1
|
Bārzdiņa A, Plotniece A, Sobolev A, Pajuste K, Bandere D, Brangule A. From Polymeric Nanoformulations to Polyphenols-Strategies for Enhancing the Efficacy and Drug Delivery of Gentamicin. Antibiotics (Basel) 2024; 13:305. [PMID: 38666981 PMCID: PMC11047640 DOI: 10.3390/antibiotics13040305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Gentamicin is an essential broad-spectrum aminoglycoside antibiotic that is used in over 40 clinical conditions and has shown activity against a wide range of nosocomial, biofilm-forming, multi-drug resistant bacteria. Nevertheless, the low cellular penetration and serious side effects of gentamicin, as well as the fear of the development of antibacterial resistance, has led to a search for ways to circumvent these obstacles. This review provides an overview of the chemical and pharmacological properties of gentamicin and offers six different strategies (the isolation of specific types of gentamicin, encapsulation in polymeric nanoparticles, hydrophobization of the gentamicin molecule, and combinations of gentamicin with other antibiotics, polyphenols, and natural products) that aim to enhance the drug delivery and antibacterial activity of gentamicin. In addition, factors influencing the synthesis of gentamicin-loaded polymeric (poly (lactic-co-glycolic acid) (PLGA) and chitosan) nanoparticles and the methods used in drug release studies are discussed. Potential research directions and future perspectives for gentamicin-loaded drug delivery systems are given.
Collapse
Affiliation(s)
- Ance Bārzdiņa
- Department of Pharmaceutical Chemistry, Riga Stradins University, 21 Konsula Str., LV-1007 Riga, Latvia; (A.P.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Aiva Plotniece
- Department of Pharmaceutical Chemistry, Riga Stradins University, 21 Konsula Str., LV-1007 Riga, Latvia; (A.P.)
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.S.); (K.P.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.S.); (K.P.)
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.S.); (K.P.)
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradins University, 21 Konsula Str., LV-1007 Riga, Latvia; (A.P.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradins University, 21 Konsula Str., LV-1007 Riga, Latvia; (A.P.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| |
Collapse
|
2
|
Bedir T, Baykara D, Yildirim R, Calikoglu Koyuncu AC, Sahin A, Kaya E, Tinaz GB, Insel MA, Topuzogulları M, Gunduz O, Ustundag CB, Narayan R. Three-Dimensional-Printed GelMA-KerMA Composite Patches as an Innovative Platform for Potential Tissue Engineering of Tympanic Membrane Perforations. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:563. [PMID: 38607098 PMCID: PMC11013928 DOI: 10.3390/nano14070563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
Tympanic membrane (TM) perforations, primarily induced by middle ear infections, the introduction of foreign objects into the ear, and acoustic trauma, lead to hearing abnormalities and ear infections. We describe the design and fabrication of a novel composite patch containing photocrosslinkable gelatin methacryloyl (GelMA) and keratin methacryloyl (KerMA) hydrogels. GelMA-KerMA patches containing conical microneedles in their design were developed using the digital light processing (DLP) 3D printing approach. Following this, the patches were biofunctionalized by applying a coaxial coating with PVA nanoparticles loaded with gentamicin (GEN) and fibroblast growth factor (FGF-2) with the Electrohydrodynamic Atomization (EHDA) method. The developed nanoparticle-coated 3D-printed patches were evaluated in terms of their chemical, morphological, mechanical, swelling, and degradation behavior. In addition, the GEN and FGF-2 release profiles, antimicrobial properties, and biocompatibility of the patches were examined in vitro. The morphological assessment verified the successful fabrication and nanoparticle coating of the 3D-printed GelMA-KerMA patches. The outcomes of antibacterial tests demonstrated that GEN@PVA/GelMA-KerMA patches exhibited substantial antibacterial efficacy against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Furthermore, cell culture studies revealed that GelMA-KerMA patches were biocompatible with human adipose-derived mesenchymal stem cells (hADMSC) and supported cell attachment and proliferation without any cytotoxicity. These findings indicated that biofunctional 3D-printed GelMA-KerMA patches have the potential to be a promising therapeutic approach for addressing TM perforations.
Collapse
Affiliation(s)
- Tuba Bedir
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (T.B.); (D.B.); (A.C.C.K.); (O.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Dilruba Baykara
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (T.B.); (D.B.); (A.C.C.K.); (O.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Ridvan Yildirim
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (T.B.); (D.B.); (A.C.C.K.); (O.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Ayse Ceren Calikoglu Koyuncu
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (T.B.); (D.B.); (A.C.C.K.); (O.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Ali Sahin
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul 34722, Turkey;
| | - Elif Kaya
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul 34668, Turkey; (E.K.); (G.B.T.)
| | - Gulgun Bosgelmez Tinaz
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul 34668, Turkey; (E.K.); (G.B.T.)
| | - Mert Akin Insel
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Murat Topuzogulları
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (T.B.); (D.B.); (A.C.C.K.); (O.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul 34220, Turkey
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey;
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul 34220, Turkey
| | - Roger Narayan
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Longre S, Rana D, Rangra S, Jindal AB, Salave S, Vitore J, Benival D. Quality-by-Design Based Development of Doxycycline Hyclate-Loaded Polymeric Microspheres for Prolonged Drug Release. AAPS PharmSciTech 2024; 25:49. [PMID: 38424393 DOI: 10.1208/s12249-024-02760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
This study explores a novel approach to address the challenges of delivering highly water-soluble drug molecules by employing hydrophobic ion-pairing (HIP) complexes within poly (lactic-co-glycolic acid) (PLGA) microspheres. The HIP complex, formed between doxycycline hyclate (DH) and docusate sodium (DS), renders the drug hydrophobic. The development of the microspheres was done using the QbD approach, namely, Box-Behnken Design (BBD). A comprehensive characterization of the HIP complex confirmed the successful conversion of DH. DH and the HIP complex were effectively loaded into PLGA microspheres using the oil-in-water (O/W) emulsion solvent evaporation method. Results demonstrated significant improvements in percentage entrapment efficiency (% EE) and drug loading (% DL) for DH within the HIP complex-loaded PLGA microspheres compared to DH-loaded microspheres alone. Additionally, the initial burst release of DH reduced to 3% within the initial 15 min, followed by sustained drug release over 8 days. The modified HIP complex strategy offers a promising platform for improving the delivery of highly water-soluble small molecules. It provides high % EE, % DL, minimal initial burst release, and sustained release, thus having the potential to enhance patient compliance and drug delivery efficiency.
Collapse
Affiliation(s)
- Suraj Longre
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Shagun Rangra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Jyotsna Vitore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India.
| |
Collapse
|
4
|
Chen Y, Jiang Y, Xue T, Cheng J. Strategies for the eradication of intracellular bacterial pathogens. Biomater Sci 2024; 12:1115-1130. [PMID: 38284808 DOI: 10.1039/d3bm01498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Intracellular pathogens affect a significant portion of world population and cause millions of deaths each year. They can invade host cells and survive inside them and are extremely resistant to immune systems and antibiotics. Current treatments have limitations, and therefore, new effective therapies are needed to combat this ongoing health challenge. Active research efforts have been made to develop many new strategies to eradicate these intracellular pathogens. In this review, we focus on the intracellular bacterial pathogens and first introduce several representative intracellular bacteria and the diseases they cause. We then discuss the challenges in eradicating these bacteria and summarize the current therapeutics for intracellular bacteria. Finally, recent advances in intracellular bacteria eradication are highlighted.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Yunjiang Jiang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518071, China
| | - Tianrui Xue
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Biomaterials and Drug Delivery Laboratory, School of Engineering, Westlake University, Hangzhou 310024, China
| |
Collapse
|
5
|
Razei A, Javanbakht M, Hajizade A, Heiat M, Zhao S, Aghamollaei H, Saadati M, Khafaei M, Asadi M, Cegolon L, Keihan AH. Nano and microparticle drug delivery systems for the treatment of Brucella infections. Biomed Pharmacother 2023; 169:115875. [PMID: 37979375 DOI: 10.1016/j.biopha.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Nano-based drug delivery systems are increasingly used for diagnosis, prevention and treatment of several diseases, thanks to several beneficial properties, including the ability to target specific cells or organs, allowing to reduce treatment costs and side effects frequently associated with chemotherapeutic medications, thereby improving treatment compliance of patients. In the field of communicable diseases, especially those caused by intracellular bacteria, the delivery of antibiotics targeting specific cells is of critical importance to maximize their treatment efficacy. Brucella melitensis, an intracellular obligate bacterium surviving and replicating inside macrophages is hard to be eradicated, mainly because of the low ability of antibiotics to enter these phagocityc cells . Although different antibiotics regimens including gentamicin, doxycycline and rifampicin are in fact used against the Brucellosis, no efficient treatment has been attained yet, due to the intracellular life of the respective pathogen. Nano-medicines responding to environmental stimuli allow to maximize drug delivery targeting macropages, thereby boosting treatment efficacy. Several drug delivery nano-technologies, including solid lipid nanoparticles, liposomes, chitosan, niosomes, and their combinations with chitosan sodium alginate can be employed in combination of antibiotics to successfully eradicate Brucellosis infection from patients.
Collapse
Affiliation(s)
- Ali Razei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center,Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajizade
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossain University, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Hossien Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saadati
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossain University, Tehran, Iran
| | - Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Mosa Asadi
- Nephrology and Urology Research Center,Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- University of Trieste, Department of Medical, Surgical & Health Sciences, Trieste, Italy; University Health Agency Giuliano-Isontina (ASUGI), Public Health Department, Trieste, Italy
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Pudełko I, Moskwik A, Kwiecień K, Kriegseis S, Krok-Borkowicz M, Schickle K, Ochońska D, Dobrzyński P, Brzychczy-Włoch M, Gonzalez-Julian J, Pamuła E. Porous Zirconia Scaffolds Functionalized with Calcium Phosphate Layers and PLGA Nanoparticles Loaded with Hydrophobic Gentamicin. Int J Mol Sci 2023; 24:ijms24098400. [PMID: 37176107 PMCID: PMC10178882 DOI: 10.3390/ijms24098400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Implant-related infections are a worldwide issue that is considered very challenging. Conventional therapies commonly end up failing; thus, new solutions are being investigated to overcome this problem. The in situ delivery of the drug at the implant site appears to be more sufficient compared to systemic antibiotic therapy. In this study, we manufactured porous zirconia scaffolds using the foam replication method. To improve their overall bioactivity, they were coated with a calcium phosphate (CaP) layer containing antibiotic-loaded degradable polymer nanoparticles (NPs) obtained by the double emulsion method to achieve the antibacterial effect additionally. Encapsulation efficiency (EE) and drug loading (DL) were superior and were equal to 99.9 ± 0.1% and 9.1 ± 0.1%, respectively. Scaffolds were analyzed with scanning electron microscopy, and their porosity was evaluated. The porosity of investigated samples was over 90% and resembled the microstructure of spongy bone. Furthermore, we investigated the cytocompatibility with osteoblast-like MG-63 cells and antimicrobial properties with Staphylococcus aureus. Scaffolds coated with a CaP layer were found non-toxic for MG-63 cells. Moreover, the presence of antibiotic-loaded nanoparticles had no significant influence on cell viability, and the obtained scaffolds inhibited bacteria growth. Provided processes of fabrication of highly porous zirconia scaffolds and surface functionalization allow minimizing the risk of implant-related infection.
Collapse
Affiliation(s)
- Iwona Pudełko
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Anna Moskwik
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Konrad Kwiecień
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Sven Kriegseis
- Department of Ceramics and Refractory Materials, Institute of Mineral Engineering, RWTH Aachen University, Forckenbeckstraße 33, 52074 Aachen, Germany
| | - Małgorzata Krok-Borkowicz
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Karolina Schickle
- Department of Ceramics and Refractory Materials, Institute of Mineral Engineering, RWTH Aachen University, Forckenbeckstraße 33, 52074 Aachen, Germany
- Department of Restorative Dentistry and Endodontology, Justus-Liebig-University Giessen, Schlangenzahl 14, 35392 Gießen, Germany
| | - Dorota Ochońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Str., 31-121 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Str., 31-121 Kraków, Poland
| | - Jesus Gonzalez-Julian
- Department of Ceramics and Refractory Materials, Institute of Mineral Engineering, RWTH Aachen University, Forckenbeckstraße 33, 52074 Aachen, Germany
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| |
Collapse
|
7
|
Xie B, Zhao H, Zhang R, Ding Y, Gao C, He Y, Wang R. Bacteria-mimetic nanomedicine for targeted eradication of intracellular MRSA. J Control Release 2023; 357:371-378. [PMID: 37030543 DOI: 10.1016/j.jconrel.2023.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/10/2023]
Abstract
Drug-resistant infections caused by intracellular bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), which are often hidden inside macrophages, pose a significant threat to human health. Various nanomedicines have been developed to combat intracellular MRSA; however, their poor uptake and fast clearance from macrophages often result in insufficient enrichment of antibacterial agents intracellularly, leading to low antibacterial efficacy. Here, we developed bacterial membrane-coated mesoporous SiO2 nanoparticles (MSN) loaded with vancomycin (Van), a classic antibiotic. These nanoparticles can be specifically recognized and internalized by macrophages and self-aggregated into micron-sized MSN clusters based on cucurbit[7]uril-adamantane host-guest interactions, allowing for slow clearance and extended retention in infected macrophages. The acid-triggered, sustainable release of Van from MSN aggregates effectively killed MRSA in infected macrophages and significantly alleviated inflammation caused by intracellular bacterial infections both in vitro and in vivo. This work not only provides a practical solution to effectively treat drug-resistant intracellular infections but also offers new insights for the design and development of antibacterial nanomaterials.
Collapse
Affiliation(s)
- Beibei Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, PR China; Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, 401331 Shapingba, Chongqing, PR China
| | - Huichao Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, PR China
| | - Ruixue Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, 401331 Shapingba, Chongqing, PR China
| | - Yuanfu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, PR China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, PR China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, 401331 Shapingba, Chongqing, PR China.
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, PR China.
| |
Collapse
|
8
|
Duran S, Anwar J, Moin ST. Interaction of gentamicin and gentamicin-AOT with poly-(lactide-co-glycolate) in a drug delivery system - density functional theory calculations and molecular dynamics simulation. Biophys Chem 2023; 294:106958. [PMID: 36682087 DOI: 10.1016/j.bpc.2023.106958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Gentamicin is used to treat brucellosis, an infectious disease caused by the Brucella species but the drug faces several issues such as low efficacy, instability, low solubility, and toxicity. It also has a very short half-life, therefore, requiring frequent dosing. Consequently, several other antibiotics are also being used for the treatment of brucellosis as a single dose as well as in combination with other antibiotics but none of these therapies are satisfactory. Nanoparticles in particular polymer-based ones utilizing polymers that are biodegradable and biocompatible for instance PLGA are a method of choice to overcome such drug delivery issues and enable potential targeted delivery. The current study focuses on the evaluation of the structural and dynamical properties of a drug-polymer system consisting of gentamicin drug and PLGA polymer nanoparticles in the water representing a targeted drug delivery system for the treatment of brucellosis. For this purpose, all-atom molecular dynamics simulations were carried out on the drug-polymer systems in the absence and presence of the surfactant bis(2-Ethylhexyl) sulfosuccinate (AOT) to determine the structural and dynamical properties as well as the effect of the surfactant on these properties. We also investigated systems in which the polymer constituents were in the form of monomeric units toward decoupling the primary interactions of the monomer units and polymer effects. The simulation results explain the nature of the interactions between the drug and the polymer as well as transport properties in terms of drug diffusion coefficients, which characterize the molecular behavior of gentamicin-polymer nanoparticles for use in brucellosis.
Collapse
Affiliation(s)
- Shahid Duran
- Third World Center for Science and Technology, H.E.J. Research, Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Jamshed Anwar
- Department of Chemistry, Lancaster University, Lancaster LA1 4YW, United Kingdom.
| | - Syed Tarique Moin
- Third World Center for Science and Technology, H.E.J. Research, Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
9
|
Feng W, Chittò M, Moriarty TF, Li G, Wang X. Targeted Drug Delivery Systems for Eliminating Intracellular Bacteria. Macromol Biosci 2023; 23:e2200311. [PMID: 36189899 DOI: 10.1002/mabi.202200311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Indexed: 01/19/2023]
Abstract
The intracellular survival of pathogenic bacteria requires a range of survival strategies and virulence factors. These infections are a significant clinical challenge, wherein treatment frequently fails because of poor antibiotic penetration, stability, and retention in host cells. Drug delivery systems (DDSs) are promising tools to overcome these shortcomings and enhance the efficacy of antibiotic therapy. In this review, the classification and the mechanisms of intracellular bacterial persistence are elaborated. Furthermore, the systematic design strategies applied to DDSs to eliminate intracellular bacteria are also described, and the strategies used for internalization, intracellular activation, bacterial targeting, and immune enhancement are highlighted. Finally, this overview provides guidance for constructing functionalized DDSs to effectively eliminate intracellular bacteria.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,AO Research Institute Davos, Davos, 7270, Switzerland
| | - Marco Chittò
- AO Research Institute Davos, Davos, 7270, Switzerland
| | | | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
10
|
Kwiecień K, Pudełko I, Knap K, Reczyńska-Kolman K, Krok-Borkowicz M, Ochońska D, Brzychczy-Włoch M, Pamuła E. Insight in Superiority of the Hydrophobized Gentamycin in Terms of Antibiotics Delivery to Bone Tissue. Int J Mol Sci 2022; 23:ijms232012077. [PMID: 36292955 PMCID: PMC9603325 DOI: 10.3390/ijms232012077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone infections are a serious problem to cure, as systemic administration of antibiotics is not very effective due to poor bone vascularization. Therefore, many drug delivery systems are investigated to solve this problem. One of the potential solutions is the delivery of antibiotics from poly(L-actide-co-glycolide) (PLGA) nanoparticles suspended in the gellan gum injectable hydrogel. However, the loading capacity and release kinetics of the system based on hydrophilic drugs (e.g., gentamycin) and hydrophobic polymers (e.g., PLGA) may not always be satisfying. To solve this problem, we decided to use hydrophobized gentamycin obtained by ion-pairing with dioctyl sulfosuccinate sodium salt (AOT). Herein, we present a comparison of the PLGA nanoparticles loaded with hydrophobic or hydrophilic gentamycin and suspended in the hydrogel in terms of physicochemical properties, drug loading capacity, release profiles, cytocompatibility, and antibacterial properties. The results showed that hydrophobic gentamycin may be combined in different formulations with the hydrophilic one and is superior in terms of encapsulation efficiency, drug loading, release, and antibacterial efficacy with no negative effect on the NPs morphology or hydrogel features. However, the cytocompatibility of hydrophobic gentamycin might be lower, consequently more extensive study on its biological properties should be provided to evaluate a safe dose.
Collapse
Affiliation(s)
- Konrad Kwiecień
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
- Correspondence: (K.K.); (E.P.)
| | - Iwona Pudełko
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Karolina Knap
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Małgorzata Krok-Borkowicz
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Dorota Ochońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Kraków, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Kraków, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
- Correspondence: (K.K.); (E.P.)
| |
Collapse
|
11
|
Das M, Zandraa O, Mudenur C, Saha N, Sáha P, Mandal B, Katiyar V. Composite Scaffolds Based on Bacterial Cellulose for Wound Dressing Application. ACS APPLIED BIO MATERIALS 2022; 5:3722-3733. [DOI: 10.1021/acsabm.2c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Munmi Das
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Oyunchimeg Zandraa
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Chethana Mudenur
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Nabanita Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Petr Sáha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Bishnupada Mandal
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
12
|
Ma B, Hu G, Guo S, Zeng Q, Chen Y, Hwan Oh D, Jin Y, Fu X. Use of Peptide-Modified Nanoparticles as a Bacterial Cell Targeting Agent for Enhanced Antibacterial Activity and Other Biomedical Applications. Food Res Int 2022; 161:111638. [DOI: 10.1016/j.foodres.2022.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
|
13
|
Mubeen B, Ansar AN, Rasool R, Ullah I, Imam SS, Alshehri S, Ghoneim MM, Alzarea SI, Nadeem MS, Kazmi I. Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics. Antibiotics (Basel) 2021; 10:1473. [PMID: 34943685 PMCID: PMC8698349 DOI: 10.3390/antibiotics10121473] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of infectious diseases promises to be one of the leading mortality factors in the healthcare sector. Although several drugs are available on the market, newly found microorganisms carrying multidrug resistance (MDR) against which existing drugs cannot function effectively, giving rise to escalated antibiotic dosage therapies and the need to develop novel drugs, which require time, money, and manpower. Thus, the exploitation of antimicrobials has led to the production of MDR bacteria, and their prevalence and growth are a major concern. Novel approaches to prevent antimicrobial drug resistance are in practice. Nanotechnology-based innovation provides physicians and patients the opportunity to overcome the crisis of drug resistance. Nanoparticles have promising potential in the healthcare sector. Recently, nanoparticles have been designed to address pathogenic microorganisms. A multitude of processes that can vary with various traits, including size, morphology, electrical charge, and surface coatings, allow researchers to develop novel composite antimicrobial substances for use in different applications performing antimicrobial activities. The antimicrobial activity of inorganic and carbon-based nanoparticles can be applied to various research, medical, and industrial uses in the future and offer a solution to the crisis of antimicrobial resistance to traditional approaches. Metal-based nanoparticles have also been extensively studied for many biomedical applications. In addition to reduced size and selectivity for bacteria, metal-based nanoparticles have proven effective against pathogens listed as a priority, according to the World Health Organization (WHO). Moreover, antimicrobial studies of nanoparticles were carried out not only in vitro but in vivo as well in order to investigate their efficacy. In addition, nanomaterials provide numerous opportunities for infection prevention, diagnosis, treatment, and biofilm control. This study emphasizes the antimicrobial effects of nanoparticles and contrasts nanoparticles' with antibiotics' role in the fight against pathogenic microorganisms. Future prospects revolve around developing new strategies and products to prevent, control, and treat microbial infections in humans and other animals, including viral infections seen in the current pandemic scenarios.
Collapse
Affiliation(s)
- Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Aunza Nayab Ansar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Qi H, Shan P, Wang Y, Li P, Wang K, Yang L. Nanomedicines for the Efficient Treatment of Intracellular Bacteria: The "ART" Principle. Front Chem 2021; 9:775682. [PMID: 34746099 PMCID: PMC8563570 DOI: 10.3389/fchem.2021.775682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023] Open
Abstract
Infections induced by bacteria at present are a severe threat to public health. Compared with extracellular bacteria, intracellular bacteria are harder to get rid of and readily induce chronic inflammation as well as autoimmune disorders. As the development of new antibiotics becomes more and more difficult, the construction of new antibiotic dosage forms is one of the optimal choices for the elimination of intracellular bacteria, and, to date, various nanomedicines have been exploited. However, current nanomedicines have limited treatment efficiency for intracellular bacteria due to the multiple biological barriers. Here in this short review, we focus on systemically administered nanomedicines and divide the treatment of intracellular bacteria with nanomedicines into three steps: 1) Accumulation at the infection site; 2) Recognition of infected cells; 3) Targeting of intracellular bacteria. Furthermore, we summarize how nanomedicines are elaborately designed to achieve the "ART" principle and discuss the problems of experimental models construction. Through this review, we want to remind that the golden approach for the building of cell and animal experimental models should be established, and nanomedicines should be also endowed with the versatility to follow the "ART" principle, efficiently improving the treatment efficiency of nanomedicines for intracellular bacteria.
Collapse
Affiliation(s)
- Hongzhao Qi
- Department of Aging Research, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peipei Shan
- Department of Aging Research, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Department of Aging Research, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Department of Aging Research, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Department of Aging Research, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lijun Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
15
|
Tang Z, Liu S, Chen N, Luo M, Wu J, Zheng Y. Gold nanoclusters treat intracellular bacterial infections: Eliminating phagocytic pathogens and regulating cellular immune response. Colloids Surf B Biointerfaces 2021; 205:111899. [PMID: 34098363 DOI: 10.1016/j.colsurfb.2021.111899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
Intracellular bacterial infection is underlying many serious human disorders, leading to high morbidity and mortality. The development of safe and efficient therapeutic agents is the most effective solutions to combat intracellular bacterial infections. Recently, ultrasmall gold nanoclusters (AuNCs) have emerged as an innovative nanoantibiotics against multidrug-resistant bacterial infections due to their inherent antibacterial activity. However, the therapeutic effects of AuNCs on intracellular bacterial infections and their effects on host cells still remain unvisited. Here, we demonstrate the therapeutic potential of 4,6-diamino-2-mercaptopyrimidine-functionalized AuNCs (AuDAMP) for intracellular multidrug-resistant infections in a co-culture model of macrophages and methicillin-resistant Staphylococcus aureus (MRSA). The AuNCs were found to show a superior intracellular antibacterial capability, which can eliminate most of the MRSA phagocytosed by macrophages, and without exhibiting obvious cytotoxicity on host RAW 264.7 macrophages at tested concentrations. More importantly, treatment of AuDAMP exerts critical roles on enhancing the innate immune response to defend against pathogens invading inside the host cells and alleviating the bacterial infection-induced inflammatory response to avoid pyroptosis by up-regulating significantly xenophagy level in macrophages. Taken together, our results suggest that AuNCs hold great potential for the treatment of intracellular bacterial infections.
Collapse
Affiliation(s)
- Zonghao Tang
- Drug Discovery Research Center, Key Laboratory of Ministry of Education for Medical Electrophysiology and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Shuyun Liu
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ni Chen
- Drug Discovery Research Center, Key Laboratory of Ministry of Education for Medical Electrophysiology and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Mao Luo
- Drug Discovery Research Center, Key Laboratory of Ministry of Education for Medical Electrophysiology and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Jianbo Wu
- Drug Discovery Research Center, Key Laboratory of Ministry of Education for Medical Electrophysiology and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Youkun Zheng
- Drug Discovery Research Center, Key Laboratory of Ministry of Education for Medical Electrophysiology and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Zizovic I. Supercritical Fluid Applications in the Design of Novel Antimicrobial Materials. Molecules 2020; 25:E2491. [PMID: 32471270 PMCID: PMC7321342 DOI: 10.3390/molecules25112491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial resistance to antibiotics is one of the biggest problems in the modern world. The prevention of bacterial spreading from hospitals to the community and vice versa is an issue we have to deal with. This review presents a vast potential of contemporary high-pressure techniques in the design of materials with antimicrobial activity. Scientists from all over the world came up with ideas on how to exploit extraordinary properties of supercritical fluids in the production of advantageous materials in an environmentally friendly way. The review summarizes reported methods and results.
Collapse
Affiliation(s)
- Irena Zizovic
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
17
|
Ristroph KD, Prud'homme RK. Hydrophobic ion pairing: encapsulating small molecules, peptides, and proteins into nanocarriers. NANOSCALE ADVANCES 2019; 1:4207-4237. [PMID: 33442667 PMCID: PMC7771517 DOI: 10.1039/c9na00308h] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/18/2019] [Indexed: 05/26/2023]
Abstract
Hydrophobic ion pairing has emerged as a method to modulate the solubility of charged hydrophilic molecules ranging in class from small molecules to large enzymes. Charged hydrophilic molecules are ionically paired with oppositely-charged molecules that include hydrophobic moieties; the resulting uncharged complex is water-insoluble and will precipitate in aqueous media. Here we review one of the most prominent applications of hydrophobic ion pairing: efficient encapsulation of charged hydrophilic molecules into nano-scale delivery vehicles - nanoparticles or nanocarriers. Hydrophobic complexes are formed and then encapsulated using techniques developed for poorly-water-soluble therapeutics. With this approach, researchers have reported encapsulation efficiencies up to 100% and drug loadings up to 30%. This review covers the fundamentals of hydrophobic ion pairing, including nomenclature, drug eligibility for the technique, commonly-used counterions, and drug release of encapsulated ion paired complexes. We then focus on nanoformulation techniques used in concert with hydrophobic ion pairing and note strengths and weaknesses specific to each. The penultimate section bridges hydrophobic ion pairing with the related fields of polyelectrolyte coacervation and polyelectrolyte-surfactant complexation. We then discuss the state of the art and anticipated future challenges. The review ends with comprehensive tables of reported hydrophobic ion pairing and encapsulation from the literature.
Collapse
Affiliation(s)
- Kurt D. Ristroph
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonNew Jersey 08544USA
| | - Robert K. Prud'homme
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonNew Jersey 08544USA
| |
Collapse
|
18
|
Rotman SG, Thompson K, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O. Development of bone seeker-functionalised microspheres as a targeted local antibiotic delivery system for bone infections. J Orthop Translat 2019; 21:136-145. [PMID: 32309139 PMCID: PMC7152806 DOI: 10.1016/j.jot.2019.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/04/2019] [Accepted: 07/23/2019] [Indexed: 02/01/2023] Open
Abstract
Objective Bone infections are challenging to treat because of limited capability of systemic antibiotics to accumulate at the bone site. To enhance therapeutic action, systemic treatments are commonly combined with local antibiotic-loaded materials. Nevertheless, available drug carriers have undesirable properties, including inappropriate antibiotic release profiles and nonbiodegradability. To alleviate such limitations, we aim to develop a drug delivery system (DDS) for local administration that can interact strongly with bone mineral, releasing antibiotics at the infected bone site. Methods Biodegradable polyesters (poly (ε-caprolactone) or poly (D,l-lactic acid)) were selected to fabricate antibiotic-loaded microspheres by oil in water emulsion. Antibiotic release and antimicrobial effects on Staphylococcus aureus were assessed by zone of inhibition measurements. Microsphere bone affinity was increased by functionalising the bisphosphonate drug alendronate to the microsphere surface using carbodiimide chemistry. Effect of bone targeting microspheres on bone homeostasis was tested by looking at the resorption potential of osteoclasts exposed to the developed microspheres. Results In vitro, the antibiotic release profile from the microspheres was shown to be dependent on the polymer used and the microsphere preparation method. Mineral binding assays revealed that microsphere surface modification with alendronate significantly enhanced interaction with bone-like materials. Additionally, alendronate functionalised microspheres did not differentially affect osteoclast mineral resorption in vitro, compared with nonfunctionalised microspheres. Conclusion We report the development and characterisation of a DDS which can release antibiotics in a sustained manner. Surface-grafted alendronate groups enhanced bone affinity of the microsphere construct, resulting in a bone targeting DDS. The Translational Potential of this Article The DDS presented can be loaded with hydrophobic antibiotics, representing a potential, versatile and biodegradable candidate to locally treat bone infection.
Collapse
Affiliation(s)
- Stijn G Rotman
- Musculoskeletal Regeneration Program, AO Research Institute Davos, Davos, Switzerland.,Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Keith Thompson
- Musculoskeletal Regeneration Program, AO Research Institute Davos, Davos, Switzerland
| | - Dirk W Grijpma
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Robert G Richards
- Musculoskeletal Regeneration Program, AO Research Institute Davos, Davos, Switzerland
| | - Thomas F Moriarty
- Musculoskeletal Regeneration Program, AO Research Institute Davos, Davos, Switzerland
| | - David Eglin
- Musculoskeletal Regeneration Program, AO Research Institute Davos, Davos, Switzerland
| | - Olivier Guillaume
- Musculoskeletal Regeneration Program, AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
19
|
Formulation of Antimicrobial Tobramycin Loaded PLGA Nanoparticles via Complexation with AOT. J Funct Biomater 2019; 10:jfb10020026. [PMID: 31200522 PMCID: PMC6617385 DOI: 10.3390/jfb10020026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 01/01/2023] Open
Abstract
Tobramycin is a potent antimicrobial aminoglycoside and its effective delivery by encapsulation within nanoparticle carriers could increase its activity against infections through a combination of sustained release and enhanced uptake. Effective antimicrobial therapy against a clinically relevant model bacteria (Pseudomonas aeruginosa) requires sufficient levels of therapeutic drug to maintain a drug concentration above the microbial inhibitory concentration (MIC) of the bacteria. Previous studies have shown that loading of aminoglycoside drugs in poly(lactic-co-glycolic) acid (PLGA)-based delivery systems is generally poor due to weak interactions between the drug and the polymer. The formation of complexes of tobramycin with dioctylsulfosuccinate (AOT) allows the effective loading of the drug in PLGA-nanoparticles and such nanoparticles can effectively deliver the antimicrobial aminoglycoside with retention of tobramycin antibacterial function.
Collapse
|
20
|
Jiang Y, Hu X, Zhang J, Jin G, Luan Y. Chlorambucil prodrug-participating catanionic aggregates for sustained drug release and improved antitumour activity. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Nanotherapeutic provides dose sparing and improved antimicrobial activity against Brucella melitensis infections. J Control Release 2019; 294:288-297. [DOI: 10.1016/j.jconrel.2018.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/19/2022]
|
22
|
Aspherical and Spherical InvA497-Functionalized Nanocarriers for Intracellular Delivery of Anti-Infective Agents. Pharm Res 2018; 36:22. [PMID: 30519925 PMCID: PMC6290668 DOI: 10.1007/s11095-018-2521-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/08/2018] [Indexed: 01/01/2023]
Abstract
Purpose The objective of this work was to evaluate the potential of polymeric spherical and aspherical invasive nanocarriers, loaded with antibiotic, to access and treat intracellular bacterial infections. Methods Aspherical nanocarriers were prepared by stretching of spherical precursors, and both aspherical and spherical nanocarriers were surface-functionalized with the invasive protein InvA497. The relative uptake of nanocarriers into HEp-2 epithelial cells was then assessed. Nanocarriers were subsequently loaded with a preparation of the non-permeable antibiotic gentamicin, and tested for their ability to treat HEp-2 cells infected with the enteroinvasive bacterium Shigella flexneri. Results InvA497-functionalized nanocarriers of both spherical and aspherical shape showed a significantly improved rate and extent of uptake into HEp-2 cells in comparison to non-functionalized nanocarriers. Functionalized and antibiotic-loaded nanocarriers demonstrated a dose dependent killing of intracellular S. flexneri. A slight but significant enhancement of intracellular bacterial killing was also observed with aspherical as compared to spherical functionalized nanocarriers at the highest tested concentration. Conclusions InvA497-functionalized, polymer-based nanocarriers were able to efficiently deliver a non-permeable antibiotic across host cell membranes to affect killing of intracellular bacteria. Functionalized nanocarriers with an aspherical shape showed an interesting future potential for intracellular infection therapy. Electronic supplementary material The online version of this article (10.1007/s11095-018-2521-3) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Jiang L, Lin J, Taggart CC, Bengoechea JA, Scott CJ. Nanodelivery strategies for the treatment of multidrug-resistant bacterial infections. JOURNAL OF INTERDISCIPLINARY NANOMEDICINE 2018; 3:111-121. [PMID: 30443410 PMCID: PMC6220773 DOI: 10.1002/jin2.48] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/27/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
Abstract
One of the most important health concerns in society is the development of nosocomial infections caused by multidrug-resistant pathogens. The purpose of this review is to discuss the issues in current antibiotic therapies and the ongoing progress of developing new strategies for the treatment of ESKAPE pathogen infections, which is acronymized for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species. We not only examine the current issues caused by multidrug resistance but we also examine the barrier effects such as biofilm and intracellular localization exploited by these pathogens to avoid antibiotic exposure. Recent innovations in nanomedicine approaches and antibody antibiotic conjugates are reviewed as potential novel approaches for the treatment of bacterial infection, which ultimately may expand the useful life span of current antibiotics.
Collapse
Affiliation(s)
- Lai Jiang
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Jia Lin
- School of PharmacyQueen's University BelfastBelfastUK
| | - Clifford C. Taggart
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - José A. Bengoechea
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Christopher J. Scott
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
24
|
Unamuno X, Imbuluzqueta E, Salles F, Horcajada P, Blanco-Prieto MJ. Biocompatible porous metal-organic framework nanoparticles based on Fe or Zr for gentamicin vectorization. Eur J Pharm Biopharm 2018; 132:11-18. [PMID: 30179739 DOI: 10.1016/j.ejpb.2018.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/23/2018] [Accepted: 08/28/2018] [Indexed: 01/06/2023]
Abstract
Due to their high porosity and versatile composition and structure, nanoscaled Metal-Organic Frameworks (nanoMOFs) have been recently proposed as novel drug delivery systems, and have been demonstrated to have important capacities and potential for controlled release of different active ingredients. Gentamicin (GM; a broad spectrum aminoglycoside antibiotic indicated in bacterial septicemia therapy) has great therapeutic interest, but the associated bioavailability and toxicity drawbacks accompanying high doses and repeated administration of this free drug make its encapsulation inside new nanocarriers necessary. GM encapsulation within two different porous biofriendly Fe and Zr-carboxylates nanoMOFs was performed by a simple impregnation method, with full characterization of the resulting GM-containing solid using a large panel of techniques (X ray powder diffraction-XRPD, Fourier transform infrared spectroscopy-FTIR, thermogravimetric analysis-TGA, N2 sorption, scanning electron microscopy-SEM, dynamic light scattering-DLS, ζ-potential, fluorescence spectroscopy and molecular simulations). High reproducible encapsulation rates, reaching 600 µg of GM per·mg of formulation, were obtained using the biocompatible mesoporous iron(III) trimesate nanoparticles (NPs) MIL-100(Fe) (MIL: Materials from Institut Lavoisier). In vitro GM delivery studies were also carried out using different oral and intravenous simulated physiological conditions, with complete antibiotic release within 8 h when using protein free media, but lower release rates in the presence of proteins. Furthermore, in vitro toxicity of GM-containing MIL-100(Fe) NPs was investigated on two different cell lines: a monocyte from leukemia (THP-1) and adherent fibroblastoid cells (NIH/3T3). These nanoMOFs had a low cytotoxic profile with IC50 values up to 1 mg·mL-1, ensuring adequate cell proliferation after 24 h. Finally, antibacterial activity studies were carried out on two Gram-positive bacteria and one Gram-negative bacterium: S. aureus, S. epidermidis and P. aeruginosa, respectively. GM-loaded MIL-100(Fe) NPs exhibited the same activity as free GM, confirming that the antibiotic activity of the released GM was conserved.
Collapse
Affiliation(s)
- X Unamuno
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Institute Lavoisier, CNRS UMR 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - E Imbuluzqueta
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - F Salles
- ICGM-UMR5253, CNRS-UM-ENSCM-Equipe AIME, Université Montpellier, 2 Place Eugène Bataillon-CC 1502, 34095 Montpellier CEDEX 5, France
| | - P Horcajada
- Institute Lavoisier, CNRS UMR 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France; IMDEA Energy. Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain.
| | - M J Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, Irunlarrea 3, Pamplona, Spain.
| |
Collapse
|
25
|
Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review. Adv Drug Deliv Rev 2018; 131:22-78. [PMID: 30026127 DOI: 10.1016/j.addr.2018.07.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
Low drug bioavailability, which is mostly a result of poor aqueous drug solubilities and of inadequate drug dissolution rates, is one of the most significant challenges that pharmaceutical companies are currently facing, since this may limit the therapeutic efficacy of marketed drugs, or even result in the discard of potential highly effective drug candidates during developmental stages. Two of the main approaches that have been implemented in recent years to overcome poor drug solubility/dissolution issues have frequently involved drug particle size reduction (i.e., micronization/nanonization) and/or the modification of some of the physicochemical and structural properties of poorly water soluble drugs. A large number of particle engineering methodologies have been developed, tested, and applied in the synthesis and control of particle size/particle-size distributions, crystallinities, and polymorphic purities of drug micro- and nano-particles/crystals. In recent years pharmaceutical processing using supercritical fluids (SCF), in general, and supercritical carbon dioxide (scCO2), in particular, have attracted a great attention from the pharmaceutical industry. This is mostly due to the several well-known advantageous technical features of these processes, as well as to other increasingly important subjects for the pharmaceutical industry, namely their "green", sustainable, safe and "environmentally-friendly" intrinsic characteristics. In this work, it is presented a comprehensive state-of-the-art review on scCO2-based processes focused on the formation and on the control of the physicochemical, structural and morphological properties of amorphous/crystalline pure drug nanoparticles. It is presented and discussed the most relevant scCO2, scCO2-based fluids and drug physicochemical properties that are pertinent for the development of successful pharmaceutical products, namely those that are critical in the selection of an adequate scCO2-based method to produce pure drug nanoparticles/nanocrystals. scCO2-based nanoparticle formation methodologies are classified in three main families, and in terms of the most important role played by scCO2 in particle formation processes: as a solvent; as an antisolvent or a co-antisolvent; and as a "high mobility" additive (a solute, a co-solute, or a co-solvent). Specific particle formation methods belonging to each one of these families are presented, discussed and compared. Some selected amorphous/crystalline drug nanoparticles that were prepared by these methods are compiled and presented, namely those studied in the last 10-15 years. A special emphasis is given to the formation of drug cocrystals. It is also discussed the fundamental knowledge and the main mechanisms in which the scCO2-based particle formation methods rely on, as well as the current status and urgent needs in terms of reliable experimental data and of robust modeling approaches. Other addressed and discussed topics include the currently available and the most adequate physicochemical, morphological and biological characterization methods required for pure drug nanoparticles/nanocrystals, some of the current nanometrology and regulatory issues associated to the use of these methods, as well as some scale-up, post-processing and pharmaceutical regulatory subjects related to the industrial implementation of these scCO2-based processes. Finally, it is also discussed the current status of these techniques, as well as their future major perspectives and opportunities for industrial implementation in the upcoming years.
Collapse
|
26
|
Chereddy KK, Vandermeulen G, Préat V. PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound Repair Regen 2018; 24:223-36. [PMID: 26749322 DOI: 10.1111/wrr.12404] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/19/2015] [Indexed: 01/10/2023]
Abstract
Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned.
Collapse
Affiliation(s)
- Kiran Kumar Chereddy
- Catholic University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Gaëlle Vandermeulen
- Catholic University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Véronique Préat
- Catholic University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| |
Collapse
|
27
|
Wright L, Rao S, Thomas N, Boulos RA, Prestidge CA. Ramizol ® encapsulation into extended release PLGA micro- and nanoparticle systems for subcutaneous and intramuscular administration: in vitro and in vivo evaluation. Drug Dev Ind Pharm 2018; 44:1451-1457. [PMID: 29619851 DOI: 10.1080/03639045.2018.1459676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Novel antibiotic Ramizol® is advancing to clinical trials for the treatment of gastrointestinal Clostridium difficile associated disease. Despite this, previous studies have shown a rapid plasma clearance upon intravenous administration and low oral bioavailability indicating pure drug is unsuitable for systemic infection treatment following oral dosing. The current study aims to investigate the development of poly-lactic-(co-glycolic) acid (PLGA) particles to overcome this limitation and increase the systemic half-life following subcutaneous and intramuscular dosing. SIGNIFICANCE The development of new antibiotic treatments will help in combatting the rising incidence of antimicrobial resistance. METHODS Ramizol® was encapsulated into PLGA nano and microparticles using nanoprecipitation and emulsification solvent evaporation techniques. Formulations were analyzed for particle size, loading level and encapsulation efficiency as well as in vitro drug release profiles. Final formulation was advanced to in vivo pharmacokinetic studies in Sprague-Dawley rats. RESULTS Formulation technique showed major influence on particle size and loading levels with optimal loading of 9.4% and encapsulation efficiency of 92.06%, observed using emulsification solvent evaporation. Differences in formulation technique were also linked with subsequent differences in release profiles. Pharmacokinetic studies in Sprague-Dawley rats confirmed extended absorption and enhanced bioavailability following subcutaneous and intramuscular dosing with up to an 8-fold increase in Tmax and T1/2 when compared to the oral and IV routes. CONCLUSIONS Subcutaneous and intramuscular dosing of PLGA particles successfully increased systemic half-life and bioavailability of Ramizol®. This formulation will allow further development of Ramizol® for systemic infection eradication.
Collapse
Affiliation(s)
- Leah Wright
- a School of Pharmacy and Medical Science , University of South Australia , Adelaide , Australia.,b ARC CoE in Convergent Bio-Nano Science and Technology , Parkville , Australia
| | - Shasha Rao
- a School of Pharmacy and Medical Science , University of South Australia , Adelaide , Australia
| | - Nicky Thomas
- a School of Pharmacy and Medical Science , University of South Australia , Adelaide , Australia.,b ARC CoE in Convergent Bio-Nano Science and Technology , Parkville , Australia
| | - Ramiz A Boulos
- c Chemical & Physical Sciences , Flinders University , Bedford Park , Australia.,d Boulos & Cooper Pharmaceuticals Pty Ltd , Balcatta , Australia
| | - Clive A Prestidge
- a School of Pharmacy and Medical Science , University of South Australia , Adelaide , Australia.,b ARC CoE in Convergent Bio-Nano Science and Technology , Parkville , Australia
| |
Collapse
|
28
|
Mhango EKG, Kalhapure RS, Jadhav M, Sonawane SJ, Mocktar C, Vepuri S, Soliman M, Govender T. Preparation and Optimization of Meropenem-Loaded Solid Lipid Nanoparticles: In Vitro Evaluation and Molecular Modeling. AAPS PharmSciTech 2017; 18:2011-2025. [PMID: 27933586 DOI: 10.1208/s12249-016-0675-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/18/2016] [Indexed: 12/20/2022] Open
Abstract
Encapsulation of antibiotics into nanocarriers has the potential to overcome resistance and disadvantages associated with conventional dosage forms as well as increase half-life of an antibiotic. Encapsulation of meropenem (MRPN) into solid lipid nanoparticles (SLNs) remains unexplored among the limited work reported on nanoformulation incorporating MRPN. The study aimed to use an experimental design, to optimize MRPN-loaded SLNs, and to undertake in vitro and in silico evaluations. A Box-Behnken design (BBD) was used to optimize manufacturing conditions of glycerol monostearate (GMS) SLNs loaded with MRPN. The SLNs were prepared using hot homogenization and ultrasonication method. Optimized MRPN-SLNs showed particle size, zeta potential, and entrapment efficiency of 112.61 ± 0.66 nm, -20.43 ± 0.99 mV, and 89.94 ± 1.26%, respectively. The morphology of the SLNs revealed nearly spherical shaped particles. Differential scanning calorimetry and X-ray diffraction analysis showed that meropenem was present in amorphous form in the SLNs. Controlled in vitro MRPN release from SLNs was achieved and followed the Korsmeyer-Peppas model (R 2 = 0.9679). Prolonged in vitro antibacterial activity against Escherichia coli was also observed. The molecular modeling showed that both hydrophobic interactions and hydrogen bonding led to a stable MRPN-GMS complex formation, which was confirmed by its low heat of formation (-5536.13 kcal/mol). This stable complex could have contributed to the controlled release of MRPN from the SLNs and subsequent sustained antibacterial activity.
Collapse
|
29
|
Szczeblinska J, Fijalkowski K, Kohn J, El Fray M. Antibiotic loaded microspheres as antimicrobial delivery systems for medical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:69-75. [DOI: 10.1016/j.msec.2017.03.215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/03/2017] [Indexed: 01/17/2023]
|
30
|
Kankala RK, Zhang YS, Wang SB, Lee CH, Chen AZ. Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications. Adv Healthc Mater 2017; 6:10.1002/adhm.201700433. [PMID: 28752598 PMCID: PMC5849475 DOI: 10.1002/adhm.201700433] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/12/2017] [Indexed: 12/18/2022]
Abstract
During the past few decades, supercritical fluid (SCF) has emerged as an effective alternative for many traditional pharmaceutical manufacturing processes. Operating active pharmaceutical ingredients (APIs) alone or in combination with various biodegradable polymeric carriers in high-pressure conditions provides enhanced features with respect to their physical properties such as bioavailability enhancement, is of relevance to the application of SCF in the pharmaceutical industry. Herein, recent advances in drug delivery systems manufactured using the SCF technology are reviewed. We provide a brief description of the history, principle, and various preparation methods involved in the SCF technology. Next, we aim to give a brief overview, which provides an emphasis and discussion of recent reports using supercritical carbon dioxide (SC-CO2 ) for fabrication of polymeric carriers, for applications in areas related to drug delivery, tissue engineering, bio-imaging, and other biomedical applications. We finally summarize with perspectives.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, P. R. China
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Ai-Zheng Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, P. R. China
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
31
|
Gupta M, Aina A, Boukari Y, Doughty S, Morris A, Billa N. Effect of volume of porogens on the porosity of PLGA scaffolds in pH-controlled environment. Pharm Dev Technol 2017; 23:207-210. [DOI: 10.1080/10837450.2017.1304415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Manish Gupta
- Drug Delivery Laboratory, School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Malaysia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Adeyinka Aina
- Drug Delivery Laboratory, School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Malaysia
- Pharmaceutical Manufacturing Technology Centre, University of Limerick, Limerick, Ireland
| | - Yamina Boukari
- Drug Delivery Laboratory, School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Stephen Doughty
- Drug Delivery Laboratory, School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Malaysia
- Penang Medical College, George Town, Malaysia
| | - Andrew Morris
- Drug Delivery Laboratory, School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Nashiru Billa
- Drug Delivery Laboratory, School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Malaysia
| |
Collapse
|
32
|
Mezzomo N, Oliveira DA, Comim SRR, Ferreira SRS. ENCAPSULATION OF EXTRACT FROM WINERY INDUSTRY RESIDUE USING THE SUPERCRITICAL ANTI-SOLVENT TECHNIQUE. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1590/0104-6632.20160333s20150051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- N. Mezzomo
- Universidade Federal de Santa Catarina, Brazil; Catarinense Federal Institute, Brazil
| | | | | | | |
Collapse
|
33
|
Sabaeifard P, Abdi-Ali A, Soudi MR, Gamazo C, Irache JM. Amikacin loaded PLGA nanoparticles against Pseudomonas aeruginosa. Eur J Pharm Sci 2016; 93:392-8. [PMID: 27575877 DOI: 10.1016/j.ejps.2016.08.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 01/19/2023]
Abstract
Amikacin is a very effective aminoglycoside antibiotic but according to its high toxicity, the use of this antibiotic has been limited. The aim of this study was to formulate and characterize amikacin loaded PLGA nanoparticles. Nanoparticles were synthetized using a solid-in-oil-in-water emulsion technique with different ratio of PLGA 50:50 (Resomer 502H) to drug (100:3.5, 80:3.5 and 60:3.5), two different concentrations of stabilizer (pluronic F68) (0.5% or 1%) and varied g forces to recover the final products. The most efficient formulation based on drug loading (26.0±1.3μg/mg nanoparticle) and encapsulation efficiency (76.8±3.8%) was the one obtained with 100:3.5 PLGA:drug and 0.5% luronic F68, recovered by 20,000×g for 20min. Drug release kinetic study indicated that about 50% of the encapsulated drug was released during the first hour of incubation in phospahte buffer, pH7.4, 37°C, 120rpm. Using different cell viability/cytotoxicity assays, the optimized formulation showed no toxicity against RAW macrophages after 2 and 24h of exposure. Furthermore, released drug was active and maintained its bactericidal activity against Pseudomonas aeruginosa in vitro. These results support the effective utilization of the PLGA nanoparticle formulation for amikacin in further in vivo studies.
Collapse
Affiliation(s)
- Parastoo Sabaeifard
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain; Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Ahya Abdi-Ali
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mohammad Reza Soudi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Carlos Gamazo
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain.
| | - Juan Manuel Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| |
Collapse
|
34
|
Kaur R, Sanan R, Mahajan RK. Probing interactions of neurotransmitters with twin tailed anionic surfactant: A detailed physicochemical study. J Colloid Interface Sci 2016; 469:38-46. [PMID: 26866888 DOI: 10.1016/j.jcis.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 11/24/2022]
Abstract
Keeping in view the role of neurotransmitters (NTs) in central nervous system diseases and in controlling various physiological processes, present study is aimed to study the binding of neurotransmitters (NTs) such as norepinephrine hydrochloride (NE) and serotonin hydrochloride (5-HT) with twin tailed surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT). Spectroscopic and electrochemical measurements combined with microcalorimetric measurements were used to characterize the interactions between AOT and NTs. Meteoric modifications to emission profile and absorption spectra of NTs upon addition of AOT are indicative of the binding of NTs with AOT. Distinct interactional states such as formation of ion-pairs, induced and regular micelles with adsorbed NTs molecules have been observed in different concentration regimes of AOT. The formation of ion-pairs from oppositely charged NTs and AOT is confirmed by the reduced absorbance, quenched fluorescence intensity and decrease in peak current (ipa) as well as shifts in peak potential (Epa) values. The stoichiometry and formation of the NTs-AOT complexes has been judged and the extent of interactions is quantitatively discussed in terms of binding constant (K) and free energy of binding (ΔG°). The enthalpy (ΔH°mic) and free energy of micellization (ΔG°mic) for AOT in presence and absence of NTs are determined from the enthalpy curves.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Reshu Sanan
- P.G. Department of Chemistry, Khalsa College, Amritsar 143001, India
| | | |
Collapse
|
35
|
Aina A, Gupta M, Boukari Y, Morris A, Billa N, Doughty S. Monitoring model drug microencapsulation in PLGA scaffolds using X-ray powder diffraction. Saudi Pharm J 2016; 24:227-31. [PMID: 27013917 PMCID: PMC4792904 DOI: 10.1016/j.jsps.2015.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/15/2015] [Indexed: 11/29/2022] Open
Abstract
The microencapsulation of three model drugs; metronidazole, paracetamol and sulphapyridine into Poly (dl-Lactide-Co-Glycolide) (PLGA) scaffolds were probed using X-ray Powder Diffraction (XRPD). Changes in the diffraction patterns of the PLGA scaffolds after encapsulation was suggestive of a chemical interaction between the pure drugs and the scaffolds and not a physical intermixture.
Collapse
Affiliation(s)
- Adeyinka Aina
- Department of Mathematics and Natural Science, American University of Iraq, Kirkuk Main Road, Raparin, Sulaimani, Iraq
- Drug Delivery Laboratory, School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Manish Gupta
- Drug Delivery Laboratory, School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
- School of Pharmacy, Monash University Malaysia Campus, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yamina Boukari
- Drug Delivery Laboratory, School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Andrew Morris
- Drug Delivery Laboratory, School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Nashiru Billa
- Drug Delivery Laboratory, School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Stephen Doughty
- Drug Delivery Laboratory, School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
36
|
Auranofin-loaded nanoparticles as a new therapeutic tool to fight streptococcal infections. Sci Rep 2016; 6:19525. [PMID: 26776881 PMCID: PMC4726118 DOI: 10.1038/srep19525] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/14/2015] [Indexed: 02/08/2023] Open
Abstract
Drug-loaded nanoparticles (NPs) can improve infection treatment by ensuring drug concentration at the right place within the therapeutic window. Poly(lactic-co-glycolic acid) (PLGA) NPs are able to enhance drug localization in target site and to sustainably release the entrapped molecule, reducing the secondary effects caused by systemic antibiotic administration. We have loaded auranofin, a gold compound traditionally used for treatment of rheumatoid arthritis, into PLGA NPs and their efficiency as antibacterial agent against two Gram-positive pathogens, Streptococcus pneumoniae and Streptococcus pyogenes was evaluated. Auranofin-PLGA NPs showed a strong bactericidal effect as cultures of multiresistant pneumococcal strains were practically sterilized after 6 h of treatment with such auranofin-NPs at 0.25 μM. Moreover, this potent bactericidal effect was also observed in S. pneumoniae and S. pyogenes biofilms, where the same concentration of auranofin-NPs was capable of decreasing the bacterial population about 4 logs more than free auranofin. These results were validated using a zebrafish embryo model demonstrating that treatment with auranofin loaded into NPs achieved a noticeable survival against pneumococcal infections. All these approaches displayed a clear superiority of loaded auranofin PLGA nanocarriers compared to free administration of the drug, which supports their potential application for the treatment of streptococcal infections.
Collapse
|
37
|
Marć MA, Domínguez-Álvarez E, Gamazo C. Nucleic acid vaccination strategies against infectious diseases. Expert Opin Drug Deliv 2015; 12:1851-65. [PMID: 26365499 DOI: 10.1517/17425247.2015.1077559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Gene vaccines are an interesting and emerging alternative for the prevention of infectious diseases, as well as in the treatment of other pathologies including cancer, allergies, autoimmune diseases, or even drug dependencies. When applied to the target organism, these vaccines induce the expression of encoded antigens and elicit the corresponding immune response, with the potential ability of being able to induce antibody-, helper T cell-, and cytotoxic T cell-mediated immune responses. AREAS COVERED Special attention is paid to the variety of adjuvants that may be co-administered to enhance and/or to modulate immune responses, and to the methods of delivery. Finally, this article reviews the efficacy data of gene vaccines against infectious diseases released from current clinical trials. EXPERT OPINION Taken together, this approach will have a major impact on future strategies for the prevention of infectious diseases. Better-designed nucleic acid constructs, novel delivery technologies, as well as the clarification of the mechanisms for antigen presentation will improve the potential applications of this vaccination strategy against microbial pathogens.
Collapse
Affiliation(s)
- Małgorzata Anna Marć
- a 1 Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry , Medyczna 9, PL 30-688 Cracow, Poland
| | - Enrique Domínguez-Álvarez
- b 2 Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs , Medyczna 9, PL 30-688 Cracow, Poland
| | - Carlos Gamazo
- c 3 University of Navarra, Institute of Tropical Health (ISTUN), Department of Microbiology and Parasitology , Irunlarrea 1, 31008 Pamplona, Spain
| |
Collapse
|
38
|
ter Boo GJA, Grijpma DW, Moriarty TF, Richards RG, Eglin D. Antimicrobial delivery systems for local infection prophylaxis in orthopedic- and trauma surgery. Biomaterials 2015; 52:113-25. [PMID: 25818418 DOI: 10.1016/j.biomaterials.2015.02.020] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/26/2015] [Accepted: 02/01/2015] [Indexed: 02/08/2023]
Abstract
Infectious complications occur in a minor but significant portion of the patients undergoing joint replacement surgery or fracture fixation, particularly those with severe open fractures, those undergoing revision arthroplasty or those at elevated risk because of poor health status. Once established, infections are difficult to eradicate, especially in the case of bacterial biofilm formation on implanted hardware. Local antibiotic carriers offer the prospect of controlled delivery of antibiotics directly in target tissues and implant, without inducing toxicity in non-target organs. Polymeric carriers have been developed to optimize the release and targeting of antibiotics. Passive polymeric carriers release antibiotics by diffusion and/or upon degradation, while active polymeric carriers release their antibiotics upon stimuli provided by bacterial pathogens. Additionally, some polymeric carriers gelate in-situ in response to physiological stimuli to form a depot for antibiotic release. As antibiotic resistance has become a major issue, also other anti-infectives such as silver and antimicrobial peptides have been incorporated in research. Currently, several antibiotic loaded biomaterials for local infection prophylaxis are available for use in the clinic. Here we review their advantages and limitations and provide an overview of new materials emerging that may overcome these limitations.
Collapse
Affiliation(s)
- Gert-Jan A ter Boo
- AO Research Institute Davos, Clavadelerstrasse 8, CH7270 Davos, Switzerland; Department of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Dirk W Grijpma
- Department of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Center Groningen, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands
| | - Thomas F Moriarty
- AO Research Institute Davos, Clavadelerstrasse 8, CH7270 Davos, Switzerland
| | - Robert G Richards
- AO Research Institute Davos, Clavadelerstrasse 8, CH7270 Davos, Switzerland
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, CH7270 Davos, Switzerland.
| |
Collapse
|
39
|
Abed N, Couvreur P. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents 2014; 43:485-96. [PMID: 24721232 DOI: 10.1016/j.ijantimicag.2014.02.009] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
In the field of antibiotherapy, intracellular infections remain difficult to eradicate mainly due to the poor intracellular penetration of most of the commonly used antibiotics. Bacteria have quickly understood that their intracellular localisation allows them to be protected from the host immune system, but also from the action of antimicrobial agents. In addition, in most cases pathogens nestle in professional phagocytic cells, and can even use them as a 'Trojan horse' to induce a secondary site of infection thereby causing persistent or recurrent infections. Thus, new strategies had to be considered in order to counteract these problems. Amongst them, nanocarriers loaded with antibiotics represent a promising approach. Nowadays, it is possible to encapsulate, incorporate or even conjugate biologically active molecules into different families of nanocarriers such as liposomes or nanoparticles in order to deliver antibiotics intracellularly and hence to treat infections. This review gives an overview of the variety of nanocarriers developed to deliver antibiotics directly into infected cells.
Collapse
Affiliation(s)
- Nadia Abed
- Faculté de Pharmacie, Institut Galien UMR CNRS 8612, Université Paris-Sud XI, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Patrick Couvreur
- Faculté de Pharmacie, Institut Galien UMR CNRS 8612, Université Paris-Sud XI, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France.
| |
Collapse
|
40
|
Imbuluzqueta E, Gamazo C, Lana H, Campanero MÁ, Salas D, Gil AG, Elizondo E, Ventosa N, Veciana J, Blanco-Prieto MJ. Hydrophobic gentamicin-loaded nanoparticles are effective against Brucella melitensis infection in mice. Antimicrob Agents Chemother 2013; 57:3326-33. [PMID: 23650167 PMCID: PMC3697350 DOI: 10.1128/aac.00378-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/27/2013] [Indexed: 12/17/2022] Open
Abstract
The clinical management of human brucellosis is still challenging and demands in vitro active antibiotics capable of targeting the pathogen-harboring intracellular compartments. A sustained release of the antibiotic at the site of infection would make it possible to reduce the number of required doses and thus the treatment-associated toxicity. In this study, a hydrophobically modified gentamicin, gentamicin-AOT [AOT is bis(2-ethylhexyl) sulfosuccinate sodium salt], was either microstructured or encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The efficacy of the formulations developed was studied both in vitro and in vivo. Gentamicin formulations reduced Brucella infection in experimentally infected THP-1 monocytes (>2-log10 unit reduction) when using clinically relevant concentrations (18 mg/liter). Moreover, in vivo studies demonstrated that gentamicin-AOT-loaded nanoparticles efficiently targeted the drug both to the liver and the spleen and maintained an antibiotic therapeutic concentration for up to 4 days in both organs. This resulted in an improved efficacy of the antibiotic in experimentally infected mice. Thus, while 14 doses of free gentamicin did not alter the course of the infection, only 4 doses of gentamicin-AOT-loaded nanoparticles reduced the splenic infection by 3.23 logs and eliminated it from 50% of the infected mice with no evidence of adverse toxic effects. These results strongly suggest that PLGA nanoparticles containing chemically modified hydrophobic gentamicin may be a promising alternative for the treatment of human brucellosis.
Collapse
Affiliation(s)
- Edurne Imbuluzqueta
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Carlos Gamazo
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - Hugo Lana
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | | | - David Salas
- Department of Nutritional Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Spain
| | - Ana Gloria Gil
- Department of Nutritional Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Spain
| | - Elisa Elizondo
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Spain
| | - Nora Ventosa
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Spain
| | - María J. Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| |
Collapse
|
41
|
Tosi G, Ruozi B, Belletti D, Vilella A, Zoli M, Vandelli MA, Forni F. Brain-targeted polymeric nanoparticles: in vivo evidence of different routes of administration in rodents. Nanomedicine (Lond) 2013; 8:1373-83. [PMID: 23565661 DOI: 10.2217/nnm.12.172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED AIMS, MATERIALS & METHODS: The capacity of polymeric nanoparticles (NPs) to reach the target regardless of the administration route is a neglected field of investigation in pharmaceutical nanotechnology. Therefore, after having demonstrated in previous studies that glycopeptide-engineered NPs (g7-NPs) were able to reach the brain after intravenous administrations in rodents, this article aims to evaluate whether they can reach the CNS when administered by different routes. RESULTS & CONCLUSIONS The confocal microphotographs on murine brain sections showed the capability of g7-NPs to reach the target also after intraperitoneal, intranasal and oral administrations. This could open new vistas for the future application of g7-NPs in the therapeutic treatment of CNS diseases.
Collapse
Affiliation(s)
- Giovanni Tosi
- Department of Life Sciences, University of Modena & Reggio Emilia, Via Campi 183, 41125, Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Formation of drug/surfactant catanionic vesicles and their application in sustained drug release. Int J Pharm 2012; 436:806-14. [PMID: 22871561 DOI: 10.1016/j.ijpharm.2012.07.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/29/2012] [Accepted: 07/24/2012] [Indexed: 11/23/2022]
Abstract
The aggregation behavior of the cationic drug/anionic surfactant vesicles formed by tetracaine hydrochloride (TH) and double-chain surfactant, sodium bis(2-ethylhexyl)sulfosuccinate (AOT), was investigated. By controlling the molar ratio of TH to AOT, a transition from catanionic vesicles to micelles was observed. The catanionic aggregates exhibited different charge properties, structures, interaction enthalpies and drug release behaviors depending on the composition. To characterize the cationic drug/anionic surfactant system, transmission electron microscopy (TEM), dynamic light scattering (DLS), isothermal titration calorimetry (ITC), conductivity, turbidity and zeta potential (ζ) measurements were performed. The drug release results indicate that the present drug-containing catanionic vesicles have promising applications in drug delivery systems. Furthermore, the percentage of drug distributed in the catanionic vesicles or micelles can be obtained by comparing the cumulative release of the corresponding aggregates with the pure drug solution.
Collapse
|
43
|
Imbuluzqueta E, Lemaire S, Gamazo C, Elizondo E, Ventosa N, Veciana J, Van Bambeke F, Blanco-Prieto MJ. Cellular pharmacokinetics and intracellular activity against Listeria monocytogenes and Staphylococcus aureus of chemically modified and nanoencapsulated gentamicin. J Antimicrob Chemother 2012; 67:2158-64. [DOI: 10.1093/jac/dks172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012; 161:505-22. [PMID: 22353619 DOI: 10.1016/j.jconrel.2012.01.043] [Citation(s) in RCA: 2366] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/27/2012] [Accepted: 01/30/2012] [Indexed: 02/06/2023]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is one of the most successfully developed biodegradable polymers. Among the different polymers developed to formulate polymeric nanoparticles, PLGA has attracted considerable attention due to its attractive properties: (i) biodegradability and biocompatibility, (ii) FDA and European Medicine Agency approval in drug delivery systems for parenteral administration, (iii) well described formulations and methods of production adapted to various types of drugs e.g. hydrophilic or hydrophobic small molecules or macromolecules, (iv) protection of drug from degradation, (v) possibility of sustained release, (vi) possibility to modify surface properties to provide stealthness and/or better interaction with biological materials and (vii) possibility to target nanoparticles to specific organs or cells. This review presents why PLGA has been chosen to design nanoparticles as drug delivery systems in various biomedical applications such as vaccination, cancer, inflammation and other diseases. This review focuses on the understanding of specific characteristics exploited by PLGA-based nanoparticles to target a specific organ or tissue or specific cells.
Collapse
|
45
|
Gao P, Nie X, Zou M, Shi Y, Cheng G. Recent advances in materials for extended-release antibiotic delivery system. J Antibiot (Tokyo) 2011; 64:625-34. [DOI: 10.1038/ja.2011.58] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|