as posaconazole and fexinidazole, are being explored to improve efficacy and reduce adverse effects. Vaccine development for CD remains a high priority. The complex life stages and genetic diversity of Trypanosoma cruzi present challenges, but several promising vaccine candidates are under investigation. These efforts focus on stimulating a protective immune response through various innovative approaches.
Collapse
Affiliation(s)
- Priscila Silva Grijó Farani
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Kathryn Marie Jones
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristina Poveda
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Liu Z, Ulrich vonBargen R, Kendricks AL, Wheeler K, Leão AC, Sankaranarayanan K, Dean DA, Kane SS, Hossain E, Pollet J, Bottazzi ME, Hotez PJ, Jones KM, McCall LI. Localized cardiac small molecule trajectories and persistent chemical sequelae in experimental Chagas disease. Nat Commun 2023; 14:6769. [PMID: 37880260 PMCID: PMC10600178 DOI: 10.1038/s41467-023-42247-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
Post-infectious conditions present major health burdens but remain poorly understood. In Chagas disease (CD), caused by Trypanosoma cruzi parasites, antiparasitic agents that successfully clear T. cruzi do not always improve clinical outcomes. In this study, we reveal differential small molecule trajectories between cardiac regions during chronic T. cruzi infection, matching with characteristic CD apical aneurysm sites. Incomplete, region-specific, cardiac small molecule restoration is observed in animals treated with the antiparasitic benznidazole. In contrast, superior restoration of the cardiac small molecule profile is observed for a combination treatment of reduced-dose benznidazole plus an immunotherapy, even with less parasite burden reduction. Overall, these results reveal molecular mechanisms of CD treatment based on simultaneous effects on the pathogen and on host small molecule responses, and expand our understanding of clinical treatment failure in CD. This link between infection and subsequent persistent small molecule perturbation broadens our understanding of infectious disease sequelae.
Collapse
Affiliation(s)
- Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Rebecca Ulrich vonBargen
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | | | - Kate Wheeler
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Ana Carolina Leão
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Krithivasan Sankaranarayanan
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Danya A Dean
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Shelley S Kane
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Ekram Hossain
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Jeroen Pollet
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn M Jones
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA.
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA.
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
7
|
Arias-Argáez BC, Dzul-Huchim VM, Haro-Álvarez AP, Rosado-Vallado ME, Villanueva-Lizama L, Cruz-Chan JV, Dumonteil E. Signature of cardiac alterations in early and late chronic infections with Trypanosoma cruzi in mice. PLoS One 2023; 18:e0292520. [PMID: 37797045 PMCID: PMC10553825 DOI: 10.1371/journal.pone.0292520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023] Open
Abstract
Chagas disease by Trypanosoma cruzi (T. cruzi) infection is a leading cause of myocarditis worldwide. Chagas cardiomyopathy is presented with a wide variety of conduction abnormalities including arrhythmias, first- and second-degree atrioventricular blockade, left ventricular systolic dysfunction and some cases heart failure leading to the death. Currently, there are no effective treatments available against advanced Chagas disease. With the advance in the development of novel therapies, it is important to utilize an animal model that can effectively replicate the diverse stages of Chagas disease, including chronic asymptomatic and symptomatic infection, that are akin to those observed in humans. Therefore, to characterize the cardiac alterations during the evolution of the infection, we evaluated the progression of cardiomyopathy caused by T. cruzi H1 infection in both BALB/c and ICR mouse models by performing electrocardiogram (ECG) studies in unanesthetized mice every month until 210 days post-infection (dpi). In the late chronic phase of infection, we also performed echocardiogram (ECHO) studies to further assess cardiac function. In conclusion, we demonstrated that ICR mice were more susceptible to cardiac alterations compared to BALB/c mice and both mouse strains are suitable experimental models to study chronic T. cruzi infection and novel treatments.
Collapse
Affiliation(s)
- Bárbara Carolina Arias-Argáez
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Victor Manuel Dzul-Huchim
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Ana Paulina Haro-Álvarez
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Miguel Enrique Rosado-Vallado
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Liliana Villanueva-Lizama
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio Vladimir Cruz-Chan
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Eric Dumonteil
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, United States of America
| |
Collapse
|
8
|
Pacini MF, Perdomini A, Bulfoni Balbi C, Dinatale B, Herrera FE, Perez AR, Marcipar I. The high identity of the Trypanosoma cruzi Group-I of trans-sialidases points them as promising vaccine immunogens. Proteins 2023; 91:1444-1460. [PMID: 37323089 DOI: 10.1002/prot.26537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Trans-sialidase (TS) superfamily of proteins comprises eight subgroups, being the proteins of Group-I (TS-GI) promising immunogens in vaccine approaches against Trypanosoma cruzi. Strikingly, TS-GI antigenic variability among parasite lineages and their influence on vaccine development has not been previously analyzed. Here, a search in GenBank detects 49 TS-GI indexed sequences, whereas the main infecting human different parasite discrete typing units (DTU) are represented. In silico comparison among these sequences indicate that they share an identity above 92%. Moreover, the antigenic regions (T-cell and B-cell epitopes) are conserved in most sequences or present amino acid substitutions that scarcely may alter the antigenicity. Additionally, since the generic term TS is usually used to refer to different immunogens of this broad family, a further in silico analysis of the TS-GI-derived fragments tested in preclinical vaccines was done to determine the coverage and identity among them, showing that overall amino acid identity of vaccine immunogens is high, but the segment coverage varies widely. Accordingly, strong H-2K, H-2I, and B-cell epitopes are dissimilarly represented among vaccine TS-derived fragments depending on the extension of the TG-GI sequence used. Moreover, bioinformatic analysis detected a set of 150 T-cell strong epitopes among the DTU-indexed sequences that strongly bind human HLA-I supertypes. In all currently reported experimental vaccines based on TS-GI fragments, mapping these 150 epitopes showed that they are moderately represented. However, despite vaccine epitopes do not present all the substitutions observed in the DTUs, these regions of the proteins are equally recognized by the same HLAs. Interestingly, the predictions regarding global and South American population coverage estimated in these 150 epitopes are similar to the estimations in experimental vaccines when the complete sequence of TS-GI is used as an antigen. In silico prediction also shows that a number of these MHC-I restricted T-cell strong epitopes could be also cross-recognized by HLA-I supertypes and H-2Kb or H-2Kd backgrounds, indicating that these mice may be used to improve and facilitate the development of new TS-based vaccines and suggesting an immunogenic and protective potential in humans. Further molecular docking analyses were performed to strengthen these results. Taken together, different strategies that would cover more or eventually fully of these T-cell and also B-cell epitopes to reach a high level of coverage are considered.
Collapse
Affiliation(s)
- Maria Florencia Pacini
- Laboratorio de Estudios en Enfermedad de Chagas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario, Argentina
| | - Adrián Perdomini
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Camila Bulfoni Balbi
- Laboratorio de Estudios en Enfermedad de Chagas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario, Argentina
| | - Brenda Dinatale
- Laboratorio de Estudios en Enfermedad de Chagas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario, Argentina
| | - Fernando E Herrera
- Área de Modelado Molecular, Departamento de Física, Facultad de Bioquímica y Ciencias, Universidad Nacional del Litoral, (CONICET), Santa Fe, Argentina
| | - Ana Rosa Perez
- Laboratorio de Estudios en Enfermedad de Chagas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Iván Marcipar
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
9
|
Tarleton RL. Effective drug discovery in Chagas disease. Trends Parasitol 2023; 39:423-431. [PMID: 37024318 DOI: 10.1016/j.pt.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
The Chagas field has gone >50 years without tangible progress toward new therapies. My colleagues and I have recently reported on a benzoxaborole compound that achieves consistent parasitological cure in experimentally infected mice and in naturally infected non-human primates (NHPs). While these results do not assure success in human clinical trials, they significantly de-risk this process and form a strong justification for such trials. Highly effective drug discovery depends on a solid understanding of host and parasite biology and excellent knowledge in designing and validating chemical entities. This opinion piece seeks to provide perspectives on the process that led to the discovery of AN15368, with the hope that this will facilitate the discovery of additional clinical candidates for Chagas disease.
Collapse
Affiliation(s)
- Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
10
|
Pacini MF, Balbi CB, Dinatale B, González FB, Prochetto E, De Hernández MA, Cribb P, Farré C, Espariz M, Blancato VS, Magni C, Marcipar I, Pérez AR. Intranasal trans-sialidase-based vaccine against Trypanosoma cruzi triggers a mixed cytokine profile in the nasopharynx-associated lymphoid tissue and confers local and systemic immunogenicity. Acta Trop 2023; 241:106889. [PMID: 36893830 DOI: 10.1016/j.actatropica.2023.106889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
Trypanosoma cruzi, the agent of Chagas disease, can infect through conjunctive or oral mucosas. Therefore, the induction of mucosal immunity by vaccination is relevant not only to trigger local protection but also to stimulate both humoral and cell-mediated responses in systemic sites to control parasite dissemination. In a previous study, we demonstrated that a nasal vaccine based on a Trans-sialidase (TS) fragment plus the mucosal STING agonist c-di-AMP, was highly immunogenic and elicited prophylactic capacity. However, the immune profile induced by TS-based nasal vaccines at the nasopharyngeal-associated lymphoid tissue (NALT), the target site of nasal immunization, remains unknown. Hence, we analyzed the NALT cytokine expression generated by a TS-based vaccine plus c-di-AMP (TSdA+c-di-AMP) and their association with mucosal and systemic immunogenicity. The vaccine was administered intranasally, in 3 doses separated by 15 days each other. Control groups received TSdA, c-di-AMP, or the vehicle in a similar schedule. We demonstrated that female BALB/c mice immunized intranasally with TSdA+c-di-AMP boosted NALT expression of IFN-γ and IL-6, as well as IFN-β and TGF-β. TSdA+c-di-AMP increased TSdA-specific IgA secretion in the nasal passages and also in the distal intestinal mucosa. Moreover, T and B-lymphocytes from NALT-draining cervical lymph nodes and spleen showed an intense proliferation after ex-vivo stimulation with TSdA. Intranasal administration of TSdA+c-di-AMP provokes an enhancement of TSdA-specific IgG2a and IgG1 plasma antibodies, accompanied by an increase IgG2a/IgG1 ratio, indicative of a Th1-biased profile. In addition, immune plasma derived from TSdA+c-di-AMP vaccinated mice exhibit in-vivo and ex-vivo protective capacity. Lastly, TSdA+c-di-AMP nasal vaccine also promotes intense footpad swelling after local TSdA challenge. Our data support that TSdA+c-di-AMP nasal vaccine triggers a NALT mixed pattern of cytokines that were clearly associated with an evident mucosal and systemic immunogenicity. These data are useful for further understanding the immune responses elicited by the NALT following intranasal immunization and the rational design of TS-based vaccination strategies for prophylaxis against T. cruzi.
Collapse
Affiliation(s)
- María F Pacini
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Argentina
| | - Camila Bulfoni Balbi
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Argentina
| | - Brenda Dinatale
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Argentina
| | - Florencia B González
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Argentina
| | - Estefania Prochetto
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - María A De Hernández
- Área Parasitología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR. Laboratorio de Biología y Bioquímica de T. cruzi. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Argentina
| | - Pamela Cribb
- Área Parasitología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR. Laboratorio de Biología y Bioquímica de T. cruzi. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Argentina
| | - Cecilia Farré
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Argentina; Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Argentina
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Argentina
| | - Víctor S Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Argentina
| | - Iván Marcipar
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Ana R Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Argentina; Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Argentina.
| |
Collapse
|
11
|
Jones KM, Mangin EN, Reynolds CL, Villanueva LE, Cruz JV, Versteeg L, Keegan B, Kendricks A, Pollet J, Gusovsky F, Bottazzi ME, Hotez PJ. Vaccine-linked chemotherapy improves cardiac structure and function in a mouse model of chronic Chagas disease. Front Cell Infect Microbiol 2023; 13:1106315. [PMID: 36844399 PMCID: PMC9947347 DOI: 10.3389/fcimb.2023.1106315] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Chagas disease, caused by chronic infection with the protozoan parasite Trypanosoma cruzi, affects 6-7 million people worldwide. The major clinical manifestation of Chagas disease is chronic Chagasic cardiomyopathy (CCC), which encompasses a spectrum of symptoms including arrhythmias, hypertrophy, dilated cardiomyopathy, heart failure, and sudden death. Current treatment is limited to two antiparasitic drugs, benznidazole (BNZ) and nifurtimox, but both have limited efficacy to halt the progression of CCC. We developed a vaccine-linked chemotherapy strategy using our vaccine consisting of recombinant Tc24-C4 protein and a TLR-4 agonist adjuvant in a stable squalene emulsion, in combination with low dose benznidazole treatment. We previously demonstrated in acute infection models that this strategy parasite specific immune responses, and reduced parasite burdens and cardiac pathology. Here, we tested our vaccine-linked chemotherapy strategy in a mouse model of chronic T. cruzi infection to evaluate the effect on cardiac function. Methods Female BALB/c mice infected with 500 blood form T. cruzi H1 strain trypomastigotes were treated beginning 70 days after infection with a low dose of BNZ and either low or high dose of vaccine, in both sequential and concurrent treatments streams. Control mice were untreated, or administered only one treatment. Cardiac health was monitored throughout the course of treatment by echocardiography and electrocardiograms. Approximately 8 months after infection, endpoint histopathology was performed to measure cardiac fibrosis and cellular infiltration. Results Vaccine-linked chemotherapy improved cardiac function as evidenced by amelioration of altered left ventricular wall thickness, left ventricular diameter, as well as ejection fraction and fractional shortening by approximately 4 months of infection, corresponding to two months after treatment was initiated. At study endpoint, vaccine-linked chemotherapy reduced cardiac cellular infiltration, and induced significantly increased antigen specific IFN-γ and IL-10 release from splenocytes, as well as a trend toward increased IL-17A. Discussion These data suggest that vaccine-linked chemotherapy ameliorates changes in cardiac structure and function induced by infection with T. cruzi. Importantly, similar to our acute model, the vaccine-linked chemotherapy strategy induced durable antigen specific immune responses, suggesting the potential for a long lasting protective effect. Future studies will evaluate additional treatments that can further improve cardiac function during chronic infection.
Collapse
Affiliation(s)
- Kathryn M. Jones
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Elise N. Mangin
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX, United States
| | - Corey L. Reynolds
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX, United States
| | - Liliana E. Villanueva
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Julio Vladimir Cruz
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Leroy Versteeg
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Brian Keegan
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - April Kendricks
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Fabian Gusovsky
- Global Health Research, Eisai, Inc., Cambridge, MA, United States
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Biology, Baylor University, Waco, TX, United States
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Biology, Baylor University, Waco, TX, United States
- James A. Baker III Institute for Public Policy, Rice University, Houston, TX, United States
- Hagler Institute for Advanced Study at Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Dzul-Huchim VM, Ramirez-Sierra MJ, Martinez-Vega PP, Rosado-Vallado ME, Arana-Argaez VE, Ortega-Lopez J, Gusovsky F, Dumonteil E, Cruz-Chan JV, Hotez P, Bottazzi ME, Villanueva-Lizama LE. Vaccine-linked chemotherapy with a low dose of benznidazole plus a bivalent recombinant protein vaccine prevents the development of cardiac fibrosis caused by Trypanosoma cruzi in chronically-infected BALB/c mice. PLoS Negl Trop Dis 2022; 16:e0010258. [PMID: 36095001 PMCID: PMC9499242 DOI: 10.1371/journal.pntd.0010258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/22/2022] [Accepted: 08/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Chagas disease (CD) is caused by Trypanosoma cruzi and affects 6–7 million people worldwide. Approximately 30% of chronic patients develop chronic chagasic cardiomyopathy (CCC) after decades. Benznidazole (BNZ), one of the first-line chemotherapy used for CD, induces toxicity and fails to halt the progression of CCC in chronic patients. The recombinant parasite-derived antigens, including Tc24, Tc24-C4, TSA-1, and TSA-1-C4 with Toll-like receptor 4 (TLR-4) agonist-adjuvants reduce cardiac parasite burdens, heart inflammation, and fibrosis, leading us to envision their use as immunotherapy together with BNZ. Given genetic immunization (DNA vaccines) encoding Tc24 and TSA-1 induce protective immunity in mice and dogs, we propose that immunization with the corresponding recombinant proteins offers an alternative and feasible strategy to develop these antigens as a bivalent human vaccine. We hypothesized that a low dose of BNZ in combination with a therapeutic vaccine (TSA-1-C4 and Tc24-C4 antigens formulated with a synthetic TLR-4 agonist-adjuvant, E6020-SE) given during early chronic infection, could prevent cardiac disease progression and provide antigen-specific T cell immunity. Methodology/ Principal findings We evaluated the therapeutic vaccine candidate plus BNZ (25 mg/kg/day/7 days) given on days 72 and 79 post-infection (p.i) (early chronic phase). Fibrosis, inflammation, and parasite burden were quantified in heart tissue at day 200 p.i. (late chronic phase). Further, spleen cells were collected to evaluate antigen-specific CD4+ and CD8+ T cell immune response, using flow cytometry. We found that vaccine-linked BNZ treated mice had lower cardiac fibrosis compared to the infected untreated control group. Moreover, cells from mice that received the immunotherapy had higher stimulation index of antigen-specific CD8+Perforin+ T cells as well as antigen-specific central memory T cells compared to the infected untreated control. Conclusions Our results suggest that the bivalent immunotherapy together with BNZ treatment given during early chronic infection protects BALB/c mice against cardiac fibrosis progression and activates a strong CD8+ T cell response by in vitro restimulation, evidencing the induction of a long-lasting T. cruzi-immunity. Chagas disease (CD) is a neglected tropical disease caused by the parasite Trypanosoma cruzi, transmitted through contact with infected feces of vectors bugs. CD can induce cardiac abnormalities including the development of fibrosis and eventually death. Benznidazole (BNZ) is the first-line drug approved against CD, however, its toxicity and lack of efficacy in the chronic phase have limited its use. Previous studies have demonstrated the feasibility of reducing doses of BNZ given in combination with therapeutic vaccines during the acute phase of CD, which increases its tolerability and reduces adverse side effects. Considering that patients are often diagnosed until more advanced stages of the disease, its necessary to evaluate therapies given in the chronic phase of CD. In this study, we evaluated a vaccine formulated with the recombinant T. cruzi-antigens TSA-1-C4 and Tc24-C4 and the adjuvant E6020-SE in combination with a low dose of BNZ given during the chronic phase of T. cruzi-infection using a murine model. The authors found that the combination therapy protects mice against cardiac fibrosis progression, allows the activation of a CD8+ T cell response, and induces a prolonged memory response against T. cruzi. This study supports the development of the vaccine-linked chemotherapy approach to prevent T. cruzi chronic infection.
Collapse
Affiliation(s)
- Victor Manuel Dzul-Huchim
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Maria Jesus Ramirez-Sierra
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Pedro Pablo Martinez-Vega
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Miguel Enrique Rosado-Vallado
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Victor Ermilo Arana-Argaez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Jaime Ortega-Lopez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Fabian Gusovsky
- Eisai, Inc., Eisai Inc, Andover, Massachusetts, United States of America
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Los Angeles, United States of America
| | - Julio Vladimir Cruz-Chan
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Peter Hotez
- Texas Children’s Center for Vaccine Development, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - María Elena Bottazzi
- Texas Children’s Center for Vaccine Development, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Liliana Estefania Villanueva-Lizama
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
- * E-mail:
| |
Collapse
|
13
|
Jones KM, Poveda C, Versteeg L, Bottazzi ME, Hotez PJ. Preclinical advances and the immunophysiology of a new therapeutic chagas disease vaccine. Expert Rev Vaccines 2022; 21:1185-1203. [PMID: 35735065 DOI: 10.1080/14760584.2022.2093721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Chronic infection with the protozoal parasite Trypanosoma cruzi leads to a progressive cardiac disease, known as chronic Chagasic cardiomyopathy (CCC). A new therapeutic Chagas disease vaccine is in development to augment existing antiparasitic chemotherapy drugs. AREAS COVERED We report on our current understanding of the underlying immunologic and physiologic mechanisms that lead to CCC, including parasite immune escape mechanisms that allow persistence and the subsequent inflammatory and fibrotic processes that lead to clinical disease. We report on vaccine design and the observed immunotherapeutic effects including induction of a balanced TH1/TH2/TH17 immune response that leads to reduced parasite burdens and tissue pathology. Further, we report vaccine-linked chemotherapy, a dose sparing strategy to further reduce parasite burdens and tissue pathology. EXPERT OPINION Our vaccine-linked chemotherapeutic approach is a multimodal treatment strategy, addressing both the parasite persistence and the underlying deleterious host inflammatory and fibrotic responses that lead to cardiac dysfunction. In targeting treatment towards patients with chronic indeterminate or early determinate Chagas disease, this vaccine-linked chemotherapeutic approach will be highly economical and will reduce the global disease burden and deaths due to CCC.
Collapse
Affiliation(s)
- Kathryn M Jones
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristina Poveda
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Cell Biology and Immunology Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Biology, Baylor University, Waco, Texas, United States of America.,James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America.,Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|