1
|
Yao S, Cui X, Zhang C, Cui W, Li Z. Force-electric biomaterials and devices for regenerative medicine. Biomaterials 2025; 320:123288. [PMID: 40138962 DOI: 10.1016/j.biomaterials.2025.123288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/02/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
There is a growing recognition that force-electric conversion biomaterials and devices can convert mechanical energy into electrical energy without an external power source, thus potentially revolutionizing the use of electrical stimulation in the biomedical field. Based on this, this review explores the application of force-electric biomaterials and devices in the field of regenerative medicine. The article focuses on piezoelectric biomaterials, piezoelectric devices and triboelectric devices, detailing their categorization, mechanisms of electrical generation and methods of improving electrical output performance. Subsequently, different sources of driving force for electroactive biomaterials and devices are explored. Finally, the biological applications of force-electric biomaterials and devices in regenerative medicine are presented, including tissue regeneration, functional modulation of organisms, and electrical stimulation therapy. The aim of this review is to emphasize the role of electrical stimulation generated by force-electric conversion biomaterials and devices on the regulation of bioactive molecules, ion channels and information transfer in living systems, and thus affects the metabolic processes of organisms. In the future, physiological modulation of electrical stimulation based on force-electric conversion is expected to bring important scientific advances in the field of regenerative medicine.
Collapse
Affiliation(s)
- Shuncheng Yao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China; School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China; School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Das S, Jegadeesan JT, Basu B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024; 25:2156-2221. [PMID: 38507816 DOI: 10.1021/acs.biomac.3c01271] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| | | | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
4
|
Lisboa ES, Serafim C, Santana W, Dos Santos VLS, de Albuquerque-Junior RLC, Chaud MV, Cardoso JC, Jain S, Severino P, Souto EB. Nanomaterials-combined methacrylated gelatin hydrogels (GelMA) for cardiac tissue constructs. J Control Release 2024; 365:617-639. [PMID: 38043727 DOI: 10.1016/j.jconrel.2023.11.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Among non-communicable diseases, cardiovascular diseases are the most prevalent, accounting for approximately 17 million deaths per year. Despite conventional treatment, cardiac tissue engineering emerges as a potential alternative for the advancement and treatment of these patients, using biomaterials to replace or repair cardiac tissues. Among these materials, gelatin in its methacrylated form (GelMA) is a biodegradable and biocompatible polymer with adjustable biophysical properties. Furthermore, gelatin has the ability to replace and perform collagen-like functions for cell development in vitro. The interest in using GelMA hydrogels combined with nanomaterials is increasingly growing to promote the responsiveness to external stimuli and improve certain properties of these hydrogels by exploring the incorporation of nanomaterials into these hydrogels to serve as electrical signaling conductive elements. This review highlights the applications of electrically conductive nanomaterials associated with GelMA hydrogels for the development of structures for cardiac tissue engineering, by focusing on studies that report the combination of GelMA with nanomaterials, such as gold and carbon derivatives (carbon nanotubes and graphene), in addition to the possibility of applying these materials in 3D tissue engineering, developing new possibilities for cardiac studies.
Collapse
Affiliation(s)
- Erika S Lisboa
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Carine Serafim
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Wanessa Santana
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Victoria L S Dos Santos
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Ricardo L C de Albuquerque-Junior
- Post-Graduate Program in Dentistry, Department of Dentistry, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil; Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology of UNISO (LaBNUS), University of Sorocaba, Sorocaba, São Paulo, Brazil
| | - Juliana C Cardoso
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Sona Jain
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Patrícia Severino
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil.
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
5
|
Mehrotra S, Dey S, Sachdeva K, Mohanty S, Mandal BB. Recent advances in tailoring stimuli-responsive hybrid scaffolds for cardiac tissue engineering and allied applications. J Mater Chem B 2023; 11:10297-10331. [PMID: 37905467 DOI: 10.1039/d3tb00450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
To recapitulate bio-physical properties and functional behaviour of native heart tissues, recent tissue engineering-based approaches are focused on developing smart/stimuli-responsive materials for interfacing cardiac cells. Overcoming the drawbacks of the traditionally used biomaterials, these smart materials portray outstanding mechanical and conductive properties while promoting cell-cell interaction and cell-matrix transduction cues in such excitable tissues. To date, a large number of stimuli-responsive materials have been employed for interfacing cardiac tissues alone or in combination with natural/synthetic materials for cardiac tissue engineering. However, their comprehensive classification and a comparative analysis of the role played by these materials in regulating cardiac cell behaviour and in vivo metabolism are much less discussed. In an attempt to cover the recent advances in fabricating stimuli-responsive biomaterials for engineering cardiac tissues, this review details the role of these materials in modulating cardiomyocyte behaviour, functionality and surrounding matrix properties. Furthermore, concerns and challenges regarding the clinical translation of these materials and the possibility of using such materials for the fabrication of bio-actuators and bioelectronic devices are discussed.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
| | - Kunj Sachdeva
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sujata Mohanty
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
6
|
Benko A, Webster TJ. How to fix a broken heart-designing biofunctional cues for effective, environmentally-friendly cardiac tissue engineering. Front Chem 2023; 11:1267018. [PMID: 37901157 PMCID: PMC10602933 DOI: 10.3389/fchem.2023.1267018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023] Open
Abstract
Cardiovascular diseases bear strong socioeconomic and ecological impact on the worldwide healthcare system. A large consumption of goods, use of polymer-based cardiovascular biomaterials, and long hospitalization times add up to an extensive carbon footprint on the environment often turning out to be ineffective at healing such cardiovascular diseases. On the other hand, cardiac cell toxicity is among the most severe but common side effect of drugs used to treat numerous diseases from COVID-19 to diabetes, often resulting in the withdrawal of such pharmaceuticals from the market. Currently, most patients that have suffered from cardiovascular disease will never fully recover. All of these factors further contribute to the extensive negative toll pharmaceutical, biotechnological, and biomedical companies have on the environment. Hence, there is a dire need to develop new environmentally-friendly strategies that on the one hand would promise cardiac tissue regeneration after damage and on the other hand would offer solutions for the fast screening of drugs to ensure that they do not cause cardiovascular toxicity. Importantly, both require one thing-a mature, functioning cardiac tissue that can be fabricated in a fast, reliable, and repeatable manner from environmentally friendly biomaterials in the lab. This is not an easy task to complete as numerous approaches have been undertaken, separately and combined, to achieve it. This review gathers such strategies and provides insights into which succeed or fail and what is needed for the field of environmentally-friendly cardiac tissue engineering to prosper.
Collapse
Affiliation(s)
| | - Thomas J. Webster
- Department of Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials Science, UFPI, Teresina, Brazil
| |
Collapse
|
7
|
Dey K, Sandrini E, Gobetti A, Ramorino G, Lopomo NF, Tonello S, Sardini E, Sartore L. Designing Biomimetic Conductive Gelatin-Chitosan-Carbon Black Nanocomposite Hydrogels for Tissue Engineering. Biomimetics (Basel) 2023; 8:473. [PMID: 37887604 PMCID: PMC10604854 DOI: 10.3390/biomimetics8060473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Conductive nanocomposites play a significant role in tissue engineering by providing a platform to support cell growth, tissue regeneration, and electrical stimulation. In the present study, a set of electroconductive nanocomposite hydrogels based on gelatin (G), chitosan (CH), and conductive carbon black (CB) was synthesized with the aim of developing novel biomaterials for tissue regeneration application. The incorporation of conductive carbon black (10, 15 and 20 wt.%) significantly improved electrical conductivity and enhanced mechanical properties with the increased CB content. We employed an oversimplified unidirectional freezing technique to impart anisotropic morphology with interconnected porous architecture. An investigation into whether any anisotropic morphology affects the mechanical properties of hydrogel was conducted by performing compression and cyclic compression tests in each direction parallel and perpendicular to macroporous channels. Interestingly, the nanocomposite with 10% CB produced both anisotropic morphology and mechanical properties, whereas anisotropic pore morphology diminished at higher CB concentrations (15 and 20%), imparting a denser texture. Collectively, the nanocomposite hydrogels showed great structural stability as well as good mechanical stability and reversibility. Under repeated compressive cyclic at 50% deformation, the nanocomposite hydrogels showed preconditioning, characteristic hysteresis, nonlinear elasticity, and toughness. Overall, the collective mechanical behavior resembled the mechanics of soft tissues. The electrical impedance associated with the hydrogels was studied in terms of the magnitude and phase angle in dry and wet conditions. The electrical properties of the nanocomposite hydrogels conducted in wet conditions, which is more physiologically relevant, showed a decreasing magnitude with increased CB concentrations, with a resistive-like behavior in the range 1 kHz-1 MHz and a capacitive-like behavior for frequencies <1 kHz and >1 MHz. Overall, the impedance of the nanocomposite hydrogels decreased with increased CB concentrations. Together, these nanocomposite hydrogels are compositionally, morphologically, mechanically, and electrically similar to native ECMs of many tissues. These gelatin-chitosan-carbon black nanocomposite hydrogels show great promise for use as conducting substrates for the growth of electro-responsive cells in tissue engineering.
Collapse
Affiliation(s)
- Kamol Dey
- Bio-Nanomaterials and Tissue Engineering Laboratory (BNTELab), Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Emanuel Sandrini
- Department of Mechanical and Industrial Engineering, Materials Science and Technology Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (A.G.); (G.R.); (L.S.)
| | - Anna Gobetti
- Department of Mechanical and Industrial Engineering, Materials Science and Technology Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (A.G.); (G.R.); (L.S.)
| | - Giorgio Ramorino
- Department of Mechanical and Industrial Engineering, Materials Science and Technology Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (A.G.); (G.R.); (L.S.)
| | - Nicola Francesco Lopomo
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (N.F.L.); (E.S.)
| | - Sarah Tonello
- Department of Information Engineering, University of Padova, 35131 Padua, Italy;
| | - Emilio Sardini
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (N.F.L.); (E.S.)
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, Materials Science and Technology Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (A.G.); (G.R.); (L.S.)
| |
Collapse
|
8
|
Li H, Ye W, Yu B, Yan X, Lin Y, Zhan J, Chen P, Song X, Yang P, Cai Y. Supramolecular Assemblies of Glycopeptides Enhance Gap Junction Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes via Inducing Spheroids Formation to Optimize Cardiac Repair. Adv Healthc Mater 2023; 12:e2300696. [PMID: 37338936 DOI: 10.1002/adhm.202300696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Stem cell-based therapies have demonstrated significant potential for use in heart regeneration. An effective paradigm for heart repair in rodent and large animal models is the transplantation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Despite this, the functional and phenotypical immaturity of 2D-cultured hiPSC-CMs, particularly their low electrical integration, poses a caveat for clinical translation. In this study, a supramolecular assembly of a glycopeptide containing a cell adhesion motif-RGD, and saccharide-glucose (Bio-Gluc-RGD) is designed to enable the 3D spheroid formation of hiPSC-CMs, promoting cell-cell and cell-matrix interactions that occur during spontaneous morphogenesis. HiPSC-CMs in spheroids are prone to be phenotypically mature and developed robust gap junctions via activation of the integrin/ILK/p-AKT/Gata4 pathway. Monodispersed hiPSC-CMs encapsulated in the Bio-Gluc-RGD hydrogel are more likely to form aggregates and, therefore, survive in the infarcted myocardium of mice, accompanied by more robust gap junction formation in the transplanted cells, and hiPSC-CMs delivered with the hydrogels also displayed angiogenic effect and anti-apoptosis capacity in the peri-infarct area, enhancing their overall therapeutic efficacy in myocardial infarction. Collectively, the findings illustrate a novel concept for modulating hiPSC-CM maturation by spheroid induction, which has the potential for post-MI heart regeneration.
Collapse
Affiliation(s)
- Hekai Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wenyu Ye
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Bin Yu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xin Yan
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuhui Lin
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peier Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xudong Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Pingzhen Yang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
9
|
Wang M, Du J, Li M, Pierini F, Li X, Yu J, Ding B. In situ forming double-crosslinked hydrogels with highly dispersed short fibers for the treatment of irregular wounds. Biomater Sci 2023; 11:2383-2394. [PMID: 36749639 DOI: 10.1039/d2bm01891h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In situ forming injectable hydrogels hold great potential for the treatment of irregular wounds. However, their practical applications were hindered by long gelation time, poor mechanical performance, and a lack of a natural extracellular matrix structure. Herein, amino-modified electrospun poly(lactic-co-glycolic acid) (APLGA) short fibers with uniform distribution were introduced into gelatin methacrylate/oxidized dextran (GM/ODex) hydrogels. In comparison with the fiber aggregation structure in the PLGA fiber-incorporated hydrogels, the hydrogels with APLGA fibers possessed a uniform porous structure. The highly dispersed APLGA short fibers accelerated the sol-gel phase transition of the hydrogel due to the formation of dynamic Schiff-base bonds between the fibers and hydrogels. Furthermore, in combination with UV-assisted crosslinking, a rapid gelation time of 90 s was achieved for the double-crosslinked hydrogels. The addition of APLGA short fibers as fillers and the formation of the double-crosslinking network enhanced the mechanical performance of the hydrogels. Furthermore, the fiber-hydrogel composites exhibited favorable injectability, excellent biocompatibility, and improved cell infiltration. In vivo assessment indicated that the GM/ODex-APLGA hydrogels successfully filled the full-thickness defects and improved wound healing. This work demonstrates a promising solution for the treatment of irregular wounds.
Collapse
Affiliation(s)
- Maidi Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Jingtao Du
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Mengya Li
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
10
|
Jalilinejad N, Rabiee M, Baheiraei N, Ghahremanzadeh R, Salarian R, Rabiee N, Akhavan O, Zarrintaj P, Hejna A, Saeb MR, Zarrabi A, Sharifi E, Yousefiasl S, Zare EN. Electrically conductive carbon-based (bio)-nanomaterials for cardiac tissue engineering. Bioeng Transl Med 2023; 8:e10347. [PMID: 36684103 PMCID: PMC9842069 DOI: 10.1002/btm2.10347] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.
Collapse
Affiliation(s)
- Negin Jalilinejad
- Biomaterial Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | | | - Reza Salarian
- Biomedical Engineering DepartmentMaziar UniversityRoyanMazandaranIran
| | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH), 77 Cheongam‐ro, Nam‐guPohangGyeongbukSouth Korea
| | - Omid Akhavan
- Department of PhysicsSharif University of TechnologyTehranIran
| | - Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Aleksander Hejna
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadanIran
| | | |
Collapse
|
11
|
Lee M, Kim MC, Lee JY. Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair. Int J Nanomedicine 2022; 17:6181-6200. [PMID: 36531116 PMCID: PMC9748845 DOI: 10.2147/ijn.s386763] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/23/2022] [Indexed: 08/28/2023] Open
Abstract
Cardiovascular disease is one of major causes of deaths, and its incidence has gradually increased worldwide. For cardiovascular diseases, several therapeutic approaches, such as drugs, cell-based therapy, and heart transplantation, are currently employed; however, their therapeutic efficacy and/or practical availability are still limited. Recently, biomaterial-based tissue engineering approaches have been recognized as promising for regenerating cardiac function in patients with cardiovascular diseases, including myocardial infarction (MI). In particular, materials mimicking the characteristics of native cardiac tissues can potentially prevent pathological progression and promote cardiac repair of the heart tissues post-MI. The mechanical (softness) and electrical (conductivity) properties of biomaterials as non-biochemical cues can improve the cardiac functions of infarcted hearts by mitigating myocardial cell death and subsequent fibrosis, which often leads to cardiac tissue stiffening and high electrical resistance. Consequently, electrically conductive hydrogels that can provide mechanical strength and augment the electrical activity of the infarcted heart tissue are considered new functional materials capable of mitigating the pathological progression to heart failure and stimulating cardiac regeneration. In this review, we highlight nanomaterial-incorporated hydrogels that can induce cardiac repair after MI. Nanomaterials, including carbon-based nanomaterials and recently discovered two-dimensional nanomaterials, offer great opportunities for developing functional conductive hydrogels owing to their excellent electrical conductivity, large surface area, and ease of modification. We describe recent results using nanomaterial-incorporated conductive hydrogels as cardiac patches and injectable hydrogels for cardiac repair. While further evaluations are required to confirm the therapeutic efficacy and toxicity of these materials, they could potentially be used for the regeneration of other electrically active tissues, such as nerves and muscles.
Collapse
Affiliation(s)
- Mingyu Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Min Chul Kim
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
12
|
Li Y, Liu Y, Peng B, Li X, Fang T, Liu S, Liu J, Li B, Li F. Stretchable, conductive, breathable and moisture-sensitive e-skin based on CNTs/graphene/GelMA mat for wound monitoring. BIOMATERIALS ADVANCES 2022; 143:213172. [PMID: 36343392 DOI: 10.1016/j.bioadv.2022.213172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Deep skin wound needs a long wound healing process, in which external force on skin around wound can result in a sharp pain, wound re-damage and interstitial fluid flowing out, increasing the risk of deterioration and even amputation. While the conventional wound dressings cannot provide timely feedback of abnormal wound status and lose best time for wound treatment, real-time monitoring wound status is thus urgently needed for wound management. In this work, a breathable and stretchable electronic skin (i.e., e-skin) named CNTs/graphene/GelMA mat has been developed through electrospinning, ice-templating and in-situ loading method for evaluating wound status. The obtained porosity, swelling ratio and vapor transmission rate of the CNTs/graphene/GelMA mat are 55 %, 180 % and 3378.2 h-1 day-1, respectively. And owing to the good porous, nanofibrous architecture and excellent breathability of the mat, L929 cells grow and well spread on the CNTs/graphene/GelMA mat. In addition, the gauge factors of the prepared conductive CNTs/graphene/GelMA mat as a strain sensor are 15.4 and 72.9 in the strain ranges of 0-70 % and 70-85 %, respectively, matching the mechanical performance of human skin. The sensitivity coefficient of the mat for moisture sensing is 12.05, indicating its high efficiency for monitoring and warning interstitial fluid outflow from wound. Furthermore, the integration of CNTs/graphene/GelMA mat with a portable device is feasible to monitor strain and moisture on a rat model with abdominal wound. The healing process of the wounds treated with CNTs/graphene/GelMA mat is similar to that of GelMA mat, indicating that the dosage of CNTs and graphene in the CNTs/graphene/GelMA mat has negligible effect on the mat histocompatibility. The CNTs/graphene/GelMA mat demonstrates the application potential in wound management, home medical diagnosis and human-machine interactions.
Collapse
Affiliation(s)
- Yingchun Li
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China; Advanced Interdisciplinary Research Center for Flexible Electronics, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, P. R. China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, P. R. China
| | - Bo Peng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| | - Xinyue Li
- Advanced Interdisciplinary Research Center for Flexible Electronics, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, P. R. China
| | - Tianshu Fang
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shuai Liu
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiachen Liu
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bo Li
- State key Laboratory for Manufacturing Engineering System, Shaanxi Province Key Laboratory for Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
13
|
Choi KA, Kim JH, Ryu K, Kaushik N. Current Nanomedicine for Targeted Vascular Disease Treatment: Trends and Perspectives. Int J Mol Sci 2022; 23:12397. [PMID: 36293254 PMCID: PMC9604340 DOI: 10.3390/ijms232012397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 12/19/2022] Open
Abstract
Nanotechnology has been developed to deliver cargos effectively to the vascular system. Nanomedicine is a novel and effective approach for targeted vascular disease treatment including atherosclerosis, coronary artery disease, strokes, peripheral arterial disease, and cancer. It has been well known for some time that vascular disease patients have a higher cancer risk than the general population. During atherogenesis, the endothelial cells are activated to increase the expression of adhesion molecules such as Intercellular Adhesion Molecule 1 (ICAM-1), Vascular cell adhesion protein 1 (VCAM-1), E-selectin, and P-selectin. This biological activation of endothelial cells gives a targetability clue for nanoparticle strategies. Nanoparticle formation has a passive targeting pathway due to the increased adhesion molecule expression on the cell surface as well as increased cell activation. In addition, the VCAM-1-targeting peptide has been widely used to target the inflamed endothelial cells. Biomimetic nanoparticles using platelet and leukocyte membrane fragment strategies have been promising techniques for targeted vascular disease treatment. Cyclodextrin, a natural oligosaccharide with a hydrophobic cavity, increase the solubility of cholesterol crystals at the atherosclerotic plaque site and has been used to deliver the hydrophobic drug statin as a therapeutic in a targeted manner. In summary, nanoparticles decorated with various targeting molecules will be an effective and promising strategy for targeted vascular disease treatment.
Collapse
Affiliation(s)
- Kyung-A Choi
- National Institute of Medical Welfare, Kangnam University, Yongin 16979, Korea
| | - June Hyun Kim
- Department of Biotechnology, The University of Suwon, Suwon 18323, Korea
| | - Kitae Ryu
- Department of Biotechnology, The University of Suwon, Suwon 18323, Korea
| | - Neha Kaushik
- Department of Biotechnology, The University of Suwon, Suwon 18323, Korea
| |
Collapse
|
14
|
Scott L, Elídóttir K, Jeevaratnam K, Jurewicz I, Lewis R. Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis. Ann N Y Acad Sci 2022; 1515:105-119. [PMID: 35676231 PMCID: PMC9796457 DOI: 10.1111/nyas.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electrical conductivity is of great significance to cardiac tissue engineering and permits the use of electrical stimulation in mimicking cardiac pacing. The development of biomaterials for tissue engineering can incorporate physical properties that are uncommon to standard cell culture and can facilitate improved cardiomyocyte function. In this review, the PICOT question asks, "How has the application of external electrical stimulation in conductive scaffolds for tissue engineering affected cardiomyocyte behavior in in vitro cell culture?" The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, with predetermined inclusion and quality appraisal criteria, were used to assess publications from PubMed, Web of Science, and Scopus. Results revealed carbon nanotubes to be the most common conductive agent in biomaterials and rodent-sourced cell types as the most common cardiomyocytes used. To assess cardiomyocytes, immunofluorescence was used most often, utilizing proteins, such as connexin 43, cardiac α-actinin, and cardiac troponins. It was determined that the modal average stimulation protocol comprised 1-3 V square biphasic 50-ms pulses at 1 Hz, applied toward the end of cell culture. The addition of electrical stimulation to in vitro culture has exemplified it as a powerful tool for cardiac tissue engineering and brings researchers closer to creating optimal artificial cardiac tissue constructs.
Collapse
Affiliation(s)
- Louie Scott
- School of Veterinary MedicineUniversity of SurreyGuildfordUK
| | | | | | | | - Rebecca Lewis
- School of Veterinary MedicineUniversity of SurreyGuildfordUK
| |
Collapse
|
15
|
Alamdari SG, Alibakhshi A, de la Guardia M, Baradaran B, Mohammadzadeh R, Amini M, Kesharwani P, Mokhtarzadeh A, Oroojalian F, Sahebkar A. Conductive and Semiconductive Nanocomposite-Based Hydrogels for Cardiac Tissue Engineering. Adv Healthc Mater 2022; 11:e2200526. [PMID: 35822350 DOI: 10.1002/adhm.202200526] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/26/2022] [Indexed: 01/27/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide and the most common cause is myocardial infarction. Therefore, appropriate approaches should be used to repair damaged heart tissue. Recently, cardiac tissue engineering approaches have been extensively studied. Since the creation of the nature of cardiovascular tissue engineering, many advances have been made in cellular and scaffolding technologies. Due to the hydrated and porous structures of the hydrogel, they are used as a support matrix to deliver cells to the infarct tissue. In heart tissue regeneration, bioactive and biodegradable hydrogels are required by simulating native tissue microenvironments to support myocardial wall stress in addition to preserving cells. Recently, the use of nanostructured hydrogels has increased the use of nanocomposite hydrogels and has revolutionized the field of cardiac tissue engineering. Therefore, to overcome the limitation of the use of hydrogels due to their mechanical fragility, various nanoparticles of polymers, metal, and carbon are used in tissue engineering and create a new opportunity to provide hydrogels with excellent properties. Here, the types of synthetic and natural polymer hydrogels, nanocarbon-based hydrogels, and other nanoparticle-based materials used for cardiac tissue engineering with emphasis on conductive nanostructured hydrogels are briefly introduced.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, 83111-55181, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, Valencia, 46100, Spain
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, 83111-55181, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 94149-75516, Iran.,Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94149-75516, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran
| |
Collapse
|
16
|
Dickerson DA. Advancing Engineered Heart Muscle Tissue Complexity with Hydrogel Composites. Adv Biol (Weinh) 2022; 7:e2200067. [PMID: 35999488 DOI: 10.1002/adbi.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/19/2022] [Indexed: 11/10/2022]
Abstract
A heart attack results in the permanent loss of heart muscle and can lead to heart disease, which kills more than 7 million people worldwide each year. To date, outside of heart transplantation, current clinical treatments cannot regenerate lost heart muscle or restore full function to the damaged heart. There is a critical need to create engineered heart tissues with structural complexity and functional capacity needed to replace damaged heart muscle. The inextricable link between structure and function suggests that hydrogel composites hold tremendous promise as a biomaterial-guided strategy to advance heart muscle tissue engineering. Such composites provide biophysical cues and functionality as a provisional extracellular matrix that hydrogels cannot on their own. This review describes the latest advances in the characterization of these biomaterial systems and using them for heart muscle tissue engineering. The review integrates results across the field to provide new insights on critical features within hydrogel composites and perspectives on the next steps to harnessing these promising biomaterials to faithfully reproduce the complex structure and function of native heart muscle.
Collapse
Affiliation(s)
- Darryl A. Dickerson
- Department of Mechanical and Materials Engineering Florida International University 10555 West Flagler St Miami FL 33174 USA
| |
Collapse
|
17
|
Li Y, Qiu X. Bioelectricity-coupling patches for repairing impaired myocardium. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1787. [PMID: 35233963 DOI: 10.1002/wnan.1787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/27/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
Cardiac abnormalities, which account for extensive burdens on public health and economy, drive necessary attempts to revolutionize the traditional therapeutic system. Advances in cardiac tissue engineering have expanded a highly efficacious platform to address cardiovascular events, especially cardiac infarction. Current efforts to overcome biocompatible limitations highlight the constructs of a conductive cardiac patch to accelerate the industrial and clinical landscape that is amenable for patient-accurate therapy, regenerative medicine, disease modeling, and drug delivery. With the notion that cardiac tissue synchronically contracts triggered by electrical pulses, the cardiac patches based on conductive materials are developed and treated on the dysfunctional heart. In this review, we systematically summarize distinct conductive materials serving as the most promising alternatives (conductive nanomaterials, conductive polymers, piezoelectric polymers, and ionic electrolytes) to achieve electric signal transmission and engineered cardiac tissues. Existing applications are discussed considering how these patches containing conductive candidates are fabricated into diverse forms with major strategies. Ultimately, we try to define a new concept as a bioelectricity-coupling patch that provides a favorable cardiac micro-environment for cardiac functional activities. Underlying challenges and prospects are presented regarding industrial processing and cardiovascular treatment of conductive patch progress. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease.
Collapse
Affiliation(s)
- Yuedan Li
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Saghebasl S, Akbarzadeh A, Gorabi AM, Nikzamir N, SeyedSadjadi M, Mostafavi E. Biodegradable functional macromolecules as promising scaffolds for cardiac tissue engineering. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Abolfazl Akbarzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Universal Scientific Education and Research Network (USERN) Tabriz Iran
| | - Armita Mahdavi Gorabi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Nasrin Nikzamir
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute Stanford University School of Medicine Stanford California USA
- Department of Medicine Stanford University School of Medicine Stanford California USA
| |
Collapse
|
20
|
Li Y, Wei L, Lan L, Gao Y, Zhang Q, Dawit H, Mao J, Guo L, Shen L, Wang L. Conductive biomaterials for cardiac repair: A review. Acta Biomater 2022; 139:157-178. [PMID: 33887448 DOI: 10.1016/j.actbio.2021.04.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) is one of the fatal diseases in humans. Its incidence is constantly increasing annually all over the world. The problem is accompanied by the limited regenerative capacity of cardiomyocytes, yielding fibrous scar tissue formation. The propagation of electrical impulses in such tissue is severely hampered, negatively influencing the normal heart pumping function. Thus, reconstruction of the internal cardiac electrical connection is currently a major concern of myocardial repair. Conductive biomaterials with or without cell loading were extensively investigated to address this problem. This article introduces a detailed overview of the recent progress in conductive biomaterials and fabrication methods of conductive scaffolds for cardiac repair. After that, the advances in myocardial tissue construction in vitro by the restoration of intercellular communication and simulation of the dynamic electrophysiological environment are systematically reviewed. Furthermore, the latest trend in the study of cardiac repair in vivo using various conductive patches is summarized. Finally, we discuss the achievements and shortcomings of the existing conductive biomaterials and the properties of an ideal conductive patch for myocardial repair. We hope this review will help readers understand the importance and usefulness of conductive biomaterials in cardiac repair and inspire researchers to design and develop new conductive patches to meet the clinical requirements. STATEMENT OF SIGNIFICANCE: After myocardial infarction, the infarcted myocardial area is gradually replaced by heterogeneous fibrous tissue with inferior conduction properties, resulting in arrhythmia and heart remodeling. Conductive biomaterials have been extensively adopted to solve the problem. Summarizing the relevant literature, this review presents an overview of the types and fabrication methods of conductive biomaterials, and focally discusses the recent advances in myocardial tissue construction in vitro and myocardial repair in vivo, which is rarely covered in previous reviews. As well, the deficiencies of the existing conductive patches and their construction strategies for myocardial repair are discussed as well as the improving directions. Confidently, the readers of this review would appreciate advantages and current limitations of conductive biomaterials/patches in cardiac repair.
Collapse
Affiliation(s)
- Yimeng Li
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Leqian Wei
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lizhen Lan
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yaya Gao
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Qian Zhang
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Hewan Dawit
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China.
| | - Lamei Guo
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Li Shen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Lu Wang
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
21
|
Morsink M, Severino P, Luna-Ceron E, Hussain MA, Sobahi N, Shin SR. Effects of electrically conductive nano-biomaterials on regulating cardiomyocyte behavior for cardiac repair and regeneration. Acta Biomater 2022; 139:141-156. [PMID: 34818579 PMCID: PMC11041526 DOI: 10.1016/j.actbio.2021.11.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
Myocardial infarction (MI) represents one of the most prevalent cardiovascular diseases, with a highly relevant and impactful role in public health. Despite the therapeutic advances of the last decades, MI still begets extensive death rates around the world. The pathophysiology of the disease correlates with cardiomyocyte necrosis, caused by an imbalance in the demand of oxygen to cardiac tissues, resulting from obstruction of the coronary flow. To alleviate the severe effects of MI, the use of various biomaterials exhibit vast potential in cardiac repair and regeneration, acting as native extracellular matrices. These hydrogels have been combined with nano sized or functional materials which possess unique electrical, mechanical, and topographical properties that play important roles in regulating phenotypes and the contractile function of cardiomyocytes even in adverse microenvironments. These nano-biomaterials' differential properties have led to substantial healing on in vivo cardiac injury models by promoting fibrotic scar reduction, hemodynamic function preservation, and benign cardiac remodeling. In this review, we discuss the interplay of the unique physical properties of electrically conductive nano-biomaterials, are able to manipulate the phenotypes and the electrophysiological behavior of cardiomyocytes in vitro, and can enhance heart regeneration in vivo. Consequently, the understanding of the decisive roles of the nano-biomaterials discussed in this review could be useful for designing novel nano-biomaterials in future research for cardiac tissue engineering and regeneration. STATEMENT OF SIGNIFICANCE: This study introduced and deciphered the understanding of the role of multimodal cues in recent advances of electrically conductive nano-biomaterials on cardiac tissue engineering. Compared with other review papers, which mainly describe these studies based on various types of electrically conductive nano-biomaterials, in this review paper we mainly discussed the interplay of the unique physical properties (electrical conductivity, mechanical properties, and topography) of electrically conductive nano-biomaterials, which would allow them to manipulate phenotypes and the electrophysiological behavior of cardiomyocytes in vitro and to enhance heart regeneration in vivo. Consequently, understanding the decisive roles of the nano-biomaterials discussed in the review could help design novel nano-biomaterials in future research for cardiac tissue engineering and regeneration.
Collapse
Affiliation(s)
- Margaretha Morsink
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America; Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, Netherlands; Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands
| | - Patrícia Severino
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America; University of Tiradentes (Unit), Biotechnological Postgraduate Program. Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; Institute of Technology and Research (ITP), Nanomedicine and Nanotechnology Laboratory (LNMed), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, United States of America
| | - Eder Luna-Ceron
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America
| | - Mohammad A Hussain
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Nebras Sobahi
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America.
| |
Collapse
|
22
|
Bupphathong S, Quiroz C, Huang W, Chung PF, Tao HY, Lin CH. Gelatin Methacrylate Hydrogel for Tissue Engineering Applications—A Review on Material Modifications. Pharmaceuticals (Basel) 2022; 15:ph15020171. [PMID: 35215284 PMCID: PMC8878046 DOI: 10.3390/ph15020171] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/26/2022] Open
Abstract
To recreate or substitute tissue in vivo is a complicated endeavor that requires biomaterials that can mimic the natural tissue environment. Gelatin methacrylate (GelMA) is created through covalent bonding of naturally derived polymer gelatin and methacrylic groups. Due to its biocompatibility, GelMA receives a lot of attention in the tissue engineering research field. Additionally, GelMA has versatile physical properties that allow a broad range of modifications to enhance the interaction between the material and the cells. In this review, we look at recent modifications of GelMA with naturally derived polymers, nanomaterials, and growth factors, focusing on recent developments for vascular tissue engineering and wound healing applications. Compared to polymers and nanoparticles, the modifications that embed growth factors show better mechanical properties and better cell migration, stimulating vascular development and a structure comparable to the natural-extracellular matrix.
Collapse
Affiliation(s)
- Sasinan Bupphathong
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan; (S.B.); (H.-Y.T.)
| | - Carlos Quiroz
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Wei Huang
- Department of Orthodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA;
| | - Pei-Feng Chung
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Hsuan-Ya Tao
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan; (S.B.); (H.-Y.T.)
| | - Chih-Hsin Lin
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan; (S.B.); (H.-Y.T.)
- Correspondence:
| |
Collapse
|
23
|
Chopra H, Bibi S, Mishra AK, Tirth V, Yerramsetty SV, Murali SV, Ahmad SU, Mohanta YK, Attia MS, Algahtani A, Islam F, Hayee A, Islam S, Baig AA, Emran TB. Nanomaterials: A Promising Therapeutic Approach for Cardiovascular Diseases. JOURNAL OF NANOMATERIALS 2022; 2022. [DOI: 10.1155/2022/4155729] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 09/01/2023]
Abstract
Cardiovascular diseases (CVDs) are a primary cause of death globally. A few classic and hybrid treatments exist to treat CVDs. However, they lack in both safety and effectiveness. Thus, innovative nanomaterials for disease diagnosis and treatment are urgently required. The tiny size of nanomaterials allows them to reach more areas of the heart and arteries, making them ideal for CVDs. Atherosclerosis causes arterial stenosis and reduced blood flow. The most common treatment is medication and surgery to stabilize the disease. Nanotechnologies are crucial in treating vascular disease. Nanomaterials may be able to deliver medications to lesion sites after being infused into the circulation. Newer point‐of‐care devices have also been considered together with nanomaterials. For example, this study will look at the use of nanomaterials in imaging, diagnosing, and treating CVDs.
Collapse
|
24
|
Munguia-Lopez JG, Jiang T, Ferlatte A, Fajardo-Diaz JL, Munoz-Sandoval E, Tran SD, Kinsella JM. Highly Concentrated Nitrogen‐Doped Carbon Nanotubes in Alginate–Gelatin 3D Hydrogels Enable in Vitro Breast Cancer Spheroid Formation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jose G. Munguia-Lopez
- Faculty of Dentistry McGill University Montreal Quebec H3A 0C7 Canada
- Department of Bioengineering McGill University Montreal Quebec H3A 0E9 Canada
| | - Tao Jiang
- Department of Intelligent Machinery and Instrument College of Intelligence Science and Technology National University of Defense Technology Changsha Human 410073 China
| | - Audrey Ferlatte
- Department of Bioengineering McGill University Montreal Quebec H3A 0E9 Canada
| | - Juan L. Fajardo-Diaz
- Advanced Materials Department Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICyT) San Luis Potosi San Luis Potosi 78216 Mexico
- Global Aqua Innovation Center and Research Initiative for Supra-Materials Shinshu University 4-17-1 Wakasato Nagano 380-8553 Japan
| | - Emilio Munoz-Sandoval
- Advanced Materials Department Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICyT) San Luis Potosi San Luis Potosi 78216 Mexico
| | - Simon D. Tran
- Faculty of Dentistry McGill University Montreal Quebec H3A 0C7 Canada
| | - Joseph M. Kinsella
- Department of Bioengineering McGill University Montreal Quebec H3A 0E9 Canada
| |
Collapse
|
25
|
Sakr MA, Sakthivel K, Hossain T, Shin SR, Siddiqua S, Kim J, Kim K. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. J Biomed Mater Res A 2021; 110:708-724. [PMID: 34558808 DOI: 10.1002/jbm.a.37310] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/21/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
Gelatin methacryloyl (GelMA), a photocrosslinkable gelatin-based hydrogel, has been immensely used for diverse applications in tissue engineering and drug delivery. Apart from its excellent functionality and versatile mechanical properties, it is also suitable for a wide range of fabrication methodologies to generate tissue constructs of desired shapes and sizes. Despite its exceptional characteristics, it is predominantly limited by its weak mechanical strength, as some tissue types naturally possess high mechanical stiffness. The use of high GelMA concentrations yields high mechanical strength, but not without the compromise in its porosity, degradability, and three-dimensional (3D) cell attachment. Recently, GelMA has been blended with various natural and synthetic biomaterials to reinforce its physical properties to match with the tissue to be engineered. Among these, nanomaterials have been extensively used to form a composite with GelMA, as they increase its biological and physicochemical properties without affecting the unique characteristics of GelMA and also introduce electrical and magnetic properties. This review article presents the recent advances in the formation of hybrid GelMA nanocomposites using a variety of nanomaterials (carbon, metal, polymer, and mineral-based). We give an overview of each nanomaterial's characteristics followed by a discussion of the enhancement in GelMA's physical properties after its incorporation. Finally, we also highlight the use of each GelMA nanocomposite for different applications, such as cardiac, bone, and neural regeneration.
Collapse
Affiliation(s)
- Mahmoud A Sakr
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Kabilan Sakthivel
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Towsif Hossain
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, Massachusetts, USA
| | - Sumi Siddiqua
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Jaehwan Kim
- Advanced Geo-materials Research Department, Korea Institute of Geosciece and Mineral Resources, Pohang-si, South Korea
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Bai R, Liu J, Zhang J, Shi J, Jin Z, Li Y, Ding X, Zhu X, Yuan C, Xiu B, Liu H, Yuan Z, Liu Z. Conductive single-wall carbon nanotubes/extracellular matrix hybrid hydrogels promote the lineage-specific development of seeding cells for tissue repair through reconstructing an integrin-dependent niche. J Nanobiotechnology 2021; 19:252. [PMID: 34425841 PMCID: PMC8381546 DOI: 10.1186/s12951-021-00993-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The niche of tissue development in vivo involves the growth matrix, biophysical cues and cell-cell interactions. Although natural extracellular matrixes may provide good supporting for seeding cells in vitro, it is evitable to destroy biophysical cues during decellularization. Reconstructing the bioactivities of extracellular matrix-based scaffolds is essential for their usage in tissue repair. RESULTS In the study, a hybrid hydrogel was developed by incorporating single-wall carbon nanotubes (SWCNTs) into heart-derived extracellular matrixes. Interestingly, insoluble SWCNTs were well dispersed in hybrid hydrogel solution via the interaction with extracellular matrix proteins. Importantly, an augmented integrin-dependent niche was reconstructed in the hybrid hydrogel, which could work like biophysical cues to activate integrin-related pathway of seeding cells. As supporting scaffolds in vitro, the hybrid hydrogels were observed to significantly promote seeding cell adhesion, differentiation, as well as structural and functional development towards mature cardiac tissues. As injectable carrier scaffolds in vivo, the hybrid hydrogels were then used to delivery stem cells for myocardial repair in rats. Similarly, significantly enhanced cardiac differentiation and maturation(12.5 ± 2.3% VS 32.8 ± 5%) of stem cells were detected in vivo, resulting in improved myocardial regeneration and repair. CONCLUSIONS The study represented a simple and powerful approach for exploring bioactive scaffold to promote stem cell-based tissue repair.
Collapse
Affiliation(s)
- Rui Bai
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Jianfeng Liu
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiao Zhang
- Department of Cardiology, Beijing Electric Power Hospital, State Grid Corporation of China, Beijing, 100073, China
| | - Jinmiao Shi
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhigeng Jin
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yi Li
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Xiaoyu Ding
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiaoming Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chao Yuan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Bingshui Xiu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huiliang Liu
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Zengqiang Yuan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Zhiqiang Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
27
|
Alagarsamy KN, Mathan S, Yan W, Rafieerad A, Sekaran S, Manego H, Dhingra S. Carbon nanomaterials for cardiovascular theranostics: Promises and challenges. Bioact Mater 2021; 6:2261-2280. [PMID: 33553814 PMCID: PMC7829079 DOI: 10.1016/j.bioactmat.2020.12.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Heart attack and stroke cause irreversible tissue damage. The currently available treatment options are limited to "damage-control" rather than tissue repair. The recent advances in nanomaterials have offered novel approaches to restore tissue function after injury. In particular, carbon nanomaterials (CNMs) have shown significant promise to bridge the gap in clinical translation of biomaterial based therapies. This family of carbon allotropes (including graphenes, carbon nanotubes and fullerenes) have unique physiochemical properties, including exceptional mechanical strength, electrical conductivity, chemical behaviour, thermal stability and optical properties. These intrinsic properties make CNMs ideal materials for use in cardiovascular theranostics. This review is focused on recent efforts in the diagnosis and treatment of heart diseases using graphenes and carbon nanotubes. The first section introduces currently available derivatives of graphenes and carbon nanotubes and discusses some of the key characteristics of these materials. The second section covers their application in drug delivery, biosensors, tissue engineering and immunomodulation with a focus on cardiovascular applications. The final section discusses current shortcomings and limitations of CNMs in cardiovascular applications and reviews ongoing efforts to address these concerns and to bring CNMs from bench to bedside.
Collapse
Affiliation(s)
- Keshav Narayan Alagarsamy
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sajitha Mathan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | - Weiang Yan
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Alireza Rafieerad
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Saravanan Sekaran
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | - Hanna Manego
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanjiv Dhingra
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
28
|
Scott L, Jurewicz I, Jeevaratnam K, Lewis R. Carbon Nanotube-Based Scaffolds for Cardiac Tissue Engineering-Systematic Review and Narrative Synthesis. Bioengineering (Basel) 2021; 8:80. [PMID: 34207645 PMCID: PMC8228669 DOI: 10.3390/bioengineering8060080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is currently the top global cause of death, however, research into new therapies is in decline. Tissue engineering is a solution to this crisis and in combination with the use of carbon nanotubes (CNTs), which have drawn recent attention as a biomaterial, could facilitate the development of more dynamic and complex in vitro models. CNTs' electrical conductivity and dimensional similarity to cardiac extracellular proteins provide a unique opportunity to deliver scaffolds with stimuli that mimic the native cardiac microenvironment in vitro more effectively. This systematic review aims to evaluate the use and efficacy of CNTs for cardiac tissue scaffolds and was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Three databases were searched: PubMed, Scopus, and Web of Science. Papers resulting from these searches were then subjected to analysis against pre-determined inclusion and quality appraisal criteria. From 249 results, 27 manuscripts met the criteria and were included in this review. Neonatal rat cardiomyocytes were most commonly used in the experiments, with multi-walled CNTs being most common in tissue scaffolds. Immunofluorescence was the experimental technique most frequently used, which was employed for the staining of cardiac-specific proteins relating to contractile and electrophysiological function.
Collapse
Affiliation(s)
- Louie Scott
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| | - Izabela Jurewicz
- Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK;
| | - Kamalan Jeevaratnam
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| | - Rebecca Lewis
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| |
Collapse
|
29
|
Li XP, Qu KY, Zhou B, Zhang F, Wang YY, Abodunrin OD, Zhu Z, Huang NP. Electrical stimulation of neonatal rat cardiomyocytes using conductive polydopamine-reduced graphene oxide-hybrid hydrogels for constructing cardiac microtissues. Colloids Surf B Biointerfaces 2021; 205:111844. [PMID: 34015732 DOI: 10.1016/j.colsurfb.2021.111844] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
The development of diversified biomaterials in tissue engineering has been promoted by growing research into carbon-based nanomaterials. Usually, ideal scaffold materials should possess properties similar to the extracellular matrix of natural myocardial tissue. In this study, dopamine-reduced graphene oxide (GO), was prepared and doped into gelatin methacrylate (GelMA) hydrogels, resulting in novel conductive and mechanical properties for controlling cell growth. Cardiomyocytes (CMs) cultured on PDA-rGO-incorporated hydrogels (GelMA-PDA-rGO) had greater cytocompatibility than those cultured on GelMA hydrogels, as evidenced by higher cell survival rates and up-regulation of cardiac-relevant proteins. Finally, electrical stimulation was applied to facilitate the maturation of CMs which was seeded on different hydrogels. The findings revealed that electrical stimulation of conductive hybrid hydrogel scaffolds improved the orientational order parameter of sarcomeres (OOP). In addition, propagation of intercellular pacing signals, which improves the expression of gap junction proteins was noticed, likewise calcium handling capacity was present in conductive hybrid hydrogels compared to those in pure GelMA group. This study has shown that the combination of GelMA-PDA-rGO based conductive hydrogels and electrical stimulation possessed synergistic effects for engineering a more functional and mature myocardium layer as well as further application in drug screening and disease modeling in vitro.
Collapse
Affiliation(s)
- Xiao-Pei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Kai-Yun Qu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Bin Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Feng Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yin-Ying Wang
- Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Oluwatosin David Abodunrin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhen Zhu
- Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
30
|
Kilian LS, Voran J, Frank D, Rangrez AY. RhoA: a dubious molecule in cardiac pathophysiology. J Biomed Sci 2021; 28:33. [PMID: 33906663 PMCID: PMC8080415 DOI: 10.1186/s12929-021-00730-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Ras homolog gene family member A (RhoA) is the founding member of Rho GTPase superfamily originally studied in cancer cells where it was found to stimulate cell cycle progression and migration. RhoA acts as a master switch control of actin dynamics essential for maintaining cytoarchitecture of a cell. In the last two decades, however, RhoA has been coined and increasingly investigated as an essential molecule involved in signal transduction and regulation of gene transcription thereby affecting physiological functions such as cell division, survival, proliferation and migration. RhoA has been shown to play an important role in cardiac remodeling and cardiomyopathies; underlying mechanisms are however still poorly understood since the results derived from in vitro and in vivo experiments are still inconclusive. Interestingly its role in the development of cardiomyopathies or heart failure remains largely unclear due to anomalies in the current data available that indicate both cardioprotective and deleterious effects. In this review, we aimed to outline the molecular mechanisms of RhoA activation, to give an overview of its regulators, and the probable mechanisms of signal transduction leading to RhoA activation and induction of downstream effector pathways and corresponding cellular responses in cardiac (patho)physiology. Furthermore, we discuss the existing studies assessing the presented results and shedding light on the often-ambiguous data. Overall, we provide an update of the molecular, physiological and pathological functions of RhoA in the heart and its potential in cardiac therapeutics.
Collapse
Affiliation(s)
- Lucia Sophie Kilian
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Jakob Voran
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany. .,Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Xiang L, Cui W. Biomedical application of photo-crosslinked gelatin hydrogels. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-020-00043-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
During the past decades, photo-crosslinked gelatin hydrogel (methacrylated gelatin, GelMA) has gained a lot of attention due to its remarkable application in the biomedical field. It has been widely used in cell transplantation, cell culture and drug delivery, based on its crosslinking to form hydrogels with tunable mechanical properties and excellent bio-compatibility when exposed to light irradiation to mimic the micro-environment of native extracellular matrix (ECM). Because of its unique biofunctionality and mechanical tenability, it has also been widely applied in the repair and regeneration of bone, heart, cornea, epidermal tissue, cartilage, vascular, peripheral nerve, oral mucosa, and skeletal muscle et al. The purpose of this review is to summarize the recent application of GelMA in drug delivery and tissue engineering field. Moreover, this review article will briefly introduce both the development of GelMA and the characterization of GelMA. Finally, we discuss the challenges and future development prospects of GelMA as a tissue engineering material and drug or gene delivery carrier, hoping to contribute to accelerating the development of GelMA in the biomedical field.
Graphical abstract
Collapse
|
32
|
Liu J, Zou T, Yao Q, Zhang Y, Zhao Y, Zhang C. Hypoxia-mimicking cobalt-doped multi-walled carbon nanotube nanocomposites enhance the angiogenic capacity of stem cells from apical papilla. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111797. [PMID: 33545919 DOI: 10.1016/j.msec.2020.111797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022]
Abstract
Adequate and timely vascularization is crucial for the success of dental pulp tissue engineering. Hypoxia, an important driving force of angiogenesis, plays an important role in this process. However, few studies have investigated the fabrication of hypoxia-simulating biomaterials for dental applications. In this study, a novel hypoxia-mimicking, multi-walled carbon nanotubes/cobalt (MWCNTs/Co) nanocomposite was prepared using the metal-organic framework (MOF) route for the in situ insertion of MWCNTs into Co3O4 polyhedra. The obtained nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Cobalt ion release of MWCNTs/Co was analyzed in vitro. Cell viability and proliferation were assessed by culturing stem cells from apical papilla (SCAP) with MWCNTs/Co nanocomposites. The angiogenic capacity of SCAP after exposure to nanocomposites was evaluated by enzyme-linked immunosorbent assay (ELISA), western blotting and the Matrigel angiogenesis assay. Our results proved that the synthesized MWCNTs/Co nanocomposites possessed a well-designed connecting structure and could release cobalt ions in a sustained way. The MWCNTs/Co nanocomposites at 50 μg/mL significantly upregulated hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) protein expression in SCAP, with no apparent cellular cytotoxicity. The conditioned medium collected from SCAP treated with MWCNTs/Co markedly promoted endothelial cells vessel formation. In conclusion, hypoxia-mimicking MWCNTs/Co nanocomposites exhibit promising angiogenic potential for dental tissue engineering and might provide an alternative solution for translational applications.
Collapse
Affiliation(s)
- Junqing Liu
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ting Zou
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qianqian Yao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Yuchen Zhang
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yi Zhao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China.
| | - Chengfei Zhang
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Mousavi A, Vahdat S, Baheiraei N, Razavi M, Norahan MH, Baharvand H. Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering. ACS Biomater Sci Eng 2020; 7:55-82. [PMID: 33320525 DOI: 10.1021/acsbiomaterials.0c01422] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult cardiomyocytes are terminally differentiated cells that result in minimal intrinsic potential for the heart to self-regenerate. The introduction of novel approaches in cardiac tissue engineering aims to repair damages from cardiovascular diseases. Recently, conductive biomaterials such as carbon- and gold-based nanomaterials, conductive polymers, and ceramics that have outstanding electrical conductivity, acceptable mechanical properties, and promoted cell-cell signaling transduction have attracted attention for use in cardiac tissue engineering. Nevertheless, comprehensive classification of conductive biomaterials from the perspective of cardiac cell function is a subject for discussion. In the present review, we classify and summarize the unique properties of conductive biomaterials considered beneficial for cardiac tissue engineering. We attempt to cover recent advances in conductive biomaterials with a particular focus on their effects on cardiac cell functions and proposed mechanisms of action. Finally, current problems, limitations, challenges, and suggested solutions for applications of these biomaterials are presented.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Sadaf Vahdat
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Department of Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, México
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
34
|
Chandika P, Heo SY, Kim TH, Oh GW, Kim GH, Kim MS, Jung WK. Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications. Int J Biol Macromol 2020; 164:2329-2357. [DOI: 10.1016/j.ijbiomac.2020.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
|
35
|
R. Amin D, Sink E, Narayan SP, Abdel-Hafiz M, Mestroni L, Peña B. Nanomaterials for Cardiac Tissue Engineering. Molecules 2020; 25:E5189. [PMID: 33171802 PMCID: PMC7664640 DOI: 10.3390/molecules25215189] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
End stage heart failure is a major cause of death in the US. At present, organ transplant and left-ventricular assist devices remain the only viable treatments for these patients. Cardiac tissue engineering presents the possibility of a new option. Nanomaterials such as gold nanorods (AuNRs) and carbon nanotubes (CNTs) present unique properties that are beneficial for cardiac tissue engineering approaches. In particular, these nanomaterials can modulate electrical conductivity, hardness, and roughness of bulk materials to improve tissue functionality. Moreover, they can deliver bioactive cargo to affect cell phenotypes. This review covers recent advances in the use of nanomaterials for cardiac tissue engineering.
Collapse
Affiliation(s)
- Devang R. Amin
- Department of Internal Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (D.R.A.); (E.S.)
| | - Eric Sink
- Department of Internal Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (D.R.A.); (E.S.)
| | - Suguna P. Narayan
- Department of Pathology, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| | - Mostafa Abdel-Hafiz
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, CO 80045, USA;
| | - Luisa Mestroni
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, USA;
| | - Brisa Peña
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, CO 80045, USA;
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, USA;
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
36
|
Ghai P, Mayerhofer T, Jha RK. Exploring the effectiveness of incorporating carbon nanotubes into bioengineered scaffolds to improve cardiomyocyte function. Expert Rev Clin Pharmacol 2020; 13:1347-1366. [PMID: 33103928 DOI: 10.1080/17512433.2020.1841634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Carbon nanotubes are effective in improving scaffolds to enhance cardiomyocyte function and hold great promise in the field of cardiac tissue engineering. AREAS COVERED A PubMed and Google Scholar search was performed to find relevant literature. 18 total studies were used as primary literature. The literature revealed that the incorporation of carbon nanotube into biocompatible scaffolds that mimic myocardial extracellular matrix enhanced the ability to promote cell functions by improving physical profiles of scaffolds. Several studies showed improved scaffold conductance, mechanical strength, improvements in cell properties such as viability, and beating behavior of cells grown on carbon nanotube incorporated scaffolds. Carbon nanotubes present a unique opportunity in the world of tissue engineering through reparation and regeneration of the myocardium, an otherwise irreparable tissue. EXPERT OPINION The high burden of cardiovascular disease has prompted research into cardiac tissue engineering applications. Carbon-nanotube incorporation into extracellular matrix-mimicking-scaffolds has shown to improve cardiomyocyte conductivity, viability, mechanical strength, beating behavior, and have protected them from damage to a certain degree. These are promising findings that have the potential of becoming the focus of future cardiac tissue engineering research.
Collapse
Affiliation(s)
- Paridhi Ghai
- Department of Pharmacology, Saba University School of Medicine , The Bottom, Saba, Netherlands Antilles
| | - Thomas Mayerhofer
- Department of Pharmacology, Saba University School of Medicine , The Bottom, Saba, Netherlands Antilles
| | - Rajesh Kumar Jha
- Department of Pharmacology, Saba University School of Medicine , The Bottom, Saba, Netherlands Antilles
| |
Collapse
|
37
|
Nanoengineering in Cardiac Regeneration: Looking Back and Going Forward. NANOMATERIALS 2020; 10:nano10081587. [PMID: 32806691 PMCID: PMC7466652 DOI: 10.3390/nano10081587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
To deliver on the promise of cardiac regeneration, an integration process between an emerging field, nanomedicine, and a more consolidated one, tissue engineering, has begun. Our work aims at summarizing some of the most relevant prevailing cases of nanotechnological approaches applied to tissue engineering with a specific interest in cardiac regenerative medicine, as well as delineating some of the most compelling forthcoming orientations. Specifically, this review starts with a brief statement on the relevant clinical need, and then debates how nanotechnology can be combined with tissue engineering in the scope of mimicking a complex tissue like the myocardium and its natural extracellular matrix (ECM). The interaction of relevant stem, precursor, and differentiated cardiac cells with nanoengineered scaffolds is thoroughly presented. Another correspondingly relevant area of experimental study enclosing both nanotechnology and cardiac regeneration, e.g., nanoparticle applications in cardiac tissue engineering, is also discussed.
Collapse
|
38
|
Xiao S, Zhao T, Wang J, Wang C, Du J, Ying L, Lin J, Zhang C, Hu W, Wang L, Xu K. Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: an Effective Strategy for Tissue Engineering. Stem Cell Rev Rep 2020; 15:664-679. [PMID: 31154619 DOI: 10.1007/s12015-019-09893-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gelatin methacrylate (GelMA)-based hydrogels are gaining a great deal of attention as potentially implantable materials in tissue engineering applications because of their biofunctionality and mechanical tenability. Since different natural tissues respond differently to mechanical stresses, an ideal implanted material would closely match the mechanical properties of the target tissue. In this regard, applications employing GelMA hydrogels are currently limited by the low mechanical strength and biocompatibility of GelMA. Therefore, this review focuses on modifications made to GelMA hydrogels to make them more suitable for tissue engineering applications. A large number of reports detail rational synthetic processes for GelMA or describe the incorporation of various biomaterials into GelMA hydrogels to tune their various properties, e.g., physical strength, chemical properties, conductivity, and porosity, and to promote cell loading and accelerate tissue repair. A novel strategy for repairing tissue injuries, based on the transplantation of cell-loaded GelMA scaffolds, is examined and its advantages and challenges are summarized. GelMA-cell combinations play a critical and pioneering role in this process and could potentially accelerate the development of clinically relevant applications.
Collapse
Affiliation(s)
- Shining Xiao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Tengfei Zhao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jingkai Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Chenggui Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiangnan Du
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Liwei Ying
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiangtao Lin
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Caihua Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wanglu Hu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Kan Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
39
|
Fan C, Joshi J, Li F, Xu B, Khan M, Yang J, Zhu W. Nanoparticle-Mediated Drug Delivery for Treatment of Ischemic Heart Disease. Front Bioeng Biotechnol 2020; 8:687. [PMID: 32671049 PMCID: PMC7326780 DOI: 10.3389/fbioe.2020.00687] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
The regenerative capacity of an adult cardiac tissue is insufficient to repair the massive loss of heart tissue, particularly cardiomyocytes (CMs), following ischemia or other catastrophic myocardial injuries. The delivery methods of therapeutics agents, such as small molecules, growth factors, exosomes, cells, and engineered tissues have significantly advanced in medical science. Furthermore, with the controlled release characteristics, nanoparticle (NP) systems carrying drugs are promising in enhancing the cardioprotective potential of drugs in patients with cardiac ischemic events. NPs can provide sustained exposure precisely to the infarcted heart via direct intramyocardial injection or intravenous injection with active targets. In this review, we present the recent advances and challenges of different types of NPs loaded with agents for the repair of myocardial infarcted heart tissue.
Collapse
Affiliation(s)
- Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jyotsna Joshi
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States
| | - Fan Li
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States
| | - Bing Xu
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States
| | - Mahmood Khan
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
40
|
Veerubhotla K, Lee CH. Emerging Trends in Nanocarbon‐Based Cardiovascular Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Krishna Veerubhotla
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| | - Chi H. Lee
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| |
Collapse
|
41
|
Tondnevis F, Keshvari H, Mohandesi JA. Fabrication, characterization, and in vitro evaluation of electrospun polyurethane‐gelatin‐carbon nanotube scaffolds for cardiovascular tissue engineering applications. J Biomed Mater Res B Appl Biomater 2020; 108:2276-2293. [DOI: 10.1002/jbm.b.34564] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/26/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Farbod Tondnevis
- Biomaterials Group, Faculty of Biomedical EngineeringAmirkabir University of Technology P.O. Box 15875‐4413, Tehran Iran
| | - Hamid Keshvari
- Biomaterials Group, Faculty of Biomedical EngineeringAmirkabir University of Technology P.O. Box 15875‐4413, Tehran Iran
| | - Jamshid Aghazadeh Mohandesi
- Department of Mining and Metallurgical EngineeringAmirkabir University of Technology P.O. Box 15875‐4413, Tehran Iran
| |
Collapse
|
42
|
Zhao Y, Rafatian N, Wang EY, Wu Q, Lai BFL, Lu RX, Savoji H, Radisic M. Towards chamber specific heart-on-a-chip for drug testing applications. Adv Drug Deliv Rev 2020; 165-166:60-76. [PMID: 31917972 PMCID: PMC7338250 DOI: 10.1016/j.addr.2019.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Modeling of human organs has long been a task for scientists in order to lower the costs of therapeutic development and understand the pathological onset of human disease. For decades, despite marked differences in genetics and etiology, animal models remained the norm for drug discovery and disease modeling. Innovative biofabrication techniques have facilitated the development of organ-on-a-chip technology that has great potential to complement conventional animal models. However, human organ as a whole, more specifically the human heart, is difficult to regenerate in vitro, in terms of its chamber specific orientation and its electrical functional complexity. Recent progress with the development of induced pluripotent stem cell differentiation protocols, made recapitulating the complexity of the human heart possible through the generation of cells representative of atrial & ventricular tissue, the sinoatrial node, atrioventricular node and Purkinje fibers. Current heart-on-a-chip approaches incorporate biological, electrical, mechanical, and topographical cues to facilitate tissue maturation, therefore improving the predictive power for the chamber-specific therapeutic effects targeting adult human. In this review, we will give a summary of current advances in heart-on-a-chip technology and provide a comprehensive outlook on the challenges involved in the development of human physiologically relevant heart-on-a-chip.
Collapse
Affiliation(s)
- Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Naimeh Rafatian
- Division of Cardiology and Peter Munk Cardiac Center, University of Health Network, Toronto, Ontario M5G 2N2, Canada
| | - Erika Yan Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Qinghua Wu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Benjamin F L Lai
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Rick Xingze Lu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Research Institute, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
43
|
Dong R, Ma PX, Guo B. Conductive biomaterials for muscle tissue engineering. Biomaterials 2019; 229:119584. [PMID: 31704468 DOI: 10.1016/j.biomaterials.2019.119584] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022]
Abstract
Muscle tissues are soft tissues that are of great importance in force generation, body movements, postural support and internal organ function. Muscle tissue injuries would not only result in the physical and psychological pain and disability to the patient, but also become a severe social problem due to the heavy financial burden they laid on the governments. Current treatments for muscle tissue injuries all have their own severe limitations and muscle tissue engineering has been proposed as a promising therapeutic strategy to treat with this problem. Conductive biomaterials are good candidates as scaffolds in muscle tissue engineering due to their proper conductivity and their promotion on muscle tissue formation. However, a review of conductive biomaterials function in muscle tissue engineering, including the skeletal muscle tissue, cardiac muscle tissue and smooth muscle tissue regeneration is still lacking. Here we reviewed the recent progress of conductive biomaterials for muscle regeneration. The recent synthesis and fabrication methods of conductive scaffolds containing conductive polymers (mainly polyaniline, polypyrrole and poly(3,4-ethylenedioxythiophene), carbon-based nanomaterials (mainly graphene and carbon nanotube), and metal-based biomaterials were systematically discussed, and their application in a variety of forms (such as hydrogels, films, nanofibers, and porous scaffolds) for different kinds of muscle tissues formation (skeletal muscle, cardiac muscle and smooth muscle) were summarized. Furthermore, the mechanism of how the conductive biomaterials affect the muscle tissue formation was discussed and the future development directions were included.
Collapse
Affiliation(s)
- Ruonan Dong
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peter X Ma
- Macromolecular Science and Engineering Center, Department of Materials Science and Engineering, Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
44
|
Bassaneze V, Lee RT. Revealing Pathways of Cardiac Regeneration. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e002053. [PMID: 30520316 DOI: 10.1161/circgen.117.002053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Vinícius Bassaneze
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA and the Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Richard T Lee
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA and the Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| |
Collapse
|
45
|
Wu F, Gao A, Liu J, Shen Y, Xu P, Meng J, Wen T, Xu L, Xu H. High Modulus Conductive Hydrogels Enhance In Vitro Maturation and Contractile Function of Primary Cardiomyocytes for Uses in Drug Screening. Adv Healthc Mater 2018; 7:e1800990. [PMID: 30565899 DOI: 10.1002/adhm.201800990] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/13/2018] [Indexed: 12/20/2022]
Abstract
Effective and quick screening and cardiotoxicity assessment are very crucial for drug development. Here, a novel composite hydrogel composed of carbon fibers (CFs) with high conductivity and modulus with polyvinyl alcohol (PVA) is reported. The conductivity of the composite hydrogel PVA/CFs is similar to that of natural heart tissue, and the elastic modulus is close to that of natural heart tissue during systole, due to the incorporation of CFs. PVA/CFs remarkably enhance the maturation of neonatal rat cardiomyocytes (NRCM) in vitro by upregulating the expression of α-actinin, troponin T, and connexin-43, activating the signaling pathway of α5 and β1 integrin-dependent ILK/p-AKT, and increasing the level of RhoA and hypoxia-inducible factor-1α. As a result, the engineered cell sheet-like constructs NRCM@PVA/CFs display much more synchronous, stable, and robust beating behavior than NRCM@PVA. When exposed to doxorubicin or isoprenaline, NRCM@PVA/CFs can retain effective beating for much longer time or change the contractile rate much faster than NRCM@PVA, respectively, therefore representing a promising heart-like platform for in vitro drug screening and cardiotoxicity assessment.
Collapse
Affiliation(s)
- Fengxin Wu
- Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100010 China
| | - Aijun Gao
- National Carbon Fiber Engineering Technology Center; Beijing University of Chemical Technology; Beijing 100029 China
| | - Jian Liu
- Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100010 China
| | - Yaoyi Shen
- Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100010 China
| | - Panpan Xu
- National Carbon Fiber Engineering Technology Center; Beijing University of Chemical Technology; Beijing 100029 China
| | - Jie Meng
- Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100010 China
| | - Tao Wen
- Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100010 China
| | - Lianghua Xu
- National Carbon Fiber Engineering Technology Center; Beijing University of Chemical Technology; Beijing 100029 China
| | - Haiyan Xu
- Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100010 China
| |
Collapse
|
46
|
Specific Features of Structure, Electrical Conductivity and Interlayer Adhesion of the Natural Polymer Matrix from the Layers of Branched Carbon Nanotube Networks Filled with Albumin, Collagen and Chitosan. COATINGS 2018. [DOI: 10.3390/coatings8110378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This paper considers the problem of creating a conductive matrix with a framework made of carbon nanotubes (CNTs) for cell and tissue engineering. In silico investigation of the electrical conductivity of the framework formed by T-junctions of single-walled carbon nanotubes (SWNTs) (12, 12) with a diameter of 1.5 nm has been carried out. A numerical evaluation of the contact resistance and electrical conductivity of seamless and suture T-junctions of SWCNTs is given. The effect of the type of structural defects in the contact area of the tubes on the contact resistance of the T-junction of SWCNTs was revealed. A coarse-grained model of a branched SWCNT network with different structure densities is constructed and its electrical conductivity is calculated. A new layered bioconstruction is proposed, the layers of which are formed by natural polymer matrixes: CNT-collagen, CNT-albumin and CNT-chitosan. The energy stability of the layered natural polymer matrix has been analyzed, and the adhesion of various layers to each other has been calculated. Based on the obtained results, a new approach has been developed in the formation of 3D electrically conductive bioengineering structures for the restoration of cell activity.
Collapse
|
47
|
Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications. Biomed Pharmacother 2018; 104:496-508. [DOI: 10.1016/j.biopha.2018.05.066] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 01/19/2023] Open
|
48
|
Gao X, Wei T, Liao B, Ai J, Zhou L, Gong L, Chen Y, He Q, Cheng L, Wang K. Physiological stretch induced proliferation of human urothelial cells via integrin α6-FAK signaling pathway. Neurourol Urodyn 2018; 37:2114-2120. [PMID: 29953644 DOI: 10.1002/nau.23572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/27/2018] [Indexed: 02/05/2023]
Abstract
AIMS To test a kind of stretch pattern which is the optimum stress parameter to promote human urothelial cells (HUCs) proliferation, and to investigate the roles of integrin subunits and their pathway in the HUCs proliferation induced by physiological stretch. METHODS HUCs were seeded on silicone membrane, and subjected to four kinds of stretch (0,5%,10%,15% elongation) for 24 h, as controlled by a BioDynamic® bioreactor. Cell proliferation, viability and cycle distribution were examined using Cell Counting Kit-8 and flow cytometry, respectively. The gene and protein expression of integrin subunits and focal adhesion kinase (FAK) in each group were assessed by Real-time PCR(RT-PCR) and western blot, respectively. Small interfering RNAs (siRNA) were applied to knockdown integrin α6 and FAK expression in HUCs, and FAK inhibitor was used to validate the role of α6 and FAK in cell proliferation under physiological stretch. RESULTS The proliferation of HUCs were highest in the 5% elongation group compared to static control, 10% and 15% elongation group. RT-PCR and western blot showed that 5% cyclic stretch significantly promoted the expression of integrin α6 and FAK. The stretch-induced cell proliferation and FAK expression was inhibited by siRNA of integrin α6. Further study with FAK inhibitor revealed that elongation promoted proliferation though integrin α6 and FAK signaling pathway. CONCLUSIONS Physiological stretch induced HUCs proliferation via integrin α6-FAK signaling pathway, and 5% elongation may be the optimal stress parameter to promote the cell proliferation.
Collapse
Affiliation(s)
- Xiaoshuai Gao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Tangqiang Wei
- Department of Urology, Nanchong Central Hospital, The Second School of Clinical Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Liang Zhou
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Lina Gong
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yuntian Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qing He
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Liang Cheng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
49
|
Bruche S, Zaccolo M. FRET-ting about RhoA signalling in heart and vasculature: a new tool in our cardiovascular toolbox. Cardiovasc Res 2018; 114:e25-e27. [DOI: 10.1093/cvr/cvy032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Susann Bruche
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
50
|
Pugliese E, Coentro JQ, Zeugolis DI. Advancements and Challenges in Multidomain Multicargo Delivery Vehicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704324. [PMID: 29446161 DOI: 10.1002/adma.201704324] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/05/2017] [Indexed: 06/08/2023]
Abstract
Reparative and regenerative processes are well-orchestrated temporal and spatial events that are governed by multiple cells, molecules, signaling pathways, and interactions thereof. Yet again, currently available implantable devices fail largely to recapitulate nature's complexity and sophistication in this regard. Herein, success stories and challenges in the field of layer-by-layer, composite, self-assembly, and core-shell technologies are discussed for the development of multidomain/multicargo delivery vehicles.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - João Q Coentro
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| |
Collapse
|