1
|
Ferroni M, De Gaetano F, Zonfrillo M, Bono N, Cereda MG, Pierimarchi P, Sferrazza G, Candiani G, Boschetti F. Assessment of magnesium-based components for intraocular drug delivery by in vitrobiocompatibility and drug-device interaction. Biomed Mater 2025; 20:035012. [PMID: 40101366 DOI: 10.1088/1748-605x/adc21f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/18/2025] [Indexed: 03/20/2025]
Abstract
The development of magnesium-based intraocular drug delivery devices holds significant promise for biomedical applications, particularly in treating wet age-related macular degeneration (AMD) using vascular endothelial growth factor inhibitors such as bevacizumab. Magnesium's rapid degradation, which can be finely tuned to achieve the controlled release required for AMD treatment, along with its well-established biocompatibility and biodegradable properties, positioning it as an ideal material for these applications. The study aimed to evaluate magnesium's potential as a carrier for ocular drug delivery systems by demontrating the stability of monoclonal antibodies, specifically bevacizumab, in the presence of magnesium corrosion products and the biocompatibility of these products with various cell lines, including murine fibroblasts (3T3), rat retinal Müller cells, and human retinal pigment epithelial cells (ARPE19). The stability of bevacizumab with pure magnesium (Mg) was investigated through an indirect enzyme-linked immunosorbent assay protocol, developed and customized for this specific aim. The biocompatibility of Mg corrosion products was assessed by toxicological evaluations through MTT and Trypan Blue Viability assays, along with cell cycle analysis. Results demonstrated no significant impact of Mg corrosion products on bevacizumab stability, with changes in mean values consistently below or equal to 10%. Furthermore, Mg extracts showed minimal cytotoxicity, as metabolic activity exceeded 80% across all cell lines, classified as Grade 0/1 cytotoxicity under ISO 10993-5 standards. Cell viability, proliferation, and morphology remained unaffected for up to 72 h of exposure. This study provides the firstin vitroevaluation of bevacizumab's stability in the presence of magnesium corrosion products and its biocompatibility with retinal cell lines, laying the foundation for future ophthalmic research and underscoring magnesium's potential as a material for intraocular drug delivery systems.
Collapse
Affiliation(s)
- Marco Ferroni
- LaBS, Chemistry, Materials and Chemical Engineering Department 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
- MgShell S.r.l., Viale Romagna 59, 20133 Milan, Italy
| | - Francesco De Gaetano
- LaBS, Chemistry, Materials and Chemical Engineering Department 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
- MgShell S.r.l., Viale Romagna 59, 20133 Milan, Italy
| | - Manuela Zonfrillo
- Institute of Translational Pharmacology, National Research Council, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Nina Bono
- genT_LΛB, Chemistry, Materials and Chemical Engineering Department 'Giulio Natta', Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | | | - Pasquale Pierimarchi
- Institute of Translational Pharmacology, National Research Council, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Gianluca Sferrazza
- Institute of Translational Pharmacology, National Research Council, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
- Department of Biomedical Science, National Council Research Council, Rome, Piazzale Aldo Moro 7, 00185 Rome, Italy
| | - Gabriele Candiani
- genT_LΛB, Chemistry, Materials and Chemical Engineering Department 'Giulio Natta', Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Federica Boschetti
- LaBS, Chemistry, Materials and Chemical Engineering Department 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
2
|
Paiwand S, Schäfer S, Kopp A, Beikler T, Fiedler I, Gosau M, Fuest S, Smeets R. Antibacterial potential of silver and zinc loaded plasma-electrolytic oxidation coatings for dental titanium implants. Int J Implant Dent 2025; 11:12. [PMID: 39960576 PMCID: PMC11833008 DOI: 10.1186/s40729-025-00595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Peri-implantitis is known as an inflammatory condition affecting the soft and hard tissue around dental implants. A promising strategy to prevent these conditions is the use of antibacterial implants. This study aimed to evaluate the antibacterial potential of titanium (Ti) dental implants modified using plasma-electrolytic oxidation (PEO). The modified surfaces were subsequently loaded with silver (Ag) (n = 6) and zinc (Zn) (n = 6) ions and compared to unloaded Ti specimens (n = 6), with untreated specimens serving as controls. The specimens (each n = 5) were incubated in a culture medium containing a mixture of specific anaerobic bacterial strains. Scanning electron microscopy (SEM) was used to visualize the bacterial biofilm on each specimen. In addition, total bacterial deoxxyribonucleic acid (DNA) and the number of viable bacteria were determined using quantitative real-time polymerase chain reaction (qrt-PCR) and colony forming unit analysis (CFU), respectively. The results of the CFU analysis showed a 2 log (99%) reduction in viable bacteria in the samples loaded with Ag and Zn compared to the unloaded control group (p < 0.05). Moreover, significantly lower bacterial DNA counts were detected with a 5 log reduction (99.999%) in the Ag and Zn samples compared to the positive control group (bacterial mixed culture solution, p < 0.05). Therefore, it was considered that Ag and Zn loaded Ti implants may be a promising addition to current approaches to enable advanced antibacterial dental implants. However, further studies should be conducted to evaluate the in vivo cytocompatibility of the developed specimens.
Collapse
Affiliation(s)
- Sabawun Paiwand
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Sogand Schäfer
- Department of Oral and Maxillofacial Surgery, Devision of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | | | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Imke Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Devision of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Department of Oral and Maxillofacial Surgery, Devision of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
3
|
Jena B, Singh SS, Chakrabortty S, Behera SK, Tripathy SK, Lundborg CS, Kumar R, Ali Khan M, Jeon BH, Mishra A. Understanding the antibacterial mechanism of a phytochemical derived from Urginea indica against Methicillin-Resistant Staphylococcus aureus: A phytochemical perspective to impede antibiotics resistance. J IND ENG CHEM 2024; 139:213-224. [DOI: 10.1016/j.jiec.2024.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Herzog P, Rendenbach C, Turostowski M, Ellinghaus A, Prates Soares A, Heiland M, Duda GN, Schmidt-Bleek K, Fischer H. Titanium versus plasma electrolytic oxidation surface-modified magnesium miniplates in a forehead secondary fracture healing model in sheep. Acta Biomater 2024; 185:98-110. [PMID: 39002920 DOI: 10.1016/j.actbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Magnesium as a biodegradable material offers promising results in recent studies of different maxillo-facial fracture models. To overcome adverse effects caused by the fast corrosion of pure magnesium in fluid surroundings, various alloys, and surface modifications are tested in animal models. In specified cases, magnesium screws already appeared for clinical use in maxillofacial surgery. The present study aims to compare the bone healing outcome in a non-load-bearing fracture scenario of the forehead in sheep when fixed with standard-sized WE43 magnesium fixation plates and screws with plasma electrolytic oxidation (PEO) surface modification in contrast to titanium osteosynthesis. Surgery was performed on 24 merino mix sheep. The plates and screws were explanted en-bloc with the surrounding tissue after four and twelve weeks. The outcome of bone healing was investigated with micro-computed tomography, histological, immunohistological, and fluorescence analysis. There was no significant difference between groups concerning the bone volume, bone volume/ total volume, and newly formed bone in volumetric and histological analysis at both times of investigation. The fluorescence analysis revealed a significantly lower signal in the magnesium group after one week, although there was no difference in the number of osteoclasts per mm2. The magnesium group had significantly fewer vessels per mm2 in the healing tissue. In conclusion, the non-inferiority of WE43-based magnesium implants with PEO surface modification was verified concerning fracture healing under non-load-bearing conditions in a defect model. STATEMENT OF SIGNIFICANCE: Titanium implants, the current gold standard of fracture fixation, can lead to adverse effects linked to the implant material and often require surgical removal. Therefore, degradable metals like the magnesium alloy WE43 with plasma electrolytic oxidation (PEO) surface modification gained interest. Yet, miniplates of this alloy with PEO surface modification have not been examined in a fracture defect model of the facial skeleton in a large animal model. This study shows, for the first time, the non-inferiority of magnesium miniplates compared to titanium miniplates. In radiological and histological analysis, bone healing was undisturbed. Magnesium miniplates can reduce the number of interventions for implant removal, thus reducing the risk for the patient and minimizing the costs.
Collapse
Affiliation(s)
- Paulina Herzog
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Carsten Rendenbach
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Marta Turostowski
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Agnes Ellinghaus
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ana Prates Soares
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Max Heiland
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Georg N Duda
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Katharina Schmidt-Bleek
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Heilwig Fischer
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité -Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
5
|
Esmaeili S, Rahmati M, Zamani S, Djalilian AR, Arabpour Z, Salehi M. A comparison of several separation processes for eggshell membrane powder as a natural biomaterial for skin regeneration. Skin Res Technol 2024; 30:e70038. [PMID: 39256190 PMCID: PMC11387111 DOI: 10.1111/srt.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Numerous studies have focused on skin damage, the most prevalent physical injury, aiming to improve wound healing. The exploration of biomaterials, specifically eggshell membranes (ESMs), is undertaken to accelerate the recovery of skin injuries. The membrane must be separated from the shell to make this biomaterial usable. Hence, this investigation aimed to identify more about the methods for membrane isolation and determine the most efficient one for usage as a biomaterial. METHODS AND MATERIALS For this purpose, ESM was removed from eggs using different protocols (with sodium carbonate, acetic acid, HCl, calcium carbonate, and using forceps for separation). Consequently, we have examined the membranes' mechanical and morphological qualities. RESULTS According to the analysis of microscopic surface morphology, the membranes have appropriate porosity. MTT assay also revealed that the membranes have no cytotoxic effect on 3T3 cells. The results indicated that the ESM had acquired acceptable coagulation and was compatible with blood. Based on the obtained results, Provacol 4 (0.5-mol HCl and neutralized with 0.1-mol NaOH) was better than other methods of extraction and eggshell separation because it was more cell-compatible and more compatible with blood. CONCLUSION This study demonstrates that ESMs can be used as a suitable biomaterial in medical applications.
Collapse
Affiliation(s)
- Samaneh Esmaeili
- Student Research CommitteeSchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Majid Rahmati
- Department of Medical BiotechnologySchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Sepehr Zamani
- Student Research CommitteeSchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research CenterShahroud University of Medical SciencesShahroudIran
- Department of Tissue EngineeringSchool of MedicineShahroud University of Medical SciencesShahroudIran
| |
Collapse
|
6
|
Kopp A, Werner J, Kröger N, Weirich TE, D'Elia F. Combined severe plastic deformation processing of commercial purity titanium enables superior fatigue resistance for next generation implants. BIOMATERIALS ADVANCES 2024; 157:213756. [PMID: 38211508 DOI: 10.1016/j.bioadv.2023.213756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
Commercial purity titanium (cp-Ti) is considered for replacing Ti64 as an implant material in various applications, due to the potential toxicity associated with the release of Al and V ions. However, the mechanical properties of cp-Ti, particularly fatigue resistance, are inadequate for this purpose. In this study, cp-Ti grade 4 rods were processed using a combination of equal channel angular pressing and rotary swaging (ECAP/RS). Tensile and fatigue tests were conducted, along with detailed microscopy and evaluation of corrosion resistance and biocompatibility. An average yield strength of 1383 MPa was obtained while maintaining moderate ductility of 10 %. This represents the highest strength ever recorded for cp-Ti, even exceeding that of Ti64. Additionally, fatigue endurance limit increased by 43 % up to 600 MPa, almost obtaining that of Ti64. Strengthening mechanisms were attributed to the ultrafine-grained (UFG) microstructure generated by ECAP/RS, along with strong crystallographic texture and formation of sub-grain structure. Furthermore, the corrosion resistance and biocompatibility of cp-Ti were largely unaffected, potentially easing regulatory transition in future medical devices. Thus, these results demonstrate high potential of combined ECAP/RS processing to manufacture UFG cp-Ti grade 4 materials that prospectively allow for the substitution of questionable alloys and downsizing of medical implants.
Collapse
Affiliation(s)
| | - Jonas Werner
- Central Facility for Electron Microscopy RWTH-Aachen, Aachen 52074, Germany.
| | - Nadja Kröger
- Institute for Laboratory Animal Science and Experimental Surgery, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany; Clinic for Plastic and Aesthetic Surgery, Hand and Reconstructive Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany.
| | - Thomas E Weirich
- Central Facility for Electron Microscopy RWTH-Aachen, Aachen 52074, Germany.
| | - Francesco D'Elia
- Meotec GmbH, Aachen 52068, Germany; Department of Materials Science and Engineering, Division of Biomedical Engineering, Uppsala University, Uppsala 75120, Sweden.
| |
Collapse
|
7
|
Antoniac I, Manescu (Paltanea) V, Antoniac A, Paltanea G. Magnesium-based alloys with adapted interfaces for bone implants and tissue engineering. Regen Biomater 2023; 10:rbad095. [PMID: 38020233 PMCID: PMC10664085 DOI: 10.1093/rb/rbad095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/03/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Magnesium and its alloys are one of the most used materials for bone implants and tissue engineering. They are characterized by numerous advantages such as biodegradability, high biocompatibility and mechanical properties with values close to the human bone. Unfortunately, the implant surface must be adequately tuned, or Mg-based alloys must be alloyed with other chemical elements due to their increased corrosion effect in physiological media. This article reviews the clinical challenges related to bone repair and regeneration, classifying bone defects and presenting some of the most used and modern therapies for bone injuries, such as Ilizarov or Masquelet techniques or stem cell treatments. The implant interface challenges are related to new bone formation and fracture healing, implant degradation and hydrogen release. A detailed analysis of mechanical properties during implant degradation is extensively described based on different literature studies that included in vitro and in vivo tests correlated with material properties' characterization. Mg-based trauma implants such as plates and screws, intramedullary nails, Herbert screws, spine cages, rings for joint treatment and regenerative scaffolds are presented, taking into consideration their manufacturing technology, the implant geometrical dimensions and shape, the type of in vivo or in vitro studies and fracture localization. Modern technologies that modify or adapt the Mg-based implant interfaces are described by presenting the main surface microstructural modifications, physical deposition and chemical conversion coatings. The last part of the article provides some recommendations from a translational perspective, identifies the challenges associated with Mg-based implants and presents some future opportunities. This review outlines the available literature on trauma and regenerative bone implants and describes the main techniques used to control the alloy corrosion rate and the cellular environment of the implant.
Collapse
Affiliation(s)
- Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 050094 Bucharest, Romania
| | - Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
- Faculty of Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
8
|
Döhner C, Beyerle H, Graw JA, Soost C, Burchard R. Biomechanical comparison of different implants for PIP arthrodesis. Foot Ankle Surg 2023; 29:518-524. [PMID: 36842926 DOI: 10.1016/j.fas.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND Surgical correction of hammertoe deformities with arthrodesis of the proximal interphalangeal joint (PIP) is one of the most frequent forefoot procedures. Recently, new intramedullary fixation devices for PIP arthrodesis have been introduced. The aim of this study was to compare a newly developed absorbable intramedullary implant made of magnesium (mm.PIP), an already available intramedullary implant made of titanium (PipTree), and the classical Kirschner-wire (K-wire). METHODS The three intramedullary devices (mm.PIP, PipTree, and K-wire) for PIP arthrodesis were compared. A classical arthrodesis of the PIP joint was performed on fifty-four composite synthetic bone pairs. After arthrodesis, torsional load, weight-bearing and cyclic load tests were performed, and stability of the synthetic bone pairs was analyzed. RESULTS The mm.PIP was the most torsion resistant (mm.PIP vs. PipTree and K-wire, p < 0.001). The PipTree showed the best overall stability during cyclic weight-bearing simulation (PipTree vs. mm.PIP and K-wire, p < 0.001). K-wire demonstrated the highest breaking loads during bending tests (K-wire vs. mm-PIP and PipTree, p < 0.001). CONCLUSION Biomechanical properties of two new intramedullar implants, the bioresorbable mm.PIP made of magnesium and the PipTree made of titanium, were found to be comparable to the biomechanical properties of a K-wire which is commonly used for this procedure. Future work should be directed towards a clinical assessment of the bioabsorbable fixation devices for hammertoe procedures.
Collapse
Affiliation(s)
- Claudia Döhner
- University of Giessen and Marburg, Department of Orthopaedics and Traumatology, Marburg, Germany; Department of Orthopaedics and Trauma Surgery, Lahn-Dill-Kliniken, Wetzlar, Dillenburg, Germany
| | - Hanna Beyerle
- University of Giessen and Marburg, Department of Orthopaedics and Traumatology, Marburg, Germany
| | - Jan A Graw
- Department of Anesthesiology and Intensive Care Medicine, Ulm University Hospital, Ulm, Germany
| | | | - Rene Burchard
- University of Giessen and Marburg, Department of Orthopaedics and Traumatology, Marburg, Germany; Department of Orthopaedics and Trauma Surgery, Lahn-Dill-Kliniken, Wetzlar, Dillenburg, Germany.
| |
Collapse
|
9
|
Wątroba M, Bednarczyk W, Szewczyk PK, Kawałko J, Mech K, Grünewald A, Unalan I, Taccardi N, Boelter G, Banzhaf M, Hain C, Bała P, Boccaccini AR. In vitro cytocompatibility and antibacterial studies on biodegradable Zn alloys supplemented by a critical assessment of direct contact cytotoxicity assay. J Biomed Mater Res B Appl Biomater 2023; 111:241-260. [PMID: 36054531 PMCID: PMC10086991 DOI: 10.1002/jbm.b.35147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 12/15/2022]
Abstract
In vitro cytotoxicity assessment is indispensable in developing new biodegradable implant materials. Zn, which demonstrates an ideal corrosion rate between Mg- and Fe-based alloys, has been reported to have excellent in vivo biocompatibility. Therefore, modifications aimed at improving Zn's mechanical properties should not degrade its biological response. As sufficient strength, ductility and corrosion behavior required of load-bearing implants has been obtained in plastically deformed Zn-3Ag-0.5Mg, the effect of simultaneous Ag and Mg additions on in vitro cytocompatibility and antibacterial properties was studied, in relation to Zn and Zn-3Ag. Direct cell culture on samples and indirect extract-based tests showed almost no significant differences between the tested Zn-based materials. The diluted extracts of Zn, Zn-3Ag, and Zn-3Ag-0.5Mg showed no cytotoxicity toward MG-63 cells at a concentration of ≤12.5%. The cytotoxic effect was observed only at high Zn2+ ion concentrations and when in direct contact with metallic samples. The highest LD50 (lethal dose killing 50% of cells) of 13.4 mg/L of Zn2+ ions were determined for the Zn-3Ag-0.5Mg. Similar antibacterial activity against Escherichia coli and Staphylococcus aureus was observed for Zn and Zn alloys, so the effect is attributed mainly to the released Zn2+ ions exhibiting bactericidal properties. Most importantly, our experiments indicated the limitations of water-soluble tetrazolium salt-based cytotoxicity assays for direct tests on Zn-based materials. The discrepancies between the WST-8 assay and SEM observations are attributed to the interference of Zn2+ ions with tetrazolium salt, therefore favoring its transformation into formazan, giving false cell viability quantitative results.
Collapse
Affiliation(s)
- Maria Wątroba
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland.,Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Wiktor Bednarczyk
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Jakub Kawałko
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Krakow, Poland
| | - Krzysztof Mech
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Krakow, Poland
| | - Alina Grünewald
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Irem Unalan
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Nicola Taccardi
- Institute of Chemical Reaction Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Gabriela Boelter
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, UK
| | - Manuel Banzhaf
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, UK
| | - Caroline Hain
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland.,Institute for Applied Laser Photonics and Surface Technologies ALPS, Bern University of Applied Sciences, Biel/Bienne, Switzerland
| | - Piotr Bała
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland.,Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Krakow, Poland
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
10
|
Hassan SF, Islam MT, Saheb N, Baig MMA. Magnesium for Implants: A Review on the Effect of Alloying Elements on Biocompatibility and Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5669. [PMID: 36013806 PMCID: PMC9412399 DOI: 10.3390/ma15165669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
An attempt is made to cover the whole of the topic of biodegradable magnesium (Mg) alloys with a focus on the biocompatibility of the individual alloying elements, as well as shed light on the degradation characteristics, microstructure, and mechanical properties of most binary alloys. Some of the various work processes carried out by researchers to achieve the alloys and their surface modifications have been highlighted. Additionally, a brief look into the literature on magnesium composites as also been included towards the end, to provide a more complete picture of the topic. In most cases, the chronological order of events has not been particularly followed, and instead, this work is concentrated on compiling and presenting an update of the work carried out on the topic of biodegradable magnesium alloys from the recent literature available to us.
Collapse
Affiliation(s)
- S. Fida Hassan
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - M. T. Islam
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - N. Saheb
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - M. M. A. Baig
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
11
|
Xu Y, Xu Y, Zhang W, Li M, Wendel HP, Geis-Gerstorfer J, Li P, Wan G, Xu S, Hu T. Biodegradable Zn-Cu-Fe Alloy as a Promising Material for Craniomaxillofacial Implants: An in vitro Investigation into Degradation Behavior, Cytotoxicity, and Hemocompatibility. Front Chem 2022; 10:860040. [PMID: 35734444 PMCID: PMC9208203 DOI: 10.3389/fchem.2022.860040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Zinc-based nanoparticles, nanoscale metal frameworks and metals have been considered as biocompatible materials for bone tissue engineering. Among them, zinc-based metals are recognized as promising biodegradable materials thanks to their moderate degradation rate ranging between magnesium and iron. Nonetheless, materials’ biodegradability and the related biological response depend on the specific implant site. The present study evaluated the biodegradability, cytocompatibility, and hemocompatibility of a hot-extruded zinc-copper-iron (Zn-Cu-Fe) alloy as a potential biomaterial for craniomaxillofacial implants. Firstly, the effect of fetal bovine serum (FBS) on in vitro degradation behavior was evaluated. Furthermore, an extract test was used to evaluate the cytotoxicity of the alloy. Also, the hemocompatibility evaluation was carried out by a modified Chandler-Loop model. The results showed decreased degradation rates of the Zn-Cu-Fe alloy after incorporating FBS into the medium. Also, the alloy exhibited acceptable toxicity towards RAW264.7, HUVEC, and MC3T3-E1 cells. Regarding hemocompatibility, the alloy did not significantly alter erythrocyte, platelet, and leukocyte counts, while the coagulation and complement systems were activated. This study demonstrated the predictable in vitro degradation behavior, acceptable cytotoxicity, and appropriate hemocompatibility of Zn-Cu-Fe alloy; therefore, it might be a candidate biomaterial for craniomaxillofacial implants.
Collapse
Affiliation(s)
- Yan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
| | - Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ming Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Materials Engineering, Sichuan Engineering Technical College, Deyang, China
| | - Hans-Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Tübingen, Germany
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Tao Hu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Klíma K, Ulmann D, Bartoš M, Španko M, Dušková J, Vrbová R, Pinc J, Kubásek J, Vlk M, Ulmannová T, Foltán R, Brizman E, Drahoš M, Beňo M, Machoň V, Čapek J. A Complex Evaluation of the In-Vivo Biocompatibility and Degradation of an Extruded ZnMgSr Absorbable Alloy Implanted into Rabbit Bones for 360 Days. Int J Mol Sci 2021; 22:ijms222413444. [PMID: 34948238 PMCID: PMC8706155 DOI: 10.3390/ijms222413444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/27/2022] Open
Abstract
The increasing incidence of trauma in medicine brings with it new demands on the materials used for the surgical treatment of bone fractures. Titanium, its alloys, and steel are used worldwide in the treatment of skeletal injuries. These metallic materials, although inert, are often removed after the injured bone has healed. The second-stage procedure—the removal of the plates and screws—can overwhelm patients and overload healthcare systems. The development of suitable absorbable metallic materials would help us to overcome these issues. In this experimental study, we analyzed an extruded Zn-0.8Mg-0.2Sr (wt.%) alloy on a rabbit model. From this alloy we developed screws which were implanted into the rabbit tibia. After 120, 240, and 360 days, we tested the toxicity at the site of implantation and also within the vital organs: the liver, kidneys, and brain. The results were compared with a control group, implanted with a Ti-based screw and sacrificed after 360 days. The samples were analyzed using X-ray, micro-CT, and a scanning electron microscope. Chemical analysis revealed only small concentrations of zinc, strontium, and magnesium in the liver, kidneys, and brain. Histologically, the alloy was verified to possess very good biocompatibility after 360 days, without any signs of toxicity at the site of implantation. We did not observe raised levels of Sr, Zn, or Mg in any of the vital organs when compared with the Ti group at 360 days. The material was found to slowly degrade in vivo, forming solid corrosion products on its surface.
Collapse
Affiliation(s)
- Karel Klíma
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Dan Ulmann
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Martin Bartoš
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Michal Španko
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
- Department of Anatomy, 1st Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Jaroslava Dušková
- Department of Pathology, 1st Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic;
| | - Radka Vrbová
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Jan Pinc
- Department of Functional Materials, FZU-The Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic;
| | - Jiří Kubásek
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic;
| | - Marek Vlk
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Tereza Ulmannová
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - René Foltán
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Eitan Brizman
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Milan Drahoš
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Michal Beňo
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Vladimír Machoň
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Jaroslav Čapek
- Department of Functional Materials, FZU-The Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic;
- Correspondence:
| |
Collapse
|
13
|
Wegner N, Klein M, Scholz R, Kotzem D, Macias Barrientos M, Walther F. Mechanical in vitro fatigue testing of implant materials and components using advanced characterization techniques. J Biomed Mater Res B Appl Biomater 2021; 110:898-909. [PMID: 34846806 DOI: 10.1002/jbm.b.34970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2021] [Accepted: 11/13/2021] [Indexed: 01/01/2023]
Abstract
Implants of different material classes have been used for the reconstruction of damaged hard and soft tissue for decades. The aim is to increase and subsequently maintain the patient's quality of life through implantation. In service, most implants are subjected to cyclic loading, which must be taken particularly into consideration, since the fatigue strength is far below the yield and tensile strength. Inaccurate estimation of the structural strength of implants due to the consideration of yield or tensile strength leads to a miscalculation of the implant's fatigue strength and lifetime, and therefore, to its unexpected early fatigue failure. Thus, fatigue failure of an implant based on overestimated performance capability represents acute danger to human health. The determination of fatigue strength by corresponding tests investigating various stress amplitudes is time-consuming and cost-intensive. This study summarizes four investigation series on the fatigue behavior of different implant materials and components, following a standard and an in vitro short-time testing procedure, which evaluates the material reaction in one enhanced test set-up. The test set-up and the applied characterization methods were adapted to the respective application of the implant with the aim to simulate the surrounding of the human body with laboratory in vitro tests only. It could be shown that by using the short-time testing method the number of tests required to determine the fatigue strength can be drastically reduced. In future, therefore it will be possible to exclude unsuitable implant materials or components before further clinical investigations by using a time-efficient and application-oriented testing method.
Collapse
Affiliation(s)
- Nils Wegner
- Chair of Materials Test Engineering (WPT), TU Dortmund University, Dortmund, Germany
| | - Martin Klein
- Chair of Materials Test Engineering (WPT), TU Dortmund University, Dortmund, Germany
| | - Ronja Scholz
- Chair of Materials Test Engineering (WPT), TU Dortmund University, Dortmund, Germany
| | - Daniel Kotzem
- Chair of Materials Test Engineering (WPT), TU Dortmund University, Dortmund, Germany
| | | | - Frank Walther
- Chair of Materials Test Engineering (WPT), TU Dortmund University, Dortmund, Germany
| |
Collapse
|
14
|
Jung O, Hesse B, Stojanovic S, Seim C, Weitkamp T, Batinic M, Goerke O, Kačarević ŽP, Rider P, Najman S, Barbeck M. Biocompatibility Analyses of HF-Passivated Magnesium Screws for Guided Bone Regeneration (GBR). Int J Mol Sci 2021; 22:ijms222212567. [PMID: 34830451 PMCID: PMC8624161 DOI: 10.3390/ijms222212567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Magnesium (Mg) is one of the most promising materials for human use in surgery due to material characteristics such as its elastic modulus as well as its resorbable and regenerative properties. In this study, HF-coated and uncoated novel bioresorbable magnesium fixation screws for maxillofacial and dental surgical applications were investigated in vitro and in vivo to evaluate the biocompatibility of the HF coating. Methods: Mg alloy screws that had either undergone a surface treatment with hydrofluoric-acid (HF) or left untreated were investigated. In vitro investigation included XTT, BrdU and LDH in accordance with the DIN ISO 10993-5/-12. In vivo, the screws were implanted into the tibia of rabbits. After 3 and 6 weeks, degradation, local tissue reactions and bony integration were analyzed histopathologically and histomorphometrically. Additionally, SEM/EDX analysis and synchrotron phase-contrast microtomography (µCT) measurements were conducted. The in vitro analyses revealed that the Mg screws are cytocompatible, with improved results when the surface had been passivated with HF. In vivo, the HF-treated Mg screws implanted showed a reduction in gas formation, slower biodegradation and a better bony integration in comparison to the untreated Mg screws. Histopathologically, the HF-passivated screws induced a layer of macrophages as part of its biodegradation process, whereas the untreated screws caused a slight fibrous tissue reaction. SEM/EDX analysis showed that both screws formed a similar layer of calcium phosphates on their surfaces and were surrounded by bone. Furthermore, the µCT revealed the presence of a metallic core of the screws, a faster absorbing corrosion front and a slow absorbing region of corroded magnesium. Conclusions: Overall, the HF-passivated Mg fixation screws showed significantly better biocompatibility in vitro and in vivo compared to the untreated screws.
Collapse
Affiliation(s)
- Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany;
| | | | - Sanja Stojanovic
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; (S.S.); (S.N.)
- Scientific Research Center for Biomedicine, Faculty of Medicine, Department for Cell and Tissue Engineering, University of Niš, 18108 Niš, Serbia
| | | | - Timm Weitkamp
- Synchrotron SOLEIL, Gif-sur-Yvette, 91190 Saint-Aubin, France;
| | - Milijana Batinic
- Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University of Berlin, 10623 Berlin, Germany; (M.B.); (O.G.)
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
| | - Oliver Goerke
- Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University of Berlin, 10623 Berlin, Germany; (M.B.); (O.G.)
| | - Željka Perić Kačarević
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
| | - Patrick Rider
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
| | - Stevo Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; (S.S.); (S.N.)
- Scientific Research Center for Biomedicine, Faculty of Medicine, Department for Cell and Tissue Engineering, University of Niš, 18108 Niš, Serbia
| | - Mike Barbeck
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
- Correspondence: ; Tel.: +49-176-810-224-6
| |
Collapse
|
15
|
Li P, Zhang W, Spintzyk S, Schweizer E, Krajewski S, Alexander D, Dai J, Xu S, Wan G, Rupp F. Impact of sterilization treatments on biodegradability and cytocompatibility of zinc-based implant materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112430. [PMID: 34702515 DOI: 10.1016/j.msec.2021.112430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/29/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022]
Abstract
Biodegradable zinc (Zn) and Zn-based alloys have been recognized as promising biomaterials for biomedical implants. Sterilization is an essential step in handling Zn-based implants before their use in clinical practice and there are various sterilization methods are available. However, how these treatments influence the Zn-based biomaterials remains unknown and is of critical relevance. In this study, three commonly-applied standard sterilization methods, namely gamma irradiation, hydrogen peroxide gas plasma and steam autoclave, were used on pure Zn and Zn3Cu (wt%) alloy. The treated Zn and ZnCu alloy were investigated to compare the different influences of sterilizations on surface characteristics, transient and long-term degradation behavior and cytotoxicity of Zn and Zn alloy. Our results indicate that autoclaving brought about apparently a formation of inhomogeneous zinc oxide film whereas the other two methods produced no apparent alterations on the material surfaces. Consequently, the samples after autoclaving showed significantly faster degradation rates and more severe localized corrosion, especially for the ZnCu alloy, owing to the incomplete covering and unstable zinc oxide layer. Moreover, the autoclave-treated Zn and ZnCu alloy exhibited apparent cytotoxic effects towards fibroblasts, which may be due to the excessive Zn ion releasing and its local concentration exceeds the cellular tolerance capacity. In contrast, gamma irradiation and hydrogen peroxide gas plasma had no apparent adverse effects on the biodegradability and cytocompatibility of Zn and ZnCu alloy. Our findings may have significant implications regarding the selection of suitable sterilization methods for Zn-based implant materials among others.
Collapse
Affiliation(s)
- Ping Li
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Sebastian Spintzyk
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Ernst Schweizer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Stefanie Krajewski
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Jingtao Dai
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany.
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Frank Rupp
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| |
Collapse
|
16
|
Rendenbach C, Fischer H, Kopp A, Schmidt-Bleek K, Kreiker H, Stumpp S, Thiele M, Duda G, Hanken H, Beck-Broichsitter B, Jung O, Kröger N, Smeets R, Heiland M. Improved in vivo osseointegration and degradation behavior of PEO surface-modified WE43 magnesium plates and screws after 6 and 12 months. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112380. [PMID: 34579899 DOI: 10.1016/j.msec.2021.112380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 08/15/2021] [Indexed: 11/26/2022]
Abstract
Magnesium is a highly promising candidate with respect to its future use as a material for resorbable implants. When magnesium degrades, hydrogen gas is released. High doses of gas emergence are reported to impair osseointegration and may therefore lead to fixation failure. The successful delay and reduction of the degradation rate by applying plasma electrolytic oxidation (PEO) as a post processing surface modification method for magnesium alloy has recently been demonstrated. The aim of this study was thus to compare the degradation behavior of a WE43-based plate system with and without respective PEO surface modification and to further investigate osseointegration, as well as the resulting effects on the surrounding bony tissue of both variants in a miniature pig model. WE43 magnesium screws and plates without (WE43) and with PEO surface modification (WE43-PEO) were implanted in long bones of Göttingen Miniature Pigs. At six and twelve months after surgery, micro-CT and histomorphometric analysis was performed. Residual screw volume (SV/TV; WE43: 28.8 ± 21.1%; WE43-PEO: 62.9 ± 31.0%; p = 0.027) and bone implant contact area (BIC; WE43: 18.1 ± 21.7%; WE43-PEO: 51.6 ± 27.7%; p = 0.015) were increased after six months among the PEO-modified implants. Also, surrounding bone density within the cortical bone was not affected by surface modification (BVTV; WE43: 76.7 ± 13.1%; WE43-PEO: 73.1 ± 16.2%; p = 0.732). Intramedullar (BV/TV; WE43: 33.2 ± 16.7%; WE43-PEO 18.4 ± 9.0%; p = 0.047) and subperiosteal (bone area; WE43: 2.6 ± 3.4 mm2; WE43-PEO: 6,9 ± 5.2 mm2; p = 0.049) new bone formation was found for both, surface-modified and non-surface-modified groups. After twelve months, no significant differences of SV/TV and BV/TV were found between the two groups. PEO surface modification of WE43 plate systems improved osseointegration and significantly reduced the degradation rate within the first six months in vivo. Osteoconductive and osteogenic stimulation by WE43 magnesium implants led to overall increased bone growth, when prior PEO surface modification was conducted.
Collapse
Affiliation(s)
- Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Heilwig Fischer
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany; Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Henri Kreiker
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sabine Stumpp
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Mario Thiele
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Georg Duda
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Henning Hanken
- Department of Oral and Maxillofacial Surgery, Asklepios Hospital North, Faculty of Medicine, Semmelweis University Campus Hamburg, Langenhorner Chaussee 560, 22419 Hamburg, Germany
| | - Benedicta Beck-Broichsitter
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, Kerpener Str. 62, 50 937 Köln, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
17
|
Jung O, Barbeck M, Fan LU, Korte F, Zhao C, Krastev R, Pantermehl S, Xiong X. In Vitro and Ex Vivo Analysis of Collagen Foams for Soft and Hard Tissue Regeneration. In Vivo 2021; 35:2541-2549. [PMID: 34410941 DOI: 10.21873/invivo.12536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM The aim of this study was the conception, production, material analysis and cytocompatibility analysis of a new collagen foam for medical applications. MATERIALS AND METHODS After the innovative production of various collagen sponges from bovine sources, the foams were analyzed ex vivo in terms of their structure (including pore size) and in vitro in terms of cytocompatibility according to EN ISO 10993-5/-12. In vitro, the collagen foams were compared with the established soft and hard tissue materials cerabone and Jason membrane (both botiss biomaterials GmbH, Zossen, Germany). RESULTS Collagen foams with different compositions were successfully produced from bovine sources. Ex vivo, the foams showed a stable and long-lasting primary structure quality with a bubble area of 1,000 to 2,000 μm2 In vitro, all foams showed sufficient cytocompatibility. CONCLUSION Collagen sponges represent a promising material for hard and soft tissue regeneration. Future studies could focus on integrating and investigating different additives in the foams.
Collapse
Affiliation(s)
- Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Mike Barbeck
- BerlinAnalytix GmbH, Berlin, Germany.,Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University Berlin, Berlin, Germany
| | - L U Fan
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Fabian Korte
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Cuifeng Zhao
- Faculty of Applied Chemistry, Reutlingen University, Reutlingen, Germany
| | - Rumen Krastev
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Faculty of Applied Chemistry, Reutlingen University, Reutlingen, Germany
| | - Sven Pantermehl
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Xin Xiong
- BerlinAnalytix GmbH, Berlin, Germany;
| |
Collapse
|
18
|
Kulkarni G, Guha Ray P, Das S, Biswas S, Dhara S, Das S. Raman spectroscopy assisted biochemical evaluation of L929 fibroblast cells on differentially crosslinked gelatin hydrogels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119760. [PMID: 33892247 DOI: 10.1016/j.saa.2021.119760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Biochemical evaluation of cell-matrix interaction using conventional labelling techniques often possesses limitations due to dye entrapment. In contrast, Raman spectroscopy guided approach offers label-free determination of cell-matrix biochemistry. Herein, gelatin (Gel) matrices modified with 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/ N-Hydroxysuccinimide (EDC/NHS) and glutaraldehyde (GTA) was used as standards for comparative evaluation. Raman spectroscopy was deployed as a label-free approach to investigate interaction of cells with Gel hydrogels. Raman-based approach assisted in evaluation of cell-matrix interactions by identifying key biomolecular signatures retrospecting the fact that L929 fibroblast cells portrayed excellent growth and proliferation kinetics in crosslinked Gel as compared to its bare counterpart. EDC crosslinked hydrogels exhibited superior cell proliferation than its GTA counterparts. Cell proliferation on differentially crosslinked gel was also confirmed using standard MTT Assay and Rhodamine-DAPI staining thus corroborating the fact that Raman spectroscopy can be deployed as a superior label-free alternative towards real-time determination of cell proliferation and growth.
Collapse
Affiliation(s)
- Gaurav Kulkarni
- School of Medical Science & Technology, IIT Kharagpur, West Bengal 721302, India
| | - Preetam Guha Ray
- School of Medical Science & Technology, IIT Kharagpur, West Bengal 721302, India
| | - Shreyasi Das
- School of Nano Science & Technology, IIT Kharagpur, West Bengal 721302, India
| | - Souvik Biswas
- School of Medical Science & Technology, IIT Kharagpur, West Bengal 721302, India
| | - Santanu Dhara
- School of Medical Science & Technology, IIT Kharagpur, West Bengal 721302, India
| | - Soumen Das
- School of Medical Science & Technology, IIT Kharagpur, West Bengal 721302, India.
| |
Collapse
|
19
|
Schafer S, Al-Qaddo H, Gosau M, Smeets R, Hartjen P, Friedrich RE, Nada OA, Vollkommer T, Rashad A. Cytocompatibility of Bone Substitute Materials and Membranes. In Vivo 2021; 35:2035-2040. [PMID: 34182478 DOI: 10.21873/invivo.12472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM With the demographic change and associated chronic bone loss, the need for cytocompatible bone replacement materials arise in modern medicine. The aim of this in vitro study was to investigate the cytocompatibility of eleven different bone substitute materials and membranes. MATERIALS AND METHODS Seven bone substitute materials and four membranes were assessed in vitro. The specimens were tested based on their interaction with MC3T3 pre-osteoblasts, through the utilization of viability, proliferation, and cytotoxicity assays. Cell vitality was evaluated using live-dead staining. RESULTS Although we found minor differences in cytocompatibility among the assessed materials, all tested materials can be considered as cytocompatible with a viability of more than 70% of the negative control, which indicates the non-toxic range as defined in current, international standards (DIN EN ISO 10993-5:2009, German Institute for Standardization, Berlin, Germany). Direct live-dead staining assays confirmed satisfactory cytocompatibility of all tested membranes. CONCLUSION All examined bone substitute materials and membranes were found to be cytocompatible. In order to assess whether the observed minor differences can impact regenerative processes, further in vivo studies need to be conducted.
Collapse
Affiliation(s)
- Sogand Schafer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; .,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Hayder Al-Qaddo
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ola A Nada
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Vollkommer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ashkan Rashad
- Department of Oral, Maxillofacial and Facial Plastic Surgery, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
20
|
Pou-Álvarez P, Riveiro A, Nóvoa XR, Jin X, Del Val J, Comesaña R, Boutinguiza M, Lusquiños F, Jones JR, Pérez-Prado MT, Pou J. Laser-Guided Corrosion Control: A New Approach to Tailor the Degradation of Mg-Alloys. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100924. [PMID: 33760359 DOI: 10.1002/smll.202100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Despite corrosion being commonly seen as a problem to be avoided, applications such as batteries or biodegradable implants do benefit from corrosion-like phenomena. However, current strategies address corrosion control from a global perspective for a whole component, without considering local adaptations to functionality specifications or inhomogeneous environments. Here, a novel concept is presented: the local control and guidance of corrosion through a laser surface treatment. Immersion tests in saline solution of AZ31 magnesium alloy samples show degradation rates reduced up to 15 times with the treatment, owing to a fast passivation after the induced microstructural modifications. By controlling the treatment conditions, the degradation can be restricted to delimited regions and driven towards specific directions. The applicability of the method for the design of tailored degradation biomedical implants is demonstrated and uses for cathodic protection systems and batteries can also be anticipated.
Collapse
Affiliation(s)
- Pablo Pou-Álvarez
- Applied Physics Department, University of Vigo, E.E.I., Lagoas-Marcosende, Vigo, 36310, Spain
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Antonio Riveiro
- Materials Engineering, Applied Mechanics and Construction Department, University of Vigo, E.E.I., Lagoas-Marcosende, Vigo, 36310, Spain
| | - Xosé Ramón Nóvoa
- ENCOMAT group, University of Vigo, E.E.I., Lagoas-Marcosende, Vigo, 36310, Spain
| | - Xueze Jin
- IMDEA Materials Institute, C/Eric Kandel, 2, Getafe, Madrid, 28906, Spain
| | - Jesús Del Val
- Applied Physics Department, University of Vigo, E.E.I., Lagoas-Marcosende, Vigo, 36310, Spain
| | - Rafael Comesaña
- Materials Engineering, Applied Mechanics and Construction Department, University of Vigo, E.E.I., Lagoas-Marcosende, Vigo, 36310, Spain
| | - Mohamed Boutinguiza
- Applied Physics Department, University of Vigo, E.E.I., Lagoas-Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-UVIGO, Estrada de Clara Campoamor, 341, Vigo, 36312, Spain
| | - Fernando Lusquiños
- Applied Physics Department, University of Vigo, E.E.I., Lagoas-Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-UVIGO, Estrada de Clara Campoamor, 341, Vigo, 36312, Spain
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | | | - Juan Pou
- Applied Physics Department, University of Vigo, E.E.I., Lagoas-Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-UVIGO, Estrada de Clara Campoamor, 341, Vigo, 36312, Spain
| |
Collapse
|
21
|
Molinnus D, Drinic A, Iken H, Kröger N, Zinser M, Smeets R, Köpf M, Kopp A, Schöning MJ. Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk. Biosens Bioelectron 2021; 183:113204. [PMID: 33836429 DOI: 10.1016/j.bios.2021.113204] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
In modern days, there is an increasing relevance of and demand for flexible and biocompatible sensors for in-vivo and epidermal applications. One promising strategy is the implementation of biological (natural) polymers, which offer new opportunities for flexible biosensor devices due to their high biocompatibility and adjustable biodegradability. As a proof-of-concept experiment, a biosensor was fabricated by combining thin- (for Pt working- and counter electrode) and thick-film (for Ag/AgCl quasi-reference electrode) technologies: The biosensor consists of a fully bio-based and biodegradable fibroin substrate derived from silk fibroin of the silkworm Bombyx mori combined with immobilized enzyme glucose oxidase. The flexible glucose biosensor is encapsulated by a biocompatible silicon rubber which is certificated for a safe use onto human skin. Characterization of the sensor set-up is exemplarily demonstrated by glucose measurements in buffer and Ringer's solution, while the stability of the quasi-reference electrode has been investigated versus a commercial Ag/AgCl reference electrode. Repeated bending studies validated the mechanical properties of the electrode structures. The cross-sensitivity of the biosensor against ascorbic acid, noradrenaline and adrenaline was investigated, too. Additionally, biocompatibility and degradation tests of the silk fibroin with and without thin-film platinum electrodes were carried out.
Collapse
Affiliation(s)
- Denise Molinnus
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmann-Strasse 1, 52428, Jülich, Germany
| | - Aleksander Drinic
- Fibrothelium GmbH, TRIWO Technopark Aachen, Philipsstr. 8, 52068, Aachen, Germany
| | - Heiko Iken
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmann-Strasse 1, 52428, Jülich, Germany
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Max Zinser
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany
| | - Marius Köpf
- Fibrothelium GmbH, TRIWO Technopark Aachen, Philipsstr. 8, 52068, Aachen, Germany
| | - Alexander Kopp
- Fibrothelium GmbH, TRIWO Technopark Aachen, Philipsstr. 8, 52068, Aachen, Germany
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmann-Strasse 1, 52428, Jülich, Germany; Forschungszentrum Jülich GmbH, Institute of Biological Information Processing (IBI-3), Wilhelm-Johnen-Strasse 6, 52425, Jülich, Germany.
| |
Collapse
|
22
|
Influence of surface condition on the degradation behaviour and biocompatibility of additively manufactured WE43. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112016. [PMID: 33947530 DOI: 10.1016/j.msec.2021.112016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 11/24/2022]
Abstract
The further development of future Magnesium based biodegradable implants must consider not only the freedom of design, but also comprise implant volume reduction, as both aspects are crucial for the development of higher functionalised implants, such as plate systems or scaffold grafts in bone replacement therapy. As conventional manufacturing methods such as turning and milling are often accompanied by limitations concerning implant design and functionality, the process of laser powder bed fusion (LPBF) specifically for Magnesium alloys was recently introduced. In addition, the control of the degradation rate remains a key aspect regarding biodegradable implants. Recent studies focusing on the degradation behaviour of additively manufactured Magnesium scaffolds disclosed additional intricacies when compared to conventionally manufactured Magnesium parts, as a notably larger surface area was exposed to the immersion medium and scaffold struts degraded non-uniformly. Moreover, chemical etching as post processing technique is applied to remove sintered powder particles from the surface, altering surface chemistry. In this study, cylindrical Magnesium specimens were manufactured by LPBF and surfaces were consecutively modified by phosphoric etching and machining. Degradation behaviour and biocompatibility were then investigated, revealing that etched samples exhibited the overall lowest degradation rates, but experienced large pit formation, while the reduction of surface roughness resulted in a delay of degradation.
Collapse
|
23
|
Gueldenpfennig T, Houshmand A, Najman S, Stojanovic S, Korzinskas T, Smeets R, Gosau M, Pissarek J, Emmert S, Jung O, Barbeck M. The Condensation of Collagen Leads to an Extended Standing Time and a Decreased Pro-inflammatory Tissue Response to a Newly Developed Pericardium-based Barrier Membrane for Guided Bone Regeneration. In Vivo 2021; 34:985-1000. [PMID: 32354884 DOI: 10.21873/invivo.11867] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM A new manufacturing process has been established for the condensation of collagen derived from porcine pericardium to develop a new dental barrier membrane (CPM) that can provide a long barrier functionality. A native collagen membrane (PM) was used as control. MATERIALS AND METHODS Established in vitro procedures using L929 and MC3T3 cells were used for cytocompatibility analyses. For the in vivo study, subcutaneous implantation of both membrane types in 40 BALB/c mice and established histological, immuno histochemical and histomorphometrical methods were conducted. RESULTS Both the in vitro and in vivo results revealed that the CPM has a biocompatibility profile comparable to that of the control membrane. The new CPM induced a tissue reaction including more M2-macrophages. CONCLUSION The CPM is fully biocompatible and seems to support the early healing process. Moreover, the new biomaterial seems to prevent cell ingrowth for a longer period of time, making it ideally suited for GBR procedures.
Collapse
Affiliation(s)
- Tristan Gueldenpfennig
- University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Werner Forßmann Hospital Eberswalde, Eberswalde, Germany
| | | | - Stevo Najman
- Department for Cell and Tissue Engineering Institute of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Sanja Stojanovic
- Department for Cell and Tissue Engineering Institute of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia
| | | | - Ralf Smeets
- University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Ole Jung
- University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Mike Barbeck
- University Hospital Hamburg-Eppendorf, Hamburg, Germany .,BerlinAnalytix GmbH, Berlin, Germany
| |
Collapse
|
24
|
Hartjen P, Wegner N, Ahmadi P, Matthies L, Nada O, Fuest S, Yan M, Knipfer C, Gosau M, Walther F, Smeets R. Toward Tailoring the Degradation Rate of Magnesium-Based Biomaterials for Various Medical Applications: Assessing Corrosion, Cytocompatibility and Immunological Effects. Int J Mol Sci 2021; 22:ijms22020971. [PMID: 33478090 PMCID: PMC7835942 DOI: 10.3390/ijms22020971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Magnesium (Mg)-based biomaterials hold considerable promise for applications in regenerative medicine. However, the degradation of Mg needs to be reduced to control toxicity caused by its rapid natural corrosion. In the process of developing new Mg alloys with various surface modifications, an efficient assessment of the relevant properties is essential. In the present study, a WE43 Mg alloy with a plasma electrolytic oxidation (PEO)-generated surface was investigated. Surface microstructure, hydrogen gas evolution in immersion tests and cytocompatibility were assessed. In addition, a novel in vitro immunological test using primary human lymphocytes was introduced. On PEO-treated WE43, a larger number of pores and microcracks, as well as increased roughness, were observed compared to untreated WE43. Hydrogen gas evolution after two weeks was reduced by 40.7% through PEO treatment, indicating a significantly reduced corrosion rate. In contrast to untreated WE43, PEO-treated WE43 exhibited excellent cytocompatibility. After incubation for three days, untreated WE43 killed over 90% of lymphocytes while more than 80% of the cells were still vital after incubation with the PEO-treated WE43. PEO-treated WE43 slightly stimulated the activation, proliferation and toxin (perforin and granzyme B) expression of CD8+ T cells. This study demonstrates that the combined assessment of corrosion, cytocompatibility and immunological effects on primary human lymphocytes provide a comprehensive and effective procedure for characterizing Mg variants with tailorable degradation and other features. PEO-treated WE43 is a promising candidate for further development as a degradable biomaterial.
Collapse
Affiliation(s)
- Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany; (L.M.); (M.Y.); (C.K.); (M.G.); (R.S.)
- Correspondence:
| | - Nils Wegner
- Department of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany; (N.W.); (F.W.)
| | - Parimah Ahmadi
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany;
| | - Levi Matthies
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany; (L.M.); (M.Y.); (C.K.); (M.G.); (R.S.)
| | - Ola Nada
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany; (O.N.); (S.F.)
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany; (O.N.); (S.F.)
| | - Ming Yan
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany; (L.M.); (M.Y.); (C.K.); (M.G.); (R.S.)
| | - Christian Knipfer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany; (L.M.); (M.Y.); (C.K.); (M.G.); (R.S.)
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany; (L.M.); (M.Y.); (C.K.); (M.G.); (R.S.)
| | - Frank Walther
- Department of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany; (N.W.); (F.W.)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany; (L.M.); (M.Y.); (C.K.); (M.G.); (R.S.)
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany; (O.N.); (S.F.)
| |
Collapse
|
25
|
Stimulation of in vitro and in vivo osteogenesis by Ti-Mg alloys with the sustained-release function of magnesium ions. Colloids Surf B Biointerfaces 2021; 197:111360. [DOI: 10.1016/j.colsurfb.2020.111360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
|
26
|
Biocompatibility and Immune Response of a Newly Developed Volume-Stable Magnesium-Based Barrier Membrane in Combination with a PVD Coating for Guided Bone Regeneration (GBR). Biomedicines 2020; 8:biomedicines8120636. [PMID: 33419327 PMCID: PMC7767206 DOI: 10.3390/biomedicines8120636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
To date, there are no bioresorbable alternatives to non-resorbable and volume-stable membranes in the field of dentistry for guided bone or tissue regeneration (GBR/GTR). Even magnesium (Mg) has been shown to constitute a favorable biomaterial for the development of stabilizing structures. However, it has been described that it is necessary to prevent premature degradation to ensure both the functionality and the biocompatibility of such Mg implants. Different coating strategies have already been developed, but most of them did not provide the desired functionality. The present study analyses a new approach based on ion implantation (II) with PVD coating for the passivation of a newly developed Mg membrane for GBR/GTR procedures. To demonstrate comprehensive biocompatibility and successful passivation of the Mg membranes, untreated Mg (MG) and coated Mg (MG-Co) were investigated in vitro and in vivo. Thereby a collagen membrane with an already shown biocompatibility was used as control material. All investigations were performed according to EN ISO 10993 regulations. The in vitro results showed that both the untreated and PVD-coated membranes were not cytocompatible. However, both membrane types fulfilled the requirements for in vivo biocompatibility. Interestingly, the PVD coating did not have an influence on the gas cavity formation compared to the uncoated membrane, but it induced lower numbers of anti-inflammatory macrophages in comparison to the pure Mg membrane and the collagen membrane. In contrast, the pure Mg membrane provoked an immune response that was fully comparable to the collagen membrane. Altogether, this study shows that pure magnesium membranes represent a promising alternative compared to the nonresorbable volume-stable materials for GBR/GTR therapy.
Collapse
|
27
|
Dong X, Cheng Q, Long Y, Xu C, Fang H, Chen Y, Dai H. A chitosan based scaffold with enhanced mechanical and biocompatible performance for biomedical applications. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Gögele C, Schulze-Tanzil G, Kokozidou M, Gäbel C, Billner M, Reichert B, Bodenschatz K. Growth characteristics of human juvenile, adult and murine fibroblasts: a comparison of polymer wound dressings. J Wound Care 2020; 29:572-585. [PMID: 33052799 DOI: 10.12968/jowc.2020.29.10.572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Fibroblasts are important for the successful healing of deep wounds. However, the influence exerted by Cuticell, a natural polymer on fibroblasts and by the synthetic polymer, Suprathel, made of poly-L-lactic acid, is not sufficiently characterised. This study compared the survival and growth characteristics of human juvenile and adult dermal fibroblasts as well as murine fibroblast cell line L929, on a natural polymer with those of a synthetic polymer using different culture models. METHOD Murine, juvenile and adult human fibroblasts were seeded on both the natural and synthetic polymers using statical slide culture or the medium air interface and dynamical rotatory culture. Cell adherence, viability, morphology and actin cytoskeleton architecture were monitored for 1-7 days. Biomaterial permeability was checked with a previously established diffusion chamber. RESULTS The majority of the murine and adult human fibroblasts survived in slide and rotatory cultures on both wound dressings. The fibroblasts seeded on the synthetic polymer exhibited phenotypically a typical spread shape with multiple cell adhesion sites earlier than those on the natural polymer. The highest survival rates in all tested fibroblast species over the entire observation time were detected in rotatory culture (mean: >70%). Nevertheless, it led to cell-cluster formation on both materials. In the medium air interface culture, few adult fibroblasts adhered and survived until the seventh day of culture on both the natural and synthetic polymers, and no viable juvenile and L929 fibroblasts could be found by day seven. Apart from a significant higher survival rate of L929 in slide culture on the natural polymer compared with the synthetic polymer at the end of the culturing period (p<0.0001), and a higher cell survival of L929 on the natural polymer in medium air interface culture, only minor differences between both materials were evident. This suggested a comparable cytocompatibility of both materials. Permeability testing revealed slightly higher permeance of the natural polymer compared with the synthetic polymer. CONCLUSION Cell survival rates depended on the culture system and the fibroblast source. Nevertheless, the juvenile skin fibroblasts were the most sensitive. This observation suggests that wound dressings used in treating children should be tested beforehand with juvenile fibroblasts to ensure the dressing does not compromise wound healing. Future experiments should also include the response of compromised fibroblasts, for example, from burn patients.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg and Nuremberg, Department Nuremberg, Prof.-Ernst Nathan Strasse 1, 90419 Nuremberg, Germany.,Department of Biosciences, Paris Lodron University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg and Nuremberg, Department Nuremberg, Prof.-Ernst Nathan Strasse 1, 90419 Nuremberg, Germany
| | - Maria Kokozidou
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg and Nuremberg, Department Nuremberg, Prof.-Ernst Nathan Strasse 1, 90419 Nuremberg, Germany
| | - Christiane Gäbel
- Leibniz-Institute for Polymer Research, Institute of Polymer Materials, Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Moritz Billner
- Department of Plastic, Reconstructive and Hand Surgery, Center of Severe Burn Injuries Nuremberg General Hospital / Paracelsus Medical University Salzburg and Nuremberg, Department Nuremberg, Breslauer Straße 20, 90471 Nuremberg, Germany
| | - Bert Reichert
- Department of Plastic, Reconstructive and Hand Surgery, Center of Severe Burn Injuries Nuremberg General Hospital / Paracelsus Medical University Salzburg and Nuremberg, Department Nuremberg, Breslauer Straße 20, 90471 Nuremberg, Germany
| | - Karl Bodenschatz
- Department of Pediatric Surgery and Urology, Nuremberg General Hospital/Paracelsus Medical University Salzburg, Department Nuremberg, Breslauer Straße 201, 90471 Nuremberg, Germany
| |
Collapse
|
29
|
Birkelbach MA, Smeets R, Fiedler I, Kluwe L, Wehner M, Trebst T, Hartjen P. In Vitro Feasibility Analysis of a New Sutureless Wound-Closure System Based on a Temperature-Regulated Laser and a Transparent Collagen Membrane for Laser Tissue Soldering (LTS). Int J Mol Sci 2020; 21:ijms21197104. [PMID: 32993100 PMCID: PMC7582393 DOI: 10.3390/ijms21197104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
For the post-surgical treatment of oral wounds and mucosal defects beyond a certain size, the gold standard is still an autologous skin or mucosal graft in combination with complex suturing techniques. A variety of techniques and biomaterials has been developed for sutureless wound closure including different tissue glues or collagen patches. However, no wound covering that enables for sutureless fixation has yet been introduced. Thus, a new system was developed that allows for sutureless wound covering including a transparent collagen membrane, which can be attached to the mucosa using a specially modified 2λ laser beam with integrated temperature sensors and serum albumin as bio-adhesive. The sutureless wound closure system was tested for its applicability and its cytocompatibility by an established in vitro model in the present study. The feasibility of the laser system was tested ex vivo on a porcine palate. The in vitro cytocompatibility tests excluded the potential release of toxic substances from the laser-irradiated collagen membrane and the bio-adhesive. The results of the ex vivo feasibility study using a porcine palate revealed satisfactory mean tensile strength of 1.2–1.5 N for the bonding of the membrane to the tissue fixed with laser of 980 nm. The results suggest that our newly developed laser-assisted wound closure system is a feasible approach and could be a first step on the way towards a laser based sutureless clinical application in tissue repair and oral surgery.
Collapse
Affiliation(s)
- Moritz Alexander Birkelbach
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.S.); (L.K.); (P.H.)
- Correspondence: ; Tel.: +49-40-74-105-3254
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.S.); (L.K.); (P.H.)
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Imke Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Lan Kluwe
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.S.); (L.K.); (P.H.)
| | - Martin Wehner
- ILT, Fraunhofer-Institute for Laser Technology, 52074 Aachen, Germany;
| | | | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.S.); (L.K.); (P.H.)
| |
Collapse
|
30
|
Jung O, Radenkovic M, Stojanović S, Lindner C, Batinic M, Görke O, Pissarek J, Pröhl A, Najman S, Barbeck M. In Vitro and In Vivo Biocompatibility Analysis of a New Transparent Collagen-based Wound Membrane for Tissue Regeneration in Different Clinical Indications. In Vivo 2020; 34:2287-2295. [PMID: 32871752 DOI: 10.21873/invivo.12040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM For the treatment of different tissue defects such as jawbone defects, open wound defect, chronic ulcers, dura mater defects and corneal defects, different biomaterials are available. The use of collagen-based materials for these applications has been significantly increased over the past decades due to its excellent biocompatibility and degradability. However, no transparent collagen-based biomaterial is available until now. Thus, a newly developed transparent collagen membrane (TCM) based on natural derived porcine pericardium, which offers numerous application possibilities, was developed. The present study aimed to analyze the in vitro and in vivo biocompatibility using established methods. MATERIALS AND METHODS The new TCM membrane and a commercially available collagen membrane (CM, Jason membrane, botiss biomaterials GmbH, Zossen, Germany) were tested for its in vitro cytocompatibility. Furthermore, the in vivo biocompatibility was analyzed using sham operations as control group. In vitro, cytocompatibility was tested in accordance with EN ISO 10993-5/-12 regulations and Live-Dead-stainings. In vivo, a subcutaneous implantation model in BALB/c mice was used and explants were prepared for analyses by established histological, immunohistochemical and histomorphometrical methods. RESULTS In vitro, both membranes showed promising cytocompatibility with a slightly better direct cell response in the Live-Dead staining assay for the TCM. In vivo, TCM induced a comparable inflammatory immune response after 10 and 30 days with comparable numbers of M1- and M2-macrophages as also found in the control group without biomaterial insertion. CONCLUSION The newly transparent collagen membrane is fully biocompatible and is supporting safe clinical application in tissue repair and surgery.
Collapse
Affiliation(s)
- Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Milena Radenkovic
- Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Sanja Stojanović
- Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, Niš, Serbia
| | | | - Milijana Batinic
- Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University Berlin, Berlin, Germany
| | - Oliver Görke
- Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University Berlin, Berlin, Germany
| | | | | | - Stevo Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Mike Barbeck
- BerlinAnalytix GmbH, Berlin, Germany .,Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University Berlin, Berlin, Germany
| |
Collapse
|
31
|
Pan K, Li X, Meng L, Hong L, Wei W, Liu X. Photo-Cross-Linked Polycarbonate Coating with Surface-Erosion Behavior for Corrosion Resistance and Cytocompatibility Enhancement of Magnesium Alloy. ACS APPLIED BIO MATERIALS 2020; 3:4427-4435. [PMID: 35025441 DOI: 10.1021/acsabm.0c00411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Absorbable magnesium (Mg) materials are promising for medical implant applications. However, their corrosion rate and potential toxicity remain a challenge. Herein, a photo-cross-linked coating with suitable durability and unique surface-eroding behavior for enhancement of anticorrosion property and cytocompatibility of AZ31 Mg alloy was developed. The biodegradable allyl-functional polycarbonate, poly[(5-methyl-5-allyloxycarbonyl-1,3-propanediol carbonate)-co-(trimethylene carbonate)] [P(MAC-co-TMC), PMT], was first synthesized by ring-opening copolymerization. The PMT copolymer, pentaerythritol tetrakis(3-mercaptopropionate), and a photoinitiator were then applied on AZ31 Mg alloy by dip coating, and these films were cross-linked via the subsequent photoinitiated thiol-ene click reaction. The poly(l-lactide) (PLLA) and poly(1,3-trimethylene carbonate) (PTMC) coatings without cross-linking were prepared and used as control. Our results show that the cross-linked PMT coatings exhibited superior mechanical properties compared with PLLA and PTMC coatings. Meanwhile, the surface-erosion behavior of the cross-linked PMT coatings remained, as confirmed by scanning electron microscopy analysis. As a result, the cross-linked PMT-coated Mg alloy showed lower corrosion rates, better in vitro corrosion resistance, and much lower cytotoxicity, compared with bare Mg and ones coated with PLLA and PTMC coatings. Results indicate that the cross-linked PMT coatings with unique surface-erosion behavior and good cytocompatibility might be promising to improve the safety and success rate of Mg-based devices and implants.
Collapse
Affiliation(s)
- Kai Pan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaojie Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Long Meng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Liu Hong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoya Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
32
|
Barbeck M, Kühnel L, Witte F, Pissarek J, Precht C, Xiong X, Krastev R, Wegner N, Walther F, Jung O. Degradation, Bone Regeneration and Tissue Response of an Innovative Volume Stable Magnesium-Supported GBR/GTR Barrier Membrane. Int J Mol Sci 2020; 21:ijms21093098. [PMID: 32353983 PMCID: PMC7247710 DOI: 10.3390/ijms21093098] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction: Bioresorbable collagenous barrier membranes are used to prevent premature soft tissue ingrowth and to allow bone regeneration. For volume stable indications, only non-absorbable synthetic materials are available. This study investigates a new bioresorbable hydrofluoric acid (HF)-treated magnesium (Mg) mesh in a native collagen membrane for volume stable situations. Materials and Methods: HF-treated and untreated Mg were compared in direct and indirect cytocompatibility assays. In vivo, 18 New Zealand White Rabbits received each four 8 mm calvarial defects and were divided into four groups: (a) HF-treated Mg mesh/collagen membrane, (b) untreated Mg mesh/collagen membrane (c) collagen membrane and (d) sham operation. After 6, 12 and 18 weeks, Mg degradation and bone regeneration was measured using radiological and histological methods. Results: In vitro, HF-treated Mg showed higher cytocompatibility. Histopathologically, HF-Mg prevented gas cavities and was degraded by mononuclear cells via phagocytosis up to 12 weeks. Untreated Mg showed partially significant more gas cavities and a fibrous tissue reaction. Bone regeneration was not significantly different between all groups. Discussion and Conclusions: HF-Mg meshes embedded in native collagen membranes represent a volume stable and biocompatible alternative to the non-absorbable synthetic materials. HF-Mg shows less corrosion and is degraded by phagocytosis. However, the application of membranes did not result in higher bone regeneration.
Collapse
Affiliation(s)
- Mike Barbeck
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, Study Group: Biomaterials/Surfaces, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- BerlinAnalytix GmbH, 12109 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)-176-81022467
| | - Lennart Kühnel
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, Study Group: Biomaterials/Surfaces, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Frank Witte
- Biotrics Bioimplants GmbH, 12109 Berlin, Germany
| | | | - Clarissa Precht
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, Study Group: Biomaterials/Surfaces, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Rumen Krastev
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
- Faculty of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| | - Nils Wegner
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany
| | - Frank Walther
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany
| | - Ole Jung
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, Study Group: Biomaterials/Surfaces, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| |
Collapse
|
33
|
Perumal G, Sivakumar PM, Nandkumar AM, Doble M. Synthesis of magnesium phosphate nanoflakes and its PCL composite electrospun nanofiber scaffolds for bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110527. [DOI: 10.1016/j.msec.2019.110527] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 11/03/2019] [Accepted: 12/05/2019] [Indexed: 01/13/2023]
|
34
|
Rodriguez YJ, Quejada LF, Villamil JC, Baena Y, Parra-Giraldo CM, Perez LD. Development of Amphotericin B Micellar Formulations Based on Copolymers of Poly(ethylene glycol) and Poly(ε-caprolactone) Conjugated with Retinol. Pharmaceutics 2020; 12:E196. [PMID: 32106492 PMCID: PMC7150995 DOI: 10.3390/pharmaceutics12030196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/02/2022] Open
Abstract
Amphotericin B (AmB) is a broad spectrum of antifungal drug used to treat antifungal diseases. However, due to the high toxicity of AmB, treated patients may suffer the risk of side effects, such as renal failure. Nanoencapsulation strategies have been reported to elicit low toxicity, albeit most of them possess low encapsulation efficiency. The aim of this research is to develop micellar delivery systems for AmB with reduced toxicity while maintaining its affectivity by employing retinol (RET)-conjugated amphiphilic block copolymers (ABCs) as precursors. Copolymers composed of poly(ε-caprolactone) (A) and polyethylenglycol (B) of types AB and ABA were synthesized by ring opening polymerization and subsequently conjugated with RET by Steglich esterification. 1H-NMR spectroscopy was used to corroborate the structure of copolymers and their conjugates and determine their molecular weights. Analysis by gel permeation chromatography also found that the materials have narrow distributions. The resulting copolymers were used as precursors for delivery systems of AmB, thus reducing its aggregation and consequently causing a low haemolytic effect. Upon conjugation with RET, the encapsulation capacity was enhanced from approximately 2 wt % for AB and ABA copolymers to 10 wt %. AmB encapsulated in polymer micelles presented improved antifungal efficiency against Candida albicans and Candida auris strains compared with Fungizone®, as deduced from the low minimum inhibitory concentration.
Collapse
Affiliation(s)
- Yeimy J. Rodriguez
- Grupo de Investigación en Macromoléculas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Carrera 45 No. 26-85, Edificio 451 of. 449, Bogotá D.C. 11001, Colombia;
| | - Luis F. Quejada
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C. 110231, Colombia; (L.F.Q.); (J.C.V.)
| | - Jean C. Villamil
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C. 110231, Colombia; (L.F.Q.); (J.C.V.)
| | - Yolima Baena
- Grupo de Investigación SILICOMOBA, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Carrera 45 No. 26-85, Edificio 451 of. 449, Bogotá D.C. 11001, Colombia
| | - Claudia M. Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C. 110231, Colombia; (L.F.Q.); (J.C.V.)
| | - Leon D. Perez
- Grupo de Investigación en Macromoléculas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Carrera 45 No. 26-85, Edificio 451 of. 449, Bogotá D.C. 11001, Colombia;
| |
Collapse
|
35
|
Effect of composition on in vitro degradability of Ti–Mg metal-metal composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110327. [DOI: 10.1016/j.msec.2019.110327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/28/2023]
|
36
|
Barbeck M, Jung O, Xiong X, Krastev R, Korzinskas T, Najman S, Radenković M, Wegner N, Knyazeva M, Walther F. Balancing Purification and Ultrastructure of Naturally Derived Bone Blocks for Bone Regeneration: Report of the Purification Effort of Two Bone Blocks. MATERIALS 2019; 12:ma12193234. [PMID: 31581651 PMCID: PMC6803862 DOI: 10.3390/ma12193234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
The present publication reports the purification effort of two natural bone blocks, that is, an allogeneic bone block (maxgraft®, botiss biomaterials GmbH, Zossen, Germany) and a xenogeneic block (SMARTBONE®, IBI S.A., Mezzovico-Vira, Switzerland) in addition to previously published results based on histology. Furthermore, specialized scanning electron microscopy (SEM) and in vitro analyses (XTT, BrdU, LDH) for testing of the cytocompatibility based on ISO 10993-5/-12 have been conducted. The microscopic analyses showed that both bone blocks possess a trabecular structure with a lamellar subarrangement. In the case of the xenogeneic bone block, only minor remnants of collagenous structures were found, while in contrast high amounts of collagen were found associated with the allogeneic bone matrix. Furthermore, only island-like remnants of the polymer coating in case of the xenogeneic bone substitute seemed to be detectable. Finally, no remaining cells or cellular remnants were found in both bone blocks. The in vitro analyses showed that both bone blocks are biocompatible. Altogether, the purification level of both bone blocks seems to be favorable for bone tissue regeneration without the risk for inflammatory responses or graft rejection. Moreover, the analysis of the maxgraft® bone block showed that the underlying purification process allows for preserving not only the calcified bone matrix but also high amounts of the intertrabecular collagen matrix.
Collapse
Affiliation(s)
- Mike Barbeck
- Department of Oral and Maxillofacial Surgery, Working Group Biomaterials/Surfaces, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany; ole.tiberius.jung@googlemail@com (O.J.).
- BerlinAnalytix GmbH, Berlin 12109, Germany.
| | - Ole Jung
- Department of Oral and Maxillofacial Surgery, Working Group Biomaterials/Surfaces, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany; ole.tiberius.jung@googlemail@com (O.J.).
| | - Xin Xiong
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany.
| | - Rumen Krastev
- Faculty of Applied Chemistry, Reutlingen University, Reutlingen 72770, Germany.
| | - Tadas Korzinskas
- Department of Oral and Maxillofacial Surgery, Working Group Biomaterials/Surfaces, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany; ole.tiberius.jung@googlemail@com (O.J.).
| | - Stevo Najman
- Department for Cell and Tissue Engineering and Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18100 Niš, Serbia.
| | - Milena Radenković
- Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, Niš 18100, Serbia.
| | - Nils Wegner
- Department of Materials Test Engineering (WPT), TU Dortmund University, Dortmund 44227, Germany.
| | - Marina Knyazeva
- Department of Materials Test Engineering (WPT), TU Dortmund University, Dortmund 44227, Germany.
| | - Frank Walther
- Department of Materials Test Engineering (WPT), TU Dortmund University, Dortmund 44227, Germany.
| |
Collapse
|
37
|
Jung O, Porchetta D, Schroeder ML, Klein M, Wegner N, Walther F, Feyerabend F, Barbeck M, Kopp A. In Vivo Simulation of Magnesium Degradability Using a New Fluid Dynamic Bench Testing Approach. Int J Mol Sci 2019; 20:ijms20194859. [PMID: 31574947 PMCID: PMC6801401 DOI: 10.3390/ijms20194859] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
The degradation rate of magnesium (Mg) alloys is a key parameter to develop Mg-based biomaterials and ensure in vivo-mechanical stability as well as to minimize hydrogen gas production, which otherwise can lead to adverse effects in clinical applications. However, in vitro and in vivo results of the same material often differ largely. In the present study, a dynamic test bench with several single bioreactor cells was constructed to measure the volume of hydrogen gas which evolves during magnesium degradation to indicate the degradation rate in vivo. Degradation medium comparable with human blood plasma was used to simulate body fluids. The media was pumped through the different bioreactor cells under a constant flow rate and 37 °C to simulate physiological conditions. A total of three different Mg groups were successively tested: Mg WE43, and two different WE43 plasma electrolytically oxidized (PEO) variants. The results were compared with other methods to detect magnesium degradation (pH, potentiodynamic polarization (PDP), cytocompatibility, SEM (scanning electron microscopy)). The non-ceramized specimens showed the highest degradation rates and vast standard deviations. In contrast, the two PEO samples demonstrated reduced degradation rates with diminished standard deviation. The pH values showed above-average constant levels between 7.4–7.7, likely due to the constant exchange of the fluids. SEM revealed severe cracks on the surface of WE43 after degradation, whereas the ceramized surfaces showed significantly decreased signs of corrosion. PDP results confirmed the improved corrosion resistance of both PEO samples. While WE43 showed slight toxicity in vitro, satisfactory cytocompatibility was achieved for the PEO test samples. In summary, the dynamic test bench constructed in this study enables reliable and simple measurement of Mg degradation to simulate the in vivo environment. Furthermore, PEO treatment of magnesium is a promising method to adjust magnesium degradation.
Collapse
Affiliation(s)
- Ole Jung
- Department of Oral Maxillofacial Surgery, University Medical Center, 20246 Hamburg-Eppendorf, Germany.
| | - Dario Porchetta
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany.
- Meotec GmbH, 52068 Aachen, Germany.
| | - Marie-Luise Schroeder
- Department of Oral Maxillofacial Surgery, University Medical Center, 20246 Hamburg-Eppendorf, Germany.
| | - Martin Klein
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany.
| | - Nils Wegner
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany.
| | - Frank Walther
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany.
| | - Frank Feyerabend
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany.
| | - Mike Barbeck
- Department of Oral Maxillofacial Surgery, University Medical Center, 20246 Hamburg-Eppendorf, Germany.
- BerlinAnalytix GmbH, 12109 Berlin, Germany.
| | | |
Collapse
|
38
|
Corrosion and Corrosion Fatigue Properties of Additively Manufactured Magnesium Alloy WE43 in Comparison to Titanium Alloy Ti-6Al-4V in Physiological Environment. MATERIALS 2019; 12:ma12182892. [PMID: 31500239 PMCID: PMC6766266 DOI: 10.3390/ma12182892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/04/2022]
Abstract
Laser powder bed fusion (L-PBF) of metals enables the manufacturing of highly complex geometries which opens new application fields in the medical sector, especially with regard to personalized implants. In comparison to conventional manufacturing techniques, L-PBF causes different microstructures, and thus, new challenges arise. The main objective of this work is to investigate the influence of different manufacturing parameters of the L-PBF process on the microstructure, process-induced porosity, as well as corrosion fatigue properties of the magnesium alloy WE43 and as a reference on the titanium alloy Ti-6Al-4V. In particular, the investigated magnesium alloy WE43 showed a strong process parameter dependence in terms of porosity (size and distribution), microstructure, corrosion rates, and corrosion fatigue properties. Cyclic tests with increased test duration caused an especially high decrease in fatigue strength for magnesium alloy WE43. It can be demonstrated that, due to high process-induced surface roughness, which supports locally intensified corrosion, multiple crack initiation sites are present, which is one of the main reasons for the drastic decrease in fatigue strength.
Collapse
|
39
|
Biocompatibility and paclitaxel/cisplatin dual-loading of nanotubes prepared from poly(ethylene glycol)-polylactide-poly(ethylene glycol) triblock copolymers for combination cancer therapy. Saudi Pharm J 2019; 27:1025-1035. [PMID: 31997910 PMCID: PMC6978636 DOI: 10.1016/j.jsps.2019.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
Nanotubes were prepared by self-assembly of the copolymer using co-solvent evaporation method. The biocompatibility of the nanotubes was assessed in comparison with spherical micelles and filomicelles prepared from poly(ethylene glycol)-poly(L-lactide-co-glycolide) (PEG-PLGA) and poly(ethylene glycol)-poly(L-lactide) (PEG-PLA), respectively. Several aspects of biocompatibility of the aggregates were considered, including agar diffusion and MTT assay, release of cytokines, hemolysis, protein adsorption, dynamic clotting in vitro, and Zebrafish embryonic compatibility in vivo. The nanotubes present good cell compatibility and blood compatibility in vitro, and almost no toxicity towards Zebrafish embryos development in vivo. Furthermore, dual-loading of hydrophilic cisplatin and hydrophobic paclitaxel was achieved in the nanotubes with high loading content and loading efficiency. The release of both drugs was slower from dual-loaded nanotubes than from single-loaded ones, but the total amount of released drugs in higher for dual-loaded nanotubes than from single-loaded ones. Cellular uptake and inhibition tests showed that the nanotubes were successfully taken up by tumor cells and effectively inhibited cell growth. It is thus concluded that PEG-PLA-PEG nanotubes with outstanding biocompatibility could be promising for co-delivery of hydrophilic and hydrophobic agents in combination cancer therapy.
Collapse
|
40
|
Jung O, Becker JP, Smeets R, Gosau M, Becker G, Kahl-Nieke B, Jung AK, Heiland M, Kopp A, Barbeck M, Koehne T. Surface Characteristics of Esthetic Nickel⁻Titanium and Beta-Titanium Orthodontic Archwires Produced by Plasma Electrolytic Oxidation (PEO)-Primary Results. MATERIALS 2019; 12:ma12091403. [PMID: 31052150 PMCID: PMC6539843 DOI: 10.3390/ma12091403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/21/2022]
Abstract
Background/Aim: There is continuing interest in engineering esthetic labial archwires. The aim of this study was to coat nickel–titanium (NiTi) and beta-titanium (β-Ti), also known as titanium molybdenum (TMA), archwires by plasma electrolytic oxidation (PEO) and to analyze the characteristics of the PEO-surfaces. Materials and Methods: PEO-coatings were generated on 0.014-inch NiTi and 0.19 × 0.25-inch β-Ti archwires. The surfaces were analyzed by scanning electron microscopy and stereomicroscopy. Cytocompatibility testing was performed with ceramized and untreated samples according to EN ISO 10993-5 in XTT-, BrdU- and LDH-assays. The direct cell impact was analyzed using LIVE-/DEAD-staining. In addition, the archwires were inserted in an orthodontic model and photographs were taken before and after insertion. Results: The PEO coatings were 15 to 20 µm thick with a whitish appearance. The cytocompatibility analysis revealed good cytocompatibility results for both ceramized NiTi and β-Ti archwires. In the direct cell tests, the ceramized samples showed improved compatibility as compared to those of uncoated samples. However, bending of the archwires resulted in loss of the PEO-surfaces. Nevertheless, it was possible to insert the β-Ti PEO-coated archwire in an orthodontic model without loss of the PEO-ceramic. Conclusion: PEO is a promising technique for the generation of esthetic orthodontic archwires. Since the PEO-coating does not resist bending, its clinical use seems to be limited so far to orthodontic techniques using straight or pre-bent archwires.
Collapse
Affiliation(s)
- Ole Jung
- Division of Regenerative Orofacial Medicine, Research Group Biomaterials/Surfaces, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Jean-Philippe Becker
- Division of Regenerative Orofacial Medicine, Research Group Biomaterials/Surfaces, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Ralf Smeets
- Division of Regenerative Orofacial Medicine, Research Group Biomaterials/Surfaces, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Germain Becker
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Bärbel Kahl-Nieke
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Anne-Kathrin Jung
- Division of Regenerative Orofacial Medicine, Research Group Biomaterials/Surfaces, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Max Heiland
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, 12200 Berlin, Germany.
| | | | - Mike Barbeck
- Division of Regenerative Orofacial Medicine, Research Group Biomaterials/Surfaces, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Till Koehne
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
41
|
Improved In Vitro Test Procedure for Full Assessment of the Cytocompatibility of Degradable Magnesium Based on ISO 10993-5/-12. Int J Mol Sci 2019; 20:ijms20020255. [PMID: 30634646 PMCID: PMC6359522 DOI: 10.3390/ijms20020255] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/22/2018] [Accepted: 12/30/2018] [Indexed: 12/04/2022] Open
Abstract
Magnesium (Mg)-based biomaterials are promising candidates for bone and tissue regeneration. Alloying and surface modifications provide effective strategies for optimizing and tailoring their degradation kinetics. Nevertheless, biocompatibility analyses of Mg-based materials are challenging due to its special degradation mechanism with continuous hydrogen release. In this context, the hydrogen release and the related (micro-) milieu conditions pretend to strictly follow in vitro standards based on ISO 10993-5/-12. Thus, special adaptions for the testing of Mg materials are necessary, which have been described in a previous study from our group. Based on these adaptions, further developments of a test procedure allowing rapid and effective in vitro cytocompatibility analyses of Mg-based materials based on ISO 10993-5/-12 are necessary. The following study introduces a new two-step test scheme for rapid and effective testing of Mg. Specimens with different surface characteristics were produced by means of plasma electrolytic oxidation (PEO) using silicate-based and phosphate-based electrolytes. The test samples were evaluated for corrosion behavior, cytocompatibility and their mechanical and osteogenic properties. Thereby, two PEO ceramics could be identified for further in vivo evaluations.
Collapse
|
42
|
Hartjen P, Hoffmann A, Henningsen A, Barbeck M, Kopp A, Kluwe L, Precht C, Quatela O, Gaudin R, Heiland M, Friedrich RE, Knipfer C, Grubeanu D, Smeets R, Jung O. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability. ACTA ACUST UNITED AC 2018; 32:241-247. [PMID: 29475905 DOI: 10.21873/invivo.11230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND/AIM Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. MATERIALS AND METHODS Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. RESULTS Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. CONCLUSION PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues.
Collapse
Affiliation(s)
- Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexia Hoffmann
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anders Henningsen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mike Barbeck
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Lan Kluwe
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clarissa Precht
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olivia Quatela
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Gaudin
- Department of Oral & Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Max Heiland
- Department of Oral & Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Knipfer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ole Jung
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
43
|
Rendenbach C, Schoellchen M, Bueschel J, Gauer T, Sedlacik J, Kutzner D, Vallittu PK, Heiland M, Smeets R, Fiehler J, Siemonsen S. Evaluation and reduction of magnetic resonance imaging artefacts induced by distinct plates for osseous fixation: an in vitro study @ 3 T. Dentomaxillofac Radiol 2018; 47:20170361. [PMID: 29718688 DOI: 10.1259/dmfr.20170361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES: To analyze MRI artefacts induced at 3 T by bioresorbable, titanium (TI) and glass fibre reinforced composite (GFRC) plates for osseous reconstruction. METHODS: Fixation plates including bioresorbable polymers (Inion CPS, Inion Oy, Tampere, Finland; Rapidsorb, DePuy Synthes, Umkirch, Germany; Resorb X, Gebrueder KLS Martin GmbH, Tuttlingen, Germany), GFRC (Skulle Implants Oy, Turku, Finland) and TI plates of varying thickness and design (DePuy Synthes, Umkirch, Germany) were embedded in agarose gel and a 3 T MRI was performed using a standard protocol for head and neck imaging including T1W and T2W sequences. Additionally, different artefact reduction techniques (slice encoding for metal artefact reduction & ultrashort echo time) were used and their impact on the extent of artefacts evaluated for each material. RESULTS: All TI plates induced significantly more artefacts than resorbable plates in T1W and T2W sequences. GFRCs induced the least artefacts in both sequences. The total extent of artefacts increased with plate thickness and height. Plate thickness had no influence on the percentage of overestimation in all three dimensions. TI-induced artefacts were significantly reduced by both artefact reduction techniques. CONCLUSIONS: Polylactide, GFRC and magnesium plates produce less susceptibility artefacts in MRI compared to TI, while the dimensions of TI plates directly influence artefact extension. Slice encoding for metal artefact reduction and ultrashort echo time significantly reduce metal artefacts at the expense of scan time or image resolution.
Collapse
Affiliation(s)
- Carsten Rendenbach
- 1 Department of Oral and Maxillofacial Surgery, Charité - Universitaetsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany.,2 Berlin Institute of Health (BIH) , Berlin , Germany
| | - Max Schoellchen
- 3 Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Julie Bueschel
- 3 Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Tobias Gauer
- 4 Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Jan Sedlacik
- 5 Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Daniel Kutzner
- 5 Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Pekka K Vallittu
- 6 Department of Biomaterials Science, Institute of Dentistry, University of Turku, and City of Turku, Welfare Division , Turku , Finland
| | - Max Heiland
- 1 Department of Oral and Maxillofacial Surgery, Charité - Universitaetsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| | - Ralf Smeets
- 3 Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Jens Fiehler
- 5 Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Susanne Siemonsen
- 5 Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
44
|
Gonzalez J, Hou RQ, Nidadavolu EPS, Willumeit-Römer R, Feyerabend F. Magnesium degradation under physiological conditions - Best practice. Bioact Mater 2018; 3:174-185. [PMID: 29744455 PMCID: PMC5935771 DOI: 10.1016/j.bioactmat.2018.01.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/27/2022] Open
Abstract
This review focusses on the application of physiological conditions for the mechanistic understanding of magnesium degradation. Despite the undisputed relevance of simplified laboratory setups for alloy screening purposes, realistic and predictive in vitro setups are needed. Due to the complexity of these systems, the review gives an overview about technical measures, defines some caveats and can be used as a guideline for the establishment of harmonized laboratory approaches. Physiological conditions are mandatory for mechanistic understanding of magnesium degradation. Guidelines and caveats for experimental setups are reviewed. Media composition is essential for reliable experiments.
Collapse
Affiliation(s)
- Jorge Gonzalez
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Rui Qing Hou
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Eshwara P S Nidadavolu
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Regine Willumeit-Römer
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Frank Feyerabend
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| |
Collapse
|
45
|
Influence of the Composition of the Hank’s Balanced Salt Solution on the Corrosion Behavior of AZ31 and AZ61 Magnesium Alloys. METALS 2017. [DOI: 10.3390/met7110465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Hartjen P, Nada O, Silva TG, Precht C, Henningsen A, Holthaus MGRO, Gulow N, Friedrich RE, Hanken H, Heiland M, Zwahr C, Smeets R, Jung O. Cytocompatibility of Direct Laser Interference-patterned Titanium Surfaces for Implants. ACTA ACUST UNITED AC 2017; 31:849-854. [PMID: 28882950 DOI: 10.21873/invivo.11138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022]
Abstract
In an effort to generate titanium surfaces for implants with improved osseointegration, we used direct laser interference patterning (DLIP) to modify the surface of pure titanium grade 4 of four different structures. We assessed in vitro cytoxicity and cell attachment, as well as the viability and proliferation of cells cultured directly on the surfaces. Attachment of the cells to the modified surfaces was comparably good compared to that of cells on grit-blasted and acid-etched reference titanium surfaces. In concordance with this, viability and proliferation of the cells directly cultured on the specimens were similar on all the titanium surfaces, regardless of the laser modification, indicating good cytocompatibility.
Collapse
Affiliation(s)
- Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ola Nada
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thiago Gundelwein Silva
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clarissa Precht
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anders Henningsen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Hanken
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité University Hospital, Berlin, Germany
| | - Christoph Zwahr
- Institute of Manufacturing Technology, TU Dresden, Dresden, Germany.,Fraunhofer Institute for Material and Beam Technology, Dresden, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ole Jung
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
47
|
Cipriano AF, Sallee A, Tayoba M, Cortez Alcaraz MC, Lin A, Guan RG, Zhao ZY, Liu H. Cytocompatibility and early inflammatory response of human endothelial cells in direct culture with Mg-Zn-Sr alloys. Acta Biomater 2017; 48:499-520. [PMID: 27746360 PMCID: PMC5873597 DOI: 10.1016/j.actbio.2016.10.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022]
Abstract
Crystalline Mg-Zinc (Zn)-Strontium (Sr) ternary alloys consist of elements naturally present in the human body and provide attractive mechanical and biodegradable properties for a variety of biomedical applications. The first objective of this study was to investigate the degradation and cytocompatibility of four Mg-4Zn-xSr alloys (x=0.15, 0.5, 1.0, 1.5wt%; designated as ZSr41A, B, C, and D respectively) in the direct culture with human umbilical vein endothelial cells (HUVEC) in vitro. The second objective was to investigate, for the first time, the early-stage inflammatory response in cultured HUVECs as indicated by the induction of vascular cellular adhesion molecule-1 (VCAM-1). The results showed that the 24-h in vitro degradation of the ZSr41 alloys containing a β-phase with a Zn/Sr at% ratio ∼1.5 was significantly faster than the ZSr41 alloys with Zn/Sr at% ∼1. Additionally, the adhesion density of HUVECs in the direct culture but not in direct contact with the ZSr41 alloys for up to 24h was not adversely affected by the degradation of the alloys. Importantly, neither culture media supplemented with up to 27.6mM Mg2+ ions nor media intentionally adjusted up to alkaline pH 9 induced any detectable adverse effects on HUVEC responses. In contrast, the significantly higher, yet non-cytotoxic, Zn2+ ion concentration from the degradation of ZSr41D alloy was likely the cause for the initially higher VCAM-1 expression on cultured HUVECs. Lastly, analysis of the HUVEC-ZSr41 interface showed near-complete absence of cell adhesion directly on the sample surface, most likely caused by either a high local alkalinity, change in surface topography, and/or surface composition. The direct culture method used in this study was proposed as a valuable tool for studying the design aspects of Zn-containing Mg-based biomaterials in vitro, in order to engineer solutions to address current shortcomings of Mg alloys for vascular device applications. STATEMENT OF SIGNIFICANCE Magnesium (Mg) alloys specifically designed for biodegradable implant applications have been the focus of biomedical research since the early 2000s. Physicochemical properties of Mg alloys make these metallic biomaterials excellent candidates for temporary biodegradable implants in orthopedic and cardiovascular applications. As Mg alloys continue to be investigated for biomedical applications, it is necessary to understand whether Mg-based materials or the alloying elements have the intrinsic ability to direct an immune response to improve implant integration while avoiding cell-biomaterial interactions leading to chronic inflammation and/or foreign body reactions. The present study utilized the direct culture method to investigate for the first time the in vitro transient inflammatory activation of endothelial cells induced by the degradation products of Zn-containing Mg alloys.
Collapse
Affiliation(s)
- Aaron F Cipriano
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; Materials Science & Engineering Program, University of California, Riverside, CA 92521, USA
| | - Amy Sallee
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Myla Tayoba
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - Alan Lin
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Ren-Guo Guan
- School of Materials and Metallurgy, Northeastern University, Shenyang 110004, China
| | - Zhan-Yong Zhao
- School of Materials and Metallurgy, Northeastern University, Shenyang 110004, China
| | - Huinan Liu
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; Materials Science & Engineering Program, University of California, Riverside, CA 92521, USA; Stem Cell Center, University of California, Riverside, CA 92521, USA; Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
48
|
Mochizuki A, Yahata C, Takai H. Cytocompatibility of magnesium and AZ31 alloy with three types of cell lines using a direct in vitro method. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:145. [PMID: 27568216 DOI: 10.1007/s10856-016-5762-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/02/2016] [Indexed: 05/24/2023]
Abstract
Magnesium alloys have been investigated by many researchers as a new absorbable biomaterial owing to their excellent degradability with non-maleficence or low-maleficence in living tissues. In the present work, the in vitro cytocompatibility of an Magnesium alloy was investigated by culturing cells directly on it. Investigations were carried out in terms of the cell viability along with the use of scanning electron microscopy to observe its morphology. The cell lines used were derived from fibroblast, endothelial, and smooth muscle cells. Pure magnesium and AZ31 alloy composed of magnesium (96 %), aluminum (3 %), and zinc (1 %) were adopted as models. The viability of cells on the metal samples and on the margin area of a multi-well plate was investigated. For direct culturing on metal, a depression in the viability and morphologically stressed cells were observed. In addition, the cell viability was also depressed for the margin area. To clarify the factors causing the negative effects, the amount of eluted metal ions and pH changes in the medium because of the erosion of the Magnesium samples were investigated, together with the cytotoxicity of sole metal ions corresponding to the composition of the metals. It was found that Mg(2+), Zn(2+), and Al(3+) ions were less toxic at the investigated concentrations, and that these factors will not produce negative effects on cells. Consequently, these factors cannot fully explain the results.
Collapse
Affiliation(s)
- Akira Mochizuki
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Shimokasuya 143, Isehara, Kanagawa, 259-1292, Japan.
| | - Chie Yahata
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Shimokasuya 143, Isehara, Kanagawa, 259-1292, Japan
| | - Hung Takai
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Shimokasuya 143, Isehara, Kanagawa, 259-1292, Japan
| |
Collapse
|
49
|
Tian Q, Deo M, Rivera-Castaneda L, Liu H. Cytocompatibility of Magnesium Alloys with Human Urothelial Cells: A Comparison of Three Culture Methodologies. ACS Biomater Sci Eng 2016; 2:1559-1571. [PMID: 33440591 DOI: 10.1021/acsbiomaterials.6b00325] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnesium (Mg) is a biodegradable metallic material, which has shown great potential for medical device applications. In this study, human urothelial cells (HUCs) were cultured in vitro with Mg-based substrates to investigate their cytocompatibility for potential urological device applications. Three different in vitro culture methodologies were explored to mimic different in vivo conditions, in an attempt to establish standard methods of evaluating cytocompatibility of Mg-based biomaterials for urological device applications. Direct culture is a suitable in vitro method when it is important to evaluate direct cell attachment on the biomaterial surfaces. Direct exposure culture is a desirable in vitro method for investigating the response of well-established cells in the body with newly implanted biomaterials. The exposure culture method is appropriate for evaluating cell-biomaterial interactions in the same environment, where they are not in direct contact with each other. The results showed differences in HUC behaviors with the same Mg-based substrates when different culture methods were used. The Mg-based substrates inhibited the HUC viability with direct contact at the cell-material interface in direct culture and direct exposure culture. The faster degrading Mg alloys containing yttrium reduced HUC density in direct culture, direct exposure culture, and exposure culture. The major soluble degradation products of Mg-based materials reduced HUC density significantly when the pH increased to 8.6 and above or the Mg2+ ion concentration reached 10 mM and above. Mg-based biomaterials, especially the slower degrading alloys such as AZ31, should be further studied to determine their potential to be used for bioresorbable urological devices.
Collapse
Affiliation(s)
- Qiaomu Tian
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Michael Deo
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Laura Rivera-Castaneda
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Huinan Liu
- Department of Bioengineering, University of California, Riverside, California 92521, United States.,Material Science & Engineering Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
50
|
Nidadavolu EPS, Feyerabend F, Ebel T, Willumeit-Römer R, Dahms M. On the Determination of Magnesium Degradation Rates under Physiological Conditions. MATERIALS 2016; 9:ma9080627. [PMID: 28773749 PMCID: PMC5509045 DOI: 10.3390/ma9080627] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 01/28/2023]
Abstract
The current physiological in vitro tests of Mg degradation follow the procedure stated according to the ASTM standard. This standard, although useful in predicting the initial degradation behavior of an alloy, has its limitations in interpreting the same for longer periods of immersion in cell culture media. This is an important consequence as the alloy's degradation is time dependent. Even if two different alloys show similar corrosion rates in a short term experiment, their degradation characteristics might differ with increased immersion times. Furthermore, studies concerning Mg corrosion extrapolate the corrosion rate from a single time point measurement to the order of a year (mm/y), which might not be appropriate because of time dependent degradation behavior. In this work, the above issues are addressed and a new methodology of performing long-term immersion tests in determining the degradation rates of Mg alloys was put forth. For this purpose, cast and extruded Mg-2Ag and powder pressed and sintered Mg-0.3Ca alloy systems were chosen. DMEM Glutamax +10% FBS (Fetal Bovine Serum) +1% Penicillin streptomycin was used as cell culture medium. The advantages of such a method in predicting the degradation rates in vivo deduced from in vitro experiments are discussed.
Collapse
Affiliation(s)
- Eshwara Phani Shubhakar Nidadavolu
- Division Metallic Biomaterials, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| | - Frank Feyerabend
- Division Metallic Biomaterials, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| | - Thomas Ebel
- Division Metallic Biomaterials, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| | - Regine Willumeit-Römer
- Division Metallic Biomaterials, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| | - Michael Dahms
- Materials Technology, Hochschule Flensburg, Kanzleistraße 91-93, Flensburg 24943, Germany.
| |
Collapse
|