1
|
Wu Y, Shang J, Zhang X, Li N. Advances in molecular imaging and targeted therapeutics for lymph node metastasis in cancer: a comprehensive review. J Nanobiotechnology 2024; 22:783. [PMID: 39702277 PMCID: PMC11657939 DOI: 10.1186/s12951-024-02940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/19/2024] [Indexed: 12/21/2024] Open
Abstract
Lymph node metastasis is a critical indicator of cancer progression, profoundly affecting diagnosis, staging, and treatment decisions. This review article delves into the recent advancements in molecular imaging techniques for lymph nodes, which are pivotal for the early detection and staging of cancer. It provides detailed insights into how these techniques are used to visualize and quantify metastatic cancer cells, resident immune cells, and other molecular markers within lymph nodes. Furthermore, the review highlights the development of innovative, lymph node-targeted therapeutic strategies, which represent a significant shift towards more precise and effective cancer treatments. By examining cutting-edge research and emerging technologies, this review offers a comprehensive overview of the current and potential impact of lymph node-centric approaches on cancer diagnosis, staging, and therapy. Through its exploration of these topics, the review aims to illuminate the increasingly sophisticated landscape of cancer management strategies focused on lymph node assessment and intervention.
Collapse
Affiliation(s)
- Yunhao Wu
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jin Shang
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinyue Zhang
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Nu Li
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
2
|
Nowak-Jary J, Machnicka B. Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects. Int J Mol Sci 2024; 25:12013. [PMID: 39596080 PMCID: PMC11594039 DOI: 10.3390/ijms252212013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Owing to recent advancements in nanotechnology, magnetic iron oxide nanoparticles (MNPs), particularly magnetite (Fe3O4) and maghemite (γ-Fe2O3), are currently widely employed in the field of medicine. These MNPs, characterized by their large specific surface area, potential for diverse functionalization, and magnetic properties, have found application in various medical domains, including tumor imaging (MRI), radiolabelling, internal radiotherapy, hyperthermia, gene therapy, drug delivery, and theranostics. However, ensuring the non-toxicity of MNPs when employed in medical practices is paramount. Thus, ongoing research endeavors are essential to comprehensively understand and address potential toxicological implications associated with their usage. This review aims to present the latest research and findings on assessing the potential toxicity of magnetic nanoparticles. It meticulously delineates the primary mechanisms of MNP toxicity at the cellular level, encompassing oxidative stress, genotoxic effects, disruption of the cytoskeleton, cell membrane perturbation, alterations in the cell cycle, dysregulation of gene expression, inflammatory response, disturbance in ion homeostasis, and interference with cell migration and mobility. Furthermore, the review expounds upon the potential impact of MNPs on various organs and systems, including the brain and nervous system, heart and circulatory system, liver, spleen, lymph nodes, skin, urinary, and reproductive systems.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516 Zielona Gora, Poland;
| | | |
Collapse
|
3
|
Brown C, Bilynsky CSM, Gainey M, Young S, Kitchin J, Wayne EC. Exploratory mapping of tumor associated macrophage nanoparticle article abstracts using an eLDA topic modeling machine learning approach. PLoS One 2024; 19:e0304505. [PMID: 38889180 PMCID: PMC11185481 DOI: 10.1371/journal.pone.0304505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
The role of macrophages in regulating the tumor microenvironment has spurned the exponential generation of nanoparticle targeting technologies. With the large amount of literature and the speed at which it is generated it is difficult to remain current with the most up-to-date literature. In this study we performed a topic modeling analysis of 854 abstracts of peer-reviewed literature for the most common usages of nanoparticle targeting of tumor associated macrophages (TAMs) in solid tumors. The data spans 20 years of literature, providing a broad perspective of the nanoparticle strategies. Our topic model found 6 distinct topics: Immune and TAMs, Nanoparticles, Imaging, Gene Delivery and Exosomes, Vaccines, and Multi-modal Therapies. We also found distinct nanoparticle usage, tumor types, and therapeutic trends across these topics. Moreover, we established that the topic model could be used to assign new papers into the existing topics, thereby creating a Living Review. This type of "birds-eye-view" analysis provides a useful assessment tool for exploring new and emerging themes within a large field.
Collapse
Affiliation(s)
- Chloe Brown
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Colette S. M. Bilynsky
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Melanie Gainey
- Carnegie Mellon University Libraries, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Sarah Young
- Carnegie Mellon University Libraries, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - John Kitchin
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Elizabeth C. Wayne
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Rastegari B, Ghamar Talepoor A, Khosropanah S, Doroudchi M. In Vitro Targeted Delivery of Simvastatin and Niacin to Macrophages Using Mannan-Grafted Magnetite Nanoparticles. ACS OMEGA 2024; 9:658-674. [PMID: 38222576 PMCID: PMC10785661 DOI: 10.1021/acsomega.3c06389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Atherosclerosis, a leading cause of mortality worldwide, involves various subsets of macrophages that contribute to its initiation and progression. Current treatment approaches focus on systemic, long-term administration of cholesterol-lowering antioxidants such as statins and certain vitamins, which unfortunately come with prolonged side effects. To overcome these drawbacks, a mannose-containing magnetic nanoparticle (NP) is introduced as a drug delivery system to specifically target macrophages in vitro using simvastatin or niacin and a combinational therapy approach that reduces local inflammation while avoiding unwanted side effects. The synthesized NPs exhibited superparamagnetic behavior, neutrally charged thin coating with a hydrodynamic size of 77.23 ± 13.90 nm, and a metallic core ranging from 15 to 25 nm. Efficient loading of niacin (87.21%) and simvastatin (75.36%) on the NPs was achieved at respective weights of 20.13 and 5.03 (w/w). In the presence of a mannan hydrolyzing enzyme, 79.51% of simvastatin and 67.23% of niacin were released from the NPs within 90 min, with a leakage rate below 19.22%. Additionally, the coated NPs showed no destructive effect on J774A macrophages up to a concentration of 200 μg/mL. Simvastatin-loaded NPs exhibited a minimal increase in IL-6 expression. The low dosage of simvastatin decreased both IL-6 and ARG1 expressions, while niacin and combined simvastatin/niacin increased the level of ARG1 expression significantly. Toxicity evaluations on human umbilical vein endothelial cells and murine liver cells revealed that free simvastatin administration caused significant toxicity, whereas the encapsulated forms of simvastatin, niacin, and a combination of simvastatin/niacin at equivalent concentrations exhibited no significant toxicity. Hence, the controlled release of the encapsulated form of simvastatin and niacin resulted in the effective modulation of macrophage polarization. The delivery system showed suitability for targeting macrophages to atherosclerotic plaque.
Collapse
Affiliation(s)
- Banafsheh Rastegari
- Diagnostic
Laboratory Sciences and Technology Research Center, School of Paramedical
Sciences, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Atefe Ghamar Talepoor
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
- Immunology
Center for Excellence, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Shahdad Khosropanah
- Department
of Cardiology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Mehrnoosh Doroudchi
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
- Immunology
Center for Excellence, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| |
Collapse
|
5
|
Yan Y, Liu Y, Li T, Liang Q, Thakur A, Zhang K, Liu W, Xu Z, Xu Y. Functional roles of magnetic nanoparticles for the identification of metastatic lymph nodes in cancer patients. J Nanobiotechnology 2023; 21:337. [PMID: 37735449 PMCID: PMC10512638 DOI: 10.1186/s12951-023-02100-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Staging lymph nodes (LN) is crucial in diagnosing and treating cancer metastasis. Biotechnologies for the specific localization of metastatic lymph nodes (MLNs) have attracted significant attention to efficiently define tumor metastases. Bioimaging modalities, particularly magnetic nanoparticles (MNPs) such as iron oxide nanoparticles, have emerged as promising tools in cancer bioimaging, with great potential for use in the preoperative and intraoperative tracking of MLNs. As radiation-free magnetic resonance imaging (MRI) probes, MNPs can serve as alternative MRI contrast agents, offering improved accuracy and biological safety for nodal staging in cancer patients. Although MNPs' application is still in its initial stages, exploring their underlying mechanisms can enhance the sensitivity and multifunctionality of lymph node mapping. This review focuses on the feasibility and current application status of MNPs for imaging metastatic nodules in preclinical and clinical development. Furthermore, exploring novel and promising MNP-based strategies with controllable characteristics could lead to a more precise treatment of metastatic cancer patients.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, 271000, Taian, Shandong, China.
| |
Collapse
|
6
|
Nowak-Jary J, Machnicka B. In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications. Int J Nanomedicine 2023; 18:4067-4100. [PMID: 37525695 PMCID: PMC10387276 DOI: 10.2147/ijn.s415063] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023] Open
Abstract
Magnetic iron oxide nanoparticles (magnetite and maghemite) are intensively studied due to their broad potential applications in medical and biological sciences. Their unique properties, such as nanometric size, large specific surface area, and superparamagnetism, allow them to be used in targeted drug delivery and internal radiotherapy by targeting an external magnetic field. In addition, they are successfully used in magnetic resonance imaging (MRI), hyperthermia, and radiolabelling. The appropriate design of nanoparticles allows them to be delivered to the desired tissues and organs. The desired biodistribution of nanoparticles, eg, cancerous tumors, is increased using an external magnetic field. Thus, knowledge of the biodistribution of these nanoparticles is essential for medical applications. It allows for determining whether nanoparticles are captured by the desired organs or accumulated in other tissues, which may lead to potential toxicity. This review article presents the main organs where nanoparticles accumulate. The sites of their first uptake are usually the liver, spleen, and lymph nodes, but with the appropriate design of nanoparticles, they can also be accumulated in organs such as the lungs, heart, or brain. In addition, the review describes the factors affecting the biodistribution of nanoparticles, including their size, shape, surface charge, coating molecules, and route of administration. Modern techniques for determining nanoparticle accumulation sites and concentration in isolated tissues or the body in vivo are also presented.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| | - Beata Machnicka
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| |
Collapse
|
7
|
Brown C, Bilynsky C, Gainey M, Young S, Kitchin J, Wayne E. Meta-analysis of macrophage nanoparticle targeting across blood and solid tumors using an eLDA Topic modeling Machine Learning approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547096. [PMID: 37425888 PMCID: PMC10327218 DOI: 10.1101/2023.06.29.547096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The role of macrophages in regulating the tumor microenvironment has spurned the exponential generation of nanoparticle targeting technologies. With the large amount of literature and the speed at which it is generated it is difficult to remain current with the most up-to-date literature. In this study we performed a topic modeling analysis of the most common usages of nanoparticle targeting of macrophages in solid tumors. The data spans 20 years of literature, providing an extensive meta-analysis of the nanoparticle strategies. Our topic model found 6 distinct topics: Immune and TAMs, Nanoparticles, Imaging, Gene Delivery and Exosomes, Vaccines, and Multi-modal Therapies. We also found distinct nanoparticle usage, tumor types, and therapeutic trends across these topics. Moreover, we established that the topic model could be used to assign new papers into the existing topics, thereby creating a Living Review. This type of meta-analysis provides a useful assessment tool for aggregating data about a large field.
Collapse
|
8
|
Zhang B, Jiang X. Magnetic Nanoparticles Mediated Thrombolysis-A Review. IEEE OPEN JOURNAL OF NANOTECHNOLOGY 2023; 4:109-132. [PMID: 38111792 PMCID: PMC10727495 DOI: 10.1109/ojnano.2023.3273921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Nanoparticles containing thrombolytic medicines have been developed for thrombolysis applications in response to the increasing demand for effective, targeted treatment of thrombosis disease. In recent years, there has been a great deal of interest in nanoparticles that can be navigated and driven by a magnetic field. However, there are few review publications concerning the application of magnetic nanoparticles in thrombolysis. In this study, we examine the current state of magnetic nanoparticles in the application of in vitro and in vivo thrombolysis under a static or dynamic magnetic field, as well as the combination of magnetic nanoparticles with an acoustic field for dual-mode thrombolysis. We also discuss four primary processes of magnetic nanoparticles mediated thrombolysis, including magnetic nanoparticle targeting, magnetic nanoparticle trapping, magnetic drug release, and magnetic rupture of blood clot fibrin networks. This review will offer unique insights for the future study and clinical development of magnetic nanoparticles mediated thrombolysis approaches.
Collapse
Affiliation(s)
- Bohua Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
9
|
Qiao R, Fu C, Forgham H, Javed I, Huang X, Zhu J, Whittaker AK, Davis TP. Magnetic Iron Oxide Nanoparticles for Brain Imaging and Drug Delivery. Adv Drug Deliv Rev 2023; 197:114822. [PMID: 37086918 DOI: 10.1016/j.addr.2023.114822] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
10
|
Li J, Wang L, Li S, Liang X, Zhang Y, Wang Y, Liu Y. Sustained oral intake of nano-iron oxide perturbs the gut-liver axis. NANOIMPACT 2023; 30:100464. [PMID: 37068656 DOI: 10.1016/j.impact.2023.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 06/03/2023]
Abstract
Nanomaterial have shown excellent properties in the food industry. Although iron oxides are often considered safe and widely used as food additives, the toxicity of nano‑iron oxide remains unclear. Here we established a subchronic exposure mouse model by gavage, tested the biodistribution of nano‑iron oxide, and explored the mechanism of liver injury caused by it through disturbance of the gut-liver axis. Oral intake of nano‑iron oxide will likely disrupt the small intestinal epithelial barrier, induce hepatic lipid metabolism disorders through the gut-liver axis, and cause hepatic damage accompanied with hepatic iron deposition. Nano‑iron oxide mainly caused hepatic lipid metabolism disorder by perturbing glycerophospholipid metabolism and the sphingolipid metabolism pathways, with the total abundance of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) tending to decrease while that of triglyceride tended to increase, in a time- and dose-dependent manner. The imbalanced lipid homeostasis could cause damage via membrane disruption, lipid accumulation, and lipotoxicity. This data provides information about the subchronic toxicity of nano‑iron oxide, highlights the importance of gut-liver axis in the hepatotoxicity.
Collapse
Affiliation(s)
- Jiangxue Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoyu Liang
- Zhengzhou University, Zhengzhou 450001, PR China; People's Hospital of Dengfeng, Zhengzhou 452470, PR China
| | - Yiming Zhang
- Zhengzhou University, Zhengzhou 450001, PR China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangdong 510700, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangdong 510700, PR China.
| |
Collapse
|
11
|
Zhu Q, Huang Y, Zhu X, Peng L, Wang H, Gao S, Yang Z, Zhang J, Liu X. Mannose-coated superparamagnetic iron oxide nanozyme for preventing postoperative cognitive dysfunction. Mater Today Bio 2023; 19:100568. [PMID: 36846307 PMCID: PMC9945786 DOI: 10.1016/j.mtbio.2023.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is associated with increased postoperative morbidity and mortality in patients. Excessive production of reactive oxygen species (ROS) and the consequent inflammatory response in the postoperative brain play crucial roles in the development of POCD. However, effective ways to prevent POCD have yet to be developed. Moreover, effective penetration of the blood-brain barrier (BBB) and maintaining viability in vivo are major challenges for preventing POCD using traditional ROS scavengers. Herein, mannose-coated superparamagnetic iron oxide nanoparticles (mSPIONs) were synthesized by co-precipitation method. The BBB penetration of mSPIONs was verified through fluorescent imaging and ICP-MS quantification. The ROS scavenging and anti-inflammatory of mSPIONs were evaluated in H2O2-treated J774A.1 cells and in tibial fracture mice model. The novel object recognition (NOR) and trace-fear conditioning (TFC) were used to test the cognitive function of postoperative mice. The average diameter of mSPIONs was approximately 11 nm. mSPIONs significantly reduced ROS levels in H2O2-treated cells and in hippocampus of surgical mice. mSPIONs administration reduced the levels of IL-1β and TNF-α in the hippocampus and inhibited surgery-upregulated HIF1-α/NF-κB signaling pathway. Moreover, mSPIONs significantly improved the cognitive function of postoperative mice. This study provides a new approach for preventing POCD using a nanozyme.
Collapse
Affiliation(s)
- Qianyun Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Yuting Huang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Xiaoling Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Lijun Peng
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Huan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, PR China
| | - Zhilai Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| |
Collapse
|
12
|
Nanoparticles for Lymph Node-Directed Delivery. Pharmaceutics 2023; 15:pharmaceutics15020565. [PMID: 36839887 PMCID: PMC9960358 DOI: 10.3390/pharmaceutics15020565] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Lymph nodes are organs that control immune cells and provide a major pathway for primary tumors to metastasize. A nanoparticles-based strategy has several advantages that make it suitable for achieving effective lymphatic delivery. First, the size of nanoparticles can be tailored to meet a size range appropriate for lymphatic migration. In addition, functionalized nanoparticles can target cells of interest for delivery of drugs or imaging probes. Existing lymph node contrast agents map all lymph nodes regardless of metastasis status; however, by using nanoparticles, it is possible to selectively target lymphatic metastases. Moreover, using functionalized nanoparticles, it is possible to specifically deliver anticancer drugs to metastatic lymph nodes. In this review, we introduce the use of nanoparticles for lymphatic mapping, in particular highlighting design considerations for detecting metastatic lymph nodes. Furthermore, we assess trends in lymph node-targeting nanoparticles in clinical practice and suggest future directions for lymph node-targeting nanoparticles.
Collapse
|
13
|
Cho KJ, Cho YE, Kim J. Locoregional Lymphatic Delivery Systems Using Nanoparticles and Hydrogels for Anticancer Immunotherapy. Pharmaceutics 2022; 14:2752. [PMID: 36559246 PMCID: PMC9788085 DOI: 10.3390/pharmaceutics14122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The lymphatic system has gained significant interest as a target tissue to control cancer progress, which highlights its central role in adaptive immune response. Numerous mechanistic studies have revealed the benefits of nano-sized materials in the transport of various cargos to lymph nodes, overcoming barriers associated with lymphatic physiology. The potential of sustained drug delivery systems in improving the therapeutic index of various immune modulating agents is also being actively discussed. Herein, we aim to discuss design rationales and principles of locoregional lymphatic drug delivery systems for invigorating adaptive immune response for efficient antitumor immunotherapy and provide examples of various advanced nanoparticle- and hydrogel-based formulations.
Collapse
Affiliation(s)
- Kyeong Jin Cho
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea
| | - Jihoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
14
|
Kim J, Archer PA, Thomas SN. Innovations in lymph node targeting nanocarriers. Semin Immunol 2021; 56:101534. [PMID: 34836772 DOI: 10.1016/j.smim.2021.101534] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
Lymph nodes are secondary lymphoid tissues in the body that facilitate the co-mingling of immune cells to enable and regulate the adaptive immune response. They are also tissues implicated in a variety of diseases, including but not limited to malignancy. The ability to access lymph nodes is thus attractive for a variety of therapeutic and diagnostic applications. As nanotechnologies are now well established for their potential in translational biomedical applications, their high relevance to applications that involve lymph nodes is highlighted. Herein, established paradigms of nanocarrier design to enable delivery to lymph nodes are discussed, considering the unique lymph node tissue structure as well as lymphatic system physiology. The influence of delivery mechanism on how nanocarrier systems distribute to different compartments and cells that reside within lymph nodes is also elaborated. Finally, current advanced nanoparticle technologies that have been developed to enable lymph node delivery are discussed.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Paul A Archer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
15
|
Wang J, Chen P, Dong Y, Xie H, Wang Y, Soto F, Ma P, Feng X, Du W, Liu BF. Designer exosomes enabling tumor targeted efficient chemo/gene/photothermal therapy. Biomaterials 2021; 276:121056. [PMID: 34364178 DOI: 10.1016/j.biomaterials.2021.121056] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022]
Abstract
Exosomes, endogenous nanosized particles (50-150 nm) secreted and absorbed by cells, have been recently used as diagnostic and therapeutic platforms in cancer treatment. The integration of exosome-based delivery with multiple therapeutic modalities could result in better clinical outcomes and reduced-sided effects. Here, we combined the targeting and biocompatibility of designer exosomes with chemo/gene/photothermal therapy. Our platform consists of exosomes loaded with internalized doxorubicin (DOX, a model cancer drug) and coated with magnetic nanoparticles conjugated with molecular beacons capable of targeting miR-21 for responsive molecular imaging. The coated magnetic nanoparticle enables enrichment of the exosomes at the tumor site by external magnetic field guidance. After the exosomes are gathered at the tumor site, the application of near-infrared radiation (NIR) induces localized hyperthermia and triggers the release of cargoes loaded inside the exosome. The released molecular beacon can target the miR-21 for both imaging and gene silencing. Meanwhile, the released doxorubicin serves to kill the cancer cells. About 91.04 % of cancer cells are killed after treatment with Exo-DOX-Fe3O4@PDA-MB under NIR. The ability of the exosome-based method for cancer therapy has been demonstrated by animal models, in which the tumor size is reduced dramatically by 97.57 % with a magnetic field-guided tumor-targeted chemo/gene/photothermal approach. Thus, we expected this designer exosome-mediated multi-mode therapy to be a promising platform for the next-generation precision cancer nanomedicines.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, United States
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yachao Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fernando Soto
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, United States
| | - Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
16
|
Hu Y, Li D, Wei H, Zhou S, Chen W, Yan X, Cai J, Chen X, Chen B, Liao M, Chai R, Tang M. Neurite Extension and Orientation of Spiral Ganglion Neurons Can Be Directed by Superparamagnetic Iron Oxide Nanoparticles in a Magnetic Field. Int J Nanomedicine 2021; 16:4515-4526. [PMID: 34239302 PMCID: PMC8259836 DOI: 10.2147/ijn.s313673] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Neuroregeneration is a major challenge in neuroscience for treating degenerative diseases and for repairing injured nerves. Numerous studies have shown the importance of physical stimulation for neuronal growth and development, and here we report an approach for the physical guidance of neuron orientation and neurite growth using superparamagnetic iron oxide (SPIO) nanoparticles and magnetic fields (MFs). Methods SPIO nanoparticles were synthesized by classic chemical co-precipitation methods and then characterized by transmission electron microscope, dynamic light scattering, and vibrating sample magnetometer. The cytotoxicity of the prepared SPIO nanoparticles and MF was determined using CCK-8 assay and LIVE/DEAD assay. The immunofluorescence images were captured by a laser scanning confocal microscopy. Cell migration was evaluated using the wound healing assay. Results The prepared SPIO nanoparticles showed a narrow size distribution, low cytotoxicity, and superparamagnetism. SPIO nanoparticles coated with poly-L-lysine could be internalized by spiral ganglion neurons (SGNs) and showed no cytotoxicity at concentrations less than 300 µg/mL. The neurite extension of SGNs was promoted after internalizing SPIO nanoparticles with or without an external MF, and this might be due to the promotion of growth cone development. It was also confirmed that SPIO can regulate cell migration and can direct neurite outgrowth in SGNs preferentially along the direction imposed by an external MF. Conclusion Our results provide a fundamental understanding of the regulation of cell behaviors under physical cues and suggest alternative treatments for sensorineural hearing loss caused by the degeneration of SGNs.
Collapse
Affiliation(s)
- Yangnan Hu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China
| | - Dan Li
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, People's Republic of China
| | - Hao Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210000, People's Republic of China
| | - Shan Zhou
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China
| | - Xiaoqian Yan
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jaiying Cai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China
| | - Xiaoyan Chen
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China
| | - Bo Chen
- Materials Science and Devices Institute, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Menghui Liao
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Mingliang Tang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.,Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, 215000, People's Republic of China
| |
Collapse
|
17
|
Affiliation(s)
- Jenny Lou
- Department of Medical BiophysicsUniversity of Toronto Toronto M5G 1L7 Canada
- Princess Margaret Cancer CenterUniversity Health Network Toronto M5G 2C1 Canada
- Centre for Pharmaceutical OncologyUniversity of Toronto Toronto M5S 3M2 Canada
| | - Li Zhang
- Toronto General Hospital Research InstituteUniversity Health Network Toronto M5G 2C4 Canada
- Department of ImmunologyUniversity of Toronto Toronto M5S 1A8 Canada
- Department of Laboratory Medicine and PathobiologyUniversity of Toronto Toronto M5S 1A8 Canada
| | - Gang Zheng
- Department of Medical BiophysicsUniversity of Toronto Toronto M5G 1L7 Canada
- Princess Margaret Cancer CenterUniversity Health Network Toronto M5G 2C1 Canada
- Centre for Pharmaceutical OncologyUniversity of Toronto Toronto M5S 3M2 Canada
| |
Collapse
|
18
|
Obinu A, Gavini E, Rassu G, Maestri M, Bonferoni MC, Giunchedi P. Nanoparticles in detection and treatment of lymph node metastases: an update from the point of view of administration routes. Expert Opin Drug Deliv 2018; 15:1117-1126. [DOI: 10.1080/17425247.2018.1537260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Antonella Obinu
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Marcello Maestri
- IRCCS Policlinico San Matteo Foundation and Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | | | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
19
|
The combined magnetic field and iron oxide-PLGA composite particles: Effective protein antigen delivery and immune stimulation in dendritic cells. J Colloid Interface Sci 2018. [DOI: 10.1016/j.jcis.2018.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Figueiredo Borgognoni C, Kim JH, Zucolotto V, Fuchs H, Riehemann K. Human macrophage responses to metal-oxide nanoparticles: a review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:694-703. [PMID: 29726285 DOI: 10.1080/21691401.2018.1468767] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanomaterials have been widely used in our daily lives in medicine, cosmetics, paints, textiles and food products. Many studies aim to determine their biological effects in different types of cells. The interaction of these materials with the immune system leads to reactions by modifying the susceptibility or resistance of the host body which could induce adverse health effects. Macrophages, as specific cells of the innate immune response, play a crucial role in the human defence system to foreign agents. They can be used as a reliable test object for the investigation of immune responses under nanomaterials exposure displayed by expression of a variety of receptors and active secretion of key signalling substances for these processes. This report covers studies of human macrophage behaviours upon exposure of nanomaterials. We focused on their interaction with metal-oxide nanoparticles as these are largely used in medical and cosmetics applications. The discussion and summary of these studies can guide the development of new nanomaterials, which are, at the same time, safe and useful for new purposes, especially for health applications.
Collapse
Affiliation(s)
- Camila Figueiredo Borgognoni
- a Center for Nanotechnology (CeNTech) , Münster , Germany.,b Physics Institute , University of Sao Paulo , Sao Carlos , Brazil
| | - Joo Hyoung Kim
- a Center for Nanotechnology (CeNTech) , Münster , Germany.,c Institute of Physics , University of Münster , Münster , Germany
| | | | - Harald Fuchs
- a Center for Nanotechnology (CeNTech) , Münster , Germany.,c Institute of Physics , University of Münster , Münster , Germany
| | - Kristina Riehemann
- a Center for Nanotechnology (CeNTech) , Münster , Germany.,c Institute of Physics , University of Münster , Münster , Germany
| |
Collapse
|
21
|
Wang C, Gao X, Chen Z, Chen Y, Chen H. Preparation, Characterization and Application of Polysaccharide-Based Metallic Nanoparticles: A Review. Polymers (Basel) 2017; 9:E689. [PMID: 30965987 PMCID: PMC6418682 DOI: 10.3390/polym9120689] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022] Open
Abstract
Polysaccharides are natural biopolymers that have been recognized to be the most promising hosts for the synthesis of metallic nanoparticles (MNPs) because of their outstanding biocompatible and biodegradable properties. Polysaccharides are diverse in size and molecular chains, making them suitable for the reduction and stabilization of MNPs. Considerable research has been directed toward investigating polysaccharide-based metallic nanoparticles (PMNPs) through host⁻guest strategy. In this review, approaches of preparation, including top-down and bottom-up approaches, are presented and compared. Different characterization techniques such as scanning electron microscopy, transmission electron microscopy, dynamic light scattering, UV-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and small-angle X-ray scattering are discussed in detail. Besides, the applications of PMNPs in the field of wound healing, targeted delivery, biosensing, catalysis and agents with antimicrobial, antiviral and anticancer capabilities are specifically highlighted. The controversial toxicological effects of PMNPs are also discussed. This review can provide significant insights into the utilization of polysaccharides as the hosts to synthesize MPNs and facilitate their further development in synthesis approaches, characterization techniques as well as potential applications.
Collapse
Affiliation(s)
- Cong Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
22
|
Uthaman S, Kim HS, Revuri V, Min JJ, Lee YK, Huh KM, Park IK. Green synthesis of bioactive polysaccharide-capped gold nanoparticles for lymph node CT imaging. Carbohydr Polym 2017; 181:27-33. [PMID: 29253972 DOI: 10.1016/j.carbpol.2017.10.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 01/21/2023]
Abstract
The development of biologically targeted contrast agents for X-ray computed tomography (CT) imaging remains a major challenge. Here, we investigated a green chemistry-based synthesis of lymph node-targeted mannan-capped gold nanoparticles (M-GNPs) as a CT contrast agent. In this study, mannan was used as a reducing and stabilizing agent for gold nanoparticles (AuNPs). M-GNPs were readily internalized by antigen-presenting cells (APCs) through mannose receptors-mediated endocytosis. The M-GNPs, which had a spherical morphology, had an average diameter of 9.18±0.71nm and surface plasmon resonance (SPR) absorption spectra with maximal absorption at 522nm. The M-GNPs displayed a concentration-based X-ray attenuation property with a maximum Hounsfield unit (HU) value of 303.2±10.83. The local administration of M-GNPs led to significantly enhanced X-ray contrast for the imaging of popliteal lymph nodes. These findings demonstrated that M-GNPs can be used as biologically targeted contrast agents for CT imaging.
Collapse
Affiliation(s)
- Saji Uthaman
- Department of Biomedical Science, BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 61469, Republic of Korea; Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyeon Sik Kim
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Yong-Kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 61469, Republic of Korea.
| |
Collapse
|
23
|
Gao Z, Ma T, Zhao E, Docter D, Yang W, Stauber RH, Gao M. Small is Smarter: Nano MRI Contrast Agents - Advantages and Recent Achievements. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:556-76. [PMID: 26680328 DOI: 10.1002/smll.201502309] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/22/2015] [Indexed: 05/23/2023]
Abstract
Many challenges for advanced sensitive and noninvasive clinical diagnostic imaging remain unmatched. In particular, the great potential of magnetic nano-probes is intensively discussed to further improve the performance of magnetic resonance imaging (MRI), especially for cancer diagnosis. Based on recent achievements, here the concepts of magnetic nanoparticle-based MRI contrast agents and tumor-specific imaging probes are critically summarized. Advances in their synthesis, biocompatible chemical and biofunctional surface modifications, and current strategies for further developing them into multimodality imaging probes are discussed. In addition, how engineered versus unintended surface coatings such as protein coronas affect the biocompatibility and performance of MRI nano-probes is also considered. To stimulate progress in the field, future strategies and relevant challenges that still need to be resolved in the field conclude this review.
Collapse
Affiliation(s)
- Zhenyu Gao
- College of Chemistry, Jilin University, Changchun, 130012, China
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Tiancong Ma
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Enyu Zhao
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Dominic Docter
- Department of Nanobiomedicine, ENT/University Medical Center of Mainz, Langenbeckstr. 1, 55101, Mainz, Germany
| | - Wensheng Yang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Roland H Stauber
- Department of Nanobiomedicine, ENT/University Medical Center of Mainz, Langenbeckstr. 1, 55101, Mainz, Germany
| | - Mingyuan Gao
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| |
Collapse
|
24
|
Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:287-307. [PMID: 26707817 DOI: 10.1016/j.nano.2015.10.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/22/2015] [Accepted: 10/25/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Nanomedicine, the integration of nanotechnological tools in medicine demonstrated promising potential to revolutionize the diagnosis and treatment of various human health conditions. Nanoparticles (NPs) have shown much promise in diagnostics of cancer, especially since they can accommodate targeting molecules on their surface, which search for specific tumor cell receptors upon injection into the blood stream. This concentrates the NPs in the desired tumor location. Furthermore, such receptor-specific targeting may be exploited for detection of potential metastases in an early stage. Some NPs, such as superparamagnetic iron oxide NPs (SPIONs), are also compatible with magnetic resonance imaging (MRI), which makes their clinical translation and application rather easy and accessible for tumor imaging purposes. Furthermore, multifunctional and/or theranostic NPs can be used for simultaneous imaging of cancer and drug delivery. In this review article, we will specifically focus on the application of SPIONs in early detection and imaging of major cancer types. FROM THE CLINICAL EDITOR Super-paramagnetic iron oxide nanoparticles (SPIONs) have been reported by many to be useful as an MRI contrast agent in the detection of tumors. To further enhance the tumor imaging, SPIONs can be coupled with tumor targeting motifs. In this article, the authors performed a comprehensive review on the current status of using targeted SPIONS in tumor detection and also the potential hurdles to overcome.
Collapse
Affiliation(s)
- Zahra Bakhtiary
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mohammad J Hajipour
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Raoufi
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany; Department of Nanotechnology & Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ophir Vermesh
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, CA, USA
| | - Morteza Mahmoudi
- Department of Nanotechnology & Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
25
|
Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 2015; 44:8576-607. [PMID: 26390044 PMCID: PMC4648695 DOI: 10.1039/c5cs00541h] [Citation(s) in RCA: 537] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron oxide nanoparticles (IONPs) have been extensively used during the last two decades, either as effective bio-imaging contrast agents or as carriers of biomolecules such as drugs, nucleic acids and peptides for controlled delivery to specific organs and tissues. Most of these novel applications require elaborate tuning of the physiochemical and surface properties of the IONPs. As new IONPs designs are envisioned, synergistic consideration of the body's innate biological barriers against the administered nanoparticles and the short and long-term side effects of the IONPs become even more essential. There are several important criteria (e.g. size and size-distribution, charge, coating molecules, and plasma protein adsorption) that can be effectively tuned to control the in vivo pharmacokinetics and biodistribution of the IONPs. This paper reviews these crucial parameters, in light of biological barriers in the body, and the latest IONPs design strategies used to overcome them. A careful review of the long-term biodistribution and side effects of the IONPs in relation to nanoparticle design is also given. While the discussions presented in this review are specific to IONPs, some of the information can be readily applied to other nanoparticle systems, such as gold, silver, silica, calcium phosphates and various polymers.
Collapse
Affiliation(s)
- Hamed Arami
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195
| | - Amit Khandhar
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington, 98195
| | - Kannan M. Krishnan
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195
| |
Collapse
|
26
|
Kaminskas LM, McLeod VM, Ascher DB, Ryan GM, Jones S, Haynes JM, Trevaskis NL, Chan LJ, Sloan EK, Finnin BA, Williamson M, Velkov T, Williams ED, Kelly BD, Owen DJ, Porter CJH. Methotrexate-conjugated PEGylated dendrimers show differential patterns of deposition and activity in tumor-burdened lymph nodes after intravenous and subcutaneous administration in rats. Mol Pharm 2015; 12:432-43. [PMID: 25485615 DOI: 10.1021/mp500531e] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The current study sought to explore whether the subcutaneous administration of lymph targeted dendrimers, conjugated with a model chemotherapeutic (methotrexate, MTX), was able to enhance anticancer activity against lymph node metastases. The lymphatic pharmacokinetics and antitumor activity of PEGylated polylysine dendrimers conjugated to MTX [D-MTX(OH)] via a tumor-labile hexapeptide linker was examined in rats and compared to a similar system where MTX was α-carboxyl O-tert-butylated [D-MTX(OtBu)]. The latter has previously been shown to exhibit longer plasma circulation times. D-MTX(OtBu) was well absorbed from the subcutaneous injection site via the lymph, and 3 to 4%/g of the dose was retained by sentinel lymph nodes. In contrast, D-MTX(OH) showed limited absorption from the subcutaneous injection site, but absorption was almost exclusively via the lymph. The retention of D-MTX(OH) by sentinel lymph nodes was also significantly elevated (approximately 30% dose/g). MTX alone was not absorbed into the lymph. All dendrimers displayed lower lymph node targeting after intravenous administration. Despite significant differences in the lymph node retention of D-MTX(OH) and D-MTX(OtBu) after subcutaneous and intravenous administration, the growth of lymph node metastases was similarly inhibited. In contrast, the administration of MTX alone did not significantly reduce lymph node tumor growth. Subcutaneous administration of drug-conjugated dendrimers therefore provides an opportunity to improve drug deposition in downstream tumor-burdened lymph nodes. In this case, however, increased lymph node biodistribution did not correlate well with antitumor activity, possibly suggesting constrained drug release at the site of action.
Collapse
Affiliation(s)
- Lisa M Kaminskas
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria, Australia , 3052
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
MR detection of LPS-induced neutrophil activation using mannan-coated superparamagnetic iron oxide nanoparticles. Mol Imaging Biol 2014; 15:685-92. [PMID: 23670353 DOI: 10.1007/s11307-013-0643-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE The purpose of this study was to investigate the potential of the phagocytic activity of lipopolysaccharide (LPS) induced neutrophils that are mannan coated with superparamagnetic iron oxide nanoparticles (M-SPION). PROCEDURES Human neutrophils were divided into control and LPS groups. The neutrophils were labeled with M-SPION and dextran-coated SPION. After labeling of M-SPION, the mean signal intensity (SI) of the LPS group was significantly lower than that of the control group. RESULTS The labeling of both control and LPS groups with M-SPION showed significantly lower SI than those labeled with D-SPION. After labeling with M-SPION, the intracellular iron uptake of neutrophil in Prussian blue staining was markedly demonstrated in the LPS group, but not in the control group. M-SPION was more effective than D-SPION in the labeling of neutrophils in vitro. CONCLUSIONS The in vitro labeling technique of LPS neutrophil with M-SPION on MR imaging could be developed into a diagnostic method of LPS-induced neutrophils.
Collapse
|
28
|
Tang Z, Li D, Sun H, Guo X, Chen Y, Zhou S. Quantitative control of active targeting of nanocarriers to tumor cells through optimization of folate ligand density. Biomaterials 2014; 35:8015-27. [PMID: 24947231 DOI: 10.1016/j.biomaterials.2014.05.091] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 05/29/2014] [Indexed: 01/14/2023]
Abstract
The active targeting delivery system has been widely studied in cancer therapy by utilizing folate (FA) ligands to generate specific interaction between nanocarriers and folate receptors (FRs) on tumor cell. However, there is little work that has been published to investigate the influence of the definite density of the FA ligands on the active targeting of nanocarriers. In this study, we have combined magnetic-guided iron oxide nanoparticles with FA ligands, adjusted the FA ligand density and then studied the resulting effects on the active targeting ability of this dual-targeting drug delivery system to tumor cells. We have also optimized the FA ligand density of the drug delivery system for their active targeting to FR-overexpressing tumor cells in vitro. Prussian blue staining, semi-thin section of cells observed with transmission electron microscopy (TEM) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) have shown that the optimal FA density is from 2.3 × 10(18) to 2.5 × 10(18) per gram nanoparticles ((g·NPs)(-1)). We have further tried to qualitatively and quantitatively control the active targeting and delivering of drugs to tumors on 4T1-bearing BALB/c mice. As expected, the in vivo experimental results have also demonstrated that the FA density of the magnetic nanoparticles (MNPs) could be optimized for a more easily binding to tumor cells via the multivalent linkages and more readily internalization through the FR-mediated endocytosis. Our study can provide a strategy to quantitatively control the active targeting of nanocarriers to tumor cells for cancer therapy.
Collapse
Affiliation(s)
- Zhaomin Tang
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Dan Li
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Huili Sun
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xing Guo
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuping Chen
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
29
|
Zhu R, Zhu Y, Zhang M, Xiao Y, Du X, Liu H, Wang S. The induction of maturation on dendritic cells by TiO2 and Fe(3)O(4)@TiO(2) nanoparticles via NF-κB signaling pathway. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 39:305-14. [PMID: 24863229 DOI: 10.1016/j.msec.2014.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/20/2014] [Accepted: 03/01/2014] [Indexed: 12/17/2022]
Abstract
Nanomaterials are increasingly used in many fields, including drug vectors and vaccine formulation. In this study, nano-TiO(2) and magnetic Fe(3)O(4)@TiO(2) were synthesized and their abilities to activate dendritic cells were investigated. The signaling pathway involved in their effects on the cellular functions was also explored. First, nano-TiO(2) and Fe(3)O(4)@TiO(2) were prepared with diameters of 82nm and 63nm, and zeta potentials of 41.5mV and 30.2mV, respectively. The magnetic property of Fe(3)O(4)@TiO(2) was detected to be 12.9emu/g. Both kinds of nanoparticles were proved to have good biocompatibility in vitro. Second, the exposure of nano-TiO2 and Fe(3)O(4)@TiO(2)caused an increased expression of TNF-α, CD86 and CD80, and besides, Fe(3)O(4)@TiO(2)showed a certain up-regulation on MHC-II. The cellular uptake of Ovalbumin on BMDCs could be strongly improved by nano-TiO2 and Fe(3)O(4)@TiO(2)as detected via flow cytometer and confocal observation. Further investigation revealed that nano-TiO(2) and Fe(3)O(4)@TiO(2)significantly increased the NF-κB expression in the nucleus, indicating that the NF-κB signaling pathway was involved in the dendritic cell maturation. Our results suggested that nano-TiO(2) and Fe(3)O(4)@TiO(2)may function as a useful vector to promote vaccine delivery in immune cells, and Fe(3)O(4)@TiO(2)provided a possibility to deliver and track vaccines via its magnetofection.
Collapse
Affiliation(s)
- Rongrong Zhu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Yanjing Zhu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Min Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Yu Xiao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Xiling Du
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Hui Liu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, PR China.
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China.
| |
Collapse
|
30
|
Sun TY, Liang LJ, Wang Q, Laaksonen A, Wu T. A molecular dynamics study on pH response of protein adsorbed on peptide-modified polyvinyl alcohol hydrogel. Biomater Sci 2014; 2:419-426. [DOI: 10.1039/c3bm60213c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular dynamics simulation of the protein adsorption on peptide modified PVA hydrogel and the response of hydrogel chains to different pHs.
Collapse
Affiliation(s)
- Tian-Yang Sun
- Soft Matter Research Center and Department of Chemistry
- Zhejiang University
- Hangzhou, P. R. China
- Department of Materials and Environmental Chemistry
- Arrhenius Laboratory
| | - Li-Jun Liang
- Soft Matter Research Center and Department of Chemistry
- Zhejiang University
- Hangzhou, P. R. China
| | - Qi Wang
- Soft Matter Research Center and Department of Chemistry
- Zhejiang University
- Hangzhou, P. R. China
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry
- Arrhenius Laboratory
- Stockholm University
- Stockholm, Sweden
| | - Tao Wu
- Soft Matter Research Center and Department of Chemistry
- Zhejiang University
- Hangzhou, P. R. China
| |
Collapse
|
31
|
Tamames-Tabar C, Cunha D, Imbuluzqueta E, Ragon F, Serre C, Blanco-Prieto MJ, Horcajada P. Cytotoxicity of nanoscaled metal-organic frameworks. J Mater Chem B 2013; 2:262-271. [PMID: 32261505 DOI: 10.1039/c3tb20832j] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of fourteen porous Metal-Organic Frameworks (MOFs) with different compositions (Fe, Zn, and Zr; carboxylates or imidazolates) and structures have been successfully synthesised at the nanoscale and fully characterised by XRPD, FTIR, TGA, N2 porosimetry, TEM, DLS and ζ-potential. Their toxicological assessment was performed using two different cell lines: human epithelial cells from foetal cervical carcinoma (HeLa) and murine macrophage cell line (J774). It appears that MOF nanoparticles (NPs) exhibit low cytotoxicity, comparable to those of other commercialised nanoparticulate systems, the less toxic being the Fe carboxylate and the more toxic being the zinc imidazolate NPs. The cytotoxicity values, higher in J774 cells than in HeLa cells, are mainly function of their composition and cell internalisation capacity. Finally, cell uptake of one of the most relevant Fe-MOF-NPs for drug vectorisation has been investigated by confocal microscopy studies, and indicates a faster kinetics of cell penetration within J774 compared to HeLa cells.
Collapse
Affiliation(s)
- Cristina Tamames-Tabar
- Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Superparamagnetic iron oxide based nanoprobes for imaging and theranostics. Adv Colloid Interface Sci 2013; 199-200:95-113. [PMID: 23891347 DOI: 10.1016/j.cis.2013.06.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/21/2013] [Accepted: 06/27/2013] [Indexed: 12/11/2022]
Abstract
The need to target, deliver and subsequently evaluate the efficacy of therapeutics in the treatment of a disease has provided added impetus in developing novel and highly efficient contrast agents. Superparamagnetic iron oxide nanoparticles (SPIONs) have offered tremendous potential in designing advanced magnetic resonance imaging (MRI) diagnostic agents, due to their unique physicochemical properties. There has been tremendous effort devoted in the recent past in developing synthetic methodologies through which their size, hydrodynamic radii, chemical composition and morphologies could be tailored at the nanoscale. This enables one to fine tune their magnetic behavior, and thus their MRI response. While novel synthetic strategies are being assembled for directing SPIONs to the diseased site as well as imparting them stealth and biocompatibility, it is also essential to evaluate their biological toxicological profiles. This review highlights recent advances that have been made in the synthesis of SPIONs, subsequent functionalization with desired entities, and a discussion on their use as MRI contrast agents in cardiovascular research.
Collapse
|
33
|
Bardajee GR, Hooshyar Z. One-pot synthesis of biocompatible superparamagnetic iron oxide nanoparticles/hydrogel based on salep: characterization and drug delivery. Carbohydr Polym 2013; 101:741-51. [PMID: 24299834 DOI: 10.1016/j.carbpol.2013.10.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/29/2013] [Accepted: 10/09/2013] [Indexed: 11/30/2022]
Abstract
This work describes synthesis of biocompatible magnetic iron oxide nanoparticles/hydrogel based on salep (MION-salep hydrogel) by a facile one-pot strategy. The prepared sample was characterized by techniques like scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDAX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The obtained MION had an 8 nm diameter with a narrow size distribution and was superparamagnetic with large saturation magnetization at room temperature. The most attractive feature of the obtained sample was its swelling properties under external magnetic field (EMF), different temperatures, and pHs. Moreover, MION-salep hydrogel showed ability to deferasirox release at pH=7 with non-Fickian diffusion mechanism. An in vitro cytotoxicity study implied that the as-synthesized sample is nontoxic.
Collapse
|
34
|
Córdoba EV, Pion M, Rasines B, Filippini D, Komber H, Ionov M, Bryszewska M, Appelhans D, Muñoz-Fernández M. Glycodendrimers as new tools in the search for effective anti-HIV DC-based immunotherapies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:972-84. [DOI: 10.1016/j.nano.2013.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/28/2013] [Accepted: 03/08/2013] [Indexed: 11/29/2022]
|
35
|
Muthiah M, Park IK, Cho CS. Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv 2013; 31:1224-36. [PMID: 23528431 DOI: 10.1016/j.biotechadv.2013.03.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/19/2013] [Accepted: 03/11/2013] [Indexed: 11/25/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are excellent MR contrast agents when coated with biocompatible polymers such as hydrophilic synthetic polymers, proteins, polysaccharides, and lipids, which improve their stability and biocompatibility and reduce their aggregation. Various biocompatible materials, coated or conjugated with targeting moieties such as galactose, mannose, folic acid, antibodies and RGD, have been applied to SPION surfaces to provide tissue specificity to hepatocytes, macrophages, and tumor regions in order to reduce non-specific uptake and improve biocompatibility. This review discusses the recent progress in the development of biocompatible and hydrophilic polymers for improving stability of SPIONs and describes the carbohydrates based biocompatible materials that are providing SPIONs with cell/tissue specificity as ligands.
Collapse
Affiliation(s)
- Muthunarayanan Muthiah
- Department of Biomedical Sciences and Center for Biomedical Human Resources (BK-21 project), Chonnam National University Medical School, Gwangju 501-757, South Korea; Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Jeonnam 519-763, South Korea
| | | | | |
Collapse
|
36
|
Muthiah M, Vu-Quang H, Kim YK, Rhee JH, Kang SH, Jun SY, Choi YJ, Jeong YY, Cho CS, Park IK. Mannose-poly(ethylene glycol)-linked SPION targeted to antigen presenting cells for magnetic resonance imaging on lymph node. Carbohydr Polym 2013; 92:1586-95. [DOI: 10.1016/j.carbpol.2012.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/03/2012] [Accepted: 11/04/2012] [Indexed: 11/28/2022]
|
37
|
Tang L, Yang X, Dobrucki LW, Chaudhury I, Yin Q, Yao C, Lezmi S, Helferich WG, Fan TM, Cheng J. Aptamer-functionalized, ultra-small, monodisperse silica nanoconjugates for targeted dual-modal imaging of lymph nodes with metastatic tumors. Angew Chem Int Ed Engl 2012; 51:12721-6. [PMID: 23136130 PMCID: PMC4486261 DOI: 10.1002/anie.201205271] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Li Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
| | | | - Isthier Chaudhury
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| | - Qian Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| | - Catherine Yao
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| | - Stéphane Lezmi
- Department of Pathobiology, University of Illinois at Urbana-Champaign
| | - William G. Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| |
Collapse
|
38
|
Tang L, Yang X, Dobrucki LW, Chaudhury I, Yin Q, Yao C, Lezmi S, Helferich WG, Fan TM, Cheng J. Aptamer-Functionalized, Ultra-Small, Monodisperse Silica Nanoconjugates for Targeted Dual-Modal Imaging of Lymph Nodes with Metastatic Tumors. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205271] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Vu-Quang H, Muthiah M, Kim YK, Cho CS, Namgung R, Kim WJ, Rhee JH, Kang SH, Jun SY, Choi YJ, Jeong YY, Park IK. Carboxylic mannan-coated iron oxide nanoparticles targeted to immune cells for lymph node-specific MRI in vivo. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2012.01.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Immune cell-specific delivery of beta-glucan-coated iron oxide nanoparticles for diagnosing liver metastasis by MR imaging. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.08.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|