1
|
Malafaia AP, Sobreiro-Almeida R, Rodrigues JMM, Mano JF. Thiol-ene click chemistry: Enabling 3D printing of natural-based inks for biomedical applications. BIOMATERIALS ADVANCES 2025; 167:214105. [PMID: 39522498 DOI: 10.1016/j.bioadv.2024.214105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/14/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Over the last decade, 3D bioprinting has gained increasing popularity, being a technique capable of producing well-defined tissue-like structures. One of its most groundbreaking features is the ability to create personalized therapies tailored to the specific demands of individual patients. However, challenges including the selection of materials and crosslinking strategies, still need to be addressed to enhance ink characteristics and develop robust biomaterials. Herein, the authors showcase the potential of overcoming these challenges, focusing on the use of versatile, fast, and selective thiol-ene click chemistry to formulate inks for 3D bioprinting. The exploration of natural polymers, specifically proteins and polysaccharides, will be discussed and highlighted, outlining the advantages and disadvantages of this approach. Leveraging advanced thiol-ene click chemistry and natural polymers in the development of 3D printable bioinks may face the current challenges and is envisioned to pave the way towards innovative and personalized biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Andreia P Malafaia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Sobreiro-Almeida
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João M M Rodrigues
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Maiborodin IV, Mikheeva TV, Sheplev BV, Yarin GY, Onoprienko NV, Maiborodina VI. Morphological Changes in Tissue When Using Polypropylene Implants with Adsorbed Multipotent Stromal Cells in Experiment. Bull Exp Biol Med 2024:10.1007/s10517-024-06220-x. [PMID: 39266921 DOI: 10.1007/s10517-024-06220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 09/14/2024]
Abstract
The subcutaneous tissue of rats after implantation of polypropylene materials with adsorbed bone marrow-derived mesenchymal multipotent stromal cells (MMSCs) was studied using light microscopy. Inflammation in response to implantation was mild, and the foreign material was encapsulated into a thin strip of dense fibrous connective tissue with multinucleated macrophages. By 1 year after introduction of the monofilament and 6 and 12 months after implantation of the mesh product, some threads were deformed, broken, and had sharp edges. Small fragments of foreign material appeared in the adjacent tissues surrounded by their own relatively thick acellular capsule. As a result of preliminary adsorption of MMSCs on polypropylene, the thickness of the connective tissue capsule decreased, its vascularization increased, and the severity of inflammatory infiltration decreased. However, all effects of MMSCs adsorption in rats were transient and disappeared within 1 week.
Collapse
Affiliation(s)
- I V Maiborodin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - T V Mikheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - B V Sheplev
- Private Educational Institution of Higher Education "Novosibirsk Medical and Dental Institute Dentmaster", Novosibirsk, Russia
| | - G Yu Yarin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N V Onoprienko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V I Maiborodina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Degirmenci A, Sanyal R, Sanyal A. Metal-Free Click-Chemistry: A Powerful Tool for Fabricating Hydrogels for Biomedical Applications. Bioconjug Chem 2024; 35:433-452. [PMID: 38516745 PMCID: PMC11036366 DOI: 10.1021/acs.bioconjchem.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Increasing interest in the utilization of hydrogels in various areas of biomedical sciences ranging from biosensing and drug delivery to tissue engineering has necessitated the synthesis of these materials using efficient and benign chemical transformations. In this regard, the advent of "click" chemistry revolutionized the design of hydrogels and a range of efficient reactions was utilized to obtain hydrogels with increased control over their physicochemical properties. The ability to apply the "click" chemistry paradigm to both synthetic and natural polymers as hydrogel precursors further expanded the utility of this chemistry in network formation. In particular, the ability to integrate clickable handles at predetermined locations in polymeric components enables the formation of well-defined networks. Although, in the early years of "click" chemistry, the copper-catalyzed azide-alkyne cycloaddition was widely employed, recent years have focused on the use of metal-free "click" transformations, since residual metal impurities may interfere with or compromise the biological function of such materials. Furthermore, many of the non-metal-catalyzed "click" transformations enable the fabrication of injectable hydrogels, as well as the fabrication of microstructured gels using spatial and temporal control. This review article summarizes the recent advances in the fabrication of hydrogels using various metal-free "click" reactions and highlights the applications of thus obtained materials. One could envision that the use of these versatile metal-free "click" reactions would continue to revolutionize the design of functional hydrogels geared to address unmet needs in biomedical sciences.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| |
Collapse
|
4
|
Rana MM, De la Hoz Siegler H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024; 10:216. [PMID: 38667635 PMCID: PMC11049329 DOI: 10.3390/gels10040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, being hydrophilic polymer networks capable of absorbing and retaining aqueous fluids, hold significant promise in biomedical applications owing to their high water content, permeability, and structural similarity to the extracellular matrix. Recent chemical advancements have bolstered their versatility, facilitating the integration of the molecules guiding cellular activities and enabling their controlled activation under time constraints. However, conventional synthetic hydrogels suffer from inherent weaknesses such as heterogeneity and network imperfections, which adversely affect their mechanical properties, diffusion rates, and biological activity. In response to these challenges, hybrid hydrogels have emerged, aiming to enhance their strength, drug release efficiency, and therapeutic effectiveness. These hybrid hydrogels, featuring improved formulations, are tailored for controlled drug release and tissue regeneration across both soft and hard tissues. The scientific community has increasingly recognized the versatile characteristics of hybrid hydrogels, particularly in the biomedical sector. This comprehensive review delves into recent advancements in hybrid hydrogel systems, covering the diverse types, modification strategies, and the integration of nano/microstructures. The discussion includes innovative fabrication techniques such as click reactions, 3D printing, and photopatterning alongside the elucidation of the release mechanisms of bioactive molecules. By addressing challenges, the review underscores diverse biomedical applications and envisages a promising future for hybrid hydrogels across various domains in the biomedical field.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada;
- Centre for Blood Research, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Wang X, Yang X, Sun Z, Guo X, Teng Y, Hou S, Shi J, Lv Q. Progress in injectable hydrogels for the treatment of incompressible bleeding: an update. Front Bioeng Biotechnol 2024; 11:1335211. [PMID: 38264581 PMCID: PMC10803650 DOI: 10.3389/fbioe.2023.1335211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Uncontrollable haemorrhage from deep, noncompressible wounds remains a persistent and intractable challenge, accounting for a very high proportion of deaths in both war and disaster situations. Recently, injectable hydrogels have been increasingly studied as potential haemostatic materials, highlighting their enormous potential for the management of noncompressible haemorrhages. In this review, we summarize haemostatic mechanisms, commonly used clinical haemostatic methods, and the research progress on injectable haemostatic hydrogels. We emphasize the current status of injectable hydrogels as haemostatic materials, including their physical and chemical properties, design strategy, haemostatic mechanisms, and application in various types of wounds. We discuss the advantages and disadvantages of injectable hydrogels as haemostatic materials, as well as the opportunities and challenges involved. Finally, we propose cutting-edge research avenues to address these challenges and opportunities, including the combination of injectable hydrogels with advanced materials and innovative strategies to increase their biocompatibility and tune their degradation profile. Surface modifications for promoting cell adhesion and proliferation, as well as the delivery of growth factors or other biologics for optimal wound healing, are also suggested. We believe that this paper will inform researchers about the current status of the use of injectable haemostatic hydrogels for noncompressible haemorrhage and spark new ideas for those striving to propel this field forward.
Collapse
Affiliation(s)
- Xiudan Wang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Xinran Yang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Zhiguang Sun
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Xiaoqin Guo
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Yanjiao Teng
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Shike Hou
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Jie Shi
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Qi Lv
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
6
|
Zhang W, Huang X. Stem cell-based drug delivery strategy for skin regeneration and wound healing: potential clinical applications. Inflamm Regen 2023; 43:33. [PMID: 37391780 DOI: 10.1186/s41232-023-00287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Stem cell-based therapy is widely accepted to be a promising strategy in tissue regenerative medicine. Nevertheless, there are several obstacles to applying stem cells in skin regeneration and wound healing, which includes determining the optimum source, the processing and administration methods of stem cells, and the survival and functions of stem cells in wound sites. Owing to the limitations of applying stem cells directly, this review aims to discuss several stem cell-based drug delivery strategies in skin regeneration and wound healing and their potential clinical applications. We introduced diverse types of stem cells and their roles in wound repair. Moreover, the stem cell-based drug delivery systems including stem cell membrane-coated nanoparticles, stem cell-derived extracellular vesicles, stem cell as drug carriers, scaffold-free stem cell sheets, and stem cell-laden scaffolds were further investigated in the field of skin regeneration and wound healing. More importantly, stem cell membrane-coating nanotechnology confers great advantages compared to other drug delivery systems in a broad field of biomedical contexts. Taken together, the stem cell-based drug delivery strategy holds great promise for treating skin regeneration and wound healing.
Collapse
Affiliation(s)
- Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Bhujel B, Oh SH, Kim CM, Yoon YJ, Kim YJ, Chung HS, Ye EA, Lee H, Kim JY. Mesenchymal Stem Cells and Exosomes: A Novel Therapeutic Approach for Corneal Diseases. Int J Mol Sci 2023; 24:10917. [PMID: 37446091 DOI: 10.3390/ijms241310917] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The cornea, with its delicate structure, is vulnerable to damage from physical, chemical, and genetic factors. Corneal transplantation, including penetrating and lamellar keratoplasties, can restore the functions of the cornea in cases of severe damage. However, the process of corneal transplantation presents considerable obstacles, including a shortage of available donors, the risk of severe graft rejection, and potentially life-threatening complications. Over the past few decades, mesenchymal stem cell (MSC) therapy has become a novel alternative approach to corneal regeneration. Numerous studies have demonstrated the potential of MSCs to differentiate into different corneal cell types, such as keratocytes, epithelial cells, and endothelial cells. MSCs are considered a suitable candidate for corneal regeneration because of their promising therapeutic perspective and beneficial properties. MSCs compromise unique immunomodulation, anti-angiogenesis, and anti-inflammatory properties and secrete various growth factors, thus promoting corneal reconstruction. These effects in corneal engineering are mediated by MSCs differentiating into different lineages and paracrine action via exosomes. Early studies have proven the roles of MSC-derived exosomes in corneal regeneration by reducing inflammation, inhibiting neovascularization, and angiogenesis, and by promoting cell proliferation. This review highlights the contribution of MSCs and MSC-derived exosomes, their current usage status to overcome corneal disease, and their potential to restore different corneal layers as novel therapeutic agents. It also discusses feasible future possibilities, applications, challenges, and opportunities for future research in this field.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Se-Heon Oh
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Chang-Min Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ye-Ji Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Young-Jae Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ho-Seok Chung
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Eun-Ah Ye
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Jae-Yong Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| |
Collapse
|
8
|
Rizwan A, Gulfam M, Jo SH, Seo JW, Ali I, Thang Vu T, Joo SB, Park SH, Taek Lim K. Gelatin-based NIR and reduction-responsive injectable hydrogels cross-linked through IEDDA click chemistry for drug delivery application. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
9
|
Meng Y, Gantier M, Nguyen TH, Nicolai T, Nicol E. Poly(ethylene oxide)/Gelatin-Based Biphasic Photocrosslinkable Hydrogels of Tunable Morphology for Hepatic Progenitor Cell Encapsulation. Biomacromolecules 2023; 24:789-796. [PMID: 36655630 DOI: 10.1021/acs.biomac.2c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Macroporous hydrogels have great potential for biomedical applications. Liquid or gel-like pores were created in a photopolymerizable hydrogel by forming water-in-water emulsions upon mixing aqueous solutions of gelatin and a poly(ethylene oxide) (PEO)-based triblock copolymer. The copolymer constituted the continuous matrix, which dominated the mechanical properties of the hydrogel once photopolymerized. The gelatin constituted the dispersed phase, which created macropores in the hydrogel. The microstructures of the porous hydrogel were determined by the volume fraction of the gelatin phase. When volume fractions were close to 50 v%, free-standing hydrogels with interpenetrated morphology can be obtained thanks to the addition of a small amount of xanthan. The hydrogels displayed Young's moduli ranging from 5 to 30 kPa. They have been found to be non-swellable and non-degradable in physiological conditions. Preliminary viability tests with hepatic progenitor cells embedded in monophasic PEO-based hydrogels showed rapid mortality of the cells, whereas encouraging viability was observed in PEO-based triblock copolymer/gelatin macroporous hydrogels. The latter has the potential to be used in cell therapy.
Collapse
Affiliation(s)
- Yuwen Meng
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| | - Malika Gantier
- GoLiver Therapeutics, IRSUN, 8 quai Moncousu - BP 70721, Nantes Cedex 44007, France.,Center for Research in Transplantation and Translational Immunology, UMR 1064, INSERM, Nantes Université, NantesF-44000, France
| | - Tuan Huy Nguyen
- GoLiver Therapeutics, IRSUN, 8 quai Moncousu - BP 70721, Nantes Cedex 44007, France
| | - Taco Nicolai
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| | - Erwan Nicol
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| |
Collapse
|
10
|
Wang X, Zhang X, Yang X, Guo X, Liu Y, Li Y, Ding Z, Teng Y, Hou S, Shi J, Lv Q. An Antibacterial and Antiadhesion In Situ Forming Hydrogel with Sol-Spray System for Noncompressible Hemostasis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:662-676. [PMID: 36562696 DOI: 10.1021/acsami.2c19662] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Noncompressible hemorrhage is a major cause of posttrauma death and occupies the leading position among potentially preventable trauma-associated deaths. Recently, multiple studies have shown that strongly adhesive materials can serve as hemostatic materials for noncompressible hemorrhage. However, the risk of severe tissue adhesion limits the use of adhesive hydrogels as hemostatic materials. Here, we report a promising material system comprising an injectable sol and liquid spray as a potential solution. Injectable sol is mainly composed of gelatin (GEL) and sodium alginate (SA), which possess hemostasis and adhesive properties. The liquid spray component, a mixture of tannic acid (TA) and calcium chloride (CaCl2), rapidly forms an antibacterial, antiadhesive and smooth film structure upon contact with the sol. In vitro and in vivo experiments demonstrated the bioabsorbable, biocompatible, antibacterial, and antiadhesion properties of the in situ forming hydrogel with a sol-spray system. Importantly, the addition of tranexamic acid (TXA) enhanced hemostatic performance in noncompressible areas and in deep wound hemorrhage. Our study offers a new multifunctional hydrogel system to achieve noncompressible hemostasis.
Collapse
Affiliation(s)
- Xiudan Wang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Xin Zhang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Xinran Yang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Xiaoqin Guo
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Yanqing Liu
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Yongmao Li
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Ziling Ding
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Yanjiao Teng
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Shike Hou
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Jie Shi
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Qi Lv
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| |
Collapse
|
11
|
Beatty LA, Mansour KL, Bryant EJ, Garcia-Godoy FJ, Pantaleon DS, Sawatari Y, Huang CYC, Garcia-Godoy F. Chondroprotective Effects of Periodontal Ligament Derived Stem Cells Conditioned Medium on Articular Cartilage After Impact Injury. Stem Cells Dev 2022; 31:498-505. [PMID: 35730119 DOI: 10.1089/scd.2022.0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Paracrine factors secreted in the conditioned media of periodontal ligament derived stem cells (PDLSCs) have been shown to downregulate inflammatory effects of IL-1β on chondrocytes wherein milk fat globule-epidermal growth factor 8 (MFG-E8) is one of the PDLSCs highly secretory proteins. Therefore, the objective of this study was to investigate the ability of PDLSC conditioned media (CM) and MFG-E8 to reduce the inflammatory effects of impact injury on porcine talar articular cartilage (AC) and IL-1β on chondrocytes, respectively. Stem cells were isolated from human periodontal ligaments. the MFG-E8 content in CM collected at 5% and 20% oxygen was measured by ELISA assay and compared across subcultures and donors. AC samples were divided into three groups: control, impact, and impact+CM. Chondrocytes were isolated from pig knees and were divided into three groups: control, IL-1β, and IL-1β+MFG-E8. Gene expression data was analyzed by RT-PCR. It was found that impact load and IL-1β treatment upregulated IL-1β, TNF-α, ADAMTS-4, and ADAMTS-5 gene expression in AC and chondrocytes, respectively. PDLSCs-CM prevented the upregulation of all four genes due to impact whereas MFG-E8 prevented upregulation of IL-1β, ADAMTS-4, and ADAMTS-5 in chondrocytes, but it did not prevent TNF-α upregulation. There were no significant differences in MFG-E8 content in CM among oxygen levels, passage numbers, or donors. The findings suggested that MFG-E8 is an effective anti-inflammatory agent contributing to the chondroprotective effects of PDLSCs-CM on acutely injured articular cartilage. Thus, introducing PDLSCs-CM to sites of acute traumatic AC injury could prevent the development of post-traumatic osteoarthritis.
Collapse
Affiliation(s)
- Logan Albert Beatty
- University of Miami - Coral Gables Campus, 5452, Biomedical Engineering, Coral Gables, Florida, United States;
| | - Kailey L Mansour
- University of Miami Miller School of Medicine, 12235, Miami, Florida, United States;
| | - Evan J Bryant
- University of Miami Miller School of Medicine, 12235, Miami, Florida, United States;
| | | | | | - Yoh Sawatari
- University of Miami Miller School of Medicine, 12235, Division of Oral and Maxillofacial Surgery, Miami, Florida, United States;
| | - Chun-Yuh Charles Huang
- University of Miami - Coral Gables Campus, 5452, Biomedical Engineering, Coral Gables, Florida, United States;
| | - Franklin Garcia-Godoy
- University of Tennessee Health Science Center, Bioscience Research, College of Dentistry, Memphis, Tennessee, United States;
| |
Collapse
|
12
|
Yang J, Yu H, Wang L, Liu J, Liu X, Hong Y, Huang Y, Ren S. Advances in adhesive hydrogels for tissue engineering. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Hwang J, Thi PL, Lee S, Park EH, Lee E, Kim E, Chang K, Park KD. Injectable gelatin-poly(ethylene glycol) adhesive hydrogels with highly hemostatic and wound healing capabilities. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Yang X, Yeung WHO, Tan KV, Ng TPK, Pang L, Zhou J, Li J, Li C, Li X, Lo CM, Kao WJ, Man K. Development of cisplatin-loaded hydrogels for trans-portal vein chemoembolization in an orthotopic liver cancer mouse model. Drug Deliv 2021; 28:520-529. [PMID: 33685316 PMCID: PMC7946021 DOI: 10.1080/10717544.2021.1895908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Transarterial chemoembolization is a standard treatment for intermediate-stage hepatocellular carcinoma (HCC). This study evaluated the anti-tumor effect of the semi-interpenetrating network (IPN) hydrogel as a novel embolic material for trans-portal vein chemoembolization (TPVE) in vivo. A nude mice orthotopic HCC model was established, followed by TPVE using IPN hydrogel loaded with or without cisplatin. Portal vein blockade was visualized by MRI and the development of tumor was monitored by IVIS Spectrum Imaging. Tumor proliferation and angiogenesis were evaluated by Ki67 and CD34 staining respectively. Intra-tumor caspase 3, Akt, ERK1/2, and VEGF activation were detected by Western Blot. 18 F-FMISO uptake was evaluated by microPET-MRI scanning. IPN hydrogel first embolized the left branch of portal vein within 24 hours and further integrated into the intra-tumor vessels during 2 weeks after the treatment. Mice treated with cisplatin-loaded hydrogels exhibited a significant decrease in tumor growth, along with lower plasma AFP levels as compared to hydrogel-treated and untreated tumor-bearing mice. By Ki67 and CD34 staining, the TPVE with IPN hydrogel suppressed tumor proliferation and angiogenesis. In addition, increased tumor apoptosis shown by up-regulation of caspase 3 with decreased expressions of tumor cell survival indicators Akt and ERK1/2 were observed in the treatment groups. Consistent with the decreased expression of VEGF after TPVE, hypoxia level in the tumor was also reduced as indicated by 18 F-FMISO uptake level. IPN hydrogel-based TPVE significantly suppressed the tumor development by regulating intra-tumor angiogenesis and cell survival in an orthotopic HCC mouse model, suggesting a viable embolic agent for transarterial chemoembolization.
Collapse
Affiliation(s)
- Xinxiang Yang
- Department of Surgery, HKU-SZH and Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai-Ho Oscar Yeung
- Department of Surgery, HKU-SZH and Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kel Vin Tan
- Department of Diagnostic Radiology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tak-Pan Kevin Ng
- Department of Surgery, HKU-SZH and Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Pang
- Department of Surgery, HKU-SZH and Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jie Zhou
- Department of Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jinyang Li
- Department of Surgery, HKU-SZH and Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Changxian Li
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangcheng Li
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chung Mau Lo
- Department of Surgery, HKU-SZH and Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Weiyuan John Kao
- Department of Industrial and Manufacturing Systems Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
- Biomedical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
- Department of Chemistry and Chemical Biology Centre, Faculty of Science, The University of Hong Kong, Hong Kong, China
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- Department of Surgery, HKU-SZH and Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Abstract
Biopolymers are natural polymers sourced from plants and animals, which include a variety of polysaccharides and polypeptides. The inclusion of biopolymers into biomedical hydrogels is of great interest because of their inherent biochemical and biophysical properties, such as cellular adhesion, degradation, and viscoelasticity. The objective of this Review is to provide a detailed overview of the design and development of biopolymer hydrogels for biomedical applications, with an emphasis on biopolymer chemical modifications and cross-linking methods. First, the fundamentals of biopolymers and chemical conjugation methods to introduce cross-linking groups are described. Cross-linking methods to form biopolymer networks are then discussed in detail, including (i) covalent cross-linking (e.g., free radical chain polymerization, click cross-linking, cross-linking due to oxidation of phenolic groups), (ii) dynamic covalent cross-linking (e.g., Schiff base formation, disulfide formation, reversible Diels-Alder reactions), and (iii) physical cross-linking (e.g., guest-host interactions, hydrogen bonding, metal-ligand coordination, grafted biopolymers). Finally, recent advances in the use of chemically modified biopolymer hydrogels for the biofabrication of tissue scaffolds, therapeutic delivery, tissue adhesives and sealants, as well as the formation of interpenetrating network biopolymer hydrogels, are highlighted.
Collapse
Affiliation(s)
- Victoria G. Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Kim MH, Lin CC. Norbornene-functionalized methylcellulose as a thermo- and photo-responsive bioink. Biofabrication 2021; 13:10.1088/1758-5090/ac24dc. [PMID: 34496360 PMCID: PMC8593879 DOI: 10.1088/1758-5090/ac24dc] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) bioprinting has emerged as an important tool to fabricate scaffolds with complex structures for tissue engineering and regenerative medicine applications. For extrusion-based 3D bioprinting, the success of printing complex structures relies largely on the properties of bioink. Methylcellulose (MC) has been exploited as a potential bioink for 3D bioprinting due to its temperature-dependent rheological properties. However, MC is highly soluble and has low structural stability at room temperature, making it suboptimal for 3D bioprinting applications. In this study, we report a one-step synthesis protocol for modifying MC with norbornene (MCNB), which serves as a new bioink for 3D bioprinting. MCNB preserves the temperature-dependent reversible sol-gel transition and readily reacts with thiol-bearing linkers through light-mediated step-growth thiol-norbornene photopolymerization. Furthermore, we rendered the otherwise inert MC network bioactive through facile conjugation of integrin-binding ligands (e.g. CRGDS) or via incorporating cell-adhesive and protease-sensitive gelatin-based macromer (e.g. GelNB). The adaptability of the new MCNB-based bioink offers an attractive option for diverse 3D bioprinting applications.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
Fan F, Saha S, Hanjaya-Putra D. Biomimetic Hydrogels to Promote Wound Healing. Front Bioeng Biotechnol 2021; 9:718377. [PMID: 34616718 PMCID: PMC8488380 DOI: 10.3389/fbioe.2021.718377] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
Wound healing is a common physiological process which consists of a sequence of molecular and cellular events that occur following the onset of a tissue lesion in order to reconstitute barrier between body and external environment. The inherent properties of hydrogels allow the damaged tissue to heal by supporting a hydrated environment which has long been explored in wound management to aid in autolytic debridement. However, chronic non-healing wounds require added therapeutic features that can be achieved by incorporation of biomolecules and supporting cells to promote faster and better healing outcomes. In recent decades, numerous hydrogels have been developed and modified to match the time scale for distinct stages of wound healing. This review will discuss the effects of various types of hydrogels on wound pathophysiology, as well as the ideal characteristics of hydrogels for wound healing, crosslinking mechanism, fabrication techniques and design considerations of hydrogel engineering. Finally, several challenges related to adopting hydrogels to promote wound healing and future perspectives are discussed.
Collapse
Affiliation(s)
- Fei Fan
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Sanjoy Saha
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Donny Hanjaya-Putra
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
18
|
Abstract
An implants' effectiveness depends upon the form of biomaterial used in its manufacture. A suitable material for implants should be biocompatible, sterile, mechanically stable and simple to shape. 3D printing technologies have been breaking new ground in the medical and medical industries in order to build patient-specific devices embedded in bioactive drugs, cells and proteins. Widespread use in medical 3D printing is a broad range of biomaterials including metals, ceramics, polymers and composites. Continuous work and developments in biomaterials used in 3D printing have contributed to significant growth of 3D printing applications in the production of personalised joints, prostheses, medication delivery system and 3D tissue engineering and regenerative medicine scaffolds. The present analysis focuses on the biomaterials used for therapeutic applications in different 3D printing technologies. Many specific forms of medical 3D printing technology are explored in depth, including fused deposition modelling, extrusion-based bioprinting, inkjet and poly-jet printing processes, their therapeutic uses, various types of biomaterial used today and the major shortcoming , are being studied in depth.
Collapse
Affiliation(s)
- Abhay Mishra
- Department of Mechanical Engineering, DIT University, Dehradun, India
| | - Vivek Srivastava
- Department of Mechanical Engineering, DIT University, Dehradun, India
| |
Collapse
|
19
|
Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. Acta Biomater 2021; 123:1-30. [PMID: 33484912 DOI: 10.1016/j.actbio.2021.01.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/05/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The degree of tissue injuries such as the level of scarring or organ dysfunction, and the immune response against them primarily determine the outcome and speed of healing process. The successful regeneration of functional tissues requires proper modulation of inflammation-producing immune cells and bioactive factors existing in the damaged microenvironment. In the tissue repair and regeneration processes, different types of biomaterials are implanted either alone or by combined with other bioactive factors, which will interact with the immune systems including immune cells, cytokines and chemokines etc. to achieve different results highly depending on this interplay. In this review article, the influences of different types of biomaterials such as nanoparticles, hydrogels and scaffolds on the immune cells and the modification of immune-responsive factors such as reactive oxygen species (ROS), cytokines, chemokines, enzymes, and metalloproteinases in tissue microenvironment are summarized. In addition, the recent advances of immune-responsive biomaterials in therapy of inflammation-associated diseases such as myocardial infarction, spinal cord injury, osteoarthritis, inflammatory bowel disease and diabetic ulcer are discussed.
Collapse
|
20
|
Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. J Control Release 2021; 330:470-482. [DOI: 10.1016/j.jconrel.2020.12.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
|
21
|
Wang H, Xu Z, Zhao M, Liu G, Wu J. Advances of hydrogel dressings in diabetic wounds. Biomater Sci 2021; 9:1530-1546. [DOI: 10.1039/d0bm01747g] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hydrogel dressings with various functions for diabetic wound treatment.
Collapse
Affiliation(s)
- Heni Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Meng Zhao
- Shenzhen Lansi Institute of Artificial Intelligence in Medicine
- Shenzhen
- China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| |
Collapse
|
22
|
Chitosan Hydrogel Enhances the Therapeutic Efficacy of Bone Marrow-Derived Mesenchymal Stem Cells for Myocardial Infarction by Alleviating Vascular Endothelial Cell Pyroptosis. J Cardiovasc Pharmacol 2020; 75:75-83. [PMID: 31663873 PMCID: PMC7668671 DOI: 10.1097/fjc.0000000000000760] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Supplemental Digital Content is Available in the Text. Myocardial infarction (MI) is one of the higher mortality rates, and current treatment can only delay the progression of the disease. Experiments have shown that cell therapy could improve cardiac function and mesenchymal stem cells (MSCs)-based therapies provide a great promising approach in the treatment of MI. However, low cell survival and engraftment restricts the successful application of MSCs for treating MI. Here, we explored whether co-transplantation of a chitosan (CS) thermosensitive hydrogel with bone marrow-derived MSCs (BMSCs) could optimize and maximize the therapeutic of BMSCs in a mouse model of MI. The fate of transplanted BMSCs was monitored by bioluminescence imaging, and the recovery of cardiac function was detected by echocardiogram. Our results proved that CS hydrogel enhanced the BMSCs' survival and the recovery of cardiac function by protecting the vascular endothelial cells. Further studies revealed that the increased number of vascular endothelial cells was due to the fact that transplanted BMSCs inhibited the inflammatory response and alleviated the pyroptosis of vascular endothelial cells. In conclusions, CS hydrogel improved the engraftment of transplanted BMSCs, ameliorated inflammatory responses, and further promoted functional recovery of heart by alleviating vascular endothelial cell pyroptosis.
Collapse
|
23
|
Le Thi P, Lee Y, Tran DL, Hoang Thi TT, Park KD. Horseradish peroxidase-catalyzed hydrogelation of fish gelatin with tunable mechanical properties and biocompatibility. J Biomater Appl 2020; 34:1216-1226. [PMID: 31914843 DOI: 10.1177/0885328219899787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Horseradish peroxidase-catalyzed injectable gelatin hydrogels have attracted much attention in various biomedical fields because of their processability, biodegradability, and excellent biocompatibility in promoting cell adhesion and proliferation. However, gelatin derivatives are mainly obtained from mammalian sources (porcine, bovine) with thermal gelation at room temperature, leading to the potential problems in biofabrication applications. Here, we introduce a novel fish gelatin derivative that can be easily dissolved and cross-linked at room temperature by horseradish peroxidase. This system provides thermally stable fish gelatin hydrogels with tunable mechanical and biological properties, comparable to porcine gelatin hydrogels. The properties (gelation time, stiffness, degradation rate) of hydrogels prepared from fish gelatin-hydroxyphenyl propionic acid (FGH) are controllable for suitable applications. Moreover, FGH hydrogels allow human dermal fibroblast cells to adhere, proliferate, and produce the extracellular components. These results suggest horseradish peroxidase-cross-linked FGH as potential hydrogel matrices that can be used as an alternative for mammalian gelatin hydrogels in various biomedical applications.
Collapse
Affiliation(s)
- Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Dieu Linh Tran
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
24
|
Cao Y, Lee BH, Irvine SA, Wong YS, Bianco Peled H, Venkatraman S. Inclusion of Cross-Linked Elastin in Gelatin/PEG Hydrogels Favourably Influences Fibroblast Phenotype. Polymers (Basel) 2020; 12:polym12030670. [PMID: 32192137 PMCID: PMC7183321 DOI: 10.3390/polym12030670] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
The capacity of a biomaterial to innately modulate cell behavior while meeting the mechanical property requirements of the implant is a much sought-after goal within bioengineering. Here we covalently incorporate soluble elastin into a gelatin–poly (ethylene glycol) (PEG) hydrogel for three-dimensional (3D) cell encapsulation to achieve these properties. The inclusion of elastin into a previously optimized gelatin–PEG hydrogel was then evaluated for effects on entrapped fibroblasts, with the aim to assess the hydrogel as an extracellular matrix (ECM)-mimicking 3D microenvironment for cellular guidance. Soluble elastin was incorporated both physically and covalently into novel gelatin/elastin hybrid PEG hydrogels with the aim to harness the cellular interactivity and mechanical tunability of both elastin and gelatin. This design allowed us to assess the benefits of elastin-containing hydrogels in guiding fibroblast activity for evaluation as a potential dermal replacement. It was found that a gelatin–PEG hydrogel with covalently conjugated elastin, supported neonatal fibroblast viability, promoted their proliferation from 7.3% to 13.5% and guided their behavior. The expression of collagen alpha-1(COL1A1) and elastin in gelatin/elastin hybrid gels increased 16-fold and 6-fold compared to control sample at day 9, respectively. Moreover, cells can be loaded into the hydrogel precursor solution, deposited, and the matrix cross-linked without affecting the incorporated cells adversely, thus enabling a potential injectable system for dermal wound healing.
Collapse
Affiliation(s)
- Ye Cao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
- The Inter-Departmental Program for Biotechnology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Bae Hoon Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
| | - Scott Alexander Irvine
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
| | - Yee Shan Wong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
| | - Havazelet Bianco Peled
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Correspondence: (H.B.P.); (S.V.)
| | - Subramanian Venkatraman
- Subramanian Venkatraman, Materials Science and Engineering, National University of Singapore, Singapore 119077, Singapore
- Correspondence: (H.B.P.); (S.V.)
| |
Collapse
|
25
|
Ghane N, Beigi MH, Labbaf S, Nasr-Esfahani MH, Kiani A. Design of hydrogel-based scaffolds for the treatment of spinal cord injuries. J Mater Chem B 2020; 8:10712-10738. [DOI: 10.1039/d0tb01842b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogel-based scaffold design approaches for the treatment of spinal cord injuries.
Collapse
Affiliation(s)
- Nazanin Ghane
- Department of Cellular Biotechnology Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
- Iran
| | - Mohammad-Hossein Beigi
- Department of Cellular Biotechnology Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
- Iran
| | - Sheyda Labbaf
- Biomaterials Research Group
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan
- Iran
| | | | - Amirkianoosh Kiani
- Silicon Hall: Micro/Nano Manufacturing Facility
- Faculty of Engineering and Applied Science
- Ontario Tech University
- Ontario
- Canada
| |
Collapse
|
26
|
Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Soleimani Rad J. A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
da Silva LP, Reis RL, Correlo VM, Marques AP. Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annu Rev Biomed Eng 2019; 21:145-169. [DOI: 10.1146/annurev-bioeng-060418-052422] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic skin wounds are the leading cause of nontraumatic foot amputations worldwide and present a significant risk of morbidity and mortality due to the lack of efficient therapies. The intrinsic characteristics of hydrogels allow them to benefit cutaneous healing essentially by supporting a moist environment. This property has long been explored in wound management to aid in autolytic debridement. However, chronic wounds require additional therapeutic features that can be provided by a combination of hydrogels with biochemical mediators or cells, promoting faster and better healing. We survey hydrogel-based approaches with potential to improve the healing of chronic wounds by reviewing their effects as observed in preclinical models. Topics covered include strategies to ablate infection and resolve inflammation, the delivery of bioactive agents to accelerate healing, and tissue engineering approaches for skin regeneration. The article concludes by considering the relevance of treating chronic skin wounds using hydrogel-based strategies.
Collapse
Affiliation(s)
- Lucília P. da Silva
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| | - Vitor M. Correlo
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| | - Alexandra P. Marques
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
28
|
Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 2019; 146:209-239. [PMID: 30605737 DOI: 10.1016/j.addr.2018.12.014] [Citation(s) in RCA: 366] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022]
Abstract
Cutaneous injuries, especially chronic wounds, burns, and skin wound infection, require painstakingly long-term treatment with an immense financial burden to healthcare systems worldwide. However, clinical management of chronic wounds remains unsatisfactory in many cases. Various strategies including growth factor and gene delivery as well as cell therapy have been used to enhance the healing of non-healing wounds. Drug delivery systems across the nano, micro, and macroscales can extend half-life, improve bioavailability, optimize pharmacokinetics, and decrease dosing frequency of drugs and genes. Replacement of the damaged skin tissue with substitutes comprising cell-laden scaffold can also restore the barrier and regulatory functions of skin at the wound site. This review covers comprehensively the advanced treatment strategies to improve the quality of wound healing.
Collapse
|
29
|
Engineered delivery strategies for enhanced control of growth factor activities in wound healing. Adv Drug Deliv Rev 2019; 146:190-208. [PMID: 29879493 DOI: 10.1016/j.addr.2018.06.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/18/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
Growth factors (GFs) are versatile signalling molecules that orchestrate the dynamic, multi-stage process of wound healing. Delivery of exogenous GFs to the wound milieu to mediate healing in an active, physiologically-relevant manner has shown great promise in laboratories; however, the inherent instability of GFs, accompanied with numerous safety, efficacy and cost concerns, has hindered the clinical success of GF delivery. In this article, we highlight that the key to overcoming these challenges is to enhance the control of the activities of GFs throughout the delivering process. We summarise the recent strategies based on biomaterials matrices and molecular engineering, which aim to improve the conditions of GFs for delivery (at the 'supply' end of the delivery), increase the stability and functions of GFs in extracellular matrix (in transportation to target cells), as well as enhance the GFs/receptor interaction on the cell membrane (at the 'destination' end of the delivery). Many of these investigations have led to encouraging outcomes in various in vitro and in vivo regenerative models with considerable translational potential.
Collapse
|
30
|
Alemzadeh E, Oryan A, Mohammadi AA. Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat. J Biomed Mater Res B Appl Biomater 2019; 108:555-567. [PMID: 31081996 DOI: 10.1002/jbm.b.34411] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/17/2019] [Accepted: 04/25/2019] [Indexed: 01/21/2023]
Abstract
Application of hydrogels can be an effective technique in transferring the adipose-derived stem cells (ASCs) to injured tissue and their protection from further complications. Besides, acellular dermal matrix (ADM) has successfully been used in treatment of wounds. In this study, a combination of hylauronic acid (HA) and ASCs (HA/ASCs) was applied on burn wounds and the injured area was then covered by an ADM dressing in a rat model (ADM-HA/ASCs). Wound healing was evaluated by histopathological, histomorphometrical, molecular, biochemical, and scanning electron microscopy assessments on days 7, 14, and 28 post-wounding. ADM-HA/ASCs stimulated healing significantly more than the ADM-HA and ADM treated wounds, as it led to reduced inflammation, and improved angiogenesis and enhanced granulation tissue formation. Expression of interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) was lower in the ADM-HA/ASCs treated wounds than the ADM-HA and ADM groups, at the seventh post-wounding day. ADM-HA/ASCs also enhanced the expression level of TGF-β1 mRNA at 14 day post-wounding that was parallel to the experimental data from histological and biochemical assessments and confirmed the positive role of ASCs in repair of burn wounds. Additionally, increase in basic fibroblast growth factor (bFGF) expression and decreased TGF-β1 level on the 28th post-wounding day indicated the anti-scarring activity of ASCs. HA loaded by adipose stem cells can represent a promising strategy in accelerating burn wound healing.
Collapse
Affiliation(s)
- Esmat Alemzadeh
- Department of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali A Mohammadi
- Burn and Wound Healing Research Center, Plastic and Reconstructive Ward, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
31
|
Subramani B, Shantamurthy CD, Maru P, Belekar MA, Mardhekar S, Shanmugam D, Kikkeri R. Demystifying a hexuronic acid ligand that recognizes Toxoplasma gondii and blocks its invasion into host cells. Org Biomol Chem 2019; 17:4535-4542. [PMID: 30994681 DOI: 10.1039/c9ob00744j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toxoplasma gondii is a ubiquitous eukaryotic pathogen responsible for toxoplasmosis in humans and animals. This parasite is an obligate intracellular pathogen and actively invades susceptible host cells, a process which is mediated by specific receptor-ligand interactions. Here, we have identified an unnatural 2,4-disulfated d-glucuronic acid (Di-S-GlcA), a hexuronic acid composed of heparin/heparan sulfate, as a potential carbohydrate ligand that can selectively bind to T. gondii parasites. More importantly, the gelatin conjugated Di-S-GlcA multivalent probe displayed strong inhibition of parasite entry into host cells. These results open perspective for the future use of Di-S-GlcA epitopes in biomedical applications against toxoplasmosis.
Collapse
Affiliation(s)
- Balamurugan Subramani
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| | | | | | | | | | | | | |
Collapse
|
32
|
Gupta A, Kowalczuk M, Heaselgrave W, Britland ST, Martin C, Radecka I. The production and application of hydrogels for wound management: A review. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.019] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Do AV, Worthington K, Tucker B, Salem AK. Controlled drug delivery from 3D printed two-photon polymerized poly(ethylene glycol) dimethacrylate devices. Int J Pharm 2018; 552:217-224. [PMID: 30268853 PMCID: PMC6204107 DOI: 10.1016/j.ijpharm.2018.09.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
Controlled drug delivery systems have been utilized to enhance the therapeutic effects of many drugs by delivering drugs in a time-dependent and sustained manner. Here, with the aid of 3D printing technology, drug delivery devices were fabricated and tested using a model drug (fluorophore: rhodamine B). Poly(ethylene glycol) dimethacrylate (PEGDMA) devices were fabricated using a two-photon polymerization (TPP) system and rhodamine B was homogenously entrapped inside the polymer matrix during photopolymerization. These devices were printed with varying porosity and morphology using varying printing parameters such as slicing and hatching distance. The effects of these variables on drug release kinetics were determined by evaluating device fluorescence over the course of one week. These PEGDMA-based structures were then investigated for toxicity and biocompatibility in vitro, where MTS assays were performed using a range of cell types including induced pluripotent stem cells (iPSCs). Overall, tuning the hatching distance, slicing distance, and pore size of the fabricated devices modulated the rhodamine B release profile, in each case presumably due to resulting changes in the motility of the small molecule and its access to structure edges. In general, increased spacing provided higher drug release while smaller spacing resulted in some occlusion, preventing media infiltration and thus resulting in reduced fluorophore release. The devices had no cytotoxic effects on human embryonic kidney cells (HEK293), bone marrow stromal stem cells (BMSCs) or iPSCs. Thus, we have demonstrated the utility of two-photon polymerization to create biocompatible, complex miniature devices with fine details and tunable release of a model drug.
Collapse
Affiliation(s)
- Anh-Vu Do
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa,Department of Chemical and Biochemical Engineering, College of Engineering, The University of Iowa
| | - Kristan Worthington
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, College of Medicine, The University of Iowa,Department of Biomedical Engineering, College of Engineering, The University of Iowa
| | - Budd Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, College of Medicine, The University of Iowa
| | - Aliasger K. Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa,Department of Chemical and Biochemical Engineering, College of Engineering, The University of Iowa,Department of Biomedical Engineering, College of Engineering, The University of Iowa,
| |
Collapse
|
34
|
Gopinathan J, Noh I. Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications. Tissue Eng Regen Med 2018; 15:531-546. [PMID: 30603577 PMCID: PMC6171698 DOI: 10.1007/s13770-018-0152-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The tissue engineering and regenerative medicine approach require biomaterials which are biocompatible, easily reproducible in less time, biodegradable and should be able to generate complex three-dimensional (3D) structures to mimic the native tissue structures. Click chemistry offers the much-needed multifunctional hydrogel materials which are interesting biomaterials for the tissue engineering and bioprinting inks applications owing to their excellent ability to form hydrogels with printability instantly and to retain the live cells in their 3D network without losing the mechanical integrity even under swollen state. METHODS In this review, we present the recent developments of in situ hydrogel in the field of click chemistry reported for the tissue engineering and 3D bioinks applications, by mainly covering the diverse types of click chemistry methods such as Diels-Alder reaction, strain-promoted azide-alkyne cycloaddition reactions, thiol-ene reactions, oxime reactions and other interrelated reactions, excluding enzyme-based reactions. RESULTS The click chemistry-based hydrogels are formed spontaneously on mixing of reactive compounds and can encapsulate live cells with high viability for a long time. The recent works reported by combining the advantages of click chemistry and 3D bioprinting technology have shown to produce 3D tissue constructs with high resolution using biocompatible hydrogels as bioinks and in situ injectable forms. CONCLUSION Interestingly, the emergence of click chemistry reactions in bioink synthesis for 3D bioprinting have shown the massive potential of these reaction methods in creating 3D tissue constructs. However, the limitations and challenges involved in the click chemistry reactions should be analyzed and bettered to be applied to tissue engineering and 3D bioinks. The future scope of these materials is promising, including their applications in in situ 3D bioprinting for tissue or organ regeneration.
Collapse
Affiliation(s)
- Janarthanan Gopinathan
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
35
|
Yeo GC, Kosobrodova E, Kondyurin A, McKenzie DR, Bilek MM, Weiss AS. Plasma‐Activated Substrate with a Tropoelastin Anchor for the Maintenance and Delivery of Multipotent Adult Progenitor Cells. Macromol Biosci 2018; 19:e1800233. [DOI: 10.1002/mabi.201800233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/19/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Giselle C. Yeo
- Charles Perkins CentreUniversity of Sydney NSW 2006 Australia
- School of Life and Environmental SciencesUniversity of Sydney NSW 2006 Australia
- Bosch InstituteUniversity of Sydney NSW 2006 Australia
- The Cooperative Research Centre for Cell Therapy ManufacturingUniversity of South Australia City West Campus Adelaide SA 5000 Australia
| | - Elena Kosobrodova
- School of PhysicsUniversity of Sydney NSW 2006 Australia
- School of AerospaceMechanical and Mechatronic EngineeringUniversity of Sydney NSW 2006 Australia
- The Cooperative Research Centre for Cell Therapy ManufacturingUniversity of South Australia City West Campus Adelaide SA 5000 Australia
| | - Alexey Kondyurin
- School of PhysicsUniversity of Sydney NSW 2006 Australia
- The Cooperative Research Centre for Cell Therapy ManufacturingUniversity of South Australia City West Campus Adelaide SA 5000 Australia
| | - David R. McKenzie
- School of PhysicsUniversity of Sydney NSW 2006 Australia
- The Cooperative Research Centre for Cell Therapy ManufacturingUniversity of South Australia City West Campus Adelaide SA 5000 Australia
| | - Marcela M. Bilek
- Charles Perkins CentreUniversity of Sydney NSW 2006 Australia
- School of PhysicsUniversity of Sydney NSW 2006 Australia
- School of AerospaceMechanical and Mechatronic EngineeringUniversity of Sydney NSW 2006 Australia
- Australian Institute of Nanoscale Science and TechnologyUniversity of Sydney NSW 2006 Australia
- The Cooperative Research Centre for Cell Therapy ManufacturingUniversity of South Australia City West Campus Adelaide SA 5000 Australia
| | - Anthony S. Weiss
- Charles Perkins CentreUniversity of Sydney NSW 2006 Australia
- School of Life and Environmental SciencesUniversity of Sydney NSW 2006 Australia
- Bosch InstituteUniversity of Sydney NSW 2006 Australia
- The Cooperative Research Centre for Cell Therapy ManufacturingUniversity of South Australia City West Campus Adelaide SA 5000 Australia
| |
Collapse
|
36
|
Tan YF, Lee YS, Seet LF, Ng KW, Wong TT, Venkatraman S. Design and in vitro release study of siRNA loaded Layer by Layer nanoparticles with sustained gene silencing effect. Expert Opin Drug Deliv 2018; 15:937-949. [PMID: 30173580 DOI: 10.1080/17425247.2018.1518426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Clinical translation of siRNA therapeutics has been severely limited due to the lack of stable and sustained siRNA delivery systems. Furthermore, when nanocarrier systems with siRNA are administered systemically to treat diseases, insufficient doses reach the target tissue. Here we report the successful development of a new nanocarrier system for the management of fibrosis. METHODS The new carrier has a hydroxyapatite core, with alternating layers of siRNA and a cationic peptide. The siRNA used here targets secreted protein acidic and rich in cysteine (SPARC), a key matricellular protein involved in the regulation of collagen fibrillogenesis and assembly. We have also used FRET studies to elucidate the fate of the particles inside cells, including the mechanistic details of layer-by-layer detachment. RESULTS In vitro studies using murine conjunctiva fibroblasts show sustained release over 2 weeks, and that such released siRNA sustained SPARC knockdown without affecting cell growth, and maintained siRNA presence in the cells for at least two weeks with a single-dose treatment. Release studies of siRNA from particles in vitro gave insight on how the particles delivered prolonged gene-silencing effects. CONCLUSION A single treatment of the layer-by-layer nanoparticle designed can achieve sustained gene silencing over 2 weeks. Localized delivery of stabilized siRNA with sustained-release capabilities opens the door for many other applications of siRNA-based gene regulation.
Collapse
Affiliation(s)
- Yang Fei Tan
- a School of Materials Science and Engineering , Nanyang Technological University , Singapore
| | - Ying Shi Lee
- b Ocular Therapeutics and Drug Delivery , Singapore Eye Research Institute , Singapore
| | - Li-Fong Seet
- b Ocular Therapeutics and Drug Delivery , Singapore Eye Research Institute , Singapore.,c Department of Ophthalmology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore.,d Duke-NUS Medical School , Singapore
| | - Kee Woei Ng
- a School of Materials Science and Engineering , Nanyang Technological University , Singapore
| | - Tina T Wong
- a School of Materials Science and Engineering , Nanyang Technological University , Singapore.,b Ocular Therapeutics and Drug Delivery , Singapore Eye Research Institute , Singapore.,c Department of Ophthalmology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore.,d Duke-NUS Medical School , Singapore.,e Glaucoma Service , Singapore National Eye Centre , Singapore
| | - Subbu Venkatraman
- a School of Materials Science and Engineering , Nanyang Technological University , Singapore.,b Ocular Therapeutics and Drug Delivery , Singapore Eye Research Institute , Singapore.,f NTU-Northwestern University Institute for Nanomedicine , Singapore.,g MedTech , National Heart Centre , Singapore
| |
Collapse
|
37
|
Liu X, Long X, Liu W, Zhao Y, Hayashi T, Yamato M, Mizuno K, Fujisaki H, Hattori S, Tashiro SI, Ogura T, Atsuzawa Y, Ikejima T. Type I collagen induces mesenchymal cell differentiation into myofibroblasts through YAP-induced TGF-β1 activation. Biochimie 2018; 150:110-130. [PMID: 29777737 DOI: 10.1016/j.biochi.2018.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
In organ fibrosis, mechanical stress and transforming growth factor beta-1 (TGF-β1) promote differentiation into myofibroblast from mesenchymal cells, leading to extracellular matrix (ECM) remodeling or active synthesis, deposition or degradation of ECM components. A major component of ECM, type I collagen (col I) triple helical molecules assemble into fibrils or are denatured to gelatin without triple-helicity in remodeling. However, whether changes of ECM components in remodeling have influence on mesenchymal cell differentiation remains elusive. This study adopted three states of collagen I existing in ECM remodeling: molecular collagen, fibrillar collagen and gelatin to see what are characteristics in the effects on two cell lines of mesenchymal origin, murine 3T3-L1 embryonic fibroblast and murine C2C12 myoblasts. The results showed that all three forms of collagen I were capable of inducing these two cells to differentiate into myofibroblasts characterized by increased expression of alpha-smooth muscle actin (α-SMA) mRNA. The expression of α-SMA is positively regulated by TGF-β1. Nuclear translocation of Yes-associated protein (YAP) is involved in this process. Focal adhesion kinase (FAK) is activated in the cells cultured on molecular collagen-coated plates, contributing to YAP activation. On the other hand, in the cells cultured on fibrillar collagen gel or gelatin-coated plates, oxidative stress but not FAK induce YAP activation. In conclusion, the three physicochemically distinct forms of col I induce the differentiation of mesenchymal cells into myofibroblasts through different pathways.
Collapse
Affiliation(s)
- Xiaoling Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinyu Long
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weiwei Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yeli Zhao
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Shin-Ichi Tashiro
- Department of Medical Education and Primary Care, Kyoto Prefectural University of Medicine, Kyoto, 603-8072, Japan
| | - Takaaki Ogura
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Yuji Atsuzawa
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
38
|
Li L, Lu C, Wang L, Chen M, White J, Hao X, McLean KM, Chen H, Hughes TC. Gelatin-Based Photocurable Hydrogels for Corneal Wound Repair. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13283-13292. [PMID: 29620862 DOI: 10.1021/acsami.7b17054] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, an injectable, photocurable gelatin system, consisting of acrylated gelatin and thiolated gelatin, with tunable mechanical, biodegradation, and biological properties was used as a potential cell-supportive scaffold for the repair of focal corneal wounds. The mechanical property of hydrogels can be readily modified (postcure shear modulus of between 0.3 and 22 kPa) by varying the ratio of acrylate to thiol groups, photointensity, and solid content, and the biodegradation times also varied with the change of solid content. More importantly, the generated hydrogels exhibited excellent cell viability in both cell seeding and cell encapsulation experiments. Furthermore, the hydrogels were found to be biocompatible with rabbit cornea and aided the regeneration of a new tissue under a focal corneal wound (exhibiting epithelial wound coverage in <3d), and ultraviolet irradiation did not have any obvious harmful effect on the cornea and posterior eye segment tissues. Along with their injectability and tunable mechanical properties, the photocurable thiol-acrylate hydrogels showed promise as corneal substitutes or substrates to construct a new corneal tissue.
Collapse
Affiliation(s)
- Lingli Li
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou , Zhejiang Province 325000 , PRC
- Wenzhou Institute of Biomaterials and Engineering , Wenzhou , Zhejiang Province 325001 , PRC
| | - Conglie Lu
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou , Zhejiang Province 325000 , PRC
| | - Lei Wang
- Wenzhou Institute of Biomaterials and Engineering , Wenzhou , Zhejiang Province 325001 , PRC
| | - Mei Chen
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou , Zhejiang Province 325000 , PRC
| | - Jacinta White
- CSIRO Manufacturing , Clayton , Victoria 3169 , Australia
| | - Xiaojuan Hao
- CSIRO Manufacturing , Clayton , Victoria 3169 , Australia
| | - Keith M McLean
- CSIRO Manufacturing , Clayton , Victoria 3169 , Australia
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou , Zhejiang Province 325000 , PRC
- Wenzhou Institute of Biomaterials and Engineering , Wenzhou , Zhejiang Province 325001 , PRC
| | | |
Collapse
|
39
|
Abstract
The normal wound healing process involves a well-organized cascade of biological pathways and any failure in this process leads to wounds becoming chronic. Non-healing wounds are a burden on healthcare systems and set to increase with aging population and growing incidences of obesity and diabetes. Stem cell-based therapies have the potential to heal chronic wounds but have so far seen little success in the clinic. Current research has been focused on using polymeric biomaterial systems that can act as a niche for these stem cells to improve their survival and paracrine activity that would eventually promote wound healing. Furthermore, different modification strategies have been developed to improve stem cell survival and differentiation, ultimately promoting regenerative wound healing. This review focuses on advanced polymeric scaffolds that have been used to deliver stem cells and have been tested for their efficiency in preclinical animal models of wounds.
Collapse
|
40
|
Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z, Wang J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 2018; 8:7533-7549. [PMID: 35539132 PMCID: PMC9078458 DOI: 10.1039/c7ra13510f] [Citation(s) in RCA: 521] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Functional active wound dressings are expected to provide a moist wound environment, offer protection from secondary infections, remove wound exudate and accelerate tissue regeneration, as well as to improve the efficiency of wound healing. Chitosan-based hydrogels are considered as ideal materials for enhancing wound healing owing to their biodegradable, biocompatible, non-toxic, antimicrobial, biologically adhesive, biological activity and hemostatic effects. Chitosan-based hydrogels have been demonstrated to promote wound healing at different wound healing stages, and also can alleviate the factors against wound healing (such as excessive inflammatory and chronic wound infection). The unique biological properties of a chitosan-based hydrogel enable it to serve as both a wound dressing and as a drug delivery system (DDS) to deliver antibacterial agents, growth factors, stem cells and so on, which could further accelerate wound healing. For various kinds of wounds, chitosan-based hydrogels are able to promote the effectiveness of wound healing by modifying or combining with other polymers, and carrying different types of active substances. In this review, we will take a close look at the application of chitosan-based hydrogels in wound dressings and DDS to enhance wound healing.
Collapse
Affiliation(s)
- He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Chenyu Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
- Hallym University 1Hallymdaehak-gil Chuncheon Gangwon-do 200-702 Korea
| | - Chen Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Fan Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| |
Collapse
|
41
|
Polysaccharide Hydrogels Support the Long-Term Viability of Encapsulated Human Mesenchymal Stem Cells and Their Ability to Secrete Immunomodulatory Factors. Stem Cells Int 2017; 2017:9303598. [PMID: 29158741 PMCID: PMC5660815 DOI: 10.1155/2017/9303598] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 01/06/2023] Open
Abstract
While therapeutically interesting, the injection of MSCs suffers major limitations including cell death upon injection and a massive leakage outside the injection site. We proposed to entrap MSCs within spherical particles derived from alginate, as a control, or from silanized hydroxypropyl methylcellulose (Si-HPMC). We developed water in an oil dispersion method to produce small Si-HPMC particles with an average size of about 68 μm. We evidenced a faster diffusion of fluorescein isothiocyanate-dextran in Si-HPMC particles than in alginate ones. Human adipose-derived MSCs (hASC) were encapsulated either in alginate or in Si-HPMC, and the cellularized particles were cultured for up to 1 month. Both alginate and Si-HPMC particles supported cell survival, and the average number of encapsulated hASC per alginate and Si-HPMC particle (7102 and 5100, resp.) did not significantly change. The stimulation of encapsulated hASC with proinflammatory cytokines resulted in the production of IDO, PGE2, and HGF whose concentration was always higher when cells were encapsulated in Si-HPMC particles than in alginate ones. We have demonstrated that Si-HPMC and alginate particles support hASC viability and the maintenance of their ability to secrete therapeutic factors.
Collapse
|
42
|
Guerra AD, Yeung OW, Qi X, Kao WJ, Man K. The Anti-Tumor Effects of M1 Macrophage-Loaded Poly (ethylene glycol) and Gelatin-Based Hydrogels on Hepatocellular Carcinoma. Am J Cancer Res 2017; 7:3732-3744. [PMID: 29109772 PMCID: PMC5667344 DOI: 10.7150/thno.20251] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022] Open
Abstract
Background and Aims: Recently we reported that direct injection of M1 macrophages significantly caused tumor regression in vivo. Despite the promising result, a major limitation in translating this approach is the induction of acute inflammatory response. To improve the strategy, a biocompatible scaffold for cell presentation and support is essential to control cell fate. Here, we aimed to elucidate the anti-tumor effects of a poly(ethylene glycol) diacrylate (PEGdA) and thiolated gelatin poly(ethylene glycol) (Gel-PEG-Cys) cross-linked hydrogels capsulated with M1 macrophages in both in vitro and in vivo disease models. Methods: Hydrogels were made at 0.5% (w/v) Iragcure 2959 photoinitiator, 10% (w/v) PEGdA, and 10% (w/v) Gel-PEG-Cys. Monocytic THP-1 cells were loaded into hydrogels and differentiated into M1 macrophages with lipopolysaccharide (LPS) and interferon gamma (IFN-γ). The M1 hydrogels were then cocultivated with HCC cell-lines Hep3B and MHCC97L to investigate the anti-tumor capacities and the associated molecular profiles in vitro. A nude mice ectopic liver cancer model with dorsal window chamber (DWC) and a subcutaneous tumor model were both performed to validate the in vivo application of M1 hydrogels. Results: M1 hydrogels significantly decreased the viability of HCC cells (MHCC97L: -46%; Hep3B: -56.9%; P<0.05) compared to the control in vitro. In response to HCC cells, the hydrogel embedded M1 macrophages up-regulated nitrite and tumor necrosis factor alpha (TNF-α) activating caspase-3 induced apoptosis in the tumor cells. Increased tumor necrosis was observed in DWC filled with M1 hydrogels. In addition, mice treated with M1 hydrogels exhibited a significant 2.4-fold decrease in signal intensity of subcutaneous HCC tumor compared to control (P=0.036). Conclusion: M1 hydrogels induced apoptosis in HCC cells and tumor regression in vivo. Continuous development of the scaffold-based cancer immunotherapy may provide an alternative and innovative strategy against HCC.
Collapse
|
43
|
Guerra AD, Rose WE, Hematti P, Kao WJ. Minocycline modulates NFκB phosphorylation and enhances antimicrobial activity against Staphylococcus aureus in mesenchymal stromal/stem cells. Stem Cell Res Ther 2017; 8:171. [PMID: 28732530 PMCID: PMC5521110 DOI: 10.1186/s13287-017-0623-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/05/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties due to their anti-inflammatory, angiogenic, and even antibacterial properties. We have shown previously that minocycline enhances the wound healing phenotype of MSCs, and MSCs encapsulated in poly(ethylene glycol) and gelatin-based hydrogels with minocycline have antibacterial properties against Staphylococcus aureus (SA). Here, we investigated the signaling pathway that minocycline modulates in MSCs which results in their enhanced wound healing phenotype and determined whether preconditioning MSCs with minocycline has an effect on antimicrobial activity. We further investigated the in-vivo antimicrobial efficacy of MSC and antibiotic-loaded hydrogels in inoculated full-thickness cutaneous wounds. Methods Modulation of cell signaling pathways in MSCs with minocycline was analyzed via western blot, immunofluorescence, and ELISA. Antimicrobial efficacy of MSCs pretreated with minocycline was determined by direct and transwell coculture with SA. MSC viability after SA coculture was determined via a LIVE/DEAD® stain. Internalization of SA by MSCs pretreated with minocycline was determined via confocal imaging. All protein and cytokine analysis was done via ELISA. The in-vivo antimicrobial efficacy of MSC and antibiotic-loaded hydrogels was determined in Sprague–Dawley rats inoculated with SA. Two-way ANOVA for multiple comparisons was used with Bonferroni test assessment and an unpaired two-tailed Student’s t test was used to determine p values for all assays with multiple or two conditions, respectively. Results Minocycline leads to the phosphorylation of transcriptional nuclear factor-κB (NFκB), but not c-Jun NH2-terminal kinase (JNK) or mitogen-activated protein kinase (ERK). Inhibition of NFκB activation prevented the minocycline-induced increase in VEGF secretion. Preconditioning of MSCs with minocycline led to a reduced production of the antimicrobial peptide LL-37, but enhanced antimicrobial activity against SA via an increased production of IL-6 and SA internalization. MSC and antibiotic-loaded hydrogels reduced SA bioburden in inoculated wounds over 3 days and accelerated reepithelialization. Conclusions Minocycline modulates the NFκB pathway in MSCs that leads to an enhanced production of IL-6 and internalization of SA. This mechanism may have contributed to the in-vivo antibacterial efficacy of MSC and antibiotic-loaded hydrogels. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0623-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alberto Daniel Guerra
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 7123 Rennebohm Hall, Madison, WI, 53705, USA
| | - Warren E Rose
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 7123 Rennebohm Hall, Madison, WI, 53705, USA
| | - Peiman Hematti
- School of Medicine and Public Health, Department of Medicine, Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI, 53705, USA
| | - W John Kao
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 7123 Rennebohm Hall, Madison, WI, 53705, USA. .,College of Engineering, Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA. .,School of Medicine and Public Health, Department of Surgery, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI, 53705, USA. .,Present Address: 10/F Knowles Building, Pokfulam, Hong Kong.
| |
Collapse
|
44
|
Chen X, Chen Q, Yan T, Liu J. Characterization of konjac glucomannan-gelatin IPN physical hydrogel scaffold. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/207/1/012029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Wobma HM, Liu D, Vunjak-Novakovic G. Paracrine Effects of Mesenchymal Stromal Cells Cultured in Three-Dimensional Settings on Tissue Repair. ACS Biomater Sci Eng 2017; 4:1162-1175. [PMID: 33418654 DOI: 10.1021/acsbiomaterials.7b00005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) are a promising cell source for promoting tissue repair, due to their ability to release growth, angiogenic, and immunomodulatory factors. However, when injected as a suspension, these cells suffer from poor survival and localization, and suboptimal release of paracrine factors. While there have been attempts to overcome these limitations by modifying MSCs themselves, a more versatile solution is to grow them in three dimensions, as aggregates or embedded into biomaterials. Here we review the mechanisms by which 3D culture can influence the regenerative capacity of undifferentiated MSCs, focusing on recent examples from the literature. We further discuss how knowledge of these mechanisms can lead to strategic design of MSC therapies that overcome some of the challenges to their effective translation.
Collapse
|
46
|
Ho J, Walsh C, Yue D, Dardik A, Cheema U. Current Advancements and Strategies in Tissue Engineering for Wound Healing: A Comprehensive Review. Adv Wound Care (New Rochelle) 2017; 6:191-209. [PMID: 28616360 PMCID: PMC5467128 DOI: 10.1089/wound.2016.0723] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
Significance: With an aging population leading to an increase in diabetes and associated cutaneous wounds, there is a pressing clinical need to improve wound-healing therapies. Recent Advances: Tissue engineering approaches for wound healing and skin regeneration have been developed over the past few decades. A review of current literature has identified common themes and strategies that are proving successful within the field: The delivery of cells, mainly mesenchymal stem cells, within scaffolds of the native matrix is one such strategy. We overview these approaches and give insights into mechanisms that aid wound healing in different clinical scenarios. Critical Issues: We discuss the importance of the biomimetic niche, and how recapitulating elements of the native microenvironment of cells can help direct cell behavior and fate. Future Directions: It is crucial that during the continued development of tissue engineering in wound repair, there is close collaboration between tissue engineers and clinicians to maintain the translational efficacy of this approach.
Collapse
Affiliation(s)
- Jasmine Ho
- UCL Division of Surgery and Interventional Sciences, UCL Institute for Orthopaedics and Musculoskeletal Sciences, University College London, London, United Kingdom
| | - Claire Walsh
- UCL Division of Surgery and Interventional Sciences, UCL Institute for Orthopaedics and Musculoskeletal Sciences, University College London, London, United Kingdom
| | - Dominic Yue
- Department of Plastic and Reconstructive Surgery, Royal Stoke University Hospital, Stoke-on-Trent, United Kingdom
| | - Alan Dardik
- The Vascular Biology and Therapeutics Program and the Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Umber Cheema
- UCL Division of Surgery and Interventional Sciences, UCL Institute for Orthopaedics and Musculoskeletal Sciences, University College London, London, United Kingdom
| |
Collapse
|
47
|
Guerra AD, Rose WE, Hematti P, Kao WJ. Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels. Acta Biomater 2017; 51:184-196. [PMID: 28069512 PMCID: PMC5704963 DOI: 10.1016/j.actbio.2017.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/12/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties including an anti-inflammatory cytokine profile and the promotion of angiogenesis via expression of growth factors in pre-clinical models. MSCs encapsulated in poly(ethylene glycol) diacrylate (PEGdA) and thiolated gelatin poly(ethylene glycol) (Gel-PEG-Cys) crosslinked hydrogels have led to controlled cellular presentation at wound sites with favorable wound healing outcomes. However, the therapeutic potential of MSC-loaded hydrogels may be limited by non-specific protein adsorption on the delivery matrix that could facilitate the initial adhesion of microorganisms and subsequent virulent biofilm formation. Antimicrobials loaded concurrently in the hydrogels with MSCs could reduce microbial bioburden and promote healing, but the antimicrobial effect on the MSC wound healing capacity and the antibacterial efficacy of the hydrogels is unknown. We demonstrate that minocycline specifically induces a favorable change in MSC migration capacity, proliferation, gene expression, extracellular matrix (ECM) attachment, and adhesion molecule and growth factor release with subsequent increased angiogenesis. We then demonstrate that hydrogels loaded with MSCs, minocycline, vancomycin, and linezolid can significantly decrease bacterial bioburden. Our study suggests that minocycline can serve as a dual mechanism for the regenerative capacity of MSCs and the reduction of bioburden in triple antimicrobial-loaded hydrogels. STATEMENT OF SIGNIFICANCE Wound healing is a complex biological process that can be hindered by bacterial infection, excessive inflammation, and inadequate microvasculature. In this study, we develop a new formulation of poly(ethylene glycol) diacrylate and thiolated gelatin poly(ethylene glycol) crosslinked hydrogels loaded with minocycline, vancomycin, linezolid, and mesenchymal stromal/stem cells that induces a favorable wound healing phenotype in mesenchymal stromal/stem cells and prevents bacterial bioburden on the hydrogel. This combinatorial approach to biomaterial development has the potential to impact wound healing for contaminated full thickness cutaneous wounds.
Collapse
Affiliation(s)
- Alberto Daniel Guerra
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.
| | - Warren E Rose
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.
| | - Peiman Hematti
- School of Medicine and Public Health, Department of Medicine, Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA.
| | - W John Kao
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA; College of Engineering, Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA; School of Medicine and Public Health, Department of Surgery, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
48
|
Zhu F, Wang C, Yang S, Wang Q, Liang F, Liu C, Qiu D, Qu X, Hu Z, Yang Z. Injectable tissue adhesive composite hydrogel with fibroblasts for treating skin defects. J Mater Chem B 2017; 5:2416-2424. [PMID: 32264549 DOI: 10.1039/c7tb00384f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, an injectable composite hydrogel was synthesized via a unique way of crosslinking glycol chitosan (GC) with silica nano-particles (SiNP) through non-chemical interactions, and was then applied as a kind of wound dressing. Gelation was achieved through the incorporation of SiNPs with the GC segments in aqueous solution, therefore strictly confining the movement of the solubilized polymer chains. Rheology tests showed that the sol-gel transition and the moduli of the hydrogel were influenced by the composition of the two components, the size of the nano-particles and the conformation of the polymers. Using such a strategy, tissue adhesion properties of GC were well-preserved in the GC/SiNP hydrogel and therefore it gains gluey properties toward biological tissues as demonstrated through the adhesion of two pieces of mouse skin, obtaining a lap-shear stretching force of ca. 90 kPa. This characteristic, together with the injectability, allowed the hydrogel to be administrated directly on the wound site and to fill the wound area. Meanwhile, the hydrogel also works as a carrier of protein and cells. The in situ encapsulation of fibroblasts enabled the promising properties of the GC/SiNP hydrogel to be used for treating full-thickness skin defects in a mouse model, resulting in the favorable growth of hair follicles and microvessels, hence reducing the risk of scar formation.
Collapse
Affiliation(s)
- Feiyan Zhu
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
da Silva LP, Santos TC, Rodrigues DB, Pirraco RP, Cerqueira MT, Reis RL, Correlo VM, Marques AP. Stem Cell-Containing Hyaluronic Acid-Based Spongy Hydrogels for Integrated Diabetic Wound Healing. J Invest Dermatol 2017; 137:1541-1551. [PMID: 28259681 DOI: 10.1016/j.jid.2017.02.976] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Abstract
The detailed pathophysiology of diabetic foot ulcers is yet to be established and improved treatments are still required. We propose a strategy that directs inflammation, neovascularization, and neoinnervation of diabetic wounds. Aiming to potentiate a relevant secretome for nerve regeneration, stem cells were precultured in hyaluronic acid-based spongy hydrogels under neurogenic/standard media before transplantation into diabetic mice full-thickness wounds. Acellular spongy hydrogels and empty wounds were used as controls. Re-epithelialization was attained 4 weeks after transplantation independently of the test groups, whereas a thicker and more differentiated epidermis was observed for the cellular spongy hydrogels. A switch from the inflammatory to the proliferative phase of wound healing was revealed for all the experimental groups 2 weeks after injury, but a significantly higher M2(CD163+)/M1(CD86+) subtype ratio was observed in the neurogenic preconditioned group that also failed to promote neoinnervation. A higher number of intraepidermal nerve fibers were observed for the unconditioned group probably due to a more controlled transition from the inflammatory to the proliferative phase. Overall, stem cell-containing spongy hydrogels represent a promising approach to enhance diabetic wound healing by positively impacting re-epithelialization and by modulating the inflammatory response to promote a successful neoinnervation.
Collapse
Affiliation(s)
- Lucília Pereira da Silva
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tírcia Carlos Santos
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniel Barreira Rodrigues
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério Pedro Pirraco
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana Teixeira Cerqueira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Luís Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vitor Manuel Correlo
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra Pinto Marques
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
50
|
Hawkey CJ, Hommes DW. Is Stem Cell Therapy Ready for Prime Time in Treatment of Inflammatory Bowel Diseases? Gastroenterology 2017; 152:389-397.e2. [PMID: 27845055 DOI: 10.1053/j.gastro.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/20/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023]
Abstract
Autologous hematopoietic stem cell transplantation (HSCT) and mesenchymal stromal cell therapy have been proposed for patients with refractory Crohn's disease (CD) and fistulizing CD, respectively. Will these highly advanced techniques be available only for select patients, at specialized centers, or is further clinical development justified, with the aim of offering widespread, more definitive therapeutic options for often very difficult to treat disease? Patients with CD who are eligible for HSCT have typically been failed by most approved therapies, have undergone multiple surgeries, and have coped with years of disease activity and poor quality of life. The objective of HSCT is to immediately shut down the immune response and allow the transplanted stem cells to develop into self-tolerant lymphocytes. For patients with fistulizing CD, mesenchymal stromal cell therapy deposits MSCs locally, into fistulizing tracts, to down-regulate the local immune response and induce wound healing. Recent trials have produced promising results for HSCT and mesenchymal stromal cell therapy as alternatives to systemic therapies and antibiotics for patients with inflammatory bowel diseases, but are these immunotherapies ready for prime time?
Collapse
Affiliation(s)
- Christopher J Hawkey
- Nottingham Digestive Diseases Center, University of Nottingham, Nottingham, United Kingdom
| | - Daniel W Hommes
- Center for Inflammatory Bowel Diseases, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|