1
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
2
|
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022; 86:805-833. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The treatment of central nervous system (CNS) malignancies, including brain cancers, is limited by a number of obstructions, including the blood-brain barrier (BBB), the heterogeneity and high invasiveness of tumors, the inaccessibility of tissues for early diagnosis and effective surgery, and anti-cancer drug resistance. Therapies employing nanomedicine have been shown to facilitate drug penetration across the BBB and maintain biodistribution and accumulation of therapeutic agents at the desired target site. The application of lipid-, polymer-, or metal-based nanocarriers represents an advanced drug delivery system for a growing group of anti-cancer chemicals. The nanocarrier surface is designed to contain an active ligand (cancer cell marker or antibody)-binding structure which can be modified to target specific cancer cells. Glioblastoma, ependymoma, neuroblastoma, medulloblastoma, and primary CNS lymphomas were recently targeted by easily absorbed nanocarriers. The metal- (such as transferrin drug-loaded systems), polymer- (nanocapsules and nanospheres), or lipid- (such as sulfatide-containing nanoliposomes)-based nano-vehicles were loaded with apoptosis- and/or ferroptosis-stimulating agents and demonstrated promising anti-cancer effects. This review aims to discuss effective nanomedicine approaches designed to overcome the current limitations in the therapy of brain cancers and age-dependent neurodegenerative disorders. To accent current obstacles for successful CNS-based cancer therapy, we discuss nanomedicine perspectives and limitations of nanodrug use associated with the specificity of nervous tissue characteristics and the effects nanocarriers have on cognition.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| | - Olga A Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| |
Collapse
|
3
|
Florczak A, Deptuch T, Kucharczyk K, Dams-Kozlowska H. Systemic and Local Silk-Based Drug Delivery Systems for Cancer Therapy. Cancers (Basel) 2021; 13:5389. [PMID: 34771557 PMCID: PMC8582423 DOI: 10.3390/cancers13215389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
For years, surgery, radiotherapy, and chemotherapy have been the gold standards to treat cancer, although continuing research has sought a more effective approach. While advances can be seen in the development of anticancer drugs, the tools that can improve their delivery remain a challenge. As anticancer drugs can affect the entire body, the control of their distribution is desirable to prevent systemic toxicity. The application of a suitable drug delivery platform may resolve this problem. Among other materials, silks offer many advantageous properties, including biodegradability, biocompatibility, and the possibility of obtaining a variety of morphological structures. These characteristics allow the exploration of silk for biomedical applications and as a platform for drug delivery. We have reviewed silk structures that can be used for local and systemic drug delivery for use in cancer therapy. After a short description of the most studied silks, we discuss the advantages of using silk for drug delivery. The tables summarize the descriptions of silk structures for the local and systemic transport of anticancer drugs. The most popular techniques for silk particle preparation are presented. Further prospects for using silk as a drug carrier are considered. The application of various silk biomaterials can improve cancer treatment by the controllable delivery of chemotherapeutics, immunotherapeutics, photosensitizers, hormones, nucleotherapeutics, targeted therapeutics (e.g., kinase inhibitors), and inorganic nanoparticles, among others.
Collapse
Affiliation(s)
- Anna Florczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Tomasz Deptuch
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Kamil Kucharczyk
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
4
|
Ornell KJ, Chiu B, Coburn JM. Development of a dinutuximab delivery system using silk foams for GD2 targeted neuroblastoma cell death. J Biomed Mater Res A 2020; 109:1393-1405. [PMID: 33252182 DOI: 10.1002/jbm.a.37131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/08/2020] [Accepted: 11/28/2020] [Indexed: 11/05/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood and is associated with poor survival in high risk patients. Recently, dinutuximab (DNX) has emerged as an effective immunotherapy to treat patients with high risk neuroblastoma. DNX works through the induction of cell lysis via complement-dependent cytotoxicity (CDC) or antibody dependent cellular cytotoxicity (ADCC). However, one third of patients who undergo DNX treatment exhibit tumor relapse and the therapy is dose limited by side effects such as severe pain. To overcome delivery challenges of DNX, including large size and dose limiting side effects, we fabricated a delivery system capable of sustained local delivery of bioactive DNX utilizing silk fibroin. We evaluated the impact of silk properties (MW, crystallinity, and concentration) on release properties and confirmed the bioactivity of the release product. Additionally, we observed that the effectiveness of CDC induction by DNX could be correlated to the GD2 expression level of the target cells, with both the intravenous DNX formulation and the released DNX. Collectively, these data highlights a strategy to overcome delivery challenges and potentially improve therapeutic efficacy in cells expressing heterogenous levels of GD2.
Collapse
Affiliation(s)
- Kimberly J Ornell
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Bill Chiu
- Department of Surgery, Division of Pediatric Surgery, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Surgery, Division of Pediatric Surgery, Stanford University, Stanford, California, USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Mobasheri T, Rayzan E, Shabani M, Hosseini M, Mahmoodi Chalbatani G, Rezaei N. Neuroblastoma-targeted nanoparticles and novel nanotechnology-based treatment methods. J Cell Physiol 2020; 236:1751-1775. [PMID: 32735058 DOI: 10.1002/jcp.29979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
Neuroblastoma is a complicated pediatric tumor, originating from the neural crest, which is the most prevalent in adrenal glands, but may rarely be seen in some other tissues as well. Studies are focused on developing new strategies through novel chemo- and immuno-therapeutic drug targets. Different types of oncogenes such as MYCN, tumor suppressor genes such as p53, and some structural genes such as vascular endothelial growth factor are considered as targets for neuroblastoma therapy. The individual expression patterns in NB cells make them appropriate for this purpose. The combined effect of nano-drug delivery systems and specific drug targets will result in lower systemic side effects, prolonged therapeutic effects, and improvements in the pharmacokinetic properties of the drugs. Some of these novel drug delivery systems with a focus on liposomes as carriers are also discussed. In this review, genes and protein products that are beneficial as drug targets in the treatment of neuroblastoma have been discussed.
Collapse
Affiliation(s)
- Taranom Mobasheri
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsima Shabani
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Baltimore, Maryland
| | - Mina Hosseini
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
6
|
Patil S, Dhyani V, Kaur T, Singh N. Spatiotemporal Control over Cell Proliferation and Differentiation for Tissue Engineering and Regenerative Medicine Applications Using Silk Fibroin Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:3476-3493. [DOI: 10.1021/acsabm.0c00305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Smita Patil
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vartika Dhyani
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
7
|
Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104501] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Enhancing sustained-release local therapy: Single versus dual chemotherapy for the treatment of neuroblastoma. Surgery 2020; 167:969-977. [PMID: 32122657 DOI: 10.1016/j.surg.2020.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neuroblastoma is the most common pediatric extracranial solid malignancy with limited effective treatment. We have shown that sustained-release, single drugs delivered locally through a silk-based biomaterial are effective in decreasing orthotopic neuroblastoma xenograft growth. We further optimized this approach and hypothesized that increasing doses of local chemotherapy or delivering 2 chemotherapeutic agents simultaneously inhibit additional tumor growth. METHODS MYCN-amplified and non-MYCN-amplified neuroblastoma cells were treated with combinations of cisplatin, vincristine, doxorubicin, and etoposide to determine cytotoxicity and synergy. Drug-loaded silk material was created, and the amounts of drug released from the material over time were recorded. Murine orthotopic neuroblastoma xenografts were generated; tumors were implanted with single- or dual-agent chemotherapy-loaded silk. Ultrasound was used to monitor tumor growth, and tumor histology was evaluated. RESULTS In vitro, vincristine/cisplatin combination was synergistic and significantly decreased cell viability relative to other combinations. Both drugs loaded into silk could be released effectively for over 2 weeks. Locally implanted vincristine/cisplatin silk induced increased tumor growth suppression compared with either agent alone in MYCN-amplified tumors (P < .05). The dose-dependent effect seen in MYCN-amplified tumors treated with combination therapy diminished at higher doses in non-MYCN-amplified tumors, with little benefit with doses >50 μg to 500 μg for vincristine-cisplatin, respectively. Tumor histology demonstrated tumor cell necrosis adjacent to drug-loaded silk material and presence of large cell neuroblastoma. CONCLUSION Local delivery of sustained release chemotherapy can suppress tumor growth especially at high doses or with 2 synergistic drugs. Locally delivered dual therapy is a promising approach for future clinical testing.
Collapse
|
9
|
Ornell KJ, Taylor JS, Zeki J, Ikegaki N, Shimada H, Coburn JM, Chiu B. Local delivery of dinutuximab from lyophilized silk fibroin foams for treatment of an orthotopic neuroblastoma model. Cancer Med 2020; 9:2891-2903. [PMID: 32096344 PMCID: PMC7163090 DOI: 10.1002/cam4.2936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/18/2020] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy targeting GD2 is a primary treatment for patients with high-risk neuroblastoma. Dinutuximab is a monoclonal antibody with great clinical promise but is limited by side effects such as severe pain. Local delivery has emerged as a potential mechanism to deliver higher doses of therapeutics into the tumor bed, while limiting systemic toxicity. We aim to deliver dinutuximab locally in a lyophilized silk fibroin foam for the treatment of an orthotopic neuroblastoma mouse model. Dinutuximab-loaded silk fibroin foams were fabricated through lyophilization. In vitro release profile and bioactivity of the release through complement-dependent cytotoxicity were characterized. MYCN-amplified neuroblastoma cells (KELLY) were injected into the left gland of mice to generate an orthotopic neuroblastoma model. Once the tumor volume reached 100 mm3 , dinutuximab-, human IgG-, or buffer-loaded foams were implanted into the tumor and growth was monitored using high-resolution ultrasound. Post-resection histology was performed on tumors. Dinutuximab-loaded silk fibroin foams exhibited a burst release, with slow release thereafter in vitro with maintenance of bioactivity. The dinutuximab-loaded foam significantly inhibited xenograft tumor growth compared to IgG- and buffer-loaded foams. Histological analysis revealed the presence of dinutuximab within the tumor and neutrophils and macrophages infiltrating into dinutuximab-loaded silk foam. Tumors treated with local dinutuximab had decreased MYCN expression on histology compared to control or IgG-treated tumors. Silk fibroin foams offer a mechanism for local release of dinutuximab within the neuroblastoma tumor. This local delivery achieved a significant decrease in tumor growth rate in a mouse orthotopic tumor model.
Collapse
Affiliation(s)
- Kimberly J Ornell
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Jordan S Taylor
- Department of Surgery, Division of Pediatric Surgery, Stanford University, Stanford, CA, USA
| | - Jasmine Zeki
- Department of Surgery, Division of Pediatric Surgery, Stanford University, Stanford, CA, USA.,Department of Surgery, Division of Pediatric Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Hiroyuki Shimada
- Department of Pathology and Laboratory Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Bill Chiu
- Department of Surgery, Division of Pediatric Surgery, Stanford University, Stanford, CA, USA.,Department of Surgery, Division of Pediatric Surgery, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Vargas Montoya N, Peterson R, Ornell KJ, Albrecht DR, Coburn JM. Silk Particle Production Based on silk/PVA Phase Separation Using a Microfabricated Co-flow Device. Molecules 2020; 25:E890. [PMID: 32079339 PMCID: PMC7070425 DOI: 10.3390/molecules25040890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 01/10/2023] Open
Abstract
Polymeric particles are ideal drug delivery systems due to their cellular uptake-relevant size. Microparticles could be developed for direct injection of drug formulations into a diseased site, such as a tumor, allowing for drug retention and slow drug exposure over time through sustained release mechanisms. Bombyx mori silk fibroin has shown promise as a biocompatible biomaterial both in research and the clinic. Silk has been previously used to make particles using an emulsion-based method with poly(vinyl alcohol) (PVA). In this study, polydimethylsiloxane-based microfluidic devices were designed, fabricated, and characterized to produce silk particles through self-association of silk when exposed to PVA. Three main variables resulted in differences in particle size and size distribution, or polydispersity index (PDI). Utilizing a co-flow microfluidic device decreased the PDI of the silk particles as compared to an emulsion-based method (0.13 versus 0.65, respectively). With a flow-focusing microfluidics device, lowering the silk flow rate from 0.80 to 0.06 mL/h resulted in a decrease in the median particle size from 6.8 to 3.0 μm and the PDI from 0.12 to 0.05, respectively. Lastly, decreasing the silk concentration from 12% to 2% resulted in a decrease in the median particle size from 5.6 to 2.8 μm and the PDI from 0.81 to 0.25, respectively. Binding and release of doxorubicin, a cytotoxic drug commonly used for cancer treatment, with the fabricated silk particles was evaluated. Doxorubicin loading in the silk particles was approximately 41 µg/mg; sustained doxorubicin release occurred over 23 days. When the cytotoxicity of the released doxorubicin was tested on KELLY neuroblastoma cells, significant cell death was observed. To demonstrate the potential for internalization of the silk particles, both KELLY and THP-1-derived macrophages were exposed to fluorescently labelled silk particles for up to 24 h. With the macrophages, internalization of the silk particles was observed. Additionally, THP-1 derived macrophages exposure to silk particles increased TNF-α secretion. Overall, this microfluidics-based approach for fabricating silk particles utilizing PVA as a means to induce phase separation and silk self-assembly is a promising approach to control particle size and size distribution. These silk particles may be utilized for a variety of biomedical applications including drug delivery to multiple cell types within a tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | | | - Jeannine M. Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (N.V.M.); (R.P.); (K.J.O.); (D.R.A.)
| |
Collapse
|
11
|
Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 2:5460-5491. [DOI: 10.1021/acsabm.9b00576] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Yavuz B, Chambre L, Kaplan DL. Extended release formulations using silk proteins for controlled delivery of therapeutics. Expert Opin Drug Deliv 2019; 16:741-756. [PMID: 31220955 PMCID: PMC6642005 DOI: 10.1080/17425247.2019.1635116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/19/2019] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Silk is a promising biomaterial for controlled delivery of therapeutics and has a unique protein chemistry that can be tuned to form different carrier formats. The protein has been studied for sustained release depot systems for the targeted or localized delivery of drugs. AREAS COVERED An overview of natural silk proteins for controlled delivery of therapeutics is provided, with a focus on the features of silk proteins that allow them to be useful tools for controlled delivery. Recent applications of natural silk proteins as controlled delivery systems are also summarized. EXPERT OPINION The versatility of silk proteins makes them desirable biomaterials for a broad range of applications for controlled delivery of both small and large molecules. Further, the degradation profile leading to peptides and amino acids provides compatibility with pH-sensitive therapeutics. While silk sericin and spider silks are under study, silk fibroin extracted from silkworms (e.g. Bombyx mori) dominates pharmaceutical studies with silk. Silk fibroin can be formed into drug delivery tools for systemic or local injections, topical and transdermal applications, and implantation; depending on the target disease and therapeutic molecule. In vitro to in vivo correlations and scale-up needs are the next steps towards clinical applications.
Collapse
Affiliation(s)
- Burcin Yavuz
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, MA 02155, USA
| | - Laura Chambre
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
13
|
Taylor JS, Zeki J, Ornell K, Coburn J, Shimada H, Ikegaki N, Chiu B. Down-regulation of MYCN protein by CX-5461 leads to neuroblastoma tumor growth suppression. J Pediatr Surg 2019; 54:1192-1197. [PMID: 30879743 PMCID: PMC6545249 DOI: 10.1016/j.jpedsurg.2019.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE MYCN oncogene amplification is an independent predictor of poor prognosis in neuroblastoma. CX-5461 is a small molecular inhibitor that prevents initiation of ribosomal RNA (rRNA) synthesis by RNA Pol I, down-regulating MYCN/MYC proteins. We hypothesize that neuroblastoma tumor growth can be suppressed by CX-5461. METHODS MYCN-amplified (KELLY, IMR5) and nonamplified (SY5Y, SKNAS) neuroblastoma cells were treated with CX-5461. MYCN/MYC expression after 24-48 h was determined by Western blot. Orthotopic neuroblastoma tumors created in mice using KELLY cells were treated with CX-5461-loaded silk films implanted locally. Tumor growth was monitored using ultrasound. Histologic evaluation of tumors was performed. RESULTS IC50 for KELLY, IMR5, SY5Y, and SKNAS cells to CX-5461 was 0.75 μM, 0.02 μM, 0.8 μM, and 1.7 μM, respectively. CX-5461 down-regulated MYCN and MYC proteins at 0.25-1.0 μM on Western blot analysis. CX-5461-loaded silk film released 23.7±3 μg of the drug in 24 h and 48.2±3.9 μg at 120 h. KELLY tumors treated with CX-5461-loaded film reached 800 mm3 after 7.8±1.4 days, while those treated with control film reached the same size on 5.1±0.6 days (p=0.03). CX-5461-treated tumors showed collapse of nucleolar hypertrophy and MYCN protein downregulation. CONCLUSION We demonstrated that local delivery of CX-5461 via sustained release platform can suppress orthotopic neuroblastoma tumor growth, especially those with MYCN/MYC overexpression.
Collapse
Affiliation(s)
| | - Jasmine Zeki
- Department of Surgery, Stanford University, Stanford, CA
| | - Kimberly Ornell
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA
| | - Jeannine Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA
| | - Hiroyuki Shimada
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL
| | - Bill Chiu
- Department of Surgery, Stanford University, Stanford, CA; Department of Surgery, University of Illinois at Chicago, Chicago, IL.
| |
Collapse
|
14
|
Yavuz B, Morgan JL, Herrera C, Harrington K, Perez-Ramirez B, LiWang PJ, Kaplan DL. Sustained release silk fibroin discs: Antibody and protein delivery for HIV prevention. J Control Release 2019; 301:1-12. [PMID: 30876951 PMCID: PMC6538278 DOI: 10.1016/j.jconrel.2019.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/23/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
With almost 2 million new HIV infections worldwide each year, the prevention of HIV infection is critical for stopping the pandemic. The only approved form of pre-exposure prophylaxis is a costly daily pill, and it is recognized that several options will be needed to provide protection to the various affected communities around the world. In particular, many at-risk people would benefit from a prevention method that is simple to use and does not require medical intervention or a strict daily regimen. We show that silk fibroin protein can be formulated into insertable discs that encapsulate either an antibody (IgG) or the potent HIV inhibitor 5P12-RANTES. Several formulations were studied, including silk layering, water vapor annealing and methanol treatment to stabilize the protein cargo and impact the release kinetics over weeks. In the case of IgG, high concentrations were released over a short time using methanol treatment, with more sustained results with the use of water vapor annealing and layering during device fabrication. For 5P12-RANTES, sustained release was obtained for 31 days using water vapor annealing. Further, we show that the released inhibitor 5P12-RANTES was functional both in vitro and in ex vivo colorectal tissue. This work shows that silk fibroin discs can be developed into formidable tools to prevent HIV infection.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology, University of California-Merced, Merced, CA, USA
| | - Carolina Herrera
- Department of Medicine, St. Mary's Campus Imperial College, London, UK
| | - Kristin Harrington
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Patricia J LiWang
- Department of Molecular Cell Biology, University of California-Merced, Merced, CA, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
15
|
Abstract
Silk is an important biopolymer for (bio)medical applications because of its unique and highly versatile structure and its robust clinical track record in human medicine. Silk can be processed into many material formats, including physically and chemically cross-linked hydrogels that have almost limitless applications ranging from tissue engineering to biomedical imaging and sensing. This concise review provides a detailed background of silk hydrogels, including silk structure-function relationships, biocompatibility and biodegradation, and it explores recent developments in silk hydrogel utilization, with specific reference to drug and cell delivery. We address common pitfalls and misconceptions while identifying emerging opportunities, including 3D printing.
Collapse
|
16
|
Yavuz B, Zeki J, Taylor J, Harrington K, Coburn JM, Ikegaki N, Kaplan DL, Chiu B. Silk Reservoirs for Local Delivery of Cisplatin for Neuroblastoma Treatment: In Vitro and In Vivo Evaluations. J Pharm Sci 2019; 108:2748-2755. [PMID: 30905702 DOI: 10.1016/j.xphs.2019.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Neuroblastoma is the most common extracranial childhood tumor, and current treatment requires surgical resection and multidrug chemotherapy. Local, perioperative delivery of chemotherapeutics is a promising treatment method for solid tumors that require surgical removal. In this study, we have aimed to develop a controlled-release implant system to deliver cisplatin in tumor or tumor resection area. Silk fibroin, a biodegradable, nonimmunogenic biopolymer was used to encapsulate different doses of cisplatin in a reservoir system. The physical integrity of the reservoirs was characterized by evaluating the crystalline structure of silk secondary structure using FTIR spectroscopy. The in vitro release of cisplatin was evaluated in phosphate-buffered saline at 37°C, and the reservoirs were able to release the drug up to 30 days. The cytotoxicity of cisplatin and cisplatin reservoirs were tested on KELLY cells. Cytotoxicity data showed 3.2 μg/mL cisplatin was required to kill 50% of the cell population, and the released cisplatin from the silk reservoirs showed significant cytotoxicity up to 21 days. Intratumoral implantation of silk reservoirs into an orthotopic neuroblastoma mouse model decreased tumor growth significantly when compared with control subjects. These results suggest that silk reservoirs are promising carriers for cisplatin delivery to the tumor site.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | - Jasmine Zeki
- Department of Surgery, Stanford University, Stanford, California 94305
| | - Jordan Taylor
- Department of Surgery, Stanford University, Stanford, California 94305
| | - Kristin Harrington
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155; Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155.
| | - Bill Chiu
- Department of Surgery, Stanford University, Stanford, California 94305.
| |
Collapse
|
17
|
Chen F, Lu S, Zhu L, Tang Z, Wang Q, Qin G, Yang J, Sun G, Zhang Q, Chen Q. Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances. J Mater Chem B 2019; 7:1708-1715. [DOI: 10.1039/c8tb02445f] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Strong and tough RSF-based hydrogels that could be used as a strain sensor, a touch screen pen and an electronic skin were developed.
Collapse
Affiliation(s)
- Feng Chen
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Shaoping Lu
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Lin Zhu
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Ziqing Tang
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Qilin Wang
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Gang Qin
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Jia Yang
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Gengzhi Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing
- China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Qiang Chen
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| |
Collapse
|
18
|
Crosslinking Biopolymers for Advanced Drug Delivery and Tissue Engineering Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:213-231. [DOI: 10.1007/978-981-13-0950-2_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Yavuz B, Morgan JL, Showalter L, Horng KR, Dandekar S, Herrera C, LiWang P, Kaplan DL. Pharmaceutical Approaches to HIV Treatment and Prevention. ADVANCED THERAPEUTICS 2018; 1:1800054. [PMID: 32775613 PMCID: PMC7413291 DOI: 10.1002/adtp.201800054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) infection continues to pose a major infectious disease threat worldwide. It is characterized by the depletion of CD4+ T cells, persistent immune activation, and increased susceptibility to secondary infections. Advances in the development of antiretroviral drugs and combination antiretroviral therapy have resulted in a remarkable reduction in HIV-associated morbidity and mortality. Antiretroviral therapy (ART) leads to effective suppression of HIV replication with partial recovery of host immune system and has successfully transformed HIV infection from a fatal disease to a chronic condition. Additionally, antiretroviral drugs have shown promise for prevention in HIV pre-exposure prophylaxis and treatment as prevention. However, ART is unable to cure HIV. Other limitations include drug-drug interactions, drug resistance, cytotoxic side effects, cost, and adherence. Alternative treatment options are being investigated to overcome these challenges including discovery of new molecules with increased anti-viral activity and development of easily administrable drug formulations. In light of the difficulties associated with current HIV treatment measures, and in the continuing absence of a cure, the prevention of new infections has also arisen as a prominent goal among efforts to curtail the worldwide HIV pandemic. In this review, the authors summarize currently available anti-HIV drugs and their combinations for treatment, new molecules under clinical development and prevention methods, and discuss drug delivery formats as well as associated challenges and alternative approaches for the future.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Laura Showalter
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Katti R Horng
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Carolina Herrera
- Department of Medicine St. Mary's Campus Imperial College Room 460 Norfolk Place, London W2 1PG, UK
| | - Patricia LiWang
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
20
|
Abbott A, Oxburgh L, Kaplan DL, Coburn JM. Avidin Adsorption to Silk Fibroin Films as a Facile Method for Functionalization. Biomacromolecules 2018; 19:3705-3713. [PMID: 30041518 DOI: 10.1021/acs.biomac.8b00824] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Silk fibroin biomaterials are highly versatile in terms of materials formation and functionalization, with applications in tissue engineering and drug delivery, but necessitate modifications for optimized biological activity. Herein, a facile, avidin-based technique is developed to noncovalently functionalize silk materials with bioactive molecules. The ability to adsorb avidin to silk surfaces and subsequently couple biotinylated macromolecules via avidin-biotin interaction is described. This method better preserved functionality than standard covalent coupling techniques using carbodiimide cross-linking chemistry. The controlled release of avidin from the silk surface was demonstrated by altering the adsorption parameters. Application of this technique to culturing human foreskin fibroblasts (hFFs) and human mesenchymal stem cells (hMSCs) on arginine-glycine-aspartic-acid-modified (RGD-modified) silk showed increased cell growth over a seven-day period. This technique provides a facile method for the versatile functionalization of silk materials for biomedical applications including tissue engineering, drug delivery, and biological sensing.
Collapse
Affiliation(s)
- Alycia Abbott
- Worcester Polytechnic Institute , Worcester , Massachusetts 01605 , United States
| | - Leif Oxburgh
- Maine Medical Center Research Institute , Scarborough , Maine 04074 , United States
| | - David L Kaplan
- Tufts University , Medford , Massachusetts 02155 , United States
| | - Jeannine M Coburn
- Worcester Polytechnic Institute , Worcester , Massachusetts 01605 , United States.,Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
21
|
Zeki J, Taylor JS, Yavuz B, Coburn J, Ikegaki N, Kaplan DL, Chiu B. Disseminated injection of vincristine-loaded silk gel improves the suppression of neuroblastoma tumor growth. Surgery 2018; 164:909-915. [PMID: 30061039 DOI: 10.1016/j.surg.2018.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Advanced-stage neuroblastoma patients require multiagent chemotherapy. Intratumoral implantation of vincristine-loaded silk gel uses local diffusion to decrease orthotopic neuroblastoma tumor growth in mice. We hypothesize that injecting vincristine-loaded silk gel into 8 locations within the tumor, instead of only centrally, decreases the diffusion distance and improves tumor growth suppression. METHODS Human neuroblastoma cells, KELLY, were injected into mouse adrenal glands to create orthotopic tumors. After the tumors reached 100 mm3 by ultrasound, silk gels loaded with 50 µg vincristine were injected centrally or in 8 areas throughout the tumor. Drug-release profile was measured in vitro. Endpoints were tumor size >1,000 mm3 and histologic examination. RESULTS Vincristine-loaded silk gels suppressed tumor growth up to an inflection point (458.7 ± 234.4 mm3 for central, 514.3 ± 165.8 mm3 for 8-point injection) before tumor growth accelerated >200 mm3 over 3 days. The time to inflection point was 6.6 days for central, 13.3 days for 8-point injection (P < .05). Using the sphere volume equation to approximate tumor volume, splitting the volume into 1/8 decreased the diffusion radius by 1/2. Histologic examination confirmed tumor necrosis adjacent to vincristine-loaded silk gel. CONCLUSION Injecting vincristine-loaded sustained release silk gel at 8 separate locations halved the diffusion distance and doubled the time for the tumor to reach the growth inflexion point.
Collapse
Affiliation(s)
- Jasmine Zeki
- Department of Surgery, Stanford University, Stanford, CA
| | | | - Burcin Yavuz
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Jeannine Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Bill Chiu
- Department of Surgery, Stanford University, Stanford, CA.
| |
Collapse
|
22
|
Yavuz B, Zeki J, Coburn JM, Ikegaki N, Levitin D, Kaplan DL, Chiu B. In vitro and in vivo evaluation of etoposide - silk wafers for neuroblastoma treatment. J Control Release 2018; 285:162-171. [PMID: 30018030 DOI: 10.1016/j.jconrel.2018.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 05/01/2018] [Accepted: 07/02/2018] [Indexed: 11/25/2022]
Abstract
High-risk neuroblastoma requires surgical resection and multi-drug chemotherapy. This study aimed to develop an extended release, implantable and degradable delivery system for etoposide, commonly used for neuroblastoma treatment. Different concentrations of silk, a biodegradable, non-toxic, non-immunogenic material were employed to prepare etoposide-loaded wafer formulations. Secondary structure of silk in the formulations was characterized using Fourier Transform Infrared (FTIR) spectroscopy and optimized based on the crystalline structure. Accelerated in vitro degradation studies under different conditions such as acidic, alkaline, oxidizing mediums and high temperature, were performed. The integrity of the silk wafer structure was maintained unless exposed to 0.1 N NaOH for 24 h. In vitro release of etoposide was performed in PBS (phosphate buffered saline) at 37 °C. Silk coated 6% wafers released the drug up to 45 days, while uncoated wafers released the drug for 30 days. Cytotoxicity study was performed on KELLY cells to evaluate the etoposide cytotoxicity (LC50) and the long-term efficacy of the etoposide wafer formulations. The results showed that etoposide killed 50% of the cells at 1 μg/mL concentration and the wafer formulations demonstrated significant cytotoxicity up to 22 days when compared to untreated cells. Using an orthotopic neuroblastoma mouse model, intra-tumoral implantation of the coated 6%, uncoated 6%, or uncoated 3% silk wafers were all effective at decreasing tumor growth. Histological examination revealed tumor cell necrosis adjacent to the drug-loaded silk wafer.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Jasmine Zeki
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel Levitin
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - Bill Chiu
- Department of Surgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Wu M, Yang W, Chen S, Yao J, Shao Z, Chen X. Size-controllable dual drug-loaded silk fibroin nanospheres through a facile formation process. J Mater Chem B 2018; 6:1179-1186. [DOI: 10.1039/c7tb03113k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Paclitaxel/doxorubicin-loaded silk fibroin nanospheres were prepared through a facile and green method and showed a synergistic effect on the anti-proliferative activity.
Collapse
Affiliation(s)
- Mi Wu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Wenhua Yang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Sheng Chen
- Department of General Surgery
- Ruijin Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| |
Collapse
|
24
|
MYC-family protein overexpression and prominent nucleolar formation represent prognostic indicators and potential therapeutic targets for aggressive high-MKI neuroblastomas: a report from the children's oncology group. Oncotarget 2017; 9:6416-6432. [PMID: 29464082 PMCID: PMC5814222 DOI: 10.18632/oncotarget.23740] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/13/2017] [Indexed: 12/29/2022] Open
Abstract
Neuroblastomas with a high mitosis-karyorrhexis index (High-MKI) are often associated with MYCN amplification, MYCN protein overexpression and adverse clinical outcome. However, the prognostic effect of MYC-family protein expression on these neuroblastomas is less understood, especially when MYCN is not amplified. To address this, MYCN and MYC protein expression in High-MKI cases (120 MYCN amplified and 121 non-MYCN amplified) was examined by immunohistochemistry. The majority (101) of MYCN-amplified High-MKI tumors were MYCN(+), leaving one MYC(+), 2 both(+), and 16 both(−)/(+/−), whereas non-MYCN-amplified cases appeared heterogeneous, including 7 MYCN(+), 36 MYC(+), 3 both(+), and 75 both(−)/(+/−) tumors. These MYC-family proteins(+), or MYC-family driven tumors, were most likely to have prominent nucleolar (PN) formation (indicative of augmented rRNA synthesis). High-MKI neuroblastoma patients showed a poor survival irrespective of MYCN amplification. However, patients with MYC-family driven High-MKI neuroblastomas had significantly lower survival than those with non-MYC-family driven tumors. MYCN(+), MYC-family protein(+), PN(+), and clinical stage independently predicted poor survival. Specific inhibition of hyperactive rRNA synthesis and protein translation was shown to be an effective way to suppress MYC/MYCN protein expression and neuroblastoma growth. Together, MYC-family protein overexpression and PN formation should be included in new neuroblastoma risk stratification and considered for potential therapeutic targets.
Collapse
|
25
|
Li C, Yang M, Zhu L, Zhu Y. Honeysuckle flowers extract loaded Bombyx mori silk fibroin films for inducing apoptosis of HeLa cells. Microsc Res Tech 2017; 80:1297-1303. [PMID: 28841768 PMCID: PMC5763328 DOI: 10.1002/jemt.22928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/30/2023]
Abstract
This study aimed to prepare silk fibroin (SF) films loaded with honeysuckle flowers extract (HFE) for inducing apoptosis of HeLa cells. We mixed solution of SF and HFE by air-drying for preparing the honeysuckle flowers extract loaded silk fibroin (SFH) films. The physical properties including morphologies, contact angle, roughness, and Z range were characterized. MTS assay and fluorescence micrographs proved that SFH films inhibited the proliferation rate of HeLa cells due to induction of HFE into SF films. Furthermore, cell apoptosis assay and cell cycle analysis confirmed that the apoptosis of HeLa cells resulted from SFH films. Therefore, SFH films designed in our study might be a promising candidate material for cancer therapy.
Collapse
Affiliation(s)
- Chenlin Li
- Institute of Applied Bioresource, College of Animal ScienceZhejiang UniversityHangzhou, Zhejiang 310058People's Republic of China
| | - Mingying Yang
- Institute of Applied Bioresource, College of Animal ScienceZhejiang UniversityHangzhou, Zhejiang 310058People's Republic of China
| | - Liangjun Zhu
- Institute of Applied Bioresource, College of Animal ScienceZhejiang UniversityHangzhou, Zhejiang 310058People's Republic of China
| | - Yongqiang Zhu
- Zhejiang Academy of Traditional Chinese MedicineHangzhou, Zhejiang 310058People's Republic of China
| |
Collapse
|
26
|
Coburn JM, Harris J, Cunningham R, Zeki J, Kaplan DL, Chiu B. Manipulation of variables in local controlled release vincristine treatment in neuroblastoma. J Pediatr Surg 2017; 52:2061-2065. [PMID: 28927981 PMCID: PMC5723549 DOI: 10.1016/j.jpedsurg.2017.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Local drug delivery minimizes systemic toxicity while delivering high-dose chemotherapy for neuroblastoma patients. We hypothesized that varying burst and maintenance dosing of implanted silk platforms would improve survival. METHODS Platforms were loaded with vincristine 25μg, 50μg, 100μg, and 200μg varying burst (released 1-4days postimplantation) and maintenance (over the next 20days) dosing. Orthotopic tumors were created in mice using human neuroblastoma KELLY cells. Silk platforms were implanted into tumors when volumewas >300mm3. Tumor volume was monitored weekly with ultrasound. Experimental endpoints were tumor volumewas >1000mm3 or weight losswas >25%. RESULTS Drug release ranged from burst dosing of 18.2 to 80.9μg, maintenance of 5.0 to 111.6μg, and cumulative of 23.3 to 177.4μg. Animals treated with 200μg platform died 9-13days postimplantation, corresponding to 128.1-141.2μg released (toxic dose). Animals received 30.2±3.4μgday-one survived longer than those that received 10.1±1.1μg (p=0.03), suggesting <10.1μgday-one was insufficient. Tumors treated with 100μg or 50μg silk platform took longer to reach 1000 mm3 compared to those treated with control, 44.8±9.5days (p<0.001) and 26.7±6.7days (p<0.05), respectively, versus 7.0±1.7days. Overall survival correlated with higher burst (r=0.446, p=0.004) and maintenance dosing (r=0.353, p=0.02), Animal survival days=30.314+0.626 × (dose on day-one) - 0.020×(tumor volume at day-ten) (p<0.05). CONCLUSION Platform formulations can be manipulated to vary burst and maintenance dosing, summarized by an equation consisting of these variables.
Collapse
Affiliation(s)
- Jeannine M. Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA,Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Jamie Harris
- Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | | | - Jasmine Zeki
- Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Bill Chiu
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
27
|
Maitz MF, Sperling C, Wongpinyochit T, Herklotz M, Werner C, Seib FP. Biocompatibility assessment of silk nanoparticles: hemocompatibility and internalization by human blood cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2633-2642. [DOI: 10.1016/j.nano.2017.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 06/29/2017] [Accepted: 07/17/2017] [Indexed: 01/06/2023]
|
28
|
Xie M, Fan D, Li Y, He X, Chen X, Chen Y, Zhu J, Xu G, Wu X, Lan P. Supercritical carbon dioxide-developed silk fibroin nanoplatform for smart colon cancer therapy. Int J Nanomedicine 2017; 12:7751-7761. [PMID: 29118580 PMCID: PMC5659230 DOI: 10.2147/ijn.s145012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose To deliver insoluble natural compounds into colon cancer cells in a controlled fashion. Materials and methods Curcumin (CM)–silk fibroin (SF) nanoparticles (NPs) were prepared by solution-enhanced dispersion by supercritical CO2 (SEDS) (20 MPa pressure, 1:2 CM:SF ratio, 1% concentration), and their physicochemical properties, intracellular uptake efficiency, in vitro anticancer effect, toxicity, and mechanisms were evaluated and analyzed. Results CM-SF NPs (<100 nm) with controllable particle size were prepared by SEDS. CM-SF NPs had a time-dependent intracellular uptake ability, which led to an improved inhibition effect on colon cancer cells. Interestingly, the anticancer effect of CM-SF NPs was improved, while the side effect on normal human colon mucosal epithelial cells was reduced by a concentration of ~10 μg/mL. The anticancer mechanism involves cell-cycle arrest in the G0/G1 and G2/M phases in association with inducing apoptotic cells. Conclusion The natural compound-loaded SF nanoplatform prepared by SEDS indicates promising colon cancer-therapy potential.
Collapse
Affiliation(s)
- Maobin Xie
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dejun Fan
- Department of Colorectal Surgery, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yi Li
- School of Materials, University of Manchester, Manchester, UK
| | - Xiaowen He
- Department of Colorectal Surgery, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoming Chen
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yufeng Chen
- Department of Colorectal Surgery, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jixiang Zhu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibin Xu
- Department of Urology, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojian Wu
- Department of Colorectal Surgery, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ping Lan
- Department of Colorectal Surgery, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
29
|
Totten JD, Wongpinyochit T, Seib FP. Silk nanoparticles: proof of lysosomotropic anticancer drug delivery at single-cell resolution. J Drug Target 2017; 25:865-872. [PMID: 28812388 DOI: 10.1080/1061186x.2017.1363212] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Silk nanoparticles are expected to improve chemotherapeutic drug targeting to solid tumours by exploiting tumour pathophysiology, modifying the cellular pharmacokinetics of the payload and ultimately resulting in trafficking to lysosomes and triggering drug release. However, experimental proof for lysosomotropic drug delivery by silk nanoparticles in live cells is lacking and the importance of lysosomal pH and enzymes controlling drug release is currently unknown. Here, we demonstrate, in live single human breast cancer cells, the role of the lysosomal environment in determining silk nanoparticle-mediated drug release. MCF-7 human breast cancer cells endocytosed and trafficked drug-loaded native and PEGylated silk nanoparticles (∼100 nm in diameter) to lysosomes, with subsequent drug release from the respective carriers and nuclear translocation within 5 h of dosing. A combination of low pH and enzymatic degradation facilitated drug release from the silk nanoparticles; perturbation of the acidic lysosomal pH and inhibition of serine, cysteine and threonine proteases resulted in a 42% ± 2.2% and 33% ± 3% reduction in nuclear-associated drug accumulation for native and PEGylated silk nanoparticles, respectively. Overall, this study demonstrates the importance of lysosomal activity for anticancer drug release from silk nanoparticles, thereby providing direct evidence for lysosomotropic drug delivery in live cells.
Collapse
Affiliation(s)
- John D Totten
- a Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , UK
| | - Thidarat Wongpinyochit
- a Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , UK
| | - F Philipp Seib
- a Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , UK.,b Leibniz Institute of Polymer Research Dresden , Max Bergmann Center of Biomaterials Dresden , Dresden , Germany
| |
Collapse
|
30
|
Abstract
Silk biomaterials can be designed to provide an architectural framework comparable to connate extracellular matrix in order to boost cell growth and eventual tissue regeneration. Silk (Bombyx mori) fibroins self-assemble into hydrophobic crystalline β sheets, which provide mechanical strength and tunable degradability. The next generation of tissue engineering scaffolds aim to provide spatially controlled modulation of cell adhesion and differentiation, which can be achieved by spatially controlled surface functionalization of the scaffolds. In this respect, it is even more important to be able to release molecules at timescales ranging from hours to days, as many biological processes require signals early on to initiate processes, and over prolonged periods to sustain them. Unfortunately, achieving spatio-temporal control over multiple release profiles from silk based substrates is challenging due to their intrinsic slow release behaviour. Here, we report a simple strategy that provides spatio-temporal control over the release of drugs from silk films (SFs). We have developed a UV based strategy to modify the SFs with nanogels, which can provide a fast as well as slow release profile from a single platform. We demonstrate that the release profile of encapsulated molecules on the SF substrate can be tuned from fast (within hours) to slow (within days), thus resulting in a dual release system, which can be eventually utilized to deliver bioactive molecules at specific regions with different rates to achieve the desired multiple biological effects.
Collapse
Affiliation(s)
- Vartika Dhyani
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India. Biomedical Engineering Unit, All India Institute of Medical Science, Ansari Nagar, New Delhi 110029, India
| | | |
Collapse
|
31
|
|
32
|
Florczak A, Jastrzebska K, Mackiewicz A, Dams-Kozlowska H. Blending two bioengineered spider silks to develop cancer targeting spheres. J Mater Chem B 2017; 5:3000-3011. [DOI: 10.1039/c7tb00233e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Blending two bioengineered spider silks combines the most favorable characteristics of both silks and can lead to the formation of an optimal drug delivery vehicle.
Collapse
Affiliation(s)
- Anna Florczak
- Chair of Medical Biotechnology
- Poznan University of Medical Sciences
- Poznan 60-806
- Poland
- NanoBioMedical Centre
| | - Katarzyna Jastrzebska
- Chair of Medical Biotechnology
- Poznan University of Medical Sciences
- Poznan 60-806
- Poland
- NanoBioMedical Centre
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology
- Poznan University of Medical Sciences
- Poznan 60-806
- Poland
- NanoBioMedical Centre
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology
- Poznan University of Medical Sciences
- Poznan 60-806
- Poland
- Department of Diagnostics and Cancer Immunology
| |
Collapse
|
33
|
Harris JC, Coburn JM, Kajdacsy-Balla A, Kaplan DL, Chiu B. Sustained delivery of vincristine inside an orthotopic mouse sarcoma model decreases tumor growth. J Pediatr Surg 2016; 51:2058-2062. [PMID: 27680598 PMCID: PMC5138133 DOI: 10.1016/j.jpedsurg.2016.09.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/12/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Sarcoma accounts for 20% of solid tumors in children. Surgery has significant morbidity. We hypothesized that delivering chemotherapy directly into tumors through sustained release silk systems could slow tumor growth. METHODS Human Ewing sarcoma cells A673 were cultured with vincristine and doxorubicin to determine half maximal inhibitory concentration (IC50). Cells were injected into mouse hind leg to create orthotopic tumors. Tumor volumes were measured using ultrasound. When volume reached >250mm3, interventions included: implantation of drug-free silk foam (Control-F), doxorubicin 400μg foam (Dox400-F), vincristine 50μg foam (Vin50-F), drug-free silk gel (Control-G), vincristine 50μg gel (Vin50-G), or single dose intravenous vincristine 50μg (Vin50-IV). End-point was volume>1000mm3. Kaplan Meier and ANOVA were used. RESULTS IC50 for vincristine and doxorubicin was 0.5ng/mL and 200ng/mL, respectively. There was no difference between Dox400-F [6±1days to end point (DTEP)] and Control-F (5±1.3 DTEP). Vin50-F (12.4±3.5 DTEP) had slower growth compared to Control-F (p<0.001), and there was no difference between Vin50-F and Vin50-IV (14±0 DTEP). Growth was slowest with Vin50-G, 28±10.3 DTEP compared to all other treatment groups (p<0.05). CONCLUSION Sustained delivery of vincristine inside the sarcoma tumor with silk gel decreased tumor growth. Applying this intratumoral treatment strategy may potentially decrease the extent of surgical excision.
Collapse
Affiliation(s)
- Jamie C Harris
- Department of Surgery, Rush University Medical Center, 1750 W. Harrison St, Suite 785, Chicago, IL, 60612, USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Andre Kajdacsy-Balla
- Division of Pathology, University of Illinois Chicago, 840 S. Wood St. Suite 130 CSN, Chicago, IL, 60612
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Bill Chiu
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood Street, Suite 416, Chicago, IL, 60612, USA.
| |
Collapse
|
34
|
Coburn J, Harris J, Zakharov AD, Poirier J, Ikegaki N, Kajdacsy-Balla A, Pilichowska M, Lyubimov AV, Shimada H, Kaplan DL, Chiu B. Implantable chemotherapy-loaded silk protein materials for neuroblastoma treatment. Int J Cancer 2016; 140:726-735. [PMID: 27770551 DOI: 10.1002/ijc.30479] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/28/2016] [Accepted: 10/11/2016] [Indexed: 12/17/2022]
Abstract
Neuroblastoma is the most common extracranial childhood solid tumor. Treatment of high risk tumors require intense multicycle chemotherapies, resulting in short- and long-term toxicities. Here, we present treatment of an orthotopic neuroblastoma mouse model, with silk fibroin materials loaded with vincristine, doxorubicin or the combination as a intratumoral, sustained release system. The materials, loaded with vincristine with or without doxorubicin, significantly decreased neuroblastoma tumor growth compared to materials loaded without drug or doxorubicin only as well as intravenous (IV) drug treatment. The intratumoral drug concentration was significantly higher with intratumoral delivery versus IV. Furthermore, intratumor delivery decreased the maximum plasma concentration compared to IV delivery, reducing systemic exposure and possibly reduing long-term side effects of chemotherapy exposure. Histopathologically, tumors with remission periods >25 days before recurrence transformed from a "small-round-blue cell" (SBRC) to predominantly "large cell" neuroblastoma (LCN) histopathology, a more aggressive tumor subtype with unfavorable clinical outcomes. These results show that intratumoral chemotherapy delivery may be a treatment strategy for pediatric neuroblastoma, potentially translatable to other focal tumors types. Furthermore, this treatment modality allows for a clinically relevant mouse model of tumor transformation that may be used for studying the phenotypical tumor recurrence and developing more effective treatment strategies for recurrent tumors.
Collapse
Affiliation(s)
- Jeannine Coburn
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA
| | - Jamie Harris
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL
| | - Alexander D Zakharov
- Department of Pharmacology, Toxicology Research Laboratory, 808 S Wood Street, Chicago, IL
| | - Jennifer Poirier
- Department of Surgery, Rush University, 1653 W. Congress Parkway, Chicago, IL
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood Street, Chicago, IL
| | - Andre Kajdacsy-Balla
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL
| | - Monika Pilichowska
- Department of Pathology, Tufts Medical Center, 800 Washington Street, Boston, MA
| | - Alexander V Lyubimov
- Department of Pharmacology, Toxicology Research Laboratory, 808 S Wood Street, Chicago, IL
| | - Hiroyuki Shimada
- Department of Pathology, Children's Hospital of Los Angeles, 4650 Sunset Blvd, Los Angeles, CA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA
| | - Bill Chiu
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL
| |
Collapse
|
35
|
Seib FP, Tsurkan M, Freudenberg U, Kaplan DL, Werner C. Heparin-Modified Polyethylene Glycol Microparticle Aggregates for Focal Cancer Chemotherapy. ACS Biomater Sci Eng 2016; 2:2287-2293. [DOI: 10.1021/acsbiomaterials.6b00495] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- F. Philipp Seib
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
- Max
Bergmann Centre for Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, Dresden 01069, Germany
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Mikhail Tsurkan
- Max
Bergmann Centre for Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, Dresden 01069, Germany
| | - Uwe Freudenberg
- Max
Bergmann Centre for Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, Dresden 01069, Germany
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Carsten Werner
- Max
Bergmann Centre for Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, Dresden 01069, Germany
| |
Collapse
|
36
|
Wongpinyochit T, Johnston BF, Seib FP. Manufacture and Drug Delivery Applications of Silk Nanoparticles. J Vis Exp 2016. [PMID: 27768078 DOI: 10.3791/54669] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Silk is a promising biopolymer for biomedical and pharmaceutical applications due to its outstanding mechanical properties, biocompatibility and biodegradability, as well its ability to protect and subsequently release its payload in response to a trigger. While silk can be formulated into various material formats, silk nanoparticles are emerging as promising drug delivery systems. Therefore, this article covers the procedures for reverse engineering silk cocoons to yield a regenerated silk solution that can be used to generate stable silk nanoparticles. These nanoparticles are subsequently characterized, drug loaded and explored as a potential anticancer drug delivery system. Briefly, silk cocoons are reverse engineered first by degumming the cocoons, followed by silk dissolution and clean up, to yield an aqueous silk solution. Next, the regenerated silk solution is subjected to nanoprecipitation to yield silk nanoparticles - a simple but powerful method that generates uniform nanoparticles. The silk nanoparticles are characterized according to their size, zeta potential, morphology and stability in aqueous media, as well as their ability to entrap a chemotherapeutic payload and kill human breast cancer cells. Overall, the described methodology yields uniform silk nanoparticles that can be readily explored for a myriad of applications, including their use as a potential nanomedicine.
Collapse
Affiliation(s)
| | - Blair F Johnston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde;
| |
Collapse
|
37
|
Xiao L, Lu G, Lu Q, Kaplan DL. Direct Formation of Silk Nanoparticles for Drug Delivery. ACS Biomater Sci Eng 2016; 2:2050-2057. [DOI: 10.1021/acsbiomaterials.6b00457] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liying Xiao
- Collaborative
Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
- National
Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, People’s Republic of China
| | - Guozhong Lu
- Department
of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi 214041, People’s Republic of China
| | - Qiang Lu
- Collaborative
Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
- National
Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, People’s Republic of China
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
38
|
Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:927-42. [DOI: 10.1016/j.msec.2016.01.063] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 02/06/2023]
|
39
|
Wang Y, Wang L, Guan S, Cao W, Wang H, Chen Z, Zhao Y, Yu Y, Zhang H, Pang JC, Huang SL, Akiyama Y, Yang Y, Sun W, Xu X, Shi Y, Zhang H, Kim ES, Muscal JA, Lu F, Yang J. Novel ALK inhibitor AZD3463 inhibits neuroblastoma growth by overcoming crizotinib resistance and inducing apoptosis. Sci Rep 2016; 6:19423. [PMID: 26786851 PMCID: PMC4726162 DOI: 10.1038/srep19423] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
ALK receptor tyrosine kinase has been shown to be a therapeutic target in neuroblastoma. Germline ALK activating mutations are responsible for the majority of hereditary neuroblastoma and somatic ALK activating mutations are also frequently observed in sporadic cases of advanced NB. Crizotinib, a first-line therapy in the treatment of advanced non-small cell lung cancer (NSCLC) harboring ALK rearrangements, demonstrates striking efficacy against ALK-rearranged NB. However, crizotinib fails to effectively inhibit the activity of ALK when activating mutations are present within its kinase domain, as with the F1174L mutation. Here we show that a new ALK inhibitor AZD3463 effectively suppressed the proliferation of NB cell lines with wild type ALK (WT) as well as ALK activating mutations (F1174L and D1091N) by blocking the ALK-mediated PI3K/AKT/mTOR pathway and ultimately induced apoptosis and autophagy. In addition, AZD3463 enhanced the cytotoxic effects of doxorubicin on NB cells. AZD3463 also exhibited significant therapeutic efficacy on the growth of the NB tumors with WT and F1174L activating mutation ALK in orthotopic xenograft mouse models. These results indicate that AZD3463 is a promising therapeutic agent in the treatment of NB.
Collapse
Affiliation(s)
- Yongfeng Wang
- Department of Microbiology, Peking University Health Science Center, Beijing 100191, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Long Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Shan Guan
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wenming Cao
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Hao Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zhenghu Chen
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jonathan C Pang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sophia L Huang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yo Akiyama
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yifan Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wenjing Sun
- Division of Pediatric Surgery, Michael E. DeBakey Department of Pediatric Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xin Xu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yan Shi
- Division of Pediatric Surgery, Michael E. DeBakey Department of Pediatric Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hong Zhang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Eugene S Kim
- Division of Pediatric Surgery, Michael E. DeBakey Department of Pediatric Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jodi A Muscal
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fengmin Lu
- Department of Microbiology, Peking University Health Science Center, Beijing 100191, China
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
40
|
Yang X, Wang X, Yu F, Ma L, Pan X, Luo G, Lin S, Mo X, He C, Wang H. Hyaluronic acid/EDC/NHS-crosslinked green electrospun silk fibroin nanofibrous scaffolds for tissue engineering. RSC Adv 2016. [DOI: 10.1039/c6ra13713j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanical properties of SF nanofibrous matrices were enhanced through crosslinking with HA/EDC/NHS for soft tissue engineering.
Collapse
|
41
|
Liu Q, Liu H, Fan Y. Preparation of silk fibroin carriers for controlled release. Microsc Res Tech 2015; 80:312-320. [PMID: 26638113 DOI: 10.1002/jemt.22606] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/09/2015] [Indexed: 12/24/2022]
Abstract
Silk fibroin provides a new option for controlled release systems as a result of its excellent biodegradability, biocompatibility, and mechanical properties. As the core material, silk fibroin can be designed and widely used in drug/gene delivery, regenerative medicine, and other biomedical fields. This review focuses on the preparation methods, loading molecules, and applications of silk fibroin-based controlled release systems including microspheres, microcapsules, films, microparticles, microneedles, liposomes, and hydrogels. These systems provide numerous advantages such as high encapsulation efficiency, avoiding loss of bioactivity and maintaining desirable range without peaks and valleys in comparison to the traditional administration approaches. Microsc. Res. Tech. 80:312-320, 2017. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qiang Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.,National Research Center for Rehabilitation Technical Aids, Beijing, 100176, People's Republic of China
| |
Collapse
|
42
|
Modulation of vincristine and doxorubicin binding and release from silk films. J Control Release 2015; 220:229-238. [PMID: 26500149 DOI: 10.1016/j.jconrel.2015.10.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/17/2015] [Indexed: 11/20/2022]
Abstract
Sustained release drug delivery systems remain a major clinical need for small molecule therapeutics in oncology. Here, mechanisms of small molecule interactions with silk protein films were studied with cationic oncology drugs, vincristine and doxorubicin, with a focus on hydrophobicity (non-ionic surfactant) and charge (pH and ionic strength). Interactions were primarily driven by charge interactions between the positively charged drugs and the negatively charged groups within the silk films. Exploiting chemical modifications of silk further modulated the drug interactions in a controlled fashion. Increasing anionic side groups via carboxylate- and sulfonate-modifications of tyrosine side chains in the silk protein using diazonium coupling chemistry, increased drug binding and altered drug release. The effects of silk film protein crystallinity, beta sheet content, on drug binding and release were also explored. Lower crystallinity supported more rapid drug binding when compared to higher crystalline silk films. The drug release kinetics were governed by the protonation state of vincristine and doxorubicin and were tunable based on silk crystallinity and chemistry. These studies depict an approach to characterize small molecule-silk protein interactions and methods to tune drug binding and release kinetics from this protein delivery matrix.
Collapse
|