1
|
Nguyen TNT, Park D, Canova CT, Sangerman J, Srinivasan P, Ou RW, Barone PW, Neufeld C, Wolfrum JM, Springs SL, Sinskey AJ, Braatz RD. Perfusion-Based Production of rAAV via an Intensified Transient Transfection Process. Biotechnol Bioeng 2025; 122:1424-1440. [PMID: 40103325 PMCID: PMC12067042 DOI: 10.1002/bit.28967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/05/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Increasing demand for recombinant adeno-associated virus (rAAV)-based gene therapies necessitates increased manufacturing production. Transient transfection of mammalian cells remains the most commonly used method to produce clinical-grade rAAVs due to its ease of implementation. However, transient transfection processes are often characterized by suboptimal yields and low fractions of full-to-total capsids, both of which contribute to the high cost of goods of many rAAV-based gene therapies. Our previously developed mechanistic model for rAAV2/5 production indicated that the inadequate capsid filling is due to a temporal misalignment between viral DNA replication and capsid synthesis within the cells and the repression of later phase capsid formation by Rep proteins. We experimentally validated this prediction and showed that performing multiple, time-separated doses of plasmid increases the production of rAAV. In this study, we use the insights generated by our mechanistic model to develop an intensified process for rAAV production that combines perfusion with high cell density re-transfection. We demonstrate that performing multiple, time-separated doses at high cell density boosts both cell-specific and volumetric productivity and improves plasmid utilization when compared to a single bolus at standard operating conditions. Our results establish a new paradigm for continuously manufacturing rAAV via transient transfection that improves productivity and reduces manufacturing costs.
Collapse
Affiliation(s)
- Tam N. T. Nguyen
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Damdae Park
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Christopher T. Canova
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jose Sangerman
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Prasanna Srinivasan
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Rui Wen Ou
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Paul W. Barone
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Caleb Neufeld
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jacqueline M. Wolfrum
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Stacy L. Springs
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Anthony J. Sinskey
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Richard D. Braatz
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
2
|
Srinivasan P, Canova CT, Sha S, Nguyen TNT, Joseph J, Sangerman J, Maloney AJ, Katsikis G, Ou RW, Hong MS, Ng J, Yuan A, Antov D, Song S, Chen W, Neufeld C, Wolfrum JM, Barone PW, Sinskey AJ, Springs SL, Braatz RD. Multidose transient transfection of human embryonic kidney 293 cells modulates recombinant adeno-associated virus2/5 Rep protein expression and influences the enrichment fraction of filled capsids. Biotechnol Bioeng 2024; 121:3694-3714. [PMID: 39176568 DOI: 10.1002/bit.28828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/04/2024] [Accepted: 08/04/2024] [Indexed: 08/24/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is a commonly used in vivo gene therapy vector because of its nonpathogenicity, long-term transgene expression, broad tropism, and ability to transduce both dividing and nondividing cells. However, rAAV vector production via transient transfection of mammalian cells typically yields a low fraction of filled-to-total capsids (~1%-30% of total capsids produced). Analysis of our previously developed mechanistic model for rAAV2/5 production attributed these low fill fractions to a poorly coordinated timeline between capsid synthesis and viral DNA replication and the repression of later phase capsid formation by Rep proteins. Here, we extend the model by quantifying the expression dynamics of total Rep proteins and their influence on the key steps of rAAV2/5 production using a multiple dosing transfection of human embryonic kidney 293 (HEK293) cells. We report that the availability of preformed empty capsids and viral DNA copies per cell are not limiting to the capsid-filling reaction. However, optimal expression of Rep proteins (<240 ± 13 ag per cell) enables enrichment of the filled capsid population (>12% of total capsids/cell) upstream. Our analysis suggests increased enrichment of filled capsids via regulating the expression of Rep proteins is possible but at the expense of per cell capsid titer in a triple plasmid transfection. Our study reveals an intrinsic limitation of scaling rAAV2/5 vector genome (vg) production and underscores the need for approaches that allow for regulating the expression of Rep proteins to maximize vg titer per cell upstream.
Collapse
Affiliation(s)
- Prasanna Srinivasan
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher T Canova
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sha Sha
- Ultragenyx Pharmaceutical Inc., Novato, Cambridge, USA
| | | | - John Joseph
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jose Sangerman
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | - Rui Wen Ou
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Moo Sun Hong
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jaclyn Ng
- Stanford University School of Medicine, Stanford, California, USA
| | - Arella Yuan
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel Antov
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sally Song
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wenyu Chen
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Caleb Neufeld
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jacqueline M Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Paul W Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stacy L Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard D Braatz
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Gharatape A, Sadeghi-Abandansari H, Seifalian A, Faridi-Majidi R, Basiri M. Nanocarrier-based gene delivery for immune cell engineering. J Mater Chem B 2024; 12:3356-3375. [PMID: 38505950 DOI: 10.1039/d3tb02279j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clinical advances in genetically modified immune cell therapies, such as chimeric antigen receptor T cell therapies, have raised hope for cancer treatment. The majority of these biotechnologies are based on viral methods for ex vivo genetic modification of the immune cells, while the non-viral methods are still in the developmental phase. Nanocarriers have been emerging as materials of choice for gene delivery to immune cells. This is due to their versatile physicochemical properties such as large surface area and size that can be optimized to overcome several practical barriers to successful gene delivery. The in vivo nanocarrier-based gene delivery can revolutionize cell-based cancer immunotherapies by replacing the current expensive autologous cell manufacturing with an off-the-shelf biomaterial-based platform. The aim of this research is to review current advances and strategies to overcome the challenges in nanoparticle-based gene delivery and their impact on the efficiency, safety, and specificity of the process. The main focus is on polymeric and lipid-based nanocarriers, and their recent preclinical applications for cancer immunotherapy.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamid Sadeghi-Abandansari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
4
|
Huang X, Li X, Tay A. Advances in techniques to characterize cell-nanomaterial interactions (CNI). NANO TODAY 2024; 55:102149. [DOI: 10.1016/j.nantod.2024.102149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Lundstrom K. Viral vectors engineered for gene therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:1-41. [PMID: 37541721 DOI: 10.1016/bs.ircmb.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Gene therapy has seen major progress in recent years. Viral vectors have made a significant contribution through efficient engineering for improved delivery and safety. A large variety of indications such as cancer, cardiovascular, metabolic, hematological, neurological, muscular, ophthalmological, infectious diseases, and immunodeficiency have been targeted. Viral vectors based on adenoviruses, adeno-associated viruses, herpes simplex viruses, retroviruses including lentiviruses, alphaviruses, flaviviruses, measles viruses, rhabdoviruses, Newcastle disease virus, poxviruses, picornaviruses, reoviruses, and polyomaviruses have been used. Proof-of-concept has been demonstrated for different indications in animal models. Therapeutic efficacy has also been achieved in clinical trials. Several viral vector-based drugs have been approved for the treatment of cancer, and hematological, metabolic, and neurological diseases. Moreover, viral vector-based vaccines have been approved against COVID-19 and Ebola virus disease.
Collapse
|
6
|
Lundstrom K. Alphaviruses in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:143-168. [PMID: 37541722 DOI: 10.1016/bs.ircmb.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Alphaviruses have frequently been engineered for cancer therapy, cancer immunotherapy, and cancer vaccine development. As members of self-replicating RNA viruses, alphaviruses provide high levels of transgene expression through efficient self-amplifying of their RNA genome in host cells. Alphavirus vectors can be used as recombinant viral particles or oncolytic viruses. Alternatively, either naked or nanoparticle-encapsulated RNA and DNA replicons can be utilized. In the context of cancer prevention and treatment, antitumor, cytotoxic and suicide genes have been expressed from alphavirus vectors to provide tumor regression and tumor eradication. Moreover, immunostimulatory genes such as cytokines and chemokines have been used for cancer immunotherapy approaches. Expression of tumor antigens has been applied for cancer vaccine development. Alphavirus vectors has demonstrated tumor regression and even cure in various preclinical animal models. Immunization has elicited strong immune responses and showed protection against challenges with tumor cells in animal models. Several clinical trials have confirmed good safety and tolerability of alphaviruses in cancer patients although therapeutic efficacy will still require optimization.
Collapse
|
7
|
Wang F, Lin S, Yu Z, Wang Y, Zhang D, Cao C, Wang Z, Cui D, Chen D. Recent advances in microfluidic-based electroporation techniques for cell membranes. LAB ON A CHIP 2022; 22:2624-2646. [PMID: 35775630 DOI: 10.1039/d2lc00122e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electroporation is a fundamental technique for applications in biotechnology. To date, the ongoing research on cell membrane electroporation has explored its mechanism, principles and potential applications. Therefore, in this review, we first discuss the primary electroporation mechanism to help establish a clear framework. Within the context of its principles, several critical terms are highlighted to present a better understanding of the theory of aqueous pores. Different degrees of electroporation can be used in different applications. Thus, we discuss the electric factors (shock strength, shock duration, and shock frequency) responsible for the degree of electroporation. In addition, finding an effective electroporation detection method is of great significance to optimize electroporation experiments. Accordingly, we summarize several primary electroporation detection methods in the following sections. Finally, given the development of micro- and nano-technology has greatly promoted the innovation of microfluidic-based electroporation devices, we also present the recent advances in microfluidic-based electroporation devices. Also, the challenges and outlook of the electroporation technique for cell membrane electroporation are presented.
Collapse
Affiliation(s)
- Fei Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Zixian Yu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Yanpu Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Di Zhang
- Centre for Advanced Electronic Materials and Devices (AEMD), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chengxi Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
| | - Zhigang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| |
Collapse
|
8
|
Kumar R. Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis? ACS APPLIED BIO MATERIALS 2022; 5:2507-2535. [PMID: 35642794 DOI: 10.1021/acsabm.2c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite rapid advances in molecular biology, particularly in site-specific genome editing technologies, such as CRISPR/Cas9 and base editing, financial and logistical challenges hinder a broad population from accessing and benefiting from gene therapy. To improve the affordability and scalability of gene therapy, we need to deploy chemically defined, economical, and scalable materials, such as synthetic polymers. For polymers to deliver nucleic acids efficaciously to targeted cells, they must optimally combine design attributes, such as architecture, length, composition, spatial distribution of monomers, basicity, hydrophilic-hydrophobic phase balance, or protonation degree. Designing polymeric vectors for specific nucleic acid payloads is a multivariate optimization problem wherein even minuscule deviations from the optimum are poorly tolerated. To explore the multivariate polymer design space rapidly, efficiently, and fruitfully, we must integrate parallelized polymer synthesis, high-throughput biological screening, and statistical modeling. Although materiomics approaches promise to streamline polymeric vector development, several methodological ambiguities must be resolved. For instance, establishing a flexible polymer ontology that accommodates recent synthetic advances, enforcing uniform polymer characterization and data reporting standards, and implementing multiplexed in vitro and in vivo screening studies require considerable planning, coordination, and effort. This contribution will acquaint readers with the challenges associated with materiomics approaches to polymeric gene delivery and offers guidelines for overcoming these challenges. Here, we summarize recent developments in combinatorial polymer synthesis, high-throughput screening of polymeric vectors, omics-based approaches to polymer design, barcoding schemes for pooled in vitro and in vivo screening, and identify materiomics-inspired research directions that will realize the long-unfulfilled clinical potential of polymeric carriers in gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemical & Biological Engineering, Colorado School of Mines, 1613 Illinois St, Golden, Colorado 80401, United States
| |
Collapse
|
9
|
Souri M, Bagherzadeh MA, Jahromi MAM, Mohammad-Beigi H, Abdoli A, Mir H, Roustazadeh A, Pirestani M, Zangabad PS, Kiani J, Bakhshayesh A, Jahani M, Joghataei MT, Karimi M. Poly-L-Lysine/Hyaluronan Nanocarriers As a Novel Nanosystem for Gene Delivery. J Microsc 2022; 287:32-44. [PMID: 35443072 DOI: 10.1111/jmi.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
The present research comes up with a novel DNA-loaded poly-l-lysine (PLL) / hyaluronan (HA) nanocarrier (DNA-loaded PLL/HA NCs) for gene delivery applications, as a promising candidate for gene delivery into diverse cells. A straightforward approach was employed to prepare such a nanosystem through masking DNA-loaded PLL molecules by HA. Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), field emission-scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) were used to analyze the interaction of the molecules as well as the physicochemical properties of the NCs. The NCs showed a negative charge of -24 ± 3 mV, with an average size of 138 ± 6 nm, in a ellipsoid-shape with smooth surfaces. The DNA loading efficiency (LE) measured by DNA absorbance was around 95 %. The MTT assay showed that the developed NCs are non-toxic to the cells. Furthermore,the uptake of the DNA-loaded PLL/HA NCs by the human embryonic kidney (HEK)-293T cells was evaluated by a flow cytometry method, and demonstrated high potential cellular uptake over 90% for transferring the gene to HEK-293T cells at the optimized conditions. Therefore, the DNA-loaded PLL/HA NCs are the potent strategy for developing nanosystems for gene delivery applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Masoumeh Souri
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | | | - Mirza Ali Mofazzal Jahromi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.,Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.,Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hossein Mohammad-Beigi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Amir Abdoli
- Department of Parasitology, and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.,Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hamed Mir
- Department of Biochemistry and Nutrition, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Abazar Roustazadeh
- Department of Biochemistry and Nutrition, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Majid Pirestani
- Parasitology and Entomology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parham Sahandi Zangabad
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Jahani
- Department of Physics, Sharif University of Technology, Tehran, Iran.,Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Distasio N, Dierick F, Ebrahimian T, Tabrizian M, Lehoux S. Design and development of Branched Poly(ß-aminoester) nanoparticles for Interleukin-10 gene delivery in a mouse model of atherosclerosis. Acta Biomater 2022; 143:356-371. [PMID: 35257950 DOI: 10.1016/j.actbio.2022.02.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/01/2022]
Abstract
Atherosclerosis progression is a result of chronic and non-resolving inflammation, effective treatments for which still remain to be developed. We designed and developed branched poly(ß-amino ester) nanoparticles (NPs) containing plasmid DNA encoding IL-10, a potent anti-inflammatory cytokine to atherosclerosis. The NPs (NP-VHPK) are functionalized with a targeting peptide (VHPK) specific for VCAM-1, which is overexpressed by endothelial cells at sites of atherosclerotic plaque. The anionic coating affords NP-VHPK with significantly lower toxicity than uncoated NPs in both endothelial cells and red blood cells (RBCs). Following injection of NP-VHPK in ApoE-/- mice, Cy5-labelled IL-10 significantly accumulates in both whole aortas and aortic sinus sections containing plaque compared to injection with a non-targeted control. Furthermore, IL-10 gene delivery results in an attenuation of inflammation locally at the plaque site. NP-VHPK may thus have the potential to reduce the inflammatory component of atherosclerosis in a safe and effective manner. STATEMENT OF SIGNIFICANCE: Atherosclerosis is a chronic inflammatory disease that results in the formation of lipid-laden plaques within vascular walls. Although treatments using drugs and antibodies are now beginning to address the inflammation in atherosclerosis, neither is sufficient for long-term therapy. In this paper, we introduce a strategy to deliver genes encoding the anti-inflammatory protein interleukin-10 (IL-10) in vivo. We showed that Branched Poly(ß-aminoester) carrying the IL-10 gene are able to localize specifically at the plaque via surface-functionalized targeting moieties against inflamed VCAM-1 and/or ICAM-1 and to facilitate gene transcription by ECs to increase the local concentration of the IL-10 within the plaque. To date, there is no report involving non-viral nanotechnology to provide gene-based therapies for atherosclerosis.
Collapse
|
11
|
Peeler DJ, Yen A, Luera N, Stayton PS, Pun SH. Lytic Polyplex Vaccines Enhance Antigen‐Specific Cytotoxic T Cell Response through Induction of Local Cell Death. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- David J. Peeler
- Department of Bioengineering University of Washington Seattle WA 98195 USA
| | - Albert Yen
- Department of Bioengineering University of Washington Seattle WA 98195 USA
| | - Nicholas Luera
- Department of Bioengineering University of Washington Seattle WA 98195 USA
| | - Patrick S. Stayton
- Department of Bioengineering University of Washington Seattle WA 98195 USA
| | - Suzie H. Pun
- Department of Bioengineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
12
|
Kansara VS, Cooper M, Sesenoglu-Laird O, Muya L, Moen R, Ciulla TA. Suprachoroidally Delivered DNA Nanoparticles Transfect Retina and Retinal Pigment Epithelium/Choroid in Rabbits. Transl Vis Sci Technol 2020; 9:21. [PMID: 33364076 PMCID: PMC7745627 DOI: 10.1167/tvst.9.13.21] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose This study evaluated ocular tolerability and transfectability of nonviral DNA nanoparticles (DNPs) after microneedle-based suprachoroidal (SC) administration, in comparison to subretinal (SR) administration. Methods The DNPs consisted of a single copy of plasmid DNA with a polyubiquitin C/luciferase transcriptional cassette compacted with 10 kDa PEG-substituted lysine 30-mer peptides (CK30PEG10k). New Zealand White rabbits (n = 4 per group) received a unilateral SC injection (0.1 mL via a microneedle technique) of ellipsoid-shaped DNPs, rod-shaped DNPs, or saline (negative control). A cohort of rabbits (n = 4) also received a single unilateral SR injection (0.05 mL via a transvitreal approach) of rod-shaped DNPs. At day 7, luciferase activity was measured in the retina and retinal pigment epithelium (RPE)–choroid via bioluminescence assay. A cohort of rabbits received a SC injection of analogous DNPs to assess spread of DNP injectate in the suprachoroidal space (SCS) via optical coherent tomography and histology. Results Suprachoroidal injection of DNPs resulted in reversible opening of the SCS circumferentially and posteriorly and was generally well tolerated, with no significant ocular examination score changes, intraocular pressure abnormalities, or changes in electroretinography amplitudes on day 7 compared to the baseline. High luciferase activity was observed in the retina and RPE-choroid of eyes that received SC DNPs (rod and ellipsoid shape) and SR DNPs (rod shape) compared to controls. The mean luciferase activity in RPE-choroid and retina was comparable between SC and SR administrations. Transfection in the RPE-choroid was approximately 10-fold higher than in the retina after either SC or SR administration of DNPs. Conclusions Suprachoroidal and SR administration of DNPs resulted in comparable transfection of retina and RPE-choroid. Translational Relevance Suprachoroidal delivery of DNPs offers the potential to precisely target chorioretinal tissues while avoiding surgical risks associated with SR injection, and it may offer an office-based nonsurgical gene therapy option for the treatment of retinal diseases.
Collapse
Affiliation(s)
| | - Mark Cooper
- Copernicus Therapeutics, Inc., Cleveland, OH, USA
| | | | - Leroy Muya
- Clearside Biomedical, Inc., Alpharetta, GA, USA
| | - Robert Moen
- Copernicus Therapeutics, Inc., Cleveland, OH, USA
| | | |
Collapse
|
13
|
Ruiz-Garcia H, Alvarado-Estrada K, Krishnan S, Quinones-Hinojosa A, Trifiletti DM. Nanoparticles for Stem Cell Therapy Bioengineering in Glioma. Front Bioeng Biotechnol 2020; 8:558375. [PMID: 33365304 PMCID: PMC7750507 DOI: 10.3389/fbioe.2020.558375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Gliomas are a dismal disease associated with poor survival and high morbidity. Current standard treatments have reached a therapeutic plateau even after combining maximal safe resection, radiation, and chemotherapy. In this setting, stem cells (SCs) have risen as a promising therapeutic armamentarium, given their intrinsic tumor homing as well as their natural or bioengineered antitumor properties. The interplay between stem cells and other therapeutic approaches such as nanoparticles holds the potential to synergize the advantages from the combined therapeutic strategies. Nanoparticles represent a broad spectrum of synthetic and natural biomaterials that have been proven effective in expanding diagnostic and therapeutic efforts, either used alone or in combination with immune, genetic, or cellular therapies. Stem cells have been bioengineered using these biomaterials to enhance their natural properties as well as to act as their vehicle when anticancer nanoparticles need to be delivered into the tumor microenvironment in a very precise manner. Here, we describe the recent developments of this new paradigm in the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
14
|
Iqbal S, Qu Y, Dong Z, Zhao J, Rauf Khan A, Rehman S, Zhao Z. Poly (β‐amino esters) based potential drug delivery and targeting polymer; an overview and perspectives (review). Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Wey K, Epple M. Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm). JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:117. [PMID: 33247365 PMCID: PMC7695662 DOI: 10.1007/s10856-020-06449-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasmall metallic nanoparticles show an efficient autofluorescence after excitation in the UV region, combined with a low degree of fluorescent bleaching. Thus, they can be used as fluorescent labels for polymer nanoparticles which are frequently used for drug delivery. A versatile water-in-oil-in-water emulsion-evaporation method was developed to load poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles with autofluorescent ultrasmall gold and silver/gold nanoparticles (diameter 2 nm). The metallic nanoparticles were prepared by reduction of tetrachloroauric acid with sodium borohydride and colloidally stabilised with 11-mercaptoundecanoic acid. They were characterised by UV-Vis and fluorescence spectroscopy, showing a large Stokes shift of about 370 nm with excitation maxima at 250/270 nm and emission maxima at 620/640 nm for gold and silver/gold nanoparticles, respectively. The labelled PLGA nanoparticles (140 nm) were characterised by dynamic light scattering (DLS), scanning electron microscopy (SEM), and UV-Vis and fluorescence spectroscopy. Their uptake by HeLa cells was followed by confocal laser scanning microscopy. The metallic nanoparticles remained inside the PLGA particle after cellular uptake, demonstrating the efficient encapsulation and the applicability to label the polymer nanoparticle. In terms of fluorescence, the metallic nanoparticles were comparable to fluorescein isothiocyanate (FITC).
Collapse
Affiliation(s)
- Karolin Wey
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany.
| |
Collapse
|
16
|
Jérôme V, Synatschke CV, Freitag R. Transient Destabilization of Biological Membranes Contributes to the Superior Performance of Star-Shaped PDMAEMA in Delivering pDNA. ACS OMEGA 2020; 5:26640-26654. [PMID: 33110991 PMCID: PMC7581230 DOI: 10.1021/acsomega.0c03367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Nonviral DNA vectors are promising alternatives to viral ones. Their use in DNA medicine is limited by an inability to transfect, for example, nondividing or suspension cells. In recent years, star-shaped synthetic polycationic vectors, so called "Nanostars", have shown some promise in this regard, at least when compared to the "gold standard" in nonviral vectors, namely, linear poly(ethyleneimine) (l-PEI). It has been hypothesized that an ability to transiently destabilize cellular membranes is partially responsible for the phenomenon. This hypothesis is investigated here, taking human leukemia suspension cells (Jurkat cells) as an example. Contrary to l-PEI, the Nanostars promote the cellular uptake of small, normally membrane-impermeant molecules (trypan blue and propidium iodide) as well as that of fluorescent polystyrene beads (average diameter 100 nm). Since Nanostars, but not l-PEI, are apparently able to deliver DNA to nuclei of nondividing cells, nuclear uptake is, in addition, investigated with isolated cell nuclei. Our results provide evidence that Nanostars are more efficient than l-PEI in increasing the nuclear membrane association/permeability, allowing accumulation of their cargo on/in the nucleus.
Collapse
Affiliation(s)
- Valérie Jérôme
- Process Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany
| | | | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
17
|
DNA unchained: two assays to discover and study inhibitors of the DNA clustering function of barrier-to-autointegration factor. Sci Rep 2020; 10:12301. [PMID: 32704141 PMCID: PMC7378220 DOI: 10.1038/s41598-020-69246-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022] Open
Abstract
The protein barrier-to-autointegration factor (BAF) and its interaction partners, the LEM (LAP2B, emerin, MAN1)-domain proteins, constitute a powerful cytoplasmic DNA defense mechanism. Invading DNA molecules are quickly bound by the BAF system and trapped in membrane compartments. This decreases the nuclear uptake of DNA from the cytoplasm. Inhibition of the BAF system is therefore expected to enhance the efficacy of non-viral DNA transfection agents. In this study, we introduced a protocol for the recombinant expression of soluble BAF and developed two ELISA-type assays to discover small molecule inhibitors of BAF-dependent DNA retention by high throughput screening (HTS). The proton pump inhibitor rabeprazole as well as three compounds of the Maybridge library were identified as inhibitors of the LEM-BAF-DNA interaction chain. The inhibition was based on adduct formation with BAF cysteine residues. An enhancing effect of the compounds on cell culture transfection, however, was not observed, which may be attributed to the reducing environment of the cytoplasm that prevents the adduct formation with BAF cysteine residues. The novel assays developed here can provide new tools to further study the biological functions of the BAF system, and may lead to the identification of suitable BAF inhibitors in future HTS campaigns.
Collapse
|
18
|
Kollenda S, Kopp M, Wens J, Koch J, Schulze N, Papadopoulos C, Pöhler R, Meyer H, Epple M. A pH-sensitive fluorescent protein sensor to follow the pathway of calcium phosphate nanoparticles into cells. Acta Biomater 2020; 111:406-417. [PMID: 32439614 DOI: 10.1016/j.actbio.2020.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/21/2020] [Accepted: 05/12/2020] [Indexed: 01/04/2023]
Abstract
Calcium phosphate nanoparticles (100 nm) were fluorescently labelled with poly(ethyleneimine) (PEIATTO490LS; red fluorescence). They were loaded with a Tandem fusion protein consisting of mRFP1-eGFP (red and green fluorescence in the same molecule)that acts as smart biological pH sensor to trace nanoparticles inside cells. Its fluorescence is also coupled to the structural integrity of the protein, i.e. it is also a label for a successful delivery of a functional protein into the cell. At pH 7.4, the fluorescence of both proteins (red and green) is detectable. At a pH of 4.5-5 inside the lysosomes, the green fluorescence is quenched due to the protonation of the eGFP chromophore, but the pH-independent red fluorescence of mRFP1 remains. The nanoparticles were taken up by cells (cell lines: HeLa, Caco-2 and A549) via endocytic pathways and then directed to lysosomes. Time-resolved confocal laser scanning microscopy confirmed mRFP1 and nanoparticles co-localizing with lysosomes. The fluorescence of eGFP was only detectable outside lysosomes, i.e. most likely inside early endosomes or at the cell membrane during the uptake, indicating the neutral pH at these locations. The Tandem fusion protein provides a versatile platform to follow the intracellular pathway of bioactive nanocarriers, e.g. therapeutic proteins. The transfection with a Tandem-encoding plasmid by calcium phosphate nanoparticles led to an even intracellular protein distribution in cytosol and nucleoplasm, i.e. very different from direct protein uptake. Neither dissolved protein nor dissolved plasmid DNA were taken up by the cells, underscoring the necessity for a suitable carrier like a nanoparticle. STATEMENT OF SIGNIFICANCE: A pH-sensitive protein ("tandem") was used to follow the pathway of calcium phosphate nanoparticles. This protein consists of a pH-sensitive fluorophore (eGFP; green) and a pH-independent fluorophore (mRFP1; red). This permits to follow the pathway of a nanoparticle inside a cell. At a low pH inside an endolysosome, the green fluorescence vanishes but the red fluorescence persists. This is also a very useful model for the delivery of therapeutic proteins into cells. The delivery by nanoparticles was compared with the protein expression after cell transfection with plasmid DNA encoding for the tandem protein. High-resolution image analysis gave quantitative data on the intracellular protein distribution.
Collapse
|
19
|
Routkevitch D, Sudhakar D, Conge M, Varanasi M, Tzeng SY, Wilson DR, Green JJ. Efficiency of Cytosolic Delivery with Poly(β-amino ester) Nanoparticles is Dependent on the Effective p Ka of the Polymer. ACS Biomater Sci Eng 2020; 6:3411-3421. [PMID: 33463158 DOI: 10.1021/acsbiomaterials.0c00271] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanism by which cationic polymers containing titratable amines mediate effective endosomal escape and cytosolic delivery of nucleic acids is not well understood despite the decades of research devoted to these materials. Here, we utilize multiple assays investigating the endosomal escape step associated with plasmid delivery by polyethylenimine (PEI) and poly(β-amino esters) (PBAEs) to improve the understanding of how these cationic polymers enable gene delivery. To probe the role of these materials in facilitating endosomal escape, we utilized vesicle membrane leakage and extracellular pH modulation assays to demonstrate the influence of polymer buffering capacity and effective pKa on the delivery of the plasmid DNA. Our results demonstrate that transfection with PBAEs is highly sensitive to the effective pKa of the overall polymer, which has broad implications for transfection. In more acidic environments, PBAE-mediated transfection was inhibited, while PEI was relatively unaffected. In neutral to basic environments, PBAEs have high buffering capacities that led to dramatically improved transfection efficacy. The cellular uptake of polymeric nanoparticles overall was unchanged as a function of pH, indicating that microenvironmental acidity was important for downstream intracellular delivery efficiency. Overall, this study motivates the use of polymer chemical characteristics, such as effective pKa values, to more efficiently evaluate new polymeric materials for enhanced intracellular delivery characteristics.
Collapse
Affiliation(s)
- Denis Routkevitch
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Deepti Sudhakar
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Marranne Conge
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Mahita Varanasi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - David R Wilson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Materials Science and Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Oncology and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
20
|
Polyplexes for gene and nucleic acid delivery: Progress and bottlenecks. Eur J Pharm Sci 2020; 150:105358. [PMID: 32360232 DOI: 10.1016/j.ejps.2020.105358] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Gene and nucleic acid delivery constitute a huge biological challenge and several attempts have been made by research laboratories to address this issue. Cationic polymers and cationic lipids (positively charged carriers) can be utilized for the transport of these biomolecules. Polyplexes (PPs) are interpolyelectrolyte complexes which are spontaneously formed through the electrostatic condensation between nucleic acid and a cationic polymer. PPs are capable of high-density payload condensation leading to cell internalization and subsequent protection from enzymatic degradation. Most cationic polymers can cross extracellular barriers, but it is more challenging to overcome intracellular barriers (efficient disassembly and endosomal escape). In this review, the use of PPs for gene and nucleic acid delivery is discussed.
Collapse
|
21
|
Le Guen YT, Le Gall T, Midoux P, Guégan P, Braun S, Montier T. Gene transfer to skeletal muscle using hydrodynamic limb vein injection: current applications, hurdles and possible optimizations. J Gene Med 2020; 22:e3150. [PMID: 31785130 DOI: 10.1002/jgm.3150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 11/06/2022] Open
Abstract
Hydrodynamic limb vein injection is an in vivo locoregional gene delivery method. It consists of administrating a large volume of solution containing nucleic acid constructs in a limb with both blood inflow and outflow temporarily blocked using a tourniquet. The fast, high pressure delivery allows the musculature of the whole limb to be reached. The skeletal muscle is a tissue of choice for a variety of gene transfer applications, including gene therapy for Duchenne muscular dystrophy or other myopathies, as well as for the production of antibodies or other proteins with broad therapeutic effects. Hydrodynamic limb vein delivery has been evaluated with success in a large range of animal models. It has also proven to be safe and well-tolerated in muscular dystrophy patients, thus supporting its translation to the clinic. However, some possible limitations may occur at different steps of the delivery process. Here, we have highlighted the interests, bottlenecks and potential improvements that could further optimize non-viral gene transfer following hydrodynamic limb vein injection.
Collapse
Affiliation(s)
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, France
| | - Philippe Guégan
- Laboratoire de chimie des polymères, Sorbonne Université, CNRS UMR 8232, UPMC Paris 06, F-75005, Paris, France
| | - Serge Braun
- AFM Telethon, 1 rue de l'Internationale, BP59, 91002 Evry, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France.,Service de Génétique Médicale et Biologie de la Reproduction, Centre de référence des maladies rares 'Maladies neuromusculaires', CHRU de Brest, F-29200, Brest, France
| |
Collapse
|
22
|
Qu M, Kim HJ, Zhou X, Wang C, Jiang X, Zhu J, Xue Y, Tebon P, Sarabi SA, Ahadian S, Dokmeci MR, Zhu S, Gu Z, Sun W, Khademhosseini A. Biodegradable microneedle patch for transdermal gene delivery. NANOSCALE 2020; 12:16724-16729. [DOI: 10.1039/d0nr02759f] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A gelatin methacryloyl based microneedle patch has been developed for transdermal gene delivery both in vitro and in vivo.
Collapse
|
23
|
Peng L, Wagner E. Polymeric Carriers for Nucleic Acid Delivery: Current Designs and Future Directions. Biomacromolecules 2019; 20:3613-3626. [DOI: 10.1021/acs.biomac.9b00999] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Cordeiro RA, Serra A, Coelho JF, Faneca H. Poly(β-amino ester)-based gene delivery systems: From discovery to therapeutic applications. J Control Release 2019; 310:155-187. [DOI: 10.1016/j.jconrel.2019.08.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/29/2022]
|
25
|
Mishra B, Wilson DR, Sripathi SR, Suprenant MP, Rui Y, Wahlin KJ, Berlinicke CA, Green JJ, Zack DJ. A combinatorial library of biodegradable polyesters enables non-viral gene delivery to post-mitotic human stem cell-derived polarized RPE monolayers. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 6:273-285. [PMID: 33732871 PMCID: PMC7962803 DOI: 10.1007/s40883-019-00118-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/16/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022]
Abstract
Safe and effective delivery of DNA to post-mitotic cells, especially highly differentiated cells, remains a challenge despite significant progress in the development of gene delivery tools. Biodegradable polymeric nanoparticles (NPs) offer an array of advantages for gene delivery over viral vectors due to improved safety, carrying capacity, ease of manufacture, and cell-type specificity. Here we demonstrate the use of a high-throughput screening (HTS) platform to synthesize and screen a library of 148 biodegradable polymeric nanoparticles, successfully identifying structures that enable efficient transfection of human pluripotent stem cell differentiated human retinal pigment epithelial (RPE) cells with minimal toxicity. These NPs can deliver plasmid DNA (pDNA) to RPE monolayers more efficiently than leading commercially available transfection reagents. Novel synthetic polymers are described that enable high efficacy non-viral gene delivery to hard-to-transfect polarized human RPE monolayers, enabling gene loss- and gain-of-function studies of cell signaling, developmental, and disease-related pathways. One new synthetic polymer in particular, 3,3'-iminobis(N,N-dimethylpropylamine)-end terminated poly(1,5-pentanediol diacrylate-co-3 amino-1-propanol) (5-3-J12), was found to form self-assembled nanoparticles when mixed with plasmid DNA that transfect a majority of these human post-mitotic cells with minimal cytotoxicity. The platform described here can be utilized as an enabling technology for gene transfer to human primary and stem cell-derived cells, which are often fragile and resistant to conventional gene transfer approaches.
Collapse
Affiliation(s)
- Bibhudatta Mishra
- Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - David R. Wilson
- Biomedical Engineering, Johns Hopkins University, Baltimore, 21231, United States
- Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, MD 21231, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21231, United States
| | - Srinivas R. Sripathi
- Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Mark P. Suprenant
- Biomedical Engineering, Johns Hopkins University, Baltimore, 21231, United States
- Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, MD 21231, United States
| | - Yuan Rui
- Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
- Biomedical Engineering, Johns Hopkins University, Baltimore, 21231, United States
- Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, MD 21231, United States
| | - Karl J. Wahlin
- Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Cynthia A. Berlinicke
- Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Jordan J. Green
- Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
- Biomedical Engineering, Johns Hopkins University, Baltimore, 21231, United States
- Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, MD 21231, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21231, United States
- Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
- Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21231, United States
- Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Donald J. Zack
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21231, United States
- Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
- Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
- Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| |
Collapse
|
26
|
Mukalel AJ, Riley RS, Zhang R, Mitchell MJ. Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy. Cancer Lett 2019; 458:102-112. [PMID: 31100411 PMCID: PMC6613653 DOI: 10.1016/j.canlet.2019.04.040] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
Immunotherapy has recently emerged as a powerful tool for cancer treatment. Early clinical successes from cancer immunotherapy have led to a growing list of FDA approvals, and many new therapies are in clinical and preclinical development. Nucleic acid therapeutics, including DNA, mRNA, and genome editing systems, hold significant potential as a form of immunotherapy due to its robust use in cancer vaccination, adoptive T-cell therapy, and gene regulation. However, these therapeutics must overcome numerous delivery obstacles to be successful, including rapid in vivo degradation, poor uptake into target cells, required nuclear entry, and potential in vivo toxicity in healthy cells and tissues. Nanoparticle delivery systems have been engineered to overcome several of these barriers as a means to safely and effectively deliver nucleic acid therapeutics to immune cells. In this Review, we discuss the applications of nucleic acid therapeutics in cancer immunotherapy, and we detail how nanoparticle platforms have been designed to deliver mRNA, DNA, and genome editing systems to enhance the potency and safety of these therapeutics.
Collapse
Affiliation(s)
- Alvin J Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel S Riley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Fornaguera C, Castells-Sala C, Lázaro MA, Cascante A, Borrós S. Development of an optimized freeze-drying protocol for OM-PBAE nucleic acid polyplexes. Int J Pharm 2019; 569:118612. [PMID: 31415876 DOI: 10.1016/j.ijpharm.2019.118612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/10/2019] [Accepted: 08/11/2019] [Indexed: 10/26/2022]
Abstract
Long-term stability of polyplexes used for biomedical purposes is an objective envisaged by any research group developing this kind of nanoformulations. However, since biodegradable polymers such as oligopeptide end-modified poly (β-aminoester) (OM-PBAE) are frequently used to ensure safety, and formulations are produced as aqueous dispersions, the stability of the nanoformulations is usually compromised. In this context, freeze-drying has aroused as a promising storage alternative to obtain solid nanoformulations with enhanced stability over time. Lyophilization is a challenging step that usually produces aggregation. Although some studies already achieved freeze-dried PBAE nanoparticles, none of them detailed the parameters that are critical for the success of this process. Moreover, due to the specific composition of each formulation, the critical parameters for the correct freeze-drying process need to be adjusted for each polyplex developed. In this paper, we have studied the variables that have a direct influence on the manufacturing and lyophilization of OM-PBAE nanoparticles with the aim to develop a versatile and robust freeze-drying receipt that properly preserves the library of polyplexes designed in our group, which have different pKa depending on the modification applied.
Collapse
Affiliation(s)
- C Fornaguera
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Spain
| | | | | | - A Cascante
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Spain; Sagetis-Biotech, Spain
| | - S Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Spain; Sagetis-Biotech, Spain.
| |
Collapse
|
28
|
Wilson DR, Rui Y, Siddiq K, Routkevitch D, Green JJ. Differentially Branched Ester Amine Quadpolymers with Amphiphilic and pH-Sensitive Properties for Efficient Plasmid DNA Delivery. Mol Pharm 2019; 16:655-668. [PMID: 30615464 PMCID: PMC7297465 DOI: 10.1021/acs.molpharmaceut.8b00963] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Development of highly effective nonviral gene delivery vectors for transfection of diverse cell populations remains a challenge despite utilization of both rational and combinatorial driven approaches to nanoparticle engineering. In this work, multifunctional polyesters are synthesized with well-defined branching structures via A2 + B2/B3 + C1 Michael addition reactions from small molecule acrylate and amine monomers and then end-capped with amine-containing small molecules to assess the influence of polymer branching structure on transfection. These Branched poly(Ester Amine) Quadpolymers (BEAQs) are highly effective for delivery of plasmid DNA to retinal pigment epithelial cells and demonstrate multiple improvements over previously reported leading linear poly(beta-amino ester)s, particularly for volume-limited applications where improved efficiency is required. BEAQs with moderate degrees of branching are demonstrated to be optimal for delivery under high serum conditions and low nanoparticle doses further relevant for therapeutic gene delivery applications. Defined structural properties of each polymer in the series, including tertiary amine content, correlated with cellular transfection efficacy and viability. Trends that can be applied to the rational design of future generations of biodegradable polymers are elucidated.
Collapse
|
29
|
Schlickewei C, Klatte TO, Wildermuth Y, Laaff G, Rueger JM, Ruesing J, Chernousova S, Lehmann W, Epple M. A bioactive nano-calcium phosphate paste for in-situ transfection of BMP-7 and VEGF-A in a rabbit critical-size bone defect: results of an in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:15. [PMID: 30671652 DOI: 10.1007/s10856-019-6217-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to prepare an injectable DNA-loaded nano-calcium phosphate paste that is suitable as bioactive bone substitution material. For this we used the well-known potential of calcium phosphate in bone contact and supplemented it with DNA for the in-situ transfection of BMP-7 and VEGF-A in a critical-size bone defect. 24 New Zealand white rabbits were randomly divided into two groups: One group with BMP-7- and VEGF-A-encoding DNA on calcium phosphate nanoparticles and a control group with calcium phosphate nanoparticles only. The bone defect was created at the proximal medial tibia and filled with the DNA-loaded calcium phosphate paste. As control, a bone defect was filled with the calcium phosphate paste without DNA. The proximal tibia was investigated 2, 4 and 12 weeks after the operation. A histomorphological analysis of the dynamic bone parameters was carried out with the Osteomeasure system. The animals treated with the DNA-loaded calcium phosphate showed a statistically significantly increased bone volume per total volume after 4 weeks in comparison to the control group. Additionally, a statistically significant increase of the trabecular number and the number of osteoblasts per tissue area were observed. These results were confirmed by radiological analysis. The DNA-loaded bone paste led to a significantly faster healing of the critical-size bone defect in the rabbit model after 4 weeks. After 12 weeks, all defects had equally healed in both groups. No difference in the quality of the new bone was found. The injectable DNA-loaded calcium phosphate paste led to a faster and more sustained bone healing and induced an accelerated bone formation after 4 weeks. The material was well integrated into the bone defect and new bone was formed on its surface. The calcium phosphate paste without DNA led to a regular healing of the critical-size bone defect, but the healing was slower than the DNA-loaded paste. Thus, the in-situ transfection with BMP-7 and VEGF-A significantly improved the potential of calcium phosphate as pasty bone substitution material.
Collapse
Affiliation(s)
- Carsten Schlickewei
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Till O Klatte
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Yasmin Wildermuth
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Georg Laaff
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes M Rueger
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes Ruesing
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Svitlana Chernousova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Wolfgang Lehmann
- Department of Trauma, Orthopaedics and Plastic Surgery, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany.
| |
Collapse
|
30
|
Liu Y, Li Y, Keskin D, Shi L. Poly(β-Amino Esters): Synthesis, Formulations, and Their Biomedical Applications. Adv Healthc Mater 2019; 8:e1801359. [PMID: 30549448 DOI: 10.1002/adhm.201801359] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/04/2018] [Indexed: 12/12/2022]
Abstract
Poly(β-amino ester) (abbreviated as PBAE or PAE) refers to a polymer synthesized from an acrylate and an amine by Michael addition and has properties inherent to tertiary amines and esters, such as pH responsiveness and biodegradability. The versatility of building blocks provides a library of polymers with miscellaneous physicochemical and mechanical properties. When used alone or together with other materials, PBAEs can be fabricated into different formulations in order to fulfill various requirements in drug delivery (for instance, gene, anticancer drugs, and antimicrobials delivery) and natural complex mimicry (nanochaperones). This progress report discusses the recent developments in design, synthesis, formulations, and applications of PBAEs in biomedical fields and provides a perspective view for the future of the PBAEs.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University Tianjin 300071 China
- Department of Biomedical EngineeringUniversity of Groningen and University Medical Center Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Yuanfeng Li
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University Tianjin 300071 China
- Department of Biomedical EngineeringUniversity of Groningen and University Medical Center Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Damla Keskin
- Department of Biomedical EngineeringUniversity of Groningen and University Medical Center Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
31
|
Lee J, Arun Kumar S, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater 2018; 80:31-47. [PMID: 30172933 PMCID: PMC7105045 DOI: 10.1016/j.actbio.2018.08.033] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
Engineering vaccine-based therapeutics for infectious diseases is highly challenging, as trial formulations are often found to be nonspecific, ineffective, thermally or hydrolytically unstable, and/or toxic. Vaccines have greatly improved the therapeutic landscape for treating infectious diseases and have significantly reduced the threat by therapeutic and preventative approaches. Furthermore, the advent of recombinant technologies has greatly facilitated growth within the vaccine realm by mitigating risks such as virulence reversion despite making the production processes more cumbersome. In addition, seroconversion can also be enhanced by recombinant technology through kinetic and nonkinetic approaches, which are discussed herein. Recombinant technologies have greatly improved both amino acid-based vaccines and DNA-based vaccines. A plateau of interest has been reached between 2001 and 2010 for the scientific community with regard to DNA vaccine endeavors. The decrease in interest may likely be attributed to difficulties in improving immunogenic properties associated with DNA vaccines, although there has been research demonstrating improvement and optimization to this end. Despite improvement, to the extent of our knowledge, there are currently no regulatory body-approved DNA vaccines for human use (four vaccines approved for animal use). This article discusses engineering DNA vaccines against infectious diseases while discussing advantages and disadvantages of each, with an emphasis on applications of these DNA vaccines. Statement of Significance This review paper summarizes the state of the engineered/recombinant DNA vaccine field, with a scope entailing “Engineering DNA vaccines against infectious diseases”. We endeavor to emphasize recent advances, recapitulating the current state of the field. In addition to discussing DNA therapeutics that have already been clinically translated, this review also examines current research developments, and the challenges thwarting further progression. Our review covers: recombinant DNA-based subunit vaccines; internalization and processing; enhancing immune protection via adjuvants; manufacturing and engineering DNA; the safety, stability and delivery of DNA vaccines or plasmids; controlling gene expression using plasmid engineering and gene circuits; overcoming immunogenic issues; and commercial successes. We hope that this review will inspire further research in DNA vaccine development.
Collapse
|
32
|
Fornaguera C, Guerra-Rebollo M, Ángel Lázaro M, Castells-Sala C, Meca-Cortés O, Ramos-Pérez V, Cascante A, Rubio N, Blanco J, Borrós S. mRNA Delivery System for Targeting Antigen-Presenting Cells In Vivo. Adv Healthc Mater 2018; 7:e1800335. [PMID: 29923337 DOI: 10.1002/adhm.201800335] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/06/2018] [Indexed: 12/13/2022]
Abstract
The encapsulation of mRNA in nanosystems as gene vaccines for immunotherapy purposes has experienced an exponential increase in recent years. Despite the many advantages envisaged within these approaches, their application in clinical treatments is still limited due to safety issues. These issues can be attributed, in part, to liver accumulation of most of the designed nanosystems and to the inability to transfect immune cells after an intravenous administration. In this context, this study takes advantage of the known versatile properties of the oligopeptide end-modified poly (β-amino esters) (OM-PBAEs) to complex mRNA and form discrete nanoparticles. Importantly, it is demonstrated that the selection of the appropriate end-oligopeptide modifications enables the specific targeting and major transfection of antigen-presenting cells (APC) in vivo, after intravenous administration, thus enabling their use for immunotherapy strategies. Therefore, with this study, it can be confirmed that OM-PBAE are appropriate systems for the design of mRNA-based immunotherapy approaches aimed to in vivo transfect APCs and trigger immune responses to fight either tumors or infectious diseases.
Collapse
Affiliation(s)
- Cristina Fornaguera
- Sagetis Biotech SL; 08017 Barcelona Spain
- Grup d'Enginyeria de Materials (GEMAT); Institut Químic de Sarrià (IQS); Universitat Ramon Llull (URL); 08017 Barcelona Spain
| | - Marta Guerra-Rebollo
- CIBER of Biomaterials; Bioengineering and Nanomedicine (CIBER-BBN); 08034 Barcelona Spain
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC); 08034 Barcelona Spain
| | | | | | - Oscar Meca-Cortés
- CIBER of Biomaterials; Bioengineering and Nanomedicine (CIBER-BBN); 08034 Barcelona Spain
| | - Victor Ramos-Pérez
- Grup d'Enginyeria de Materials (GEMAT); Institut Químic de Sarrià (IQS); Universitat Ramon Llull (URL); 08017 Barcelona Spain
| | - Anna Cascante
- Sagetis Biotech SL; 08017 Barcelona Spain
- Grup d'Enginyeria de Materials (GEMAT); Institut Químic de Sarrià (IQS); Universitat Ramon Llull (URL); 08017 Barcelona Spain
| | - Núria Rubio
- CIBER of Biomaterials; Bioengineering and Nanomedicine (CIBER-BBN); 08034 Barcelona Spain
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC); 08034 Barcelona Spain
| | - Jerónimo Blanco
- CIBER of Biomaterials; Bioengineering and Nanomedicine (CIBER-BBN); 08034 Barcelona Spain
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC); 08034 Barcelona Spain
| | - Salvador Borrós
- Sagetis Biotech SL; 08017 Barcelona Spain
- Grup d'Enginyeria de Materials (GEMAT); Institut Químic de Sarrià (IQS); Universitat Ramon Llull (URL); 08017 Barcelona Spain
- CIBER of Biomaterials; Bioengineering and Nanomedicine (CIBER-BBN); 08034 Barcelona Spain
| |
Collapse
|
33
|
Durymanov M, Reineke J. Non-viral Delivery of Nucleic Acids: Insight Into Mechanisms of Overcoming Intracellular Barriers. Front Pharmacol 2018; 9:971. [PMID: 30186185 PMCID: PMC6111240 DOI: 10.3389/fphar.2018.00971] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022] Open
Abstract
Delivery of genes, including plasmid DNAs, short interfering RNAs (siRNAs), and messenger RNAs (mRNAs), using artificial non-viral nanotherapeutics is a promising approach in cancer gene therapy. However, multiple physiological barriers upon systemic administration remain a key challenge in clinical translation of anti-cancer gene therapeutics. Besides extracellular barriers including sequestration of gene delivery nanoparticles from the bloodstream by resident organ-specific macrophages, and their poor extravasation and tissue penetration in tumors, overcoming intracellular barriers is also necessary for successful delivery of nucleic acids. Whereas for RNA delivery the endosomal barrier holds a key importance, transfer of DNA cargo additionally requires translocation into the nucleus. Better understanding of crossing membrane barriers by nucleic acid nanoformulations is essential to the improvement of current non-viral carriers. This review aims to summarize relevant literature on intracellular trafficking of non-viral nanoparticles and determine key factors toward surmounting intracellular barriers. Moreover, recent data allowed us to propose new interpretations of current hypotheses of endosomal escape mechanisms of nucleic acid nanoformulations.
Collapse
Affiliation(s)
- Mikhail Durymanov
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, United States
| | - Joshua Reineke
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
34
|
|
35
|
Roacho-Perez JA, Gallardo-Blanco HL, Sanchez-Dominguez M, Garcia-Casillas PE, Chapa-Gonzalez C, Sanchez-Dominguez CN. Nanoparticles for death‑induced gene therapy in cancer (Review). Mol Med Rep 2017; 17:1413-1420. [PMID: 29257213 DOI: 10.3892/mmr.2017.8091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/05/2017] [Indexed: 11/05/2022] Open
Abstract
Due to the high toxicity and side effects of the use of traditional chemotherapy in cancer, scientists are working on the development of alternative therapeutic technologies. An example of this is the use of death‑induced gene therapy. This therapy consists of the killing of tumor cells via transfection with plasmid DNA (pDNA) that contains a gene which produces a protein that results in the apoptosis of cancerous cells. The cell death is caused by the direct activation of apoptosis (apoptosis‑induced gene therapy) or by the protein toxic effects (toxin‑induced gene therapy). The introduction of pDNA into the tumor cells has been a challenge for the development of this therapy. The most recent implementation of gene vectors is the use of polymeric or inorganic nanoparticles, which have biological and physicochemical properties (shape, size, surface charge, water interaction and biodegradation rate) that allow them to carry the pDNA into the tumor cell. Furthermore, nanoparticles may be functionalized with specific molecules for the recognition of molecular markers on the surface of tumor cells. The binding between the nanoparticle and the tumor cell induces specific endocytosis, avoiding toxicity in healthy cells. Currently, there are no clinical protocols approved for the use of nanoparticles in death‑induced gene therapy. There are still various challenges in the design of the perfect transfection vector, however nanoparticles have been demonstrated to be a suitable candidate. This review describes the role of nanoparticles used for pDNA transfection and key aspects for their use in death‑induced gene therapy.
Collapse
Affiliation(s)
- Jorge A Roacho-Perez
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Hugo L Gallardo-Blanco
- Department of Genetics, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Margarita Sanchez-Dominguez
- Centro de Investigacion en Materiales Avanzados, S. C. (CIMAV, S.C.), Unidad Monterrey, Apodaca, Nuevo Leon 66628, Mexico
| | - Perla E Garcia-Casillas
- Universidad Autonoma de Ciudad Juarez, Institute of Engineering and Technology, Ciudad Juarez, Chihuahua 32310, Mexico
| | - Christian Chapa-Gonzalez
- Universidad Autonoma de Ciudad Juarez, Institute of Engineering and Technology, Ciudad Juarez, Chihuahua 32310, Mexico
| | - Celia N Sanchez-Dominguez
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| |
Collapse
|
36
|
Wilson DR, Sen R, Sunshine JC, Pardoll DM, Green JJ, Kim YJ. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:237-246. [PMID: 29127039 DOI: 10.1016/j.nano.2017.10.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 01/05/2023]
Abstract
Therapeutic cancer vaccines require adjuvants leading to robust type I interferon and proinflammatory cytokine responses in the tumor microenvironment to induce an anti-tumor response. Cyclic dinucleotides (CDNs), a potent Stimulator of Interferon Receptor (STING) agonist, are currently in phase I trials. However, their efficacy may be limited to micromolar concentrations due to the cytosolic residence of STING in the ER membrane. Here we utilized biodegradable, poly(beta-amino ester) (PBAE) nanoparticles to deliver CDNs to the cytosol leading to robust immune response at >100-fold lower extracellular CDN concentrations in vitro. The leading CDN PBAE nanoparticle formulation induced a log-fold improvement in potency in treating established B16 melanoma tumors in vivo when combined with PD-1 blocking antibody in comparison to free CDN without nanoparticles. This nanoparticle-mediated cytosolic delivery method for STING agonists synergizes with checkpoint inhibitors and has strong potential for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- David R Wilson
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rupashree Sen
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel C Sunshine
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jordan J Green
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Materials Science and Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Young J Kim
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Otolaryngology / Head & Neck Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
37
|
Dual-targeting nanoparticles with excellent gene transfection efficiency for gene therapy of peritoneal metastasis of colorectal cancer. Oncotarget 2017; 8:89837-89847. [PMID: 29163792 PMCID: PMC5685713 DOI: 10.18632/oncotarget.21159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/26/2017] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer has been one of the most common cancers in the worldwide. Poor patient compliance and serious side effects often associated with conventional therapy (e.g. surgery, radiation, and chemotherapy). Gene therapy may be an alternative strategy. Herein, we developed a dual-targeting nanoparticle with excellent gene transfection efficiency for gene therapy of peritoneal metastasis of colorectal cancer. This nanoparticle can facilitate efficient cellular uptake and promote penetration into nucleus. Meanwhile, this nanoparticle mediated efficient gene transfection in medium with or without serum, which significantly surpassed that of commercial transfection reagents, Lipofectamine 2000 and Lipofectamine 3000. After systemic administration, this nanoparticle loaded with hTRAIL plasmid significantly inhibited peritoneal metastasis of colorectal cancer in vivo. In conclusion, this dual-targeting nanoparticle has great potential to be a gene delivery vector for colorectal cancer therapy.
Collapse
|
38
|
Seo YE, Bu T, Saltzman WM. Nanomaterials for convection-enhanced delivery of agents to treat brain tumors. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 4:1-12. [PMID: 29333521 DOI: 10.1016/j.cobme.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanomaterials represent a promising and versatile platform for the delivery of therapeutics to the brain. Treatment of brain tumors has been a long-standing challenge in the field of neuro-oncology. The current standard of care - a multimodal approach of surgery, radiation and chemotherapy - yields only a modest therapeutic benefit for patients with malignant gliomas. A major obstacle for treatment is the failure to achieve sufficient delivery of therapeutics at the tumor site. Recent advances in local drug delivery techniques, along with the development of highly effective brain-penetrating nanocarriers, have significantly improved treatment and imaging of brain tumors in preclinical studies. The major advantage of this combined strategy is the ability to optimize local therapy, by maintaining an effective and sustained concentration of therapeutics in the brain with minimal systemic toxicity. This review highlights some of the latest developments, significant advancements and current challenges in local delivery of nanomaterials for the treatment of brain tumors.
Collapse
Affiliation(s)
- Young-Eun Seo
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Tom Bu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
39
|
Fast therapeutic DNA internalization – A high potential transfection system based on a peptide mimicking cationic lipid. Eur J Pharm Biopharm 2017; 118:38-47. [DOI: 10.1016/j.ejpb.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/21/2016] [Accepted: 12/14/2016] [Indexed: 02/08/2023]
|
40
|
Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H. Nanotherapeutic systems for local treatment of brain tumors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28544801 DOI: 10.1002/wnan.1479] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
Malignant brain tumor, including the most common type glioblastoma, are histologically heterogeneous and invasive tumors known as the most devastating neoplasms with high morbidity and mortality. Despite multimodal treatment including surgery, radiotherapy, chemotherapy, and immunotherapy, the disease inevitably recurs and is fatal. This lack of curative options has motivated researchers to explore new treatment strategies and to develop new drug delivery systems (DDSs); however, the unique anatomical, physiological, and pathological features of brain tumors greatly limit the effectiveness of conventional chemotherapy. In this context, we review the recent progress in the development of nanoparticle-based DDSs aiming to address the key challenges in transporting sufficient amount of therapeutic agents into the brain tumor areas while minimizing the potential side effects. We first provide an overview of the standard treatments currently used in the clinic for the management of brain cancers, discussing the effectiveness and limitations of each therapy. We then provide an in-depth review of nanotherapeutic systems that are intended to bypass the blood-brain barrier, overcome multidrug resistance, infiltrate larger tumorous tissue areas, and/or release therapeutic agents in a controlled manner. WIREs Nanomed Nanobiotechnol 2018, 10:e1479. doi: 10.1002/wnan.1479 This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Rami Walid Chakroun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
41
|
A Triple-Fluorophore-Labeled Nucleic Acid pH Nanosensor to Investigate Non-viral Gene Delivery. Mol Ther 2017; 25:1697-1709. [PMID: 28479046 DOI: 10.1016/j.ymthe.2017.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 01/08/2023] Open
Abstract
There is a need for new tools to better quantify intracellular delivery barriers in high-throughput and high-content ways. Here, we synthesized a triple-fluorophore-labeled nucleic acid pH nanosensor for measuring intracellular pH of exogenous DNA at specific time points in a high-throughput manner by flow cytometry following non-viral transfection. By including two pH-sensitive fluorophores and one pH-insensitive fluorophore in the nanosensor, detection of pH was possible over the full physiological range. We further assessed possible correlation between intracellular pH of delivered DNA, cellular uptake of DNA, and DNA reporter gene expression at 24 hr post-transfection for poly-L-lysine and branched polyethylenimine polyplex nanoparticles. While successful transfection was shown to clearly depend on median cellular pH of delivered DNA at the cell population level, surprisingly, on an individual cell basis, there was no significant correlation between intracellular pH and transfection efficacy. To our knowledge, this is the first reported instance of high-throughput single-cell analysis between cellular uptake of DNA, intracellular pH of delivered DNA, and gene expression of the delivered DNA. Using the nanosensor, we demonstrate that the ability of polymeric nanoparticles to avoid an acidic environment is necessary, but not sufficient, for successful transfection.
Collapse
|
42
|
Zhang Z, Guan Y, Xia T, Du J, Li T, Sun Z, Guo C. Influence of exposed magnetic nanoparticles and their application in chemiluminescence immunoassay. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Chernousova S, Epple M. Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent. Gene Ther 2017; 24:282-289. [PMID: 28218744 PMCID: PMC5442419 DOI: 10.1038/gt.2017.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/28/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
Abstract
The processing of DNA (for transfection) and short interfering RNA (siRNA; for gene silencing), introduced into HeLa cells by triple-shell calcium phosphate nanoparticles, was followed by live-cell imaging. For comparison, the commercial liposomal transfection agent Lipofectamine was used. The cells were incubated with these delivery systems, carrying either enhanced green fluorescent protein (eGFP)-encoding DNA or siRNA against eGFP. In the latter case, HeLa cells that stably expressed eGFP were used. The expression of eGFP started after 5 h in the case of nanoparticles and after 4 h in the case of Lipofectamine. The corresponding times for gene silencing were 5 h (nanoparticles) and immediately after incubation (Lipofectamine). The expression of eGFP was notably enhanced 2-3 h after cell division (mitosis). In general, the transfection and gene silencing efficiencies of the nanoparticles were lower than those of Lipofectamime, even at a substantially higher dose (factor 20) of nucleic acids. However, the cytotoxicity of the nanoparticles was lower than that of Lipofectamine, making them suitable vectors for in vivo application.
Collapse
Affiliation(s)
- S Chernousova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - M Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
44
|
Recent development of synthetic nonviral systems for sustained gene delivery. Drug Discov Today 2017; 22:1318-1335. [PMID: 28428056 DOI: 10.1016/j.drudis.2017.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022]
Abstract
Sustained gene delivery is of particular importance today because it circumvents the need for repeated therapeutic administration and provides spatial and temporal control of the release profile. Better understanding of the genetic basis of diseases and advances in gene therapy have propelled significant research on biocompatible gene carriers for therapeutic purposes. Varied biodegradable polymer-based architectures have been used to create new compositions with unique properties suitable for sustained gene delivery. This review presents the most recent advances in various polymeric systems: hydrogels, microspheres, nanospheres and scaffolds, having complex architectures to encapsulate and deliver functional genes. Through the recombination of different existing polymer systems, the multicomplex systems can be further endowed with new properties for better-targeted biomedical applications.
Collapse
|
45
|
Wilson DR, Mosenia A, Suprenant MP, Upadhya R, Routkevitch D, Meyer RA, Quinones-Hinojosa A, Green JJ. Continuous microfluidic assembly of biodegradable poly(beta-amino ester)/DNA nanoparticles for enhanced gene delivery. J Biomed Mater Res A 2017; 105:1813-1825. [PMID: 28177587 DOI: 10.1002/jbm.a.36033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/21/2016] [Accepted: 01/31/2017] [Indexed: 01/27/2023]
Abstract
Translation of biomaterial-based nanoparticle formulations to the clinic faces significant challenges including efficacy, safety, consistency and scale-up of manufacturing, and stability during long-term storage. Continuous microfluidic fabrication of polymeric nanoparticles has the potential to alleviate the challenges associated with manufacture, while offering a scalable solution for clinical level production. Poly(beta-amino esters) (PBAE)s are a class of biodegradable cationic polymers that self-assemble with anionic plasmid DNA to form polyplex nanoparticles that have been shown to be effective for transfecting cancer cells specifically in vitro and in vivo. Here, we demonstrate the use of a microfluidic device for the continuous and scalable production of PBAE/DNA nanoparticles followed by lyophilization and long term storage that results in improved in vitro efficacy in multiple cancer cell lines compared to nanoparticles produced by bulk mixing as well as in comparison to widely used commercially available transfection reagents polyethylenimine and Lipofectamine® 2000. We further characterized the nanoparticles using nanoparticle tracking analysis (NTA) to show that microfluidic mixing resulted in fewer DNA-free polymeric nanoparticles compared to those produced by bulk mixing. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1813-1825, 2017.
Collapse
Affiliation(s)
- David R Wilson
- Biomedical Engineering, Johns Hopkins University, Baltimore, 21231.,Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, 21231.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21231
| | - Arman Mosenia
- Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, 21231.,Materials Science and Engineering, Johns Hopkins University, Baltimore, 21231
| | - Mark P Suprenant
- Biomedical Engineering, Johns Hopkins University, Baltimore, 21231.,Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, 21231
| | - Rahul Upadhya
- Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, 21231
| | - Denis Routkevitch
- Biomedical Engineering, Johns Hopkins University, Baltimore, 21231.,Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, 21231
| | - Randall A Meyer
- Biomedical Engineering, Johns Hopkins University, Baltimore, 21231.,Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, 21231.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21231
| | - Alfredo Quinones-Hinojosa
- Johns Hopkins University School of Medicine, Neurosurgery, Baltimore, 21231.,Oncology, Johns Hopkins University School of Medicine, Baltimore, 21231
| | - Jordan J Green
- Biomedical Engineering, Johns Hopkins University, Baltimore, 21231.,Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, 21231.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21231.,Johns Hopkins University School of Medicine, Neurosurgery, Baltimore, 21231.,Oncology, Johns Hopkins University School of Medicine, Baltimore, 21231.,Materials Science and Engineering, Johns Hopkins University, Baltimore, 21231.,Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, 21231
| |
Collapse
|
46
|
A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance. Acta Biomater 2016; 46:129-140. [PMID: 27686038 DOI: 10.1016/j.actbio.2016.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 12/19/2022]
Abstract
By using imaging flow cytometry as a powerful statistical high-throughput technique we investigated the impact of degradation on the biological performance of trimethyl chitosan (TMC)-based nanoparticles (NPs). In order to achieve high transfection efficiencies, a precise balance between NP stability and degradation must occur. We altered the biodegradation rate of the TMC NPs by varying the degree of acetylation (DA) of the polymer (DA ranged from 4 to 21%), giving rise to NPs with different enzymatic degradation profiles. While this parameter did not affect NP size, charge or ability to protect plasmid DNA, NPs based on TMC with an intermediate DA (16%) showed the highest transfection efficiency. Subsequently, by means of a single quantitative technique, we were able to follow, for each tested formulation, major steps of the NP-mediated gene delivery process - NP cell membrane association, internalization and intracellular trafficking, including plasmid DNA transport towards the nucleus. NP cytotoxicity was also possible to determine by quantification of cell apoptosis. Overall, the obtained data revealed that the biodegradation rate of these NPs affects their intracellular trafficking and, consequently, their efficiency to transfect cells. Thus, one can use the polymer DA to modulate the NPs towards attaining different degradation rates and tune their bioactivity according to the desired application. Furthermore, this novel technical approach revealed to be a valuable tool for the initial steps of nucleic acid vector design. STATEMENT OF SIGNIFICANCE By changing the biodegradation rate of trimethyl chitosan-based nanoparticles (NPs) one was able to alter the NP ability to protect or efficiently release DNA and consequently, to modulate their intracellular dynamics. To address the influence of NP degradation rate in their transfection efficiency we took advantage of imaging flow cytometry, a high-throughput bioimaging technique, to unravel some critical aspects about NP formulation such as the distinction between internalized versus cell-associated/adsorbed NP, and even explore NP intracellular localization. Overall, our work provides novel information about the importance of vector degradation rate for gene delivery into cells, as a way to tune gene expression as a function of the desired application, and advances novel approaches to optimize nanoparticle formulation.
Collapse
|
47
|
Ebrahimian M, Hashemi M, Maleki M, Abnous K, Hashemitabar G, Ramezani M, Haghparast A. Induction of a balanced Th1/Th2 immune responses by co-delivery of PLGA/ovalbumin nanospheres and CpG ODNs/PEI-SWCNT nanoparticles as TLR9 agonist in BALB/c mice. Int J Pharm 2016; 515:708-720. [PMID: 27989827 DOI: 10.1016/j.ijpharm.2016.10.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/08/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Abstract
To develop effective and safe vaccines with reduced dose of antigen and adjuvant, intelligent delivery systems are required. Many delivery systems have been developed to enhance the biological activity of cytosine-phosphorothioate-guanine oligodeoxynucleotides (CpG ODN) as both immunotherapeutic agents and vaccine adjuvants. In this study we designed a novel CpG ODN delivery system based on single-walled carbon nanotube (SWCNT) functionalized with polyethylenimine (PEI) and alkylcarboxylated PEI (AL-PEI). The physicochemical characteristics, cytotoxicity and cellular uptake studies of these carriers were performed. All carriers were conjugated with CpG ODN followed by co-delivery with ovalbumin (OVA) encapsulated into poly (lactic-co-glycolic acid) nanospheres (PLGA NSs) to enhance the induction of immune responses. The effect of these formulations on antibody (IgG1, IgG2a) and cytokine (IL-1β, IFN-γ, IL-4) production was evaluated in an in vivo experiment. The results showed that all nano-adjuvant formulations had a strong influence in up-regulation of IFN-γ and IL-4 in parallel with high IgG1-IgG2a isotype antibody titers in mice. In particular, SWCNT-AL-PEI nano-adjuvant formulation generated a balanced Th1 and Th2 immune response with more biased toward Th1 response without exhibiting any inflammatory and toxic effects. Therefore this nano-adjuvant formulation could be used as an efficient prophylactic immune responses agent.
Collapse
Affiliation(s)
- Mahboubeh Ebrahimian
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Immunology Section, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Maleki
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Hashemitabar
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Haghparast
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Immunology Section, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|