1
|
Gu Z, He Y, Xiang H, Qin Q, Cao X, Jiang K, Zhang H, Li Y. Self-healing injectable multifunctional hydrogels for intervertebral disc disease. Mater Today Bio 2025; 32:101655. [PMID: 40166378 PMCID: PMC11957681 DOI: 10.1016/j.mtbio.2025.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is increasingly prevalent in aging societies and poses a significant health challenge. Due to the limited blood supply to the disc, oral medications and systemic treatments are often ineffective. Consequently, localized injection therapies, which deliver therapeutic agents directly to the degenerated disc, have emerged as more efficient. Self-healing injectable hydrogels are particularly promising due to their potential for minimally invasive delivery, precise implantation, and targeted drug release into hard-to-reach tissue sites, including those requiring prolonged healing. Their dynamic viscoelastic properties accurately replicate the mechanical environment of the natural nucleus pulposus, providing cells with an adaptive biomimetic microenvironment. This review will initially discuss the anatomy and pathophysiology of intervertebral discs, current treatments, and their limitations. Subsequently, we conduct bibliometric analysis to explore the research hotspots and trends in applying injectable hydrogel technology to treat IVDD. It will then explore the promising features of injectable hydrogels in biomedical applications such as drug, protein, cells and gene delivery, tissue engineering and regenerative medicine. We discuss the construction mechanisms of injectable hydrogels via physical interactions, chemical and biological crosslinkers, and discuss the selection of biomaterials and fabrication methods for developing novel hydrogels for IVD tissue engineering. The article concludes with future perspectives on the application of injectable hydrogels in this field.
Collapse
Affiliation(s)
- Zhengrong Gu
- Department of Orthopedics, Affiliated Guang'an District People's Hospital of North Sichuan Medical College, Guang'an County, 638000, PR China
| | - Yi He
- Department of Orthopedics, Affiliated Nanbu People's Hospital of North Sichuan Medical College, Nanbu County, Nanchong, 637000, PR China
| | - Honglin Xiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Qiwei Qin
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xinna Cao
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Ke Jiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Haoshaqiang Zhang
- Department of Orthopedics Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, PR China
| | - Yuling Li
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
2
|
Yang S, Soheilmoghaddam F, Pivonka P, Li J, Rudd S, Yeo T, Tu J, Zhu Y, Cooper-White JJ. Engineering Intervertebral Disc Regeneration: Biomaterials, Cell Sources and Animal Models. Cell Prolif 2025:e70046. [PMID: 40389238 DOI: 10.1111/cpr.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 05/21/2025] Open
Abstract
Intervertebral disc (IVD) degeneration is an age-related problem triggering chronic spinal issues, such as low back pain and IVD herniation. Standard surgical treatment for such spinal issues is the removal of the degenerated or herniated IVD and fusion of adjacent vertebrae to stabilise the joint and locally decompress the spinal cord and/or nerve roots to relieve pain. However, a key challenge of current surgical strategies is the increasing risk of adjacent segment degeneration due to the disruption of native biomechanics of the functional spinal unit, dominated by the loss of the IVD. In the past two decades, research has focused on developing a number of bioengineering approaches to repair and regenerate the IVD; in particular, tissue engineering of the IVD, using bioscaffolds and stem cells represents a promising area. This review highlights the current tissue engineering approaches utilising biomaterials, animal models and cell sources for IVD regeneration and discusses future opportunities.
Collapse
Affiliation(s)
- Sidong Yang
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, China
- Hebei International Joint Research Centre for Spine Diseases, Shijiazhuang, China
| | - Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Peter Pivonka
- School of Mechanical Medical & Process Engineering, Queensland University of Technology, Brisbane City, Queensland, Australia
| | - Joan Li
- Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Samuel Rudd
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Trifanny Yeo
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Ji Tu
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Yibo Zhu
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Justin J Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
3
|
Keshavarz S, Alavi CE, Aghayan H, Jafari-Shakib R, Vojoudi E. Advancements in Degenerative Disc Disease Treatment: A Regenerative Medicine Approach. Stem Cell Rev Rep 2025:10.1007/s12015-025-10882-z. [PMID: 40232618 DOI: 10.1007/s12015-025-10882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Regenerative medicine represents a transformative approach to treating nucleus pulposus degeneration and offers hope for patients suffering from chronic low back pain due to disc degeneration. By focusing on restoring the natural structure and function of the nucleus pulposus rather than merely alleviating symptoms, these innovative therapies hold the potential to significantly improve patient outcomes. As research continues to advance in this field, we may soon witness a paradigm shift in how we approach spinal health and degenerative disc disease. The main purpose of this review is to provide an overview of the various regenerative approaches that target the restoration of the nucleus pulposus, a primary site for initiation of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Samaneh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Cyrus Emir Alavi
- Department of Anesthesiology, Neuroscience Research Center, Avicenna University Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari-Shakib
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, P.O.Box 41635 - 3363, Rasht, Iran.
| | - Elham Vojoudi
- Regenerative Medicine, Organ Procurement and Transplantation Multidisciplinary Center, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
4
|
Tanvir MAH, Khaleque MA, Lee J, Park JB, Kim GH, Lee HH, Kim YY. Three-Dimensional Bioprinting for Intervertebral Disc Regeneration. J Funct Biomater 2025; 16:105. [PMID: 40137384 PMCID: PMC11943008 DOI: 10.3390/jfb16030105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
The rising demand for organ transplants and the need for precise tissue models have positioned the in vitro biomanufacturing of tissues and organs as a pivotal area in regenerative treatment. Considerable development has been achieved in growing tissue-engineered intervertebral disc (IVD) scaffolds, designed to meet stringent mechanical and biological compatibility criteria. Among the cutting-edge approaches, 3D bioprinting stands out due to its unparalleled capacity to organize biomaterials, bioactive molecules, and living cells with high precision. Despite these advancements, polymer-based scaffolds still encounter limitations in replicating the extracellular matrix (ECM)-like environment, which is fundamental for optimal cellular activities. To overcome these challenges, integrating polymers with hydrogels has been recommended as a promising solution. This combination enables the advancement of porous scaffolds that nurture cell adhesion, proliferation, as well as differentiation. Additionally, bioinks derived from the decellularized extracellular matrix (dECM) have exhibited potential in replicating biologically relevant microenvironments, enhancing cell viability, differentiation, and motility. Hydrogels, whether derived from natural sources involving collagen and alginate or synthesized chemically, are highly valued for their ECM-like properties and superior biocompatibility. This review will explore recent advancements in techniques and technologies for IVD regeneration. Emphasis will be placed on identifying research gaps and proposing strategies to bridge them, with the goal of accelerating the translation of IVDs into clinical applications.
Collapse
Affiliation(s)
- Md Amit Hasan Tanvir
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Md Abdul Khaleque
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Junhee Lee
- Department of Bionic Machinery, KIMM Institute of AI Robot, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea;
| | - Jong-Beom Park
- Department of Orthopedic Surgery, Uijeongbu Saint Mary’s Hospital, The Catholic University of Korea, Seoul 11765, Republic of Korea;
| | - Ga-Hyun Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Hwan-Hee Lee
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| |
Collapse
|
5
|
Nabizadeh Z, Nasrollahzadeh M, Heidari F, Nasrabadi D. A drug-loaded nano chitosan/hyaluronic acid hydrogel system as a cartilage tissue engineering scaffold for drug delivery. Int J Biol Macromol 2024; 283:137314. [PMID: 39515691 DOI: 10.1016/j.ijbiomac.2024.137314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Cartilage lesions, especially osteoarthritis (OA), usually arise from aging, trauma, or obesity and require medical intervention due to the damaged site's inflammation and the cartilage tissue's poor self-healing capacity. This study aimed to prepare a drug-loaded nanoparticle hydrogel system with anti-inflammatory and chondroprotective effects to treat OA. First, hyaluronic acid (HA) was oxidized to create aldehyde functional groups and then cross-linked with adipic acid dihydrazide (ADH) to form a hydrogel. Next, chitosan nanoparticles (CS NPs) loaded with an anti-inflammatory molecule (fisetin) and or a chondrogenic and chondroprotective agent (kartogenin) were incorporated into the hyaluronan hydrogel to improve the release profile of the drug and increase its retention time in the joint cavity. Incorporating drug-loaded NPs into the hyaluronan hydrogel provided the hydrogel with controlled release features and improved properties. In addition, the real-time PCR (polymerase chain reaction) results showed that the hyaluronan hydrogel containing both drug-loaded NPs performed better than either constituent alone on an in vitro model of OA. Finally, based on the results of in vitro evaluation, this drug-loaded nanoparticle hydrogel system can be a promising technique for treating OA by rapidly suppressing inflammation and supporting cartilage regeneration and requires further investigation in an animal model of OA. Meanwhile, this study investigated, for the first time, the effect of the simultaneous use of fisetin and kartogenin together with a nano CS/HA hydrogel system to treat OA.
Collapse
Affiliation(s)
- Zahra Nabizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Davood Nasrabadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
6
|
Ogasawara S, Schol J, Sakai D, Warita T, Susumu T, Nakamura Y, Sako K, Tamagawa S, Matsushita E, Soma H, Sato M, Watanabe M. Alginate vs. Hyaluronic Acid as Carriers for Nucleus Pulposus Cells: A Study on Regenerative Outcomes in Disc Degeneration. Cells 2024; 13:1984. [PMID: 39682732 PMCID: PMC11639827 DOI: 10.3390/cells13231984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Intervertebral disc degeneration is a leading cause of chronic low back pain, affecting millions globally. Regenerative medicine, particularly cell-based therapies, presents a promising therapeutic strategy. This study evaluates the comparative efficacy of two biomaterials-hyaluronic acid (HA) and alginate-as carriers for nucleus pulposus (NP) cell transplantation in a beagle model of induced disc degeneration. NP cells were isolated, cultured, and injected with either HA or alginate into degenerated discs, with saline and non-cell-loaded carriers used as controls. Disc height index, T2-weighted MRI, and histological analyses were conducted over a 12-week follow-up period to assess reparative outcomes. Imaging revealed that both carrier and cell-loaded treatments improved outcomes compared to degenerative controls, with cell-loaded carriers consistently outperforming carrier-only treated discs. Histological assessments supported these findings, showing trends toward extracellular matrix restoration in both treatment groups. While both biomaterials demonstrated reparative potential, HA showed greater consistency in supporting NP cells in promoting disc regeneration. These results underscore HA's potential as a superior carrier for NP cell-based therapies in addressing disc degeneration.
Collapse
Affiliation(s)
- Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Takayuki Warita
- TUNZ Pharma Corporation, Osaka 541-0046, Japan; (T.W.); (Y.N.); (H.S.)
| | - Takano Susumu
- Department of Radiology, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan;
| | | | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
| | - Hazuki Soma
- TUNZ Pharma Corporation, Osaka 541-0046, Japan; (T.W.); (Y.N.); (H.S.)
| | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
7
|
Maiti S, Maji B, Badwaik H, Pandey MM, Lakra P, Yadav H. Oxidized ionic polysaccharide hydrogels: Review on derived scaffolds characteristics and tissue engineering applications. Int J Biol Macromol 2024; 280:136089. [PMID: 39357721 DOI: 10.1016/j.ijbiomac.2024.136089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Polysaccharide-based hydrogels have gained prominence due to their non-toxicity, biocompatibility, and structural adaptability for constructing tissue engineering scaffolds. Polysaccharide crosslinking is necessary for hydrogel stability in vivo. The periodate oxidation enables the modification of native polysaccharide characteristics for wound healing and tissue engineering applications. It produces dialdehydes, which are used to crosslink biocompatible amine-containing macromolecules such as chitosan, gelatin, adipic acid dihydrazide, silk fibroin, and peptides via imine/hydrazone linkages. Crosslinked oxidized ionic polysaccharide hydrogels have been studied for wound healing, cardiac and liver tissue engineering, bone, cartilage, corneal tissue regeneration, abdominal wall repair, nucleus pulposus regeneration, and osteoarthritis. Several modified hydrogel systems have been synthesized using antibiotics and inorganic substances to improve porosity, mechanical and viscoelastic properties, desired swelling propensity, and antibacterial efficacy. Thus, the injectable hydrogels provide a host-tissue-mimetic environment with high cell adhesion and viability, making them appropriate for scarless wound healing and tissue engineering applications. This review describes the oxidation procedure for alginate, hyaluronic acid, gellan gum, pectin, xanthan gum and chitosan, as well as the characteristics of the resulting materials. Furthermore, a critical review of scientific advances in wound healing and tissue engineering applications has been provided.
Collapse
Affiliation(s)
- Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Hemant Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai, Chhattisgarh, India
| | - Murali Monohar Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Preeti Lakra
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| |
Collapse
|
8
|
Zhu Y, Cao L, Yuan M, Chen X, Xie X, Li M, Yang C, Wang X, Ma Z. Microgel Encapsulated Mesoporous Silica Nanoparticles for Releasing Wnt16 to Synergistically Treat Temporomandibular Joint Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404396. [PMID: 39248388 PMCID: PMC11538678 DOI: 10.1002/advs.202404396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/03/2024] [Indexed: 09/10/2024]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a commonly encountered degenerative joint disease in oral and maxillofacial surgery. Recent studies have shown that the excessive unbalanced activation of Wnt/β-catenin signaling is connected with the pathogenesis of TMJOA and due to the inability to inhibit the over-activated Wnt pathway, while Wnt16-deficient mice has a more severe Knee OA. However, the efficacy of direct intra-TMJ injection of Wnt16 for the relief of TMJOA is still not directly confirmed. Moreover, small-molecule drugs such as Wnt16 usually exhibit short-lived efficacy and poor treatment adherence. Therefore, in order to obtain a stable release of Wnt16 both in the short and long term, this study fabricates a double-layer slow-release Wnt16 carrier based on mesoporous silica nanospheres (MSNs) encased within hyaluronic acid (HA) hydrogels. The biofunctional hydrogel HA/Wnt16@MSN is analyzed both in vitro and in vivo to evaluate the treatment of TMJOA. As a result, it shows superior pro-cartilage matrix restoration and inhibition of osteoclastogenesis ability, and effectively inhibits the over-activation of the Wnt/β-catenin pathway. Taken together, biofunctional hydrogel HA/Wnt16@MSN is a promising candidate for the treatment of TMJOA.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Oral SurgeryShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao tong University School of medicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyResearch Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghai200011China
| | - Lingyan Cao
- National Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200011China
| | - Mu Yuan
- Department of Oral SurgeryShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao tong University School of medicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyResearch Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghai200011China
| | - Xuzhuo Chen
- Department of Oral SurgeryShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao tong University School of medicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyResearch Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghai200011China
| | - Xinru Xie
- Department of Oral SurgeryShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao tong University School of medicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyResearch Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghai200011China
| | - Minhan Li
- Department of Oral SurgeryShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao tong University School of medicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyResearch Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghai200011China
| | - Chi Yang
- Department of Oral SurgeryShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao tong University School of medicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyResearch Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghai200011China
| | - Xiansong Wang
- Department of Plastic and Reconstructive SurgeryShanghai Key Laboratory of Tissue EngineeringShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai200011China
| | - Zhigui Ma
- Department of Oral SurgeryShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao tong University School of medicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyResearch Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghai200011China
| |
Collapse
|
9
|
Park DJ, Kim SC, Jang JB, Lee B, Lee S, Ryu B, Je JY, Park WS, Jung WK. Multifunctional hydrogel dressing based on fish gelatin/oxidized hyaluronate for promoting diabetic wound healing. J Mater Chem B 2024; 12:4451-4466. [PMID: 38623740 DOI: 10.1039/d3tb02932h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Non-healing chronic diabetic wound treatment remains an unsolved healthcare challenge and still threatens patients' lives. Recently, hydrogel dressings based on natural biomaterials have been widely investigated to accelerate the healing of diabetic wounds. In this study, we introduce a bioactive hydrogel based on fish gelatin (FG) as a candidate for diabetic wound treatments, which is a recently emerged substitute for mammalian derived gelatin. The composite hydrogel simply fabricated with FG and oxidized hyaluronate (OHy) through Schiff base reaction could successfully accelerate wound healing due to their adequate mechanical stability and self-healing ability. In vitro studies showed that the fabricated hydrogels exhibited cytocompatibility and could reduce pro-inflammatory cytokine expression such as NO, IL-1β, TNF-α, and PGE2 in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. In addition, the production of reactive oxygen species (ROS), a key marker of free radicals producing oxidative stress, was also reduced by fabricated hydrogels. Furthermore, in vivo experiments demonstrated that the hydrogel could promote wound closure, re-epithelialization, collagen deposition, and protein expression of CD31, CD206, and Arg1 in diabetic mice models. Our study highlights the advanced potential of FG as a promising alternative material and indicates that FOHI can be successfully used for diabetic wound healing applications.
Collapse
Affiliation(s)
- Dong-Joo Park
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea.
- Marine integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Se-Chang Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea.
- Marine integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Jin-Bok Jang
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea.
- Marine integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Bonggi Lee
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Seungjun Lee
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Bomi Ryu
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan 48513, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea.
- Marine integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
10
|
Nezadi M, Keshvari H, Shokrolahi F, Shokrollahi P. Injectable, self-healing hydrogels based on gelatin, quaternized chitosan, and laponite as localized celecoxib delivery system for nucleus pulpous repair. Int J Biol Macromol 2024; 266:131337. [PMID: 38574911 DOI: 10.1016/j.ijbiomac.2024.131337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Utilization of injectable hydrogels stands as a paradigm of minimally invasive intervention in the context of intervertebral disc degeneration treatment. Restoration of nucleus pulposus (NP) function exerts a profound influence in alleviating back pain. This study introduces an innovative class of injectable shear-thinning hydrogels, founded on quaternized chitosan (QCS), gelatin (GEL), and laponite (LAP) with the capacity for sustained release of the anti-inflammatory drug, celecoxib (CLX). First, synthesis of Magnesium-Aluminum-Layered double hydroxide (LDH) was achieved through a co-precipitation methodology, as a carrier for celecoxib and a source of Mg ions. Intercalation of celecoxib within LDH layers (LDH-CLX) was verified through a battery of analytical techniques, including FTIR, XRD, SEM, EDAX, TGA and UV-visible spectroscopy confirmed a drug loading efficiency of 39.22 ± 0.09 % within LDH. Then, LDH-CLX was loaded in the optimal GEL-QCS-LAP hydrogel under physiological conditions. Release behavior (15 days profile), mechanical properties, swelling ratio, and degradation rate of the resulting composite were evaluated. A G* of 15-47 kPa was recorded for the hydrogel at 22-40 °C, indicating gel stability in this temperature range. Self-healing properties and injectability of the composite were proved by rheological measurements. Also, ex vivo injection into intervertebral disc of sheep, evidenced in situ forming and NP cavity filling behavior of the hydrogel. Support of GEL-QCS-LAP/LDH-CLX (containing mg2+ ions) for viability and proliferation (from ~94 % on day 1 to ~134 % on day 7) of NP cells proved using MTT assay, DAPI and Live/Dead assays. The hydrogel could significantly upregulate secretion of glycosaminoglycan (GAG, from 4.68 ± 0.1 to 27.54 ± 1.0 μg/ml), when LHD-CLX3% was loaded. We conclude that presence of mg2+ ion and celecoxib in the hydrogel can lead to creation of a suitable environment that encourages GAG secretion. In conclusion, the formulated hydrogel holds promise as a minimally invasive candidate for degenerative disc repair.
Collapse
Affiliation(s)
- Maryam Nezadi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Hamid Keshvari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Fatemeh Shokrolahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Parvin Shokrollahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran.
| |
Collapse
|
11
|
Liu J, Du C, Huang W, Lei Y. Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications. Biomater Sci 2023; 12:8-56. [PMID: 37969066 DOI: 10.1039/d3bm01352a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hydrogels have established their significance as prominent biomaterials within the realm of biomedical research. However, injectable hydrogels have garnered greater attention compared with their conventional counterparts due to their excellent minimally invasive nature and adaptive behavior post-injection. With the rapid advancement of emerging chemistry and deepened understanding of biological processes, contemporary injectable hydrogels have been endowed with an "intelligent" capacity to respond to various endogenous/exogenous stimuli (such as temperature, pH, light and magnetic field). This innovation has spearheaded revolutionary transformations across fields such as tissue engineering repair, controlled drug delivery, disease-responsive therapies, and beyond. In this review, we comprehensively expound upon the raw materials (including natural and synthetic materials) and injectable principles of these advanced hydrogels, concurrently providing a detailed discussion of the prevalent strategies for conferring stimulus responsiveness. Finally, we elucidate the latest applications of these injectable "smart" stimuli-responsive hydrogels in the biomedical domain, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
12
|
Chung TW, Cheng CL, Liu YH, Huang YC, Chen WP, Panda AK, Chen WL. Dopamine-dependent functions of hyaluronic acid/dopamine/silk fibroin hydrogels that highly enhance N-acetyl-L-cysteine (NAC) delivered from nasal cavity to brain tissue through a near-infrared photothermal effect on the NAC-loaded hydrogels. BIOMATERIALS ADVANCES 2023; 154:213615. [PMID: 37716334 DOI: 10.1016/j.bioadv.2023.213615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Hyaluronic acid/silk fibroin (HA/SF or HS) hydrogels with remarkable mechanical characteristics have been reported as tissue engineering biomaterials. Herein, the addition of dopamine/polydopamine (DA/PDA) to HS hydrogels to develop multifunctional HA/PDA/SF (or HDS) hydrogels for the delivery of drugs such as N-acetyl-L-cysteine (NAC) from nasal to brain tissue is examined. Herein, DA-dependent functions of HDS hydrogels with highly adhesive forces, photothermal response (PTR) effects generated by near infrared (NIR) irradiation, and anti-oxidative effects were demonstrated. An in-vitro study shows that the HDS/NAC hydrogels could open tight junctions in the RPMI 2650 cell line, a model cell of the nasal mucosa, as demonstrated by the decreased values of transepithelial electrical resistance (TEER) and more discrete ZO-1 staining than those for the control group. This effect was markedly enhanced by NIR irradiation of the HDS/NAC-NIR hydrogels. Compared to the results obtained using NAC solution, an in-vivo imaging study (IVIS) in rats showed an approximately nine-fold increase in the quantity of NAC delivered from the nasal cavity to the brain tissue in the span of 2 h through the PTR effect generated by the NIR irradiation of the nasal tissue and administration of the HDS/NAC hydrogels. Herein, dopamine-dependent multifunctional HDS hydrogels were studied, and the nasal administration of HDS/NAC-NIR hydrogels with PTR effects generated by NIR irradiation was found to have significantly enhanced NAC delivery to brain tissues.
Collapse
Affiliation(s)
- Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan.
| | - Ching-Lin Cheng
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| | - Yun-Huan Liu
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist., Keelung City 20224, Taiwan.
| | - Weng-Pin Chen
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Asit Kumar Panda
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Wei-Ling Chen
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| |
Collapse
|
13
|
Zhang Y, Zhu Y, Ma P, Wu H, Xiao D, Zhang Y, Sui X, Zhang L, Dong A. Functional carbohydrate-based hydrogels for diabetic wound therapy. Carbohydr Polym 2023; 312:120823. [PMID: 37059550 DOI: 10.1016/j.carbpol.2023.120823] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Diabetes wound are grave and universal complications of diabetes. Owing to poor treatment course, high amputation rate and mortality, diabetes wound treatment and care have become a global challenge. Wound dressings have received much attention due to their ease of use, good therapeutic effect, and low costs. Among them, carbohydrate-based hydrogels with excellent biocompatibility are considered to be the best candidates for wound dressings. Based on this, we first systematically summarized the problems and healing mechanism of diabetes wounds. Next, common treatment methods and wound dressings were discussed, and the application of various carbohydrate-based hydrogels and their corresponding functionalization (antibacterial, antioxidant, autoxidation and bioactive substance delivery) in the treatment of diabetes wounds were emphatically introduced. Ultimately, the future development of carbohydrate-based hydrogel dressings was proposed. This review aims to provide a deeper understanding of wound treatment and theoretical support for the design of hydrogel dressings.
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | - Douxin Xiao
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, People's Republic of China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| |
Collapse
|
14
|
Vaca-González JJ, Culma JJS, Nova LMH, Garzón-Alvarado DA. Anatomy, molecular structures, and hyaluronic acid - Gelatin injectable hydrogels as a therapeutic alternative for hyaline cartilage recovery: A review. J Biomed Mater Res B Appl Biomater 2023. [PMID: 37178328 DOI: 10.1002/jbm.b.35261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Cartilage damage caused by trauma or osteoarthritis is a common joint disease that can increase the social and economic burden in society. Due to its avascular characteristics, the poor migration ability of chondrocytes, and a low number of progenitor cells, the self-healing ability of cartilage defects has been significantly limited. Hydrogels have been developed into one of the most suitable biomaterials for the regeneration of cartilage because of its characteristics such as high-water absorption, biodegradation, porosity, and biocompatibility similar to natural extracellular matrix. Therefore, the present review article presents a conceptual framework that summarizes the anatomical, molecular structure and biochemical properties of hyaline cartilage located in long bones: articular cartilage and growth plate. Moreover, the importance of preparation and application of hyaluronic acid - gelatin hydrogels for cartilage tissue engineering are included. Hydrogels possess benefits of stimulating the production of Agc1, Col2α1-IIa, and SOX9, molecules important for the synthesis and composition of the extracellular matrix of cartilage. Accordingly, they are believed to be promising biomaterials of therapeutic alternatives to treat cartilage damage.
Collapse
Affiliation(s)
- Juan Jairo Vaca-González
- Escuela de Pregrado, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede de La Paz, Cesar, Colombia
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan José Saiz Culma
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Diego Alexander Garzón-Alvarado
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
15
|
Mohd Isa IL, Mokhtar SA, Abbah SA, Fauzi MB, Devitt A, Pandit A. Intervertebral Disc Degeneration: Biomaterials and Tissue Engineering Strategies toward Precision Medicine. Adv Healthc Mater 2022; 11:e2102530. [PMID: 35373924 PMCID: PMC11469247 DOI: 10.1002/adhm.202102530] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/01/2022] [Indexed: 12/22/2022]
Abstract
Intervertebral disc degeneration is a common cause of discogenic low back pain resulting in significant disability. Current conservative or surgical intervention treatments do not reverse the underlying disc degeneration or regenerate the disc. Biomaterial-based tissue engineering strategies exhibit the potential to regenerate the disc due to their capacity to modulate local tissue responses, maintain the disc phenotype, attain biochemical homeostasis, promote anatomical tissue repair, and provide functional mechanical support. Despite preliminary positive results in preclinical models, these approaches have limited success in clinical trials as they fail to address discogenic pain. This review gives insights into the understanding of intervertebral disc pathology, the emerging concept of precision medicine, and the rationale of personalized biomaterial-based tissue engineering tailored to the severity of the disease targeting early, mild, or severe degeneration, thereby enhancing the efficacy of the treatment for disc regeneration and ultimately to alleviate discogenic pain. Further research is required to assess the relationship between disc degeneration and lower back pain for developing future clinically relevant therapeutic interventions targeted towards the subgroup of degenerative disc disease patients.
Collapse
Affiliation(s)
- Isma Liza Mohd Isa
- Department of AnatomyFaculty of MedicineUniversiti Kebangsaan MalaysiaKuala Lumpur56000Malaysia
- CÚRAMSFI Research Centre for Medical DevicesNational University of IrelandGalwayH91W2TYIreland
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and TraumatologyFaculty of MedicineUniversiti Kebangsaan MalaysiaKuala Lumpur56000Malaysia
| | - Sunny A. Abbah
- CÚRAMSFI Research Centre for Medical DevicesNational University of IrelandGalwayH91W2TYIreland
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative MedicineFaculty of MedicineUniversiti Kebangsaan MalaysiaKuala Lumpur56000Malaysia
| | - Aiden Devitt
- CÚRAMSFI Research Centre for Medical DevicesNational University of IrelandGalwayH91W2TYIreland
- Department of Orthopedic SurgeryUniversity Hospital GalwayGalwayH91YR71Ireland
| | - Abhay Pandit
- CÚRAMSFI Research Centre for Medical DevicesNational University of IrelandGalwayH91W2TYIreland
| |
Collapse
|
16
|
Suhar RA, Doulames VM, Liu Y, Hefferon ME, Figueroa O, Buabbas H, Heilshorn SC. Hyaluronan and elastin-like protein (HELP) gels significantly improve microsphere retention in the myocardium. Biomater Sci 2022; 10:2590-2608. [PMID: 35411353 PMCID: PMC9123900 DOI: 10.1039/d1bm01890f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Heart disease is the leading cause of death globally, and delivery of therapeutic cargo (e.g., particles loaded with proteins, drugs, or genes and cells) through direct injection into the myocardium is a promising clinical intervention. However, retention of deliverables to the contracting myocardium is low, with as much as 60-90% of payload being lost within 24 hr. Commercially-available injectable hydrogels, including Matrigel, have been hypothesized to increase payload retention but have not yielded significant improvements in quantified analyses. Here, we assess a recombinant hydrogel composed of chemically modified hyaluronan and elastin-like protein (HELP) as an alternative injectable carrier to increase cargo retention. HELP is crosslinked using dynamic covalent bonds, and tuning the hyaluronan chemistry significantly alters hydrogel mechanical properties including stiffness, stress relaxation rate, and ease of injectability through a needle or catheter. These materials can be injected even after complete crosslinking, extending the time window for surgical delivery. We show that HELP gels significantly improve in vivo retention of microsphere cargo compared to Matrigel, both 1 day and 7 days post-injection directly into the rat myocardium. These data suggest that HELP gels may assist with the clinical translation of therapeutic cargo designed for delivery into the contracting myocardium by preventing acute cargo loss.
Collapse
Affiliation(s)
- Riley A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
| | - Vanessa M Doulames
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yueming Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
| | - Meghan E Hefferon
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Hana Buabbas
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
- Department of Biology, Stanford University, Stanford, California, 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
17
|
Zhang W, Jiang Y, Wang H, Li Q, Tang K. In situ forming hydrogel recombination with tissue adhesion and antibacterial property for tissue adhesive. J Biomater Appl 2022; 37:12-22. [DOI: 10.1177/08853282221078159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In situ forming hydrogels with strong adhesive strength and antibacterial activity are of great interest to serve as tissue adhesive in fields like wound dressing and mass hemorrhage. In this study, hybrid hydrogel (GOHA) based on gelatin and oxidized hyaluronic acid was developed and endowed with excellent mechanical strength and tissue adhesion. According to our results, GOHA hydrogel exhibits a fast gelation time of around 60 s, robust compression strength of 223.43 ± 24.28 kPa, and strong adhesion of 14.33 ± 0.78 kPa to porcine skin, which is much higher than that of commercial fibrin glue (around 1.00 kPa). Meanwhile, through the loading of levofloxacin, obvious antibacterial activity can be obtained for wider applications. Notably, it would not compromise the hemocompatibility and cytocompatibility in vitro. In summary, this kind of hybrid hydrogel shows great potential as tissue adhesive in biomedical fields.
Collapse
Affiliation(s)
- Wenjie Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Yongchao Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Haonan Wang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China
| | - Qian Li
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Han L, Wang Z, Chen H, Li J, Zhang S, Zhang S, Shao S, Zhang Y, Shen C, Tao H. Sa12b-Modified Functional Self-Assembling Peptide Hydrogel Enhances the Biological Activity of Nucleus Pulposus Mesenchymal Stem Cells by Inhibiting Acid-Sensing Ion Channels. Front Cell Dev Biol 2022; 10:822501. [PMID: 35252187 PMCID: PMC8888415 DOI: 10.3389/fcell.2022.822501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
Various hydrogels have been studied for nucleus pulposus regeneration. However, they failed to overcome the changes in the acidic environment during intervertebral disc degeneration. Therefore, a new functionalized peptide RAD/SA1 was designed by conjugating Sa12b, an inhibitor of acid-sensing ion channels, onto the C-terminus of RADA16-I. Then, the material characteristics and biocompatibility of RAD/SA1, and the bioactivities and mechanisms of degenerated human nucleus pulposus mesenchymal stem cells (hNPMSCs) were evaluated. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) confirmed that RAD/SA1 self-assembling into three-dimensional (3D) nanofiber hydrogel scaffolds under acidic conditions. Analysis of the hNPMSCs cultured in the 3D scaffolds revealed that both RADA16-I and RAD/SA1 exhibited reliable attachment and extremely low cytotoxicity, which were verified by SEM and cytotoxicity assays, respectively. The results also showed that RAD/SA1 increased the proliferation of hNPMSCs compared to that in culture plates and pure RADA16-I. Quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting demonstrated that the expression of collagen I was downregulated, while collagen II, aggrecan, and SOX-9 were upregulated. Furthermore, Ca2+ concentration measurement and western blotting showed that RAD/SA1 inhibited the expression of p-ERK through Ca2+-dependent p-ERK signaling pathways. Therefore, the functional self-assembling peptide nanofiber hydrogel designed with the short motif of Sa12b could be used as an excellent scaffold for nucleus pulposus tissue engineering. Moreover, RAD/SA1 exhibits great potential applications in the regeneration of mildly degenerated nucleus pulposus.
Collapse
Affiliation(s)
- Letian Han
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziyu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haoyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengquan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Sumei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shanzhong Shao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yinshun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Tao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Wu H, Bu N, Chen J, Chen Y, Sun R, Wu C, Pang J. Construction of Konjac Glucomannan/Oxidized Hyaluronic Acid Hydrogels for Controlled Drug Release. Polymers (Basel) 2022; 14:polym14050927. [PMID: 35267750 PMCID: PMC8912606 DOI: 10.3390/polym14050927] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Konjac glucomannan (KGM) hydrogel has favorable gel-forming abilities, but its insufficient swelling capacity and poor control release characteristics limit its application. Therefore, in this study, oxidized hyaluronic acid (OHA) was used to improve the properties of KGM hydrogel. The influence of OHA on the structure and properties of KGM hydrogels was evaluated. The results show that the swelling capacity and rheological properties of the composite hydrogels increased with OHA concentration, which might be attributed to the hydrogen bond between the KGM and OHA, resulting in a compact three-dimensional gel network structure. Furthermore, epigallocatechin gallate (EGCG) was efficiently loaded into the KGM/OHA composite hydrogels and liberated in a sustained pattern. The cumulative EGCG release rate of the KGM/OHA hydrogels was enhanced by the increasing addition of OHA. The results show that the release rate of composite hydrogel can be controlled by the content of OHA. These results suggest that OHA has the potential to improve the properties and control release characteristics of KGM hydrogels.
Collapse
|
20
|
Lin H, Tian S, Peng Y, Wu L, Xiao Y, Qing X, Shao Z. IGF Signaling in Intervertebral Disc Health and Disease. Front Cell Dev Biol 2022; 9:817099. [PMID: 35178405 PMCID: PMC8843937 DOI: 10.3389/fcell.2021.817099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022] Open
Abstract
Low back pain (LBP) is a common musculoskeletal symptom, which brings a lot of pain and economic loss to patients. One of the most common causes of LBP is intervertebral disc degeneration (IVDD). However, pathogenesis is still debated, and therapeutic options are limited. Insulin-like growth factor (IGF) signaling pathways play an important role in regulating different cell processes, including proliferation, differentiation, migration, or cell death, which are critical to the homeostasis of tissues and organs. The IGF signaling is crucial in the occurrence and progression of IVDD. The activation of IGF signaling retards IVDD by increasing cell proliferation, promoting extracellular matrix (ECM) synthesis, inhibiting ECM decomposition, and preventing apoptosis and senescence of disc cells. However, abnormal activation of IGF signaling may promote the process of IVDD. IGF signaling is currently considered to have a promising treatment prospect for IVDD. An in-depth understanding of the role of IGF signaling in IVDD may help find a novel approach for IVDD treatment.
Collapse
Affiliation(s)
- Hui Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Yamada K, Iwasaki N, Sudo H. Biomaterials and Cell-Based Regenerative Therapies for Intervertebral Disc Degeneration with a Focus on Biological and Biomechanical Functional Repair: Targeting Treatments for Disc Herniation. Cells 2022; 11:602. [PMID: 35203253 PMCID: PMC8870062 DOI: 10.3390/cells11040602] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a common cause of low back pain and most spinal disorders. As IVD degeneration is a major obstacle to the healthy life of so many individuals, it is a major issue that needs to be overcome. Currently, there is no clinical treatment for the regeneration of degenerated IVDs. However, recent advances in regenerative medicine and tissue engineering suggest the potential of cell-based and/or biomaterial-based IVD regeneration therapies. These treatments may be indicated for patients with IVDs in the intermediate degenerative stage, a point where the number of viable cells decreases, and the structural integrity of the disc begins to collapse. However, there are many biological, biomechanical, and clinical challenges that must be overcome before the clinical application of these IVD regeneration therapies can be realized. This review summarizes the basic research and clinical trials literature on cell-based and biomaterial-based IVD regenerative therapies and outlines the important role of these strategies in regenerative treatment for IVD degenerative diseases, especially disc herniation.
Collapse
Affiliation(s)
- Katsuhisa Yamada
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
22
|
Guo W, Douma L, Hu MH, Eglin D, Alini M, Šećerović A, Grad S, Peng X, Zou X, D'Este M, Peroglio M. Hyaluronic acid-based interpenetrating network hydrogel as a cell carrier for nucleus pulposus repair. Carbohydr Polym 2022; 277:118828. [PMID: 34893245 DOI: 10.1016/j.carbpol.2021.118828] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 01/19/2023]
Abstract
Hyaluronic acid (HA) is a key component of the intervertebral disc (IVD) that is widely investigated as an IVD biomaterial. One persisting challenge is introducing materials capable of supporting cell encapsulation and function, yet with sufficient mechanical stability. In this study, a hybrid interpenetrating polymer network (IPN) was produced as a non-covalent hydrogel, based on a covalently cross-linked HA (HA-BDDE) and HA-poly(N-isopropylacrylamide) (HA-pNIPAM). The hybrid IPN was investigated for its physicochemical properties, with histology and gene expression analysis to determine matrix deposition in vitro and in an ex vivo model. The IPN hydrogel displayed cohesiveness for at least one week and rheological properties resembling native nucleus pulposus (NP) tissue. When implanted in an ex vivo IVD organ culture model, the IPN supported cell viability, phenotype expression of encapsulated NP cells and IVD matrix production over four weeks under physiological loading. Overall, our results indicate the therapeutic potential of this HA-based IPN hydrogel for IVD regeneration.
Collapse
Affiliation(s)
- Wei Guo
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; Department of Spinal Surgery, Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Luzia Douma
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Ming Hsien Hu
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Amra Šećerović
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Xinsheng Peng
- Department of Spinal Surgery, Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Xuenong Zou
- Department of Spinal Surgery, Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Matteo D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.
| | - Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| |
Collapse
|
23
|
Øvrebø Ø, Perale G, Wojciechowski JP, Echalier C, Jeffers JRT, Stevens MM, Haugen HJ, Rossi F. Design and clinical application of injectable hydrogels for musculoskeletal therapy. Bioeng Transl Med 2022; 7:e10295. [PMID: 35600661 PMCID: PMC9115710 DOI: 10.1002/btm2.10295] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
Musculoskeletal defects are an enormous healthcare burden and source of pain and disability for individuals. With an aging population, the proportion of individuals living with these medical indications will increase. Simultaneously, there is pressure on healthcare providers to source efficient solutions, which are cheaper and less invasive than conventional technology. This has led to an increased research focus on hydrogels as highly biocompatible biomaterials that can be delivered through minimally invasive procedures. This review will discuss how hydrogels can be designed for clinical translation, particularly in the context of the new European Medical Device Regulation (MDR). We will then do a deep dive into the clinically used hydrogel solutions that have been commercially approved or have undergone clinical trials in Europe or the United States. We will discuss the therapeutic mechanism and limitations of these products. Due to the vast application areas of hydrogels, this work focuses only on treatments of cartilage, bone, and the nucleus pulposus. Lastly, the main steps toward clinical translation of hydrogels as medical devices are outlined. We suggest a framework for how academics can assist small and medium MedTech enterprises conducting the initial clinical investigation and post‐market clinical follow‐up required in the MDR. It is evident that the successful translation of hydrogels is governed by acquiring high‐quality pre‐clinical and clinical data confirming the device mechanism of action and safety.
Collapse
Affiliation(s)
- Øystein Øvrebø
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilanoItaly
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
- Material Biomimetic ASOslo Science ParkOsloNorway
| | - Giuseppe Perale
- Industrie Biomediche Insubri SAMezzovico‐ViraSwitzerland
- Faculty of Biomedical SciencesUniversity of Southern SwitzerlandLuganoSwitzerland
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
| | - Jonathan P. Wojciechowski
- Department of MaterialsImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
- Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Cécile Echalier
- Department of MaterialsImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
- Institute of Biomedical EngineeringImperial College LondonLondonUK
- Hybrid Technology Hub, Centre of ExcellenceInstitute of Basic Medical Science, University of OsloOsloNorway
| | | | - Molly M. Stevens
- Department of MaterialsImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
- Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Håvard J. Haugen
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
- Material Biomimetic ASOslo Science ParkOsloNorway
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilanoItaly
| |
Collapse
|
24
|
Zhou Z, Zhang Q, Wang Y. Preparation and characterization of antibacterial and anti-inflammatory hyaluronic acid-chitosan-dexamethasone hydrogels for peri-implantitis repair. J Biomater Appl 2021; 36:1141-1150. [PMID: 34605300 DOI: 10.1177/08853282211047939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous treatment methods for peri-implantitis have been widely used including oral cleaning, traditional metal scraping means, or local antibiotic application. However, to continuously release antibacterial and anti-inflammatory drug in location in situ for effective peri-implantitis repair is still challenging. Herein, an anti-inflammatory drug dexamethasone (DE)-incorporated hyaluronic acid (HA)-chitosan (CT) composite hydrogels system was developed to repair peri-implantitis. The physicochemical characterization and biocompatibility of the hydrogel were evaluated in vitro. The in vivo hydrogels degradation and peri-implantitis repair were assessed in mice. The results showed that the prepared multifunctional hydrogels achieved sustained release, with an equilibrium swelling of 18, and promoted the growth against NIH-3T3 fibroblast cells. The in vitro antibacterial tests showed HA-CT-DE hydrogels can inhibit methicillin-resistant Staphylococcus aureus and Escherichia coli. It down-regulated the expression levels of inflammation factor IL-1β, IL-6 and, TNF-α in peri-implantitis. The prepared HA-CT-DE composite hydrogels with integrated function is promising for the treatment of peri-implantitis.
Collapse
Affiliation(s)
- Zhen Zhou
- Stomatological Hospital, 70570Southern Medical University, Guangzhou 510280, China
| | - Qiang Zhang
- Stomatological Hospital, 70570Southern Medical University, Guangzhou 510280, China
| | - Yamin Wang
- Stomatological Hospital, 70570Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
25
|
Liu X, Liu S, Yang R, Wang P, Zhang W, Tan X, Ren Y, Chi B. Gradient chondroitin sulfate/poly (γ-glutamic acid) hydrogels inducing differentiation of stem cells for cartilage tissue engineering. Carbohydr Polym 2021; 270:118330. [PMID: 34364592 DOI: 10.1016/j.carbpol.2021.118330] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Based on the gradient distribution of structure and composition in biological cartilage tissue, we designed a gradient hydrogel scaffold by the moving photomask, using chondroitin sulfate and poly (γ-glutamic acid) as crude materials. The hydrogel scaffold had a gradient distribution of cross-linking density, which can be verified from the results of SEM and swelling behavior. Besides, the hydrogel exhibited great viscoelastic, toughness (70% strain), and strength properties (600 kPa). Additionally, the gradient hydrogel's superior cell compatibility was proved through the MTT, live/dead staining assays, and 3D cell culture experiments. Remarkably, the results of in vitro stem cell differentiation experiments showed that the duration of light directly affected the differentiation extent of stem cells, demonstrating that the gradient hydrogel scaffold can better simulate the function of natural cartilage than the homogeneous one. Due to these outstanding characteristics, this gradient hydrogel is a potential scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
26
|
Abstract
Hyaluronic acid (HA) is a natural polyelectrolyte abundant in mammalian connective tissues, such as cartilage and skin. Both endogenous and exogenous HA produced by fermentation have similar physicochemical, rheological, and biological properties, leading to medical and dermo-cosmetic products. Chemical modifications such as cross-linking or conjugation in target groups of the HA molecule improve its properties and in vivo stability, expanding its applications. Currently, HA-based scaffolds and matrices are of great interest in tissue engineering and regenerative medicine. However, the partial oxidation of the proximal hydroxyl groups in HA to electrophilic aldehydes mediated by periodate is still rarely investigated. The introduced aldehyde groups in the HA backbone allow spontaneous cross-linking with adipic dihydrazide (ADH), thermosensitivity, and noncytotoxicity to the hydrogels, which are advantageous for medical applications. This review provides an overview of the physicochemical properties of HA and its usual chemical modifications to better understand oxi-HA/ADH hydrogels, their functional properties modulated by the oxidation degree and ADH concentration, and the current clinical research. Finally, it discusses the development of biomaterials based on oxi-HA/ADH as a novel approach in tissue engineering and regenerative medicine.
Collapse
|
27
|
Liu S, Li P, Liu X, Wang P, Xue W, Ren Y, Yang R, Chi B, Ye Z. Bioinspired mineral-polymeric hybrid hyaluronic acid/poly (γ-glutamic acid) hydrogels as tunable scaffolds for stem cells differentiation. Carbohydr Polym 2021; 264:118048. [PMID: 33910750 DOI: 10.1016/j.carbpol.2021.118048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Aiming at the difficulty of integrated repair of osteochondral tissue, we designed a hybrid hydrogel scaffold that mimicked the microenvironment of osteochondral niches. Besides, the nano-hydroxyapatite (nHAP) was specially introduced into the hydrogel for its natural ability to promote bone regeneration. The hydrogel also exhibited good toughness (7500 KJ/m3), strength (1000 kPa), viscoelasticity, and in vitro cell experiments showed that hydrogels had quite good cytocompatibility (near 100 % viability). The results of the three-dimensional (3D) cell culture also proved that the survival rate of the cells in the hybrid hydrogels doped with nHAP and dispersion were the highest. In vitro RT-qPCR experiments proved that after being cultured in hydrogel scaffolds doped with nHAP, bone mesenchymal stem cells (BMSCs) could express genes related to osteoblasts and chondrocytes. As a result, this hydrogel provides a general for developing alternative materials applicable for stem cells differentiation and even osteochondral tissue engineering.
Collapse
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Peili Li
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Wenliang Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| | - Zhiwen Ye
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
28
|
Karimi-Soflou R, Nejati S, Karkhaneh A. Electroactive and antioxidant injectable in-situ forming hydrogels with tunable properties by polyethylenimine and polyaniline for nerve tissue engineering. Colloids Surf B Biointerfaces 2021; 199:111565. [DOI: 10.1016/j.colsurfb.2021.111565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/27/2022]
|
29
|
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of chronic low back pain (LBP) that results in serious disability and significant economic burden. IVD degeneration alters the disc structure and spine biomechanics, resulting in subsequent structural changes throughout the spine. Currently, treatments of chronic LBP due to IVD degeneration include conservative treatments, such as pain medication and physiotherapy, and surgical treatments, such as removal of herniated disc without or with spinal fusion. However, none of these treatments can completely restore a degenerated disc and its function. Thus, although the exact pathogenesis of disc degeneration remains unclear, there are studies examining the effectiveness of biological approaches, such as growth factor injection, gene therapy, and cell transplantation, in promoting IVD regeneration. Furthermore, tissue engineering using a combination of cell transplantation and biomaterials has emerged as a promising new approach for repair or restoration of degenerated discs. The main purpose of this review was to provide an overview of the current status of tissue engineering applications for IVD regenerative therapy by performing literature searches using PubMed. Significant advances in tissue engineering have opened the door to a new generation of regenerative therapies for the treatment of chronic discogenic LBP.
Collapse
|
30
|
Chen WY, Lin FH. Oxidized Hyaluronic Acid Hydrogels as a Carrier for Constant-Release Clenbuterol Against High-Fat Diet-Induced Obesity in Mice. Front Endocrinol (Lausanne) 2021; 12:572690. [PMID: 33776904 PMCID: PMC7996091 DOI: 10.3389/fendo.2021.572690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/25/2021] [Indexed: 11/25/2022] Open
Abstract
The global obesity population is increasing year-by-year, and the related cost is sharply increasing annually. There are several methods available to combat obesity; however, there is a lack of a single tool that is both safe and efficacious. The use of Clenbuterol in bodybuilding and by professional athletes is controversial owing to its side effects, including hepatotoxicity. This study administered Clenbuterol at a much lower dose than the established safety level, and rather than through oral administration, the treatments were delivered through controlled-release intra-adipose injection. The different dosing and mode of administration will lower the risk of side effects, increase the safety profile, and could facilitate use in the anti-obesity market. A thermo-sensitive hydrogel was used as the carrier uploaded with Clenbuterol to achieve controlled-release. In the in vitro study, the developed new formulae were not cytotoxic to 3T3-L1 cells and could inhibit lipogenesis effectively. In the animal study, the mice were fed a high-fat diet and treated with Clenbuterol by oral administration, or injected with Clenbuterol-modified hyaluronate hydrogel (HAC) regularly. Both groups showed reduction in whole-body, visceral, and gonadal fat contents and body weight. The abdominal fat was analyzed using MRI imaging in adipose mode and water mode. The abdominal fat ratio in the mice treated with normal diet and those given intra-adipose injections with HAC had the lowest value among the test groups. The mice treated with high-fat diet (HFD) showed the highest value of 53.78%. The chronic toxicity in-vivo test proved that controlled-release injections of 2-10 µg Clenbuterol daily were safe, as demonstrated in the blood elements and serological analyses. This study developed a new and promising method for anti-obesity treatment, using a monthly intra-adipose controlled-release injection of HAC. The developed new formulae of Clenbuterol not only effectively decreased body weight and body fat content but also inhibited lipogenesis on the harvested visceral tissue and reduced adipose tissue around the gonadal fat area. The side effects induced by traditional oral administration of Clenbuterol were not observed in this research; this has excellent potential to be a useful tool for future obesity treatment without safety concerns.
Collapse
Affiliation(s)
- Wei-Yao Chen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
- *Correspondence: Feng-Huei Lin,
| |
Collapse
|
31
|
GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A. Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002931. [PMID: 32734720 PMCID: PMC7754762 DOI: 10.1002/smll.202002931] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Indexed: 05/15/2023]
Abstract
Three-dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue-like constructs in future.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics, California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics, California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
| |
Collapse
|
32
|
Tavakoli J, Diwan AD, Tipper JL. Elastic fibers: The missing key to improve engineering concepts for reconstruction of the Nucleus Pulposus in the intervertebral disc. Acta Biomater 2020; 113:407-416. [PMID: 32531396 DOI: 10.1016/j.actbio.2020.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
The increasing prevalence of low back pain has imposed a heavy economic burden on global healthcare systems. Intense research activities have been performed for the regeneration of the Nucleus Pulposus (NP) of the IVD; however, tissue-engineered scaffolds have failed to capture the multi-scale structural hierarchy of the native tissue. The current study revealed for the first time, that elastic fibers form a network across the NP consisting of straight and thick parallel fibers that were interconnected by wavy fine fibers and strands. Both straight fibers and twisted strands were regularly merged or branched to form a fine elastic network across the NP. As a key structural feature, ultrathin (53 ± 7 nm), thin (215 ± 20 nm), and thick (890 ± 12 nm) elastic fibers were observed in the NP. While our quantitative analysis for measurement of the thickness of elastic fibers revealed no significant differences (p < 0.633), the preferential orientation of fibers was found to be significantly different (p < 0.001) across the NP. The distribution of orientation for the elastic fibers in the NP represented one major organized angle of orientation except for the central NP. We found that the distribution of elastic fibers in the central NP was different from those located in the peripheral regions representing two symmetrically organized major peaks (±45⁰). No significant differences in the maximum fiber count at the major angles of orientation (±45⁰) were observed for both peripheral (p = 0.427) and central NP (p = 0.788). Based on these new findings a structural model for the elastic fibers in the NP was proposed. The geometrical presentation, along with the distribution of elastic fibers orientation, resulting from the present study identifies the ultrastructural organization of elastic fibers in the NP important towards understanding their mechanical role which is still under investigation. Given the results of this new geometrical analysis, more-accurate multiscale finite element models can now be developed, which will provide new insights into the mechanobiology of the IVD. In addition, the results of this study can potentially be used for the fabrication of bio-inspired tissue-engineered scaffolds and IVD models to truly capture the multi-scale structural hierarchy of IVDs. STATEMENT OF SIGNIFICANCE: Visualization of elastic fibers in the nucleus of the intervertebral disk under high magnification was not reported before. The present research utilized extracellular matrix partial digestion to address significant gaps in understanding of nucleus microstructure that can potentially be used for the fabrication of bio-inspired tissue-engineered scaffolds and disk models to truly capture the multi-scale structural hierarchy of discs.
Collapse
|
33
|
Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid – Gelatin injectable hydrogels. Bioelectrochemistry 2020; 134:107536. [DOI: 10.1016/j.bioelechem.2020.107536] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
|
34
|
Tang G, Zhou B, Li F, Wang W, Liu Y, Wang X, Liu C, Ye X. Advances of Naturally Derived and Synthetic Hydrogels for Intervertebral Disk Regeneration. Front Bioeng Biotechnol 2020; 8:745. [PMID: 32714917 PMCID: PMC7344321 DOI: 10.3389/fbioe.2020.00745] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Intervertebral disk (IVD) degeneration is associated with most cases of cervical and lumbar spine pathologies, amongst which chronic low back pain has become the primary cause for loss of quality-adjusted life years. Biomaterials science and tissue engineering have made significant progress in the replacement, repair and regeneration of IVD tissue, wherein hydrogel has been recognized as an ideal biomaterial to promote IVD regeneration in recent years. Aspects such as ease of use, mechanical properties, regenerative capacity, and their applicability as carriers for regenerative and anti-degenerative factors determine their suitability for IVD regeneration. This current review provides an overview of naturally derived and synthetic hydrogels that are related to their clinical applications for IVD regeneration. Although each type has its own unique advantages, it rarely becomes a standard product in truly clinical practice, and a more rational design is proposed for future use of biomaterials for IVD regeneration. This review aims to provide a starting point and inspiration for future research work on development of novel biomaterials and biotechnology.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Bingyan Zhou
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Feng Li
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Weiheng Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Xiaojian Ye
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
35
|
Roles of Silk Fibroin on Characteristics of Hyaluronic Acid/Silk Fibroin Hydrogels for Tissue Engineering of Nucleus Pulposus. MATERIALS 2020; 13:ma13122750. [PMID: 32560556 PMCID: PMC7345670 DOI: 10.3390/ma13122750] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Silk fibroin (SF) and hyaluronic acid (HA) were crosslinked by horseradish peroxidase (HRP)/H2O2, and 1,4-Butanediol di-glycidyl ether (BDDE), respectively, to produce HA/SF-IPN (interpenetration network) (HS-IPN) hydrogels. HS-IPN hydrogels consisted of a SF strain with a high content of tyrosine (e.g., strain A) increased viscoelastic modules compared with those with low contents (e.g., strain B and C). Increasing the quantities of SF in HS-IPN hydrogels (e.g., HS7-IPN hydrogels with weight ratio of HA/SF, 5:7) increased viscoelastic modules of the hydrogels. In addition, the mean pores size of scaffolds of the model hydrogels were around 38.96 ± 5.05 μm which was between those of scaffolds H and S hydrogels. Since the viscoelastic modulus of the HS7-IPN hydrogel were similar to those of human nucleus pulposus (NP), it was chosen as the model hydrogel for examining the differentiation of human bone marrow-derived mesenchymal stem cell (hBMSC) to NP. The differentiation of hBMSC induced by transforming growth factor β3 (TGF-β3) in the model hydrogels to NP cells for 7 d significantly enhanced the expressions of glycosaminoglycan (GAG) and collagen type II, and gene expressions of aggrecan and collagen type II while decreased collagen type I compared with those in cultural wells. In summary, the model hydrogels consisted of SF of strain A, and high concentrations of SF showed the highest viscoelastic modulus than those of others produced in this study, and the model hydrogels promoted the differentiation of hBMSC to NP cells.
Collapse
|
36
|
Heo DN, Alioglu MA, Wu Y, Ozbolat V, Ayan B, Dey M, Kang Y, Ozbolat IT. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20295-20306. [PMID: 32274920 DOI: 10.1021/acsami.0c05096] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Extrusion-based bioprinting of hydrogels in a granular secondary gel enables the fabrication of cell-laden three-dimensional (3D) constructs in an anatomically accurate manner, which is challenging using conventional extrusion-based bioprinting processes. In this study, carbohydrazide-modified gelatin (Gel-CDH) was synthesized and deposited into a new multifunctional support bath consisting of gelatin microparticles suspended in an oxidized alginate (OAlg) solution. During extrusion, Gel-CDH and OAlg were rapidly cross-linked because of the Schiff base formation between aldehyde groups of OAlg and amino groups of Gel-CDH, which has not been demonstrated in the domain of 3D bioprinting before. Rheological results indicated that hydrogels with lower OAlg to Gel-CDH ratios possessed superior mechanical rigidity. Different 3D geometrically intricate constructs were successfully created upon the determination of optimal bioprinting parameters. Human mesenchymal stem cells and human umbilical vein endothelial cells were also bioprinted at physiologically relevant cell densities. The presented study has offered a novel strategy for bioprinting of natural polymer-based hydrogels into 3D complex-shaped biomimetic constructs, which eliminated the need for cytotoxic supplements as external cross-linkers or additional cross-linking processes, therefore expanding the availability of bioinks.
Collapse
Affiliation(s)
- Dong Nyoung Heo
- Department of Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mecit Altan Alioglu
- Department of Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - Yang Wu
- Department of Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Veli Ozbolat
- Department of Mechanical Engineering, Ceyhan Engineering Faculty, Cukurova University, Adana 01950, Turkey
| | - Bugra Ayan
- Department of Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - Madhuri Dey
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- Chemistry Department, Penn State University, University Park, State College, Pennsylvania 16802, United States
| | - Youngnam Kang
- Department of Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - Ibrahim T Ozbolat
- Department of Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- Biomedical Engineering Department, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- Materials Research Institute, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- Neurosurgery Department, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
37
|
Cassimjee H, Kumar P, Choonara YE, Pillay V. Proteosaccharide combinations for tissue engineering applications. Carbohydr Polym 2020; 235:115932. [DOI: 10.1016/j.carbpol.2020.115932] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
|
38
|
Long Y, Song B, Shi C, Liu W, Gu H. AuNPs composites of gelatin hydrogels crosslinked by ferrocene‐containing polymer as recyclable supported catalysts. J Appl Polym Sci 2019. [DOI: 10.1002/app.48653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yanru Long
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Bin Song
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Chutong Shi
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Wentao Liu
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| |
Collapse
|
39
|
Watanabe A, Mainil-Varlet P, Decambron A, Aschinger C, Schiavinato A. Efficacy of HYADD®4-G single intra-discal injections in a rabbit model of intervertebral disc degeneration. Biomed Mater Eng 2019; 30:403-417. [PMID: 31498118 DOI: 10.3233/bme-191062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Various biomaterials/technologies have been tested for treatment of intervertebral disc (IVD) degeneration (IDD). Only few non-surgical options exist. OBJECTIVE Assessment of efficacy and safety of the hyaluronic acid derivative hydrogel HYADD®4-G in IDD using a well-established rabbit annular puncture model. METHODS Rabbits were punctured at two IVDs to induce IDD. Thirty days after, IVDs were injected with HYADD®4-G or saline. IVD hydration, height, appearance and tissue organization were assessed by radiographs, MRI and histopathology. Safety of HYADD®4-G injection was evaluated in non-punctured IVDs. RESULTS HYADD®4-G injection restored disc height to over 75% of the pre-punctured disc, saline injections led to 50% of initial disc height. Compared to saline, HYADD®4-G treatment resulted in improved water retention as revealed by MRI quantification. 83.3% of HYADD®4-G injected discs had normal appearance and reached grade I of the Pfirrmann scale. Regarding tissue organization and cellularity, HYADD®4-G treatment resulted in significantly lower IDD scores than saline (p < 0.01). HYADD®4-G injected into healthy IVDs did not induce inflammation or foreign body reactions. CONCLUSIONS Intra-discal HYADD®4-G injection is safe and has therapeutic benefits: IDD could be limited through restoration of disc height and hydration and maintenance of normal IVD tissue organization.
Collapse
Affiliation(s)
- Atsuya Watanabe
- Department of General Medical Sciences, Chiba University, Chiba, Japan
| | | | - Adeline Decambron
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Surgery Unit CHUVA, Maisons-Alfort Cedex, France
| | | | | |
Collapse
|
40
|
Pandit AH, Mazumdar N, Ahmad S. Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications. Int J Biol Macromol 2019; 137:853-869. [DOI: 10.1016/j.ijbiomac.2019.07.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
|
41
|
Afinjuomo F, Fouladian P, Parikh A, Barclay TG, Song Y, Garg S. Preparation and Characterization of Oxidized Inulin Hydrogel for Controlled Drug Delivery. Pharmaceutics 2019; 11:E356. [PMID: 31336580 PMCID: PMC6680939 DOI: 10.3390/pharmaceutics11070356] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Inulin-based hydrogels are useful carriers for the delivery of drugs in the colon-targeted system and in other biomedical applications. In this project, inulin hydrogels were fabricated by crosslinking oxidized inulin with adipic acid dihydrazide (AAD) without the use of a catalyst or initiator. The physicochemical properties of the obtained hydrogels were further characterized using different techniques, such as swelling experiments, in vitro drug release, degradation, and biocompatibility tests. The crosslinking was confirmed with Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). In vitro releases of 5-fluorouracil (5FU) from the various inulin hydrogels was enhanced in acidic conditions (pH 5) compared with physiological pH (pH 7.4). In addition, blank gels did not show any appreciable cytotoxicity, whereas 5FU-loaded hydrogels demonstrated efficacy against HCT116 colon cancer cells, which further confirms the potential use of these delivery platforms for direct targeting of 5-FU to the colon.
Collapse
Affiliation(s)
- Franklin Afinjuomo
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Paris Fouladian
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Ankit Parikh
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Thomas G Barclay
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Yunmei Song
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia.
| |
Collapse
|
42
|
Zhao R, Liu W, Xia T, Yang L. Disordered Mechanical Stress and Tissue Engineering Therapies in Intervertebral Disc Degeneration. Polymers (Basel) 2019; 11:polym11071151. [PMID: 31284436 PMCID: PMC6680713 DOI: 10.3390/polym11071151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
Low back pain (LBP), commonly induced by intervertebral disc degeneration, is a lumbar disease with worldwide prevalence. However, the mechanism of degeneration remains unclear. The intervertebral disc is a nonvascular organ consisting of three components: Nucleus pulposus, annulus fibrosus, and endplate cartilages. The disc is structured to support our body motion and endure persistent external mechanical pressure. Thus, there is a close connection between force and intervertebral discs in LBP. It is well established that with aging, disordered mechanical stress profoundly influences the fate of nucleus pulposus and the alignment of collagen fibers in the annulus fibrosus. These support a new understanding that disordered mechanical stress plays an important role in the degeneration of the intervertebral discs. Tissue-engineered regenerative and reparative therapies are being developed for relieving disc degeneration and symptoms of lower back pain. In this paper, we will review the current literature available on the role of disordered mechanical stress in intervertebral disc degeneration, and evaluate the existing tissue engineering treatment strategies of the current therapies.
Collapse
Affiliation(s)
- Runze Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tingting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
43
|
Tissue Engineering Strategies for Intervertebral Disc Treatment Using Functional Polymers. Polymers (Basel) 2019; 11:polym11050872. [PMID: 31086085 PMCID: PMC6572548 DOI: 10.3390/polym11050872] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc (IVD) is the fibrocartilage between the vertebrae, allowing the spine to move steadily by bearing multidirectional complex loads. Aging or injury usually causes degeneration of IVD, which is one of the main reasons for low back pain prevalent worldwide and reduced quality of life. While various treatment strategies for degenerative IVD have been studied using in vitro studies, animal experiments, and clinical trials, there are unsolved limitations for endogenous regeneration of degenerative IVD. In this respect, several tissue engineering strategies that are based on the cell and scaffolds have been extensively researched with positive outcomes for regeneration of IVD tissues. Scaffolds made of functional polymers and their diverse forms mimicking the macro- and micro-structure of native IVD enhance the biological and mechanical properties of the scaffolds for IVD regeneration. In this review, we discuss diverse morphological and functional polymers and tissue engineering strategies for endogenous regeneration of degenerative IVD. Tissue engineering strategies using functional polymers are promising therapeutics for fundamental and endogenous regeneration of degenerative IVD.
Collapse
|
44
|
Intradiscal Injection of Induced Pluripotent Stem Cell-Derived Nucleus Pulposus-Like Cell-Seeded Polymeric Microspheres Promotes Rat Disc Regeneration. Stem Cells Int 2019; 2019:6806540. [PMID: 31191679 PMCID: PMC6525958 DOI: 10.1155/2019/6806540] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background Cell replacement therapy is an attractive alternative for treating degenerated intervertebral discs (IVDs), which are related to the reduction of nucleus pulposus-like cells (NP-lCs) and the loss of the extracellular matrix. Induced pluripotent stem cells (iPSCs) which resemble embryonic stem cells are considered to be a potential resource for restoring NP-lCs and disc homeostasis. Here, we proposed an efficient two-step differentiation protocol of human iPSCs into NP-lCs and continuously tested their in vivo ability to regenerate IVDs. Methods A polymeric gelatin microsphere (GM) was generated for sustained release of growth and differentiation factor-5 (GDF-5) and as a cell delivery vehicle of NP-lCs. By injecting NP-lC-seeded GDF-5-loaded GMs into the rat coccygeal intervertebral discs, the disc height and water content were examined with the molybdenum target radiographic imaging test and magnetic resonance imaging examination. Histology and immunohistochemistry results were shown with H&E, S-O-Fast Green, and immunohistochemistry staining. Results We demonstrated that the injection of NP-lC-seeded GDF-5-loaded GMs could reverse IDD in a rat model. The imaging examination indicated that disc height recovered and water content increased. Histology and immunohistochemistry results indicated that the NP cells as well as their extracellular matrix were partially restored. Conclusions The results suggest that NP-lC-seeded GDF-5-loaded GMs could partially regenerate degenerated intervertebral discs after transplantation into rat coccygeal intervertebral discs. Our study will help develop a promising method of stem cell-based therapy for IDD.
Collapse
|
45
|
Zhu J, Xia K, Yu W, Wang Y, Hua J, Liu B, Gong Z, Wang J, Xu A, You Z, Chen Q, Li F, Tao H, Liang C. Sustained release of GDF5 from a designed coacervate attenuates disc degeneration in a rat model. Acta Biomater 2019; 86:300-311. [PMID: 30660009 DOI: 10.1016/j.actbio.2019.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Low back pain is often caused by intervertebral disc degeneration, which is characterized by nucleus pulposus (NP) and extracellular matrix (ECM) degeneration. Human adipose-derived stem cells (hADSCs) induced by growth and differentiation factor-5 (GDF5) can differentiate into an NP-like phenotype. Although stem cell-based therapy with prolonged exposure to growth factors is regarded as a promising treatment, the efficacy of this approach in attenuating the disc degeneration process is limited by the short lifespan of growth factors. In our study, a unique growth factor delivery vehicle composed of heparin and the synthetic polycation poly(ethylene argininylaspartate diglyceride) (PEAD) was used to sustain GDF5 release. The results showed that sustained release of GDF5 by the PEAD:heparin delivery system promoted hADSC differentiation to an NP-like phenotype in vitro. After injection of the PEAD:heparin:GDF5 delivery platform and hADSCs into intervertebral spaces of coccygeal (Co) vertebrae Co7/Co8 and Co8/Co9 of the rat, the disc height, water content, and structure of the NPs decreased more slowly than other treatment groups. This new strategy may be used as an alternative treatment for attenuating intervertebral disc degeneration with hADSCs without the need for gene therapy. STATEMENT OF SIGNIFICANCE: Low back pain is often caused by intervertebral disc degeneration, which is characterized by nucleus pulposus (NP) and extracellular matrix (ECM) degeneration. Human adipose-derived stem cells (hADSCs) induced by growth and differentiation factor-5 (GDF-5) can differentiate into an NP-like phenotype. Although stem cell-based therapy with prolonged exposure to growth factor is regarded as a promising treatment, the efficacy of this approach in the disc regeneration process is limited by the short life of growth factors. In our study, a unique growth factor delivery vehicle comprised of heparin and the synthetic polycation poly(ethylene argininylaspartate diglyceride) (PEAD) was used to sustain the release of GDF-5. Numerous groups have explored IDD regeneration methods in vitro and in vivo. Our study differs in that GDF5 was incorporated into a vehicle through charge attraction and exhibited a sustained release profile. Moreover, GDF-5 seeded coacervate combined with hADSC injection could be a minimally invasive approach for tissue engineering that is suitable for clinical application. We investigated the stimulatory effects of our GDF-5 seeded coacervate on the differentiation of ADSCs in vitro and the reparative effect of the delivery system on degenerated NP in vivo.
Collapse
|
46
|
Qian C, Zhang T, Gravesande J, Baysah C, Song X, Xing J. Injectable and self-healing polysaccharide-based hydrogel for pH-responsive drug release. Int J Biol Macromol 2019; 123:140-148. [DOI: 10.1016/j.ijbiomac.2018.11.048] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/29/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022]
|
47
|
Kuan CY, Lin YY, Chen CY, Yang CC, Chi CY, Li CH, Dong GC, Lin FH. The preparation of oxidized methylcellulose crosslinked by adipic acid dihydrazide loaded with vitamin C for traumatic brain injury. J Mater Chem B 2019. [DOI: 10.1039/c9tb00816k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxi-MC-ADH-VC can open up a new avenue for clinical TBI treatment and rehabilitation.
Collapse
Affiliation(s)
- Che-Yung Kuan
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Yu-Ying Lin
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Ching-Yun Chen
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
- Taiwan
| | - Chun-Chen Yang
- Institute of Biomedical Engineering
- College of Medicine and College of Engineering
- National Taiwan University
- Taipei
- Taiwan
| | - Chih-Ying Chi
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Chi-Han Li
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Guo-Chung Dong
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Feng-Huei Lin
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| |
Collapse
|
48
|
Ma X, Liu S, Tang H, Yang R, Chi B, Ye Z. In situ photocrosslinked hyaluronic acid and poly (γ-glutamic acid) hydrogels as injectable drug carriers for load-bearing tissue application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2252-2266. [PMID: 30311855 DOI: 10.1080/09205063.2018.1535820] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Due to the syringeability of precursor solution and convenience of open surgical treatment, injectable hydrogels have gained growing attention in drug delivery application. For load-bearing tissue, the excellent mechanical property is an important requirement for delivery vehicles to resist external stress and loads. Herein, we prepared mechanically robust injectable hydrogels (HA/γ-PGA hydrogels for short) using methacrylate-functionalized hyaluronic acid and poly (γ-glutamic acid) via photopolymerization. The HA/γ-PGA hydrogels showed outstanding anti-compression ability and could suffer a more than 80% strain. Meanwhile, after 5 cycles of compression, HA/γ-PGA hydrogels could still recover quickly against external stress, showing excellent shape recovery capability. Moreover, the mechanical properties could be modulated easily by changing the molar ratio of HA to γ-PGA. The drug release behavior was also evaluated and the drug-loaded HA/γ-PGA hydrogels showed a weak burst release and sustained release behavior. Additionally, HA/γ-PGA hydrogels also exhibited superior biocompatibility. Therefore, HA/γ-PGA hydrogels have great potential as injectable drug carriers for load-bearing tissue application.
Collapse
Affiliation(s)
- Xuebin Ma
- a School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing , China
| | - Shuai Liu
- a School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing , China
| | - Hejun Tang
- b State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing , China
| | - Rong Yang
- b State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing , China
| | - Bo Chi
- b State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing , China
| | - Zhiwen Ye
- a School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing , China
| |
Collapse
|
49
|
Isa ILM, Günay B, Joyce K, Pandit A. Tissue Engineering: Biomaterials for Disc Repair. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40610-018-0106-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Jian WH, Wang HC, Kuan CH, Chen MH, Wu HC, Sun JS, Wang TW. Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration. Biomaterials 2018; 174:17-30. [PMID: 29763775 DOI: 10.1016/j.biomaterials.2018.05.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/17/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
The poor regenerative capability of stem cell transplantation in the central nervous system limits their therapeutic efficacy in brain injuries. The sustained inflammatory response, lack of structural support, and trophic factors deficiency restrain the integration and long-term survival of stem cells. Instead of exogenous stem cell therapy, here we described the synthesis of nanohybrid hydrogel containing sulfated glycosaminoglycan-based polyelectrolyte complex nanoparticles (PCN) to mimic the brain extracellular matrix and control the delivery of stromal-derived factor-1α (SDF-1α) and basic fibroblast factor (bFGF) in response to matrix metalloproteinase (MMP) for recruiting endogenous neural stem cells (NSC) and regulating their cellular fate. Bioactive factors are delivered by electrostatic sequestration on PCN to amplify the signaling of SDF-1α and bFGF to regulate NSC in vitro. In in vivo ischemic stroke model, the factors promoted neurological behavior recovery by enhancing neurogenesis and angiogenesis. These combined strategies may be applied for other tissue regenerations by regulating endogenous progenitors through the delivery of different kinds of glycosaminoglycan-binding molecules.
Collapse
Affiliation(s)
- Wei-Hong Jian
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Huan-Chih Wang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, 10002, Taiwan; College of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chen-Hsiang Kuan
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, 10002, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Ming-Hong Chen
- Division of Neurosurgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, Taiwan
| | - Hsi-Chin Wu
- Department of Materials Engineering and Department of Bioengineering, Tatung University, Taipei, 10452, Taiwan
| | - Jui-Sheng Sun
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, 10002, Taiwan
| | - Tzu-Wei Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|