1
|
Dehchani A, Jafari A, Shahi F. Nanogels in Biomedical Engineering: Revolutionizing Drug Delivery, Tissue Engineering, and Bioimaging. POLYM ADVAN TECHNOL 2024; 35. [DOI: 10.1002/pat.6595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/14/2024] [Indexed: 01/06/2025]
Abstract
ABSTRACTNanogels represent a significant innovation in the fields of nanotechnology and biomedical engineering, combining the properties of hydrogels and nanoparticles to create versatile platforms for drug delivery, tissue engineering, bioimaging, and other biomedical applications. These nanoscale hydrogels, typically ranging from 10 to 1000 nm, possess unique characteristics such as high water content, biocompatibility, and the ability to encapsulate both hydrophilic and hydrophobic molecules. The review explores the synthesis, structural configurations, and stimuli‐responsive nature of nanogels, highlighting their adaptability for targeted drug delivery, including across challenging barriers like the blood–brain barrier. Furthermore, the paper delves into the biomedical applications of nanogels, particularly in drug delivery systems, tissue engineering, and bioimaging, demonstrating their potential to revolutionize these fields. Despite the promising preclinical results, challenges remain in translating these technologies into clinical practice, including issues related to stability, scalability, and regulatory approval. The review concludes by discussing future perspectives, emphasizing the need for further research to optimize the properties and applications of nanogels, ultimately aiming to enhance their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Atieh Janmaleki Dehchani
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Aliakbar Jafari
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Farangis Shahi
- Department of Chemical Engineering Amirkabir University of Technology Tehran Iran
| |
Collapse
|
2
|
Hatami H, Rahiman N, Mohammadi M. Oligonucleotide based nanogels for cancer therapeutics. Int J Biol Macromol 2024; 267:131401. [PMID: 38582467 DOI: 10.1016/j.ijbiomac.2024.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Oligonucleotide-based nanogels, as nascent biomaterials, possess several unique functional, structural, and physicochemical features with excellent drug-loading capacity and high potential for cancer gene therapy. Ongoing studies utilizing oligonucleotide-based nanogels hold great promise, as these cutting-edge nanoplatforms can be elegantly developed with predesigned oligonucleotide sequences and complementary strands which are self-assembled or chemically crosslinked leading to the development of nanogels with predictable shape and tunable size with the desired functional properties. Current paper provides a summary of the properties, preparation methods, and applications of oligonucleotide-based nanogels in cancer therapy. The review is focused on both conventional and modified forms of oligonucleotide-based nanogels, including targeted nanogels, smart release nanogels (responsive to stimuli such as pH, temperature, and enzymes), as well as nanogels used for gene delivery. Their application in cancer immunotherapy and vaccination, photodynamic therapy, and diagnostic applications when combined with other nanoparticles is further discussed. Despite emerging designs in the development of oligonucleotide based nanogels, this field of study is still in its infancy, and clinical translation of these versatile nano-vehicles might face challenges. Hence, extensive research must be performed on in vivo behavior of such platforms determining their biodistribution, biological fate, and acute/subacute toxicity.
Collapse
Affiliation(s)
- Hooman Hatami
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Tan E, Wan T, Pan Q, Duan J, Zhang S, Wang R, Gao P, Lv J, Wang H, Li D, Ping Y, Cheng Y. Dual-responsive nanocarriers for efficient cytosolic protein delivery and CRISPR-Cas9 gene therapy of inflammatory skin disorders. SCIENCE ADVANCES 2024; 10:eadl4336. [PMID: 38630829 PMCID: PMC11023524 DOI: 10.1126/sciadv.adl4336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Developing protein drugs that can target intracellular sites remains a challenge due to their inadequate membrane permeability. Efficient carriers for cytosolic protein delivery are required for protein-based drugs, cancer vaccines, and CRISPR-Cas9 gene therapies. Here, we report a screening process to identify highly efficient materials for cytosolic protein delivery from a library of dual-functionalized polymers bearing both boronate and lipoic acid moieties. Both ligands were found to be crucial for protein binding, endosomal escape, and intracellular protein release. Polymers with higher grafting ratios exhibit remarkable efficacies in cytosolic protein delivery including enzymes, monoclonal antibodies, and Cas9 ribonucleoprotein while preserving their activity. Optimal polymer successfully delivered Cas9 ribonucleoprotein targeting NLRP3 to disrupt NLRP3 inflammasomes in vivo and ameliorate inflammation in a mouse model of psoriasis. Our study presents a promising option for the discovery of highly efficient materials tailored for cytosolic delivery of specific proteins and complexes such as Cas9 ribonucleoprotein.
Collapse
Affiliation(s)
- Echuan Tan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Tao Wan
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianan Duan
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Ruijue Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Peng Gao
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuan Ping
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC, Yong KT, Chen CK. Recent Advances in Engineering Carriers for siRNA Delivery. Macromol Biosci 2024; 24:e2300362. [PMID: 38150293 DOI: 10.1002/mabi.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Indexed: 12/28/2023]
Abstract
RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Min Wang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
5
|
Mapfumo PP, Reichel LS, Hoeppener S, Traeger A. Improving Gene Delivery: Synergy between Alkyl Chain Length and Lipoic Acid for PDMAEMA Hydrophobic Copolymers. Macromol Rapid Commun 2024; 45:e2300649. [PMID: 38195002 DOI: 10.1002/marc.202300649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/31/2023] [Indexed: 01/11/2024]
Abstract
In the field of gene delivery, hydrophobic cationic copolymers hold great promise. They exhibit improved performance by effectively protecting genetic material from serum interactions while facilitating interactions with cellular membranes. However, managing cytotoxicity remains a significant challenge, prompting an investigation into suitable hydrophobic components. A particularly encouraging approach involves integrating nutrient components, like lipoic acid, which is known for its antioxidant properties and diverse cellular benefits such as cellular metabolism and growth. In this study, a copolymer library comprising 2-(dimethylamino)ethyl methacrylate (DMAEMA) and lipoic acid methacrylate (LAMA), combined with either n-butyl methacrylate (nBMA), ethyl methacrylate (EMA), or methyl methacrylate (MMA), is synthesized. This enables to probe the impact of lipoic acid incorporation while simultaneously exploring the influence of pendant acyclic alkyl chain length. The inclusion of lipoic acid results in a notable boost in transfection efficiency while maintaining low cytotoxicity. Interestingly, higher levels of transfection efficiency are achieved in the presence of nBMA, EMA, or MMA. However, a positive correlation between pendant acyclic alkyl chain length and cytotoxicity is observed. Consequently, P(DMAEMA-co-LAMA-co-MMA), emerges as a promising candidate. This is attributed to the optimal combination of low cytotoxic MMA and transfection-boosting LAMA, highlighting the crucial synergy between LAMA and MMA.
Collapse
Affiliation(s)
- Prosper P Mapfumo
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Liên S Reichel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
6
|
Espuche B, Moya SE, Calderón M. Nanogels: Smart tools to enlarge the therapeutic window of gene therapy. Int J Pharm 2024; 653:123864. [PMID: 38309484 DOI: 10.1016/j.ijpharm.2024.123864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Gene therapy can potentially treat a great number of diseases, from cancer to rare genetic disorders. Very recently, the development and emergency approval of nucleic acid-based COVID-19 vaccines confirmed its strength and versatility. However, gene therapy encounters limitations due to the lack of suitable carriers to vectorize therapeutic genetic material inside target cells. Nanogels are highly hydrated nano-size crosslinked polymeric networks that have been used in many biomedical applications, from drug delivery to tissue engineering and diagnostics. Due to their easy production, tunability, and swelling properties they have called the attention as promising vectors for gene delivery. In this review, nanogels are discussed as vectors for nucleic acid delivery aiming to enlarge gene therapy's therapeutic window. Recent works highlighting the optimization of inherent transfection efficiency and biocompatibility are reviewed here. The importance of the monomer choice, along with the internal structure, surface decoration, and responsive features are outlined for the different transfection modalities. The possible sources of toxicological endpoints in nanogels are analyzed, and the strategies to limit them are compared. Finally, perspectives are discussed to identify the remining challenges for the nanogels before their translation to the market as transfection agents.
Collapse
Affiliation(s)
- Bruno Espuche
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Sergio E Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
7
|
Damiri F, Fatimi A, Santos ACP, Varma RS, Berrada M. Smart stimuli-responsive polysaccharide nanohydrogels for drug delivery: a review. J Mater Chem B 2023; 11:10538-10565. [PMID: 37909361 DOI: 10.1039/d3tb01712e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Polysaccharides have found extensive utilization as biomaterials in drug delivery systems owing to their remarkable biocompatibility, simple functionalization, and inherent biological properties. Within the array of polysaccharide-based biomaterials, there is a growing fascination for self-assembled polysaccharide nanogels (NG) due to their ease of preparation and enhanced appeal across diverse biomedical appliances. Nanogel (or nanohydrogel), networks of nanoscale dimensions, are created by physically or chemically linking polymers together and have garnered immense interest as potential carriers for delivering drugs due to their favorable attributes. These include biocompatibility, high stability, the ability to adjust particle size, the capacity to load drugs, and their inherent potential to modify their surface to actively target specific cells or tissues via the attachment of ligands that can recognize corresponding receptors. Nanogels can be engineered to respond to specific stimuli, such as pH, temperature, light, or redox conditions, allowing controlled release of the encapsulated drugs. This intelligent targeting capability helps prevent drug accumulation in unintended tissues and reduces the potential side effects. Herein, an overview of nanogels is offered, comprising their methods of preparation and the design of stimulus-responsive nanogels that enable controlled release of drugs in response to specific stimuli.
Collapse
Affiliation(s)
- Fouad Damiri
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), University Sultan Moulay Slimane (USMS), Beni Mellal 23000, Morocco.
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco.
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), University Sultan Moulay Slimane (USMS), Beni Mellal 23000, Morocco.
| | - Ana Cláudia Paiva Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos - SP, Brazil.
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco.
| |
Collapse
|
8
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Liu H, Wang L, Yao C. Optimization of Antibacterial Activity and Biosafety through Ultrashort Peptide/Cyclodextrin Inclusion Complexes. Int J Mol Sci 2023; 24:14801. [PMID: 37834247 PMCID: PMC10573328 DOI: 10.3390/ijms241914801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Engineered ultrashort peptides, serving as an alternative to natural antimicrobial peptides, offer benefits of simple and modifiable structures, as well as ease of assembly. Achieving excellent antibacterial performance and favorable biocompatibility through structural optimization remains essential for further applications. In this study, we assembled lipoic acid (LA)-modified tripeptide RWR (LA-RWR) with β-cyclodextrin (β-CD) to form nano-inclusion complexes. The free cationic tripeptide region in the nano-inclusion complex provided high antibacterial activity, while β-CD enhanced its biocompatibility. Compared with peptides (LA-RWR, LA-RWR-phenethylamine) alone, inclusion complexes exhibited lower minimum inhibitory concentrations/minimum bactericidal concentrations (MICs/MBCs) against typical Gram-negative/Gram-positive bacteria and fungi, along with improved planktonic killing kinetics and antibiofilm efficiency. The antibacterial mechanism of the nano-inclusion complexes was confirmed through depolarization experiments, outer membrane permeability experiments, and confocal laser scanning microscopy observations. Furthermore, biological evaluations indicated that the hemolysis rate of the inclusion complexes decreased to half or even lower at high concentrations, and cell viability was superior to that of the non-included peptides. Preliminary in vivo studies suggested that the inclusion complexes, optimized for antibacterial activity and biosafety, could be used as promising antibacterial agents for potential applications.
Collapse
Affiliation(s)
| | | | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; (H.L.); (L.W.)
| |
Collapse
|
10
|
Born LJ, Bengali S, Hsu ATW, Abadchi SN, Chang KH, Lay F, Matsangos A, Johnson C, Jay SM, Harmon JW. Chitosan Particles Complexed with CA5-HIF-1α Plasmids Increase Angiogenesis and Improve Wound Healing. Int J Mol Sci 2023; 24:14095. [PMID: 37762397 PMCID: PMC10531456 DOI: 10.3390/ijms241814095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Wound therapies involving gene delivery to the skin have significant potential due to the advantage and ease of local treatment. However, choosing the appropriate vector to enable successful gene expression while also ensuring that the treatment's immediate material components are conducive to healing itself is critical. In this study, we utilized a particulate formulation of the polymer chitosan (chitosan particles, CPs) as a non-viral vector for the delivery of a plasmid encoding human CA5-HIF-1α, a degradation resistant form of HIF-1α, to enhance wound healing. We also compared the angiogenic potential of our treatment (HIF/CPs) to that of chitosan particles containing only the plasmid backbone (bb/CPs) and the chitosan particle vector alone (CPs). Our results indicate that chitosan particles exert angiogenic effects that are enhanced with the human CA5-HIF-1α-encoded plasmid. Moreover, HIF/CPs enhanced wound healing in diabetic db/db mice (p < 0.01), and healed tissue was found to contain a significantly increased number of blood vessels compared to bb/CPs (p < 0.01), CPs (p < 0.05) and no-treatment groups (p < 0.01). Thus, this study represents a method of gene delivery to the skin that utilizes an inherently pro-wound-healing polymer as a vector for plasmid DNA that has broad application for the expression of other therapeutic genes.
Collapse
Affiliation(s)
- Louis J. Born
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sameer Bengali
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Angela Ting Wei Hsu
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sanaz Nourmohammadi Abadchi
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kai-Hua Chang
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Frank Lay
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aerielle Matsangos
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher Johnson
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA
| | - John W. Harmon
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Whiteley Z, Massaro G, Gkogkos G, Gavriilidis A, Waddington SN, Rahim AA, Craig DQM. Microfluidic production of nanogels as alternative triple transfection reagents for the manufacture of adeno-associated virus vectors. NANOSCALE 2023; 15:5865-5876. [PMID: 36866741 DOI: 10.1039/d2nr06401d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Adeno-associated viral vectors (AAVs) have proved a mainstay in gene therapy, owing to their remarkable transduction efficiency and safety profile. Their production, however, remains challenging in terms of yield, the cost-effectiveness of manufacturing procedures and large-scale production. In this work, we present nanogels produced by microfluidics as a novel alternative to standard transfection reagents such as polyethylenimine-MAX (PEI-MAX) for the production of AAV vectors with comparable yields. Nanogels were formed at pDNA weight ratios of 1 : 1 : 2 and 1 : 1 : 3, of pAAV cis-plasmid, pDG9 capsid trans-plasmid and pHGTI helper plasmid respectively, where vector yields at a small scale showed no significant difference to those of PEI-MAX. Weight ratios of 1 : 1 : 2 showed overall higher titers than 1 : 1 : 3, where nanogels with nitrogen/phosphate ratios of 5 and 10 produced yields of ≈8.8 × 108 vg mL-1 and ≈8.1 × 108 vg mL-1 respectively compared to ≈1.1 × 109 vg mL-1 for PEI-MAX. In larger scale production, optimised nanogels produced AAV at a titer of ≈7.4 × 1011 vg mL-1, showing no statistical difference from that of PEI-MAX at ≈1.2 × 1012 vg mL-1, indicating that equivalent titers can be achieved with easy-to-implement microfluidic technology at comparably lower costs than traditional reagents.
Collapse
Affiliation(s)
- Zoe Whiteley
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Giulia Massaro
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Georgios Gkogkos
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Simon N Waddington
- Institute for Women's Health, University College London, 84-84 Chenies Mews, London, WC1E 6HU, UK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Duncan Q M Craig
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
12
|
Narayanan KB, Bhaskar R, Han SS. Recent Advances in the Biomedical Applications of Functionalized Nanogels. Pharmaceutics 2022; 14:2832. [PMID: 36559325 PMCID: PMC9782855 DOI: 10.3390/pharmaceutics14122832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials have been extensively used in several applications in the past few decades related to biomedicine and healthcare. Among them, nanogels (NGs) have emerged as an important nanoplatform with the properties of both hydrogels and nanoparticles for the controlled/sustained delivery of chemo drugs, nucleic acids, or other bioactive molecules for therapeutic or diagnostic purposes. In the recent past, significant research efforts have been invested in synthesizing NGs through various synthetic methodologies such as free radical polymerization, reversible addition-fragmentation chain-transfer method (RAFT) and atom transfer radical polymerization (ATRP), as well as emulsion techniques. With further polymeric functionalizations using activated esters, thiol-ene/yne processes, imines/oximes formation, cycloadditions, nucleophilic addition reactions of isocyanates, ring-opening, and multicomponent reactions were used to obtain functionalized NGs for targeted delivery of drug and other compounds. NGs are particularly intriguing for use in the areas of diagnosis, analytics, and biomedicine due to their nanodimensionality, material characteristics, physiological stability, tunable multi-functionality, and biocompatibility. Numerous NGs with a wide range of functionalities and various external/internal stimuli-responsive modalities have been possible with novel synthetic reliable methodologies. Such continuous development of innovative, intelligent materials with novel characteristics is crucial for nanomedicine for next-generation biomedical applications. This paper reviews the synthesis and various functionalization strategies of NGs with a focus on the recent advances in different biomedical applications of these surface modified/functionalized single-/dual-/multi-responsive NGs, with various active targeting moieties, in the fields of cancer theranostics, immunotherapy, antimicrobial/antiviral, antigen presentation for the vaccine, sensing, wound healing, thrombolysis, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
13
|
Kusmus DNM, van Veldhuisen TW, Khan A, Cornelissen JJLM, Paulusse JMJ. Uniquely sized nanogels via crosslinking polymerization. RSC Adv 2022; 12:29423-29432. [PMID: 36320766 PMCID: PMC9562763 DOI: 10.1039/d2ra04123e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/21/2022] [Indexed: 12/31/2022] Open
Abstract
Nanogels are very promising carriers for nanomedicine, as they can be prepared in the favorable nanometer size regime, can be functionalized with targeting agents and are responsive to stimuli, i.e. temperature and pH. This induces shrinking or swelling, resulting in controlled release of a therapeutic cargo. Our interest lies in the controlled synthesis of functional nanogels, such as those containing epoxide moieties, that can be subsequently functionalized. Co-polymerization of glycidyl methacrylate and a bifunctional methacrylate crosslinker under dilute conditions gives rise to well-defined epoxide-functional nanogels, of which the sizes are controlled by the degree of polymerization. Nanogels with well-defined sizes (polydispersity of 0.2) ranging from 38 nm to 95 nm were prepared by means of controlled radical polymerization. The nanogels were characterized in detail by FT-IR, DLS, size exclusion chromatography, NMR spectroscopy, AFM and TEM. Nucleophilic attack with functional thiols or amines on the least hindered carbon of the epoxide provides water-soluble nanogels, without altering the backbone structure, while reaction with sodium azide provides handles for further functionalization via click chemistry.
Collapse
Affiliation(s)
- Disraëli N. M. Kusmus
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| | - Thijs W. van Veldhuisen
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| | - Anzar Khan
- Korea University145 Anam-ro, Anam-dongSeoulSeongbuk-guKorea
| | - Jeroen J. L. M. Cornelissen
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| | - Jos M. J. Paulusse
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| |
Collapse
|
14
|
Lv SY, He S, Ling XL, Wang YQ, Huang C, Long JR, Wang JQ, Qin Y, Wei H, Yu CY. Review of lipoic acid: From a clinical therapeutic agent to various emerging biomaterials. Int J Pharm 2022; 627:122201. [PMID: 36115465 DOI: 10.1016/j.ijpharm.2022.122201] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023]
Abstract
Lipoic acid (LA), an endogenous small molecule in organisms, has been extensively used for the highly efficient clinical treatment of malignant diseases, which include diabetes, Alzheimer's disease, and cancer over the past seven decades. Tremendous progresses have been made on the use of LA in nanomedicine for the development of various biomaterials because of its unique biological properties and highly adaptable structure since the first discovery. However, there are few reviews thus far, to our knowledge, summarizing this hot subject of research of LA and its derived biomaterials. For this purpose, we present herein the first comprehensive summary on the design and development of LA and its derived materials for biomedical applications. This review first discusses the therapeutic use of LA followed by the description of synthesis and preclinical study of LA-derived-small molecules. The applications of various LA and poly (lipoic acid) (PLA)-derived-biomaterials are next summarized in detail with an emphasis on the use of LA for the design of biomaterials and the diverse properties. This review describes the development of LA from a clinical therapeutic agent to a building unit of various biomaterials field, which will promote the further discovery of new therapeutic uses of LA as therapeutic agents and facile development of LA-based derivates with greater performance for biomedical applications.
Collapse
Affiliation(s)
- Shao-Yang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Suisui He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiao-Li Ling
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue-Qin Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Cong Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jin-Rong Long
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jia-Qi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
15
|
Simakova A, Averick S, Jazani AM, Matyjaszewski K. Controlling Size and Surface Chemistry of Cationic Nanogels by Inverse Microemulsion ATRP. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonina Simakova
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 United States
| | - Saadyah Averick
- Laboratory for Biomolecular Medicine Allegheny Health Network Research Institute Allegheny General Hospital Pittsburgh Pittsburgh PA 15212 United States
| | - Arman Moini Jazani
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 United States
| | | |
Collapse
|
16
|
Cao Y, Tan YF, Wong YS, Aminuddin M, Ramya B, Liew MWJ, Liu J, Venkatraman SS. Designing siRNA/chitosan-methacrylate complex nanolipogel for prolonged gene silencing effects. Sci Rep 2022; 12:3527. [PMID: 35241750 PMCID: PMC8894398 DOI: 10.1038/s41598-022-07554-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Despite immense revolutionary therapeutics potential, sustaining release of active small interfering RNA (siRNA) remains an arduous challenge. The development of nanoparticles with siRNA sustained release capabilities provides an avenue to enhance the therapeutic efficacy of gene-based therapy. Herein, we present a new system based on the encapsulation of siRNA/chitosan-methacrylate (CMA) complexes into liposomes to form UV crosslinkable Nanolipogels (NLGs) with sustained siRNA-release properties in vitro. We demonstrated that the CMA nanogel in NLGs can enhance the encapsulation efficiency of siRNA and provide sustained release of siRNA up to 28 days. To understand the particle mechanism of cellular entry, multiple endocytic inhibitors have been used to investigate its endocytosis pathways. The study saw positively charged NLGs entering cells via multiple endocytosis pathways, facilitating endosomal escape and slowly releasing siRNA into the cytoplasm. Transfection experiments confirmed that the crosslinked NLG delivery system provides effective transfection and prolonged silencing effect up to 14 days in cell cultures. We expect that this sustained-release siRNA NLG platform would be of interest in both fundamental biological studies and in clinical applications to extend the use of siRNA-based therapies.
Collapse
Affiliation(s)
- Ye Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yang Fei Tan
- School of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Yee Shan Wong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Muhammad Aminuddin
- School of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Bhuthalingam Ramya
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Melvin Wen Jie Liew
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jiaxin Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Subbu S Venkatraman
- School of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Chen DF, Zhang BW, Cao J, Wang H, Luo P, Liu W, Niu X, Wang R, Nie JJ. Preparation of polycation with hydroxyls for enhanced delivery of miRNA in osteosarcoma therapy. Biomater Sci 2022; 10:2844-2856. [PMID: 35445231 DOI: 10.1039/d2bm00253a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteosarcoma, a malignant bone tumor usually occurs in children and adolescents, has a high rate of death and disability which bringing great pains to society and families. Improving treatment approaches...
Collapse
Affiliation(s)
- Da-Fu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
| | - Bo-Wen Zhang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
| | - Jingjing Cao
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
| | - Honggang Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
| | - Peng Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
| | - Weifeng Liu
- Deptartment of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, China.
- Fourth Medical College of Peking University, Beijing, 100035, China
| | - Xiaohui Niu
- Deptartment of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, China.
- Fourth Medical College of Peking University, Beijing, 100035, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
| | - Jing-Jun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
| |
Collapse
|
18
|
Nanogels: An overview of properties, biomedical applications, future research trends and developments. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Zhi D, Yang T, Zhang T, Yang M, Zhang S, Donnelly RF. Microneedles for gene and drug delivery in skin cancer therapy. J Control Release 2021; 335:158-177. [DOI: 10.1016/j.jconrel.2021.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022]
|
20
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Richter F, Mapfumo P, Martin L, Solomun JI, Hausig F, Frietsch JJ, Ernst T, Hoeppener S, Brendel JC, Traeger A. Improved gene delivery to K-562 leukemia cells by lipoic acid modified block copolymer micelles. J Nanobiotechnology 2021; 19:70. [PMID: 33676500 PMCID: PMC7936509 DOI: 10.1186/s12951-021-00801-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/09/2021] [Indexed: 12/23/2022] Open
Abstract
Although there has been substantial progress in the research field of gene delivery, there are some challenges remaining, e.g. there are still cell types such as primary cells and suspension cells (immune cells) known to be difficult to transfect. Cationic polymers have gained increasing attention due to their ability to bind, condense and mask genetic material, being amenable to scale up and highly variable in their composition. In addition, they can be combined with further monomers exhibiting desired biological and chemical properties, such as antioxidative, pH- and redox-responsive or biocompatible features. By introduction of hydrophobic monomers, in particular as block copolymers, cationic micelles can be formed possessing an improved chance of transfection in otherwise challenging cells. In this study, the antioxidant biomolecule lipoic acid, which can also be used as crosslinker, was incorporated into the hydrophobic block of a diblock copolymer, poly{[2-(dimethylamino)ethyl methacrylate]101-b-[n-(butyl methacrylate)124-co-(lipoic acid methacrylate)22]} (P(DMAEMA101-b-[nBMA124-co-LAMA22])), synthesized by RAFT polymerization and assembled into micelles (LAMA-mic). These micelles were investigated regarding their pDNA binding, cytotoxicity mechanisms and transfection efficiency in K-562 and HEK293T cells, the former representing a difficult to transfect, suspension leukemia cell line. The LAMA-mic exhibited low cytotoxicity at applied concentrations but demonstrated superior transfection efficiency in HEK293T and especially K-562 cells. In-depth studies on the transfection mechanism revealed that transfection efficiency in K-562 cells does not depend on the specific oncogenic fusion gene BCR-ABL alone. It is independent of the cellular uptake of polymer-pDNA complexes but correlates with the endosomal escape of the LAMA-mic. A comparison of the transfection efficiency of the LAMA-mic with structurally comparable micelles without lipoic acid showed that lipoic acid is not solely responsible for the superior transfection efficiency of the LAMA-mic. More likely, a synergistic effect of the antioxidative lipoic acid and the micellar architecture was identified. Therefore, the incorporation of lipoic acid into the core of hydrophobic-cationic micelles represents a promising tailor-made transfer strategy, which can potentially be beneficial for other difficult to transfect cell types.
Collapse
Affiliation(s)
- Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Prosper Mapfumo
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Liam Martin
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Franziska Hausig
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Jochen J Frietsch
- Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Thomas Ernst
- Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
22
|
Vasile C, Pamfil D, Stoleru E, Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020; 25:E1539. [PMID: 32230990 PMCID: PMC7180755 DOI: 10.3390/molecules25071539] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
New trends in biomedical applications of the hybrid polymeric hydrogels, obtained by combining natural polymers with synthetic ones, have been reviewed. Homopolysaccharides, heteropolysaccharides, as well as polypeptides, proteins and nucleic acids, are presented from the point of view of their ability to form hydrogels with synthetic polymers, the preparation procedures for polymeric organic hybrid hydrogels, general physico-chemical properties and main biomedical applications (i.e., tissue engineering, wound dressing, drug delivery, etc.).
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Daniela Pamfil
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Elena Stoleru
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Mihaela Baican
- Pharmaceutical Physics Department, “Grigore T. Popa” Medicine and Pharmacy University, 16, University Str., Iaşi 700115, Romania
| |
Collapse
|
23
|
Nurhidayah D, Maruf A, Zhang X, Liao X, Wu W, Wang G. Advanced drug-delivery systems: mechanoresponsive nanoplatforms applicable in atherosclerosis management. Nanomedicine (Lond) 2019; 14:3105-3122. [PMID: 31823682 DOI: 10.2217/nnm-2019-0172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nanoplatforms have been used extensively as advanced carriers to enhance the effectiveness of drug delivery, mostly through passive aggregation provided by the enhanced permeability and retention effect. Mechanical stimuli provide a robust strategy to bolster drug delivery performance by increasing the accumulation of nanoplatforms at the lesion sites, facilitating on-demand cargo release and providing theranostic aims. In this review, we focus on recent advances of mechanoresponsive nanoplatforms that can accomplish targeted drug delivery, and subsequent drug release, under specific stimuli, either endogenous (shear stress) or exogenous (magnetic field and ultrasound), to synergistically combat atherosclerosis at the molecular level.
Collapse
Affiliation(s)
- Deti Nurhidayah
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Ali Maruf
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaojuan Zhang
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Wei Wu
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
24
|
Liu Y, Zhao N, Xu FJ. pH-Responsive Degradable Dextran-Quantum Dot Nanohybrids for Enhanced Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34707-34716. [PMID: 31482705 DOI: 10.1021/acsami.9b12198] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is of great significance to develop biocompatible and degradable gene carriers with stimuli-enhanced gene therapy and imaging function. In this work, low-cytotoxic polycation PGEA (ethanolamine-functionalized poly(glycidyl methacrylate))-functionalized dextran-quantum dot (QD) nanohybrids (DQ-PGEA) were proposed as safe and efficient gene carriers via a facile and feasible method. The highly water-soluble dextran gives the carrier good stability, biocompatibility, and abundant modification sites, while QDs allow fluorescence (FL) imaging. Taking advantage of the pH-responsive self-destruction characteristic introduced by Schiff base linkages, DQ-PGEA nanohybrids could not only result in enhanced gene release but also contribute to the elimination of the carriers. Reduced (nondegradable) DQ-PGEA-R nanohybrids were also synthesized as counterparts to reveal the superiority of the responsive DQ-PGEA carriers. The effectiveness of the as-prepared gene delivery systems was verified adopting the antioncogene p53 in the mouse model of breast cancer. As expected, DQ-PGEA nanohybrids demonstrated a superior gene transfection performance and antitumor inhibition compared with their counterparts. Meanwhile, the gene delivery processes could be tracked in real time to visualize the therapeutic processes and realize FL imaging-guided gene therapy. The current multifunctional stimuli-responsive nanoplatforms with the self-destruction feature are intriguing candidates to achieve enhanced gene therapy for tumor treatment.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Materials Engineering , Taiyuan Institute of Technology , Taiyuan 030008 , China
| | | | | |
Collapse
|
25
|
Sun D, Chen J, Wang Y, Ji H, Peng R, Jin L, Wu W. Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics 2019; 9:6885-6900. [PMID: 31660075 PMCID: PMC6815958 DOI: 10.7150/thno.36510] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer remains a daunting and cureless disease, which is responsible for one-sixth of human deaths worldwide. These mortality rates have been expected to rise in the future due to the side effects of conventional treatments (chemotherapy, radiotherapy, and surgery), which can be addressed by applying nanomedicine. In order to escape from biological barriers, such nanomedicine should be mimicked and designed to be stealthy while navigating in the bloodstream. To achieve this, scientists take advantage of erythrocytes (red blood cells; RBCs) as drug carriers and develop RBC membrane (RBCm) coating nanotechnology. Thanks to the significant advances in nanoengineering, various facile surface functionalization methods can be applied to arm RBCm with not only targeting moieties, but also imaging agents, therapeutic agents, and nanoparticles, which are useful for theranostic nanomedicine. This review focuses on refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery.
Collapse
Affiliation(s)
- Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang, 325035, China
| | - Jia Chen
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yuan Wang
- Chongqing Business Vocational College, Chongqing, 401331, China
| | - Hao Ji
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang, 325035, China
| | - Wei Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
26
|
Zhong Y, Wang Y, Luo L, Nurhidayah D, Maruf A, Gregersen H, Wu W, Wang GX. Targeted polyethylenimine/(p53 plasmid) nanocomplexes for potential antitumor applications. NANOTECHNOLOGY 2019; 30:145601. [PMID: 30524021 DOI: 10.1088/1361-6528/aaf41a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of the tumor-targeting ability of nanocarriers is of paramount importance for gene delivery into tumor lesions as well as to avoid biotoxicity. Here we report the synthesis of the polyethyleneimine-fluorescein isothiocyanate-folic acid (PEI-FITC-FA) polymer, which could condense the tumor suppressor pp53 to form nanocomplexes. These targeted nanocomplexes exhibited favorable physical properties including a small size of <100 nm, exploiting the enhanced permeability and retention effect and tumor-targeting ability by binding to the overexpressed FA receptors on tumor cell surfaces. In addition, once the nanocomplexes are accumulating in the tumor tissue, the target functional ligand, FA, can selectively recognize the over-expressed FA receptor and subsequently remain on the tumor cell surface, which can significantly promote the tumor cell uptake because of the time- and concentration-dependent internalization caused by the enhanced interaction between nanocomplex and tumor cell. Our results indicated that PEI-FITC-FA/pp53 nanocomplexes could be efficiently delivered into tumor cells, and subsequently induce tumor cell apoptosis. Thus, the targeted cationic polymer PEI-FITC-FA could be used as an advanced nanocarrier for gene delivery.
Collapse
Affiliation(s)
- Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Luo Q, Feng Y, Xie Y, Shao Y, Wu M, Deng X, Yuan WE, Chen Y, Shi X. Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:188-197. [PMID: 30721753 DOI: 10.1016/j.nano.2019.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/19/2018] [Accepted: 01/10/2019] [Indexed: 01/22/2023]
Abstract
Nontoxic and nonimmunogenic nanoparticles play an increasingly important role in the application of pharmaceutical nanocarriers. The pathogenesis of diabetic peripheral neuropathy (DPN) has been extensively studied. However, the role of microRNAs in DPN remains to be clarified. We verified in vitro that miR-146a-5p mimics inhibited the expression of proinflammatory cytokines and apoptosis. Then, we explored the protective effect of nanoparticle-miRNA-146a-5p polyplexes (nano-miR-146a-5p) on DPN rats. We demonstrated that nano-miR-146a-5p improved nerve conduction velocity and alleviated the morphological damage and demyelination of the sciatic nerve of DPN rats. The expression of the inflammatory cytokines, caspase-3, and cleaved caspase-3 in the sciatic nerve was inhibited by nano-miR-146a-5p. Additionally, nano-miR-146a-5p increased the expression of myelin basic protein. These results all indicated that nano-miR-146a-5p had a protective effect on peripheral nerves in the DPN rat model, which may occur through the regulation of the inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yonghao Feng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Men Wu
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaolin Deng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinghui Chen
- Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China.
| | - Xiaohong Shi
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Abstract
With its nearly unrestricted possibilities, gene therapy attracts more and more significance in modern-day research. The only issue still seeming to hold back its clinical success is the actual effective delivery of genetic material. Nucleic acids are in general challenging to administer to their intracellular targets due to their unfavorable pharmaceutical characteristics. Polymeric nanogels present a promising delivery platform for oligonucleotide-based therapies, as the growing number of reports deliberated in this review represents. Within the scope of this article, recent progress in the employment of nanogels as gene delivery vectors is summarized and different examples of modified, stimuli-responsive, targeted and co-delivering nanogels are discussed in detail. Furthermore, major aspects of successful gene delivery are addressed and critically debated in regards to nanogels, giving insights into what progress has been made and which key issues still need to be further approached.
Collapse
Affiliation(s)
- Rima Kandil
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337, Munich, Germany
| | - Olivia M. Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337, Munich, Germany
| |
Collapse
|
29
|
Mauri E, Perale G, Rossi F. Nanogel Functionalization: A Versatile Approach To Meet the Challenges of Drug and Gene Delivery. ACS APPLIED NANO MATERIALS 2018; 1:6525-6541. [DOI: 10.1021/acsanm.8b01686] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- Department of Engineering, Tissue Engineering and Chemistry for Engineering Unit, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Giuseppe Perale
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland, via Cantonale 2C, Galleria 2, 6928 Manno, Switzerland
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
30
|
Chen J, Wang K, Wu J, Tian H, Chen X. Polycations for Gene Delivery: Dilemmas and Solutions. Bioconjug Chem 2018; 30:338-349. [PMID: 30383373 DOI: 10.1021/acs.bioconjchem.8b00688] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene therapy has been a promising strategy for treating numerous gene-associated human diseases by altering specific gene expressions in pathological cells. Application of nonviral gene delivery is hindered by various dilemmas encountered in systemic gene therapy. Therefore, solutions must be established to address the unique requirements of gene-based treatment of diseases. This review will particularly highlight the dilemmas in polycation-based gene therapy by systemic treatment. Several promising strategies, which are expected to overcome these challenges, will be briefly reviewed. This review will also explore the development of polycation-based gene delivery systems for clinical applications.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China.,Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , P. R. China
| | - Kui Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China.,Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China.,Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , P. R. China
| |
Collapse
|
31
|
Lei L, Chen J, Huang J, Lu J, Pei S, Ding S, Kang L, Xiao R, Zeng Q. Functions and regulatory mechanisms of metastasis‐associated lung adenocarcinoma transcript 1. J Cell Physiol 2018; 234:134-151. [PMID: 30132842 DOI: 10.1002/jcp.26759] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Li Lei
- Department of Dermatology, Xiangya Hospital Central South University Changsha Hunan China
- Department of Hunan Key Laboratory of Skin Cancer and Psoriasis Xiangya Hospital, Central South University Changsha Hunan China
| | - Jing Chen
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jinhua Huang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jianyun Lu
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Shiyao Pei
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Shu Ding
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Liyang Kang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Rong Xiao
- Department of Dermatology Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Qinghai Zeng
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
32
|
Sun H, Zhang Y, Zhong Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Adv Drug Deliv Rev 2018; 132:16-32. [PMID: 29775625 DOI: 10.1016/j.addr.2018.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/21/2018] [Accepted: 05/12/2018] [Indexed: 01/08/2023]
Abstract
The development of smart delivery systems that are robust in circulation and quickly release drugs following selective internalization into target cancer cells is a key to precision cancer therapy. Interestingly, reduction-sensitive polymeric nanomedicines showing high plasma stability and triggered cytoplasmic drug release behavior have recently emerged as one of the most exciting platforms for targeted delivery of various anticancer drugs including small chemical drugs, proteins, and nucleic acids. In vivo studies in varying tumor models reveal that these reduction-sensitive multifunctional nanomedicines outperform the currently used clinical formulations and reduction-insensitive counterparts, bringing about not only significantly enhanced tumor selectivity, accumulation and inhibition efficacy but also markedly reduced systemic toxicity and improved therapeutic index. In this review, we will highlight the cutting-edge advancement with a focus on in vivo performances as well as future perspectives on reduction-sensitive polymeric nanomedicines for targeted cancer therapy.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
33
|
Wang H, Miao W, Wang F, Cheng Y. A Self-Assembled Coumarin-Anchored Dendrimer for Efficient Gene Delivery and Light-Responsive Drug Delivery. Biomacromolecules 2018; 19:2194-2201. [PMID: 29684275 DOI: 10.1021/acs.biomac.8b00246] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The assembly of low molecular weight polymers into highly efficient and nontoxic nanostructures has broad applicability in gene delivery. In this study, we reported the assembly of coumarin-anchored low generation dendrimers in aqueous solution via hydrophobic interactions. The synthesized material showed significantly improved DNA binding and gene delivery, and minimal toxicity on the transfected cells. Moreover, the coumarin moieties in the assembled nanostructures endow the materials with light-responsive drug delivery behaviors. The coumarin substitutes in the assembled nanostructures were cross-linked with each other upon irradiation at 365 nm, and the cross-linked assemblies were degraded upon further irradiation at 254 nm. As a result, the drug-loaded nanoparticle showed a light-responsive drug release behavior and light-enhanced anticancer activity. The assembled nanoparticle also exhibited a complementary anticancer activity through the codelivery of 5-fluorouracil and a therapeutic gene encoding tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This study provided a facile strategy to develop light-responsive polymers for the codelivery of therapeutic genes and anticancer drugs.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai , 200241 , P. R. China
| | - Wujun Miao
- Changzheng Hospital , Department of Orthopedic Oncology , Shanghai , P. R. China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai , 200241 , P. R. China
| |
Collapse
|
34
|
Wu W, Luo L, Wang Y, Wu Q, Dai HB, Li JS, Durkan C, Wang N, Wang GX. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018; 8:3038-3058. [PMID: 29896301 PMCID: PMC5996358 DOI: 10.7150/thno.23459] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
Nanotechnology-based antitumor drug delivery systems, known as nanocarriers, have demonstrated their efficacy in recent years. Typically, the size of the nanocarriers is around 100 nm. It is imperative to achieve an optimum size of these nanocarriers which must be designed uniquely for each type of delivery process. For pH-responsive nanocarriers with programmable size, changes in pH (~6.5 for tumor tissue, ~5.5 for endosomes, and ~5.0 for lysosomes) may serve as an endogenous stimulus improving the safety and therapeutic efficacy of antitumor drugs. This review focuses on current advanced pH-responsive nanocarriers with programmable size changes for anticancer drug delivery. In particular, pH-responsive mechanisms for nanocarrier retention at tumor sites, size reduction for penetrating into tumor parenchyma, escaping from endo/lysosomes, and swelling or disassembly for drug release will be highlighted. Additional trends and challenges of employing these nanocarriers in future clinical applications are also addressed.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qi Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Han-Bin Dai
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Jian-Shu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Gui-Xue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
35
|
Synthesis and characterization of Ag+-decorated poly(glycidyl methacrylate) microparticle design for the adsorption of nucleic acids. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1081-1082:1-7. [DOI: 10.1016/j.jchromb.2018.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 02/05/2018] [Accepted: 02/15/2018] [Indexed: 11/18/2022]
|
36
|
Xu FJ. Versatile types of hydroxyl-rich polycationic systems via O-heterocyclic ring-opening reactions: From strategic design to nucleic acid delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 2017; 24:539-557. [PMID: 28181831 PMCID: PMC8240973 DOI: 10.1080/10717544.2016.1276232] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 01/18/2023] Open
Abstract
Nanogels in biomedical field are promising and innovative materials as dispersions of hydrogel nanoparticles based on crosslinked polymeric networks that have been called as next generation drug delivery systems due to their relatively high drug encapsulation capacity, uniformity, tunable size, ease of preparation, minimal toxicity, stability in the presence of serum, and stimuli responsiveness. Nanogels show a great potential in chemotherapy, diagnosis, organ targeting and delivery of bioactive substances. The main subjects reviewed in this article concentrates on: (i) Nanogel assimilation in the nanomedicine domain; (ii) Features and advantages of nanogels, the main characteristics, such as: swelling capacity, stimuli sensitivity, the great surface area, functionalization, bioconjugation and encapsulation of bioactive substances, which are taken into account in designing the structures according to the application; some data on the advantages and limitations of the preparation techniques; (iii) Recent progress in nanogels as a carrier of genetic material, protein and vaccine. The majority of the scientific literature presents the multivalency potential of bioconjugated nanogels in various conditions. Today's research focuses over the overcoming of the restrictions imposed by cost, some medical requirements and technological issues, for nanogels' commercial scale production and their integration as a new platform in biomedicine.
Collapse
Affiliation(s)
- Iordana Neamtu
- “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | | | - Alina Diaconu
- “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | | | | |
Collapse
|
38
|
Yang G, Wang X, Fu S, Tang R, Wang J. pH-triggered chitosan nanogels via an ortho ester-based linkage for efficient chemotherapy. Acta Biomater 2017; 60:232-243. [PMID: 28479490 DOI: 10.1016/j.actbio.2017.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/21/2017] [Accepted: 05/04/2017] [Indexed: 11/26/2022]
Abstract
We report on new types of chitosan-based nanogels via an ortho ester-based linkage, used as drug carriers for efficient chemotherapy. First, we synthesized a novel diacrylamide containing ortho ester (OEAM) as an acid-labile cross-linker. Subsequently, methacrylated succinyl-chitosan (MASCS) was prepared and polymerized with OEAM at different molar ratios to give a series of pH-triggered MASCS nanogels. Doxorubicin (DOX) as a model anticancer drug was loaded into MASCS nanogels with a loading content of 16.5%. As expected, with the incorporation of ortho ester linkages, these nanogels showed pH-triggered degradation and drug release at acidic pH values. In vitro cellular uptake shows that the DOX-loaded nanogels could be preferentially internalized by two-dimensional (2D) cells and three-dimensional (3D) multicellular spheroids (MCs), resulting in higher inhibition of the proliferation of tumor cells. In vivo biodistribution and anti-tumor effect were determined in H22 tumor-bearing mice, and the results demonstrate that the acid-labile MASCS nanogels can significantly prolong the blood circulation time of DOX and improve the accumulation in tumor areas, leading to higher therapeutic efficacy. STATEMENT OF SIGNIFICANCE We designed new pH-triggered chitosan nanogels via an ortho ester-based cross-linker for efficient drug-loading and chemotherapy. These drug-loaded nanogels exhibit excellent pH-triggered drug release behavior due to the degradation of ortho ester linkages in mildly acidic environments. In vitro and in vivo results demonstrate that the nanogels could be efficiently internalized by 2D cells and 3D-MCs, improve drug concentration in solid tumors, and lead to higher therapeutic efficacy. To the best of our knowledge, this is the first report on using an ortho ester-based cross-linker to prepare pH-triggered chitosan nanogels as tumor carriers, which may provide a potential route for improved safety and to increase the therapeutic efficacy of anticancer therapy.
Collapse
|
39
|
Li D, van Nostrum CF, Mastrobattista E, Vermonden T, Hennink WE. Nanogels for intracellular delivery of biotherapeutics. J Control Release 2017; 259:16-28. [PMID: 28017888 DOI: 10.1016/j.jconrel.2016.12.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
|
40
|
Li Z, Liu X, Chen X, Chua MX, Wu YL. Targeted delivery of Bcl-2 conversion gene by MPEG-PCL-PEI-FA cationic copolymer to combat therapeutic resistant cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:66-72. [PMID: 28482577 DOI: 10.1016/j.msec.2017.02.163] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 02/13/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
Deregulation of anti-apoptosis Bcl-2 protein expression was a key feature in human cancers with therapeutic resistance. Nuclear receptor Nur77 could induce the conformation change of Bcl-2 protein and converted it into an apoptosis inducer by "enemy to friend" strategy. However, the safe and effective delivery of this gene to combat therapeutic resistant cancer remained largely unexplored. In this report, we designed an amphiphilic cationic MPEG-PCL-PEI-FA copolymer, comprising biocompatible and hydrophilic methoxy-poly(ethylene glycol) (MPEG), biodegradable and hydrophobic poly(ε-caprolactone) (PCL), cationic poly(ethylene imine) (PEI) segments, and folic acid (FA) as targeting group, as a high efficient Nur77 gene carrier to folate receptor (FR) highly expressed and therapeutic resistant HeLa/Bcl-2 cancer cells. Interestingly, due to the incorporation of PCL and PEG segments, this MPEG-PCL-PEI-FA copolymer showed less toxicity but better gene transfection efficiency than non-viral gene carrier gold standard PEI (25kDa). This might be due to the formation of micelles to stabilize polyplex for enhanced gene transfection ability. More importantly, MPEG-PCL-PEI-FA copolymer exhibited excellent growth inhibition ability on therapeutic resistant HeLa/Bcl-2 cancer cells, which was FR overexpressed HeLa cervical cancer cells with high expression of Bcl-2 protein, thanks to its FA induced targeting ability, high gene transfection efficiency, and low cytotoxicity. This work signifies the first time that cationic amphiphilic MPEG-PCL-PEI-FA copolymers could be utilized for the gene delivery to therapeutic resistant cancer cells with high expression of anti-apoptosis Bcl-2 protein and the positive results are encouraging for the further design of polymeric platforms for combating drug resistant tumors.
Collapse
Affiliation(s)
- Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore..
| | - Xuan Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiaohong Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Ming Xuan Chua
- Department of Chemical & Bimolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
41
|
Zhao J, Han F, Zhao P, Wen X, Lin C. Dextranated poly(urethane amine)s designed for systemic gene delivery in ovarian cancer therapy. J Mater Chem B 2017; 5:6119-6127. [DOI: 10.1039/c7tb01641g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dextranated poly(urethane amine)s can be designed for robust ovarian cancer gene therapy.
Collapse
Affiliation(s)
- Jie Zhao
- Institute for Translational Medicine
- Shanghai East Hospital
- Institute for Biomedical Engineering and Nanoscience
- Tongji University School of Medicine
- Shanghai
| | - Fei Han
- Institute for Translational Medicine
- Shanghai East Hospital
- Institute for Biomedical Engineering and Nanoscience
- Tongji University School of Medicine
- Shanghai
| | - Peng Zhao
- Institute for Translational Medicine
- Shanghai East Hospital
- Institute for Biomedical Engineering and Nanoscience
- Tongji University School of Medicine
- Shanghai
| | - Xuejun Wen
- Institute for Translational Medicine
- Shanghai East Hospital
- Institute for Biomedical Engineering and Nanoscience
- Tongji University School of Medicine
- Shanghai
| | - Chao Lin
- Institute for Translational Medicine
- Shanghai East Hospital
- Institute for Biomedical Engineering and Nanoscience
- Tongji University School of Medicine
- Shanghai
| |
Collapse
|