1
|
Phan CM, Wulff D, Thacker M, Hui A. Drug releasing contact lenses and their application to disease presentations. Clin Exp Optom 2025:1-10. [PMID: 40295142 DOI: 10.1080/08164622.2025.2492761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Eye drops, the most common method for anterior segment treatment, face challenges of inefficiency, with less than 7% instilled drugs typically reaching target tissues of interest. The advent of contact lens drug delivery systems offers a paradigm shift, enhancing drug residence time and bioavailability on the ocular surface. This review focuses on the considerations and challenges in developing contact lenses for drug delivery, particularly for managing four categories of ocular diseases: anterior segment infections, dry eye disease, ocular allergies, and glaucoma. Each disease category requires tailored therapeutic approaches, and the technical intricacies of drug-releasing contact lenses must address concerns related to lens properties, drug release duration, and safety. The aim of this review is to provide insights into the therapeutic needs of ocular diseases and offer a comprehensive overview of the progress made in this innovative approach. The emergence of a commercially available ketotifen fumarate-releasing lens serves as a testament to the feasibility and potential benefits of this innovative approach, paving the way for further refinement and targeted applications in ocular therapeutics.
Collapse
Affiliation(s)
- Chau-Minh Phan
- Centre for Ocular Research and Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - David Wulff
- Centre for Ocular Research and Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Minal Thacker
- Centre for Eye and Vision Research (CEVR), Hong Kong, China
| | - Alex Hui
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| |
Collapse
|
2
|
Mishra A, Halder J, Saha I, Rai VK, Mahanty R, Pradhan D, Dash P, Das C, Rajwar TK, Satpathy B, Manoharadas S, Tata M, Goyal A, Kar B, Ghosh G, Rath G. Biogenic Amino Acid Cross-Linked Hyaluronic Acid Nanoparticles Containing Dexamethasone for the Treatment of Dry Eye Syndrome. AAPS PharmSciTech 2025; 26:97. [PMID: 40148665 DOI: 10.1208/s12249-025-03090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Ocular barriers, poor retention time, and frequent ocular discharge suppress the activity of Dexamethasone. Arginine (Arg) and hyaluronic acid (HA) are crucial for maintaining ocular health because of their unique biological benefits. In this study, we investigated the cationic properties of arginine to develop dexamethasone-loaded HA nanoparticles (ADHA NPs) and evaluated their therapeutic potential in alleviating dry eye syndrome using various reported in-vitro and in-vivo techniques. The ionic cross-linking method was used to prepare ADHA NPs. The ADHA NPs exhibited nearly 94.99 ± 4.16% drug release at the end of 6 h and followed the Korsemeyar-Peppas kinetic model (R2 = 0.9811). Moreover, the developed formulation exhibited a higher water retention capacity, i.e., 86.89 ± 1.41%, and revealed enhanced mucoadhesion characteristics. ADHA NPs also exhibited significant anti-inflammatory effects (p < 0.001) compared to dexamethasone in LPS-induced RAW 264.7 cell lines against proinflammatory cytokines IL-1 β, NO and TNF-α. Furthermore, cell line studies in HCECs (human corneal epithelial cells) showed cytocompatibility and a dose-dependent uptake of ADHA NPs. ADHA NPs also maintained the cell integrity against 0.005% benzalkonium chloride (BAC) induced dry eye model on HCECs. Further, the Schirmer tear test showed twofold enhanced tear production in the developed formulation, and ADHA NPs seem to maintain the uniform structure of the tear. In vivo, drug retention studies ensured the good retention properties of ADHA NPs up to 12 h. In conclusion, ADHA NPs, because of their anti-inflammatory, mucoadhesiveness, modified drug release capacity, and higher drug retention properties, could serve as a potential therapeutic alternative for treating dry eye conditions.
Collapse
Affiliation(s)
- Ajit Mishra
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Jitu Halder
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Ivy Saha
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Vineet Kumar Rai
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Ritu Mahanty
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Priyanka Dash
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Chandan Das
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Tushar Kanti Rajwar
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Bibhanwita Satpathy
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2454, 11451, Riyadh, Saudi Arabia
| | - Muralidhar Tata
- Department of Biotech and Biomolecular Science, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Amit Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India
| | - Biswakanth Kar
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
3
|
Saini A, Sharma M, Singh I, Swami R. From Vision Correction to Drug Delivery: Unraveling the Potential of Therapeutic Contact Lens. Curr Drug Deliv 2025; 22:140-159. [PMID: 38213158 DOI: 10.2174/0115672018270396231213074746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Contact lenses (CLs) have become an essential tool in ocular drug delivery, providing effective treatment options for specific eye conditions. In recent advancements, Therapeutic CLs (TCLs) have emerged as a promising approach for maintaining therapeutic drug concentrations on the eye surface. TCLs offer unique attributes, including prolonged wear and a remarkable ability to enhance the bioavailability of loaded medications by more than 50%, thus gaining widespread usage. They have proven beneficial in pain management, medication administration, corneal healing, and protection. To achieve sustained drug delivery from TCLs, researchers are exploring diverse systems, such as polymeric nanoparticulate systems, lipidic systems, and the incorporation of agents like vitamin E or rate-limiting polymers. However, despite breakthrough successes, certain challenges persist, including ensuring drug stability during processing and manufacturing, controlling release kinetics, and biomaterial interaction, reducing protein adhesion, and addressing drug release during packaging and storage etc. While TCLs have shown overall success in treating corneal and ocular surface disorders, careful consideration of potential issues and contraindications is vital. This review offers an insightful perspective on the critical aspects that need to be addressed regarding TCLs, with a specific emphasis on their advantages and limitations.
Collapse
Affiliation(s)
- Ankush Saini
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, Haryana, India
| | - Mohit Sharma
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Indu Singh
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
4
|
Rana D, Beladiya J, Sheth D, Kumar H, Jindal AB, Shah G, Sharma A, Dash SK, Shrivastava SK, Benival D. Investigating a novel therapeutic composition for dry eye syndrome management: In vitro and in vivo studies. Int J Pharm 2024; 666:124783. [PMID: 39353497 DOI: 10.1016/j.ijpharm.2024.124783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Dry eye syndrome (DES) presents a significant challenge in ophthalmic care, necessitating innovative approaches for effective management. This research article introduces a multifaceted strategy to address DES through the development of ocular inserts utilizing advanced technologies such as hot-melt extrusion (HME) and the CaliCut post-extrusion system. The formulation includes key ingredients targeting different layers of the tear film and associated inflammation, including hydroxypropyl cellulose (HPC), polyethylene glycol (PEG), castor oil, and dexamethasone. The study incorporates a Design of Experiments (DoE) approach, integrating HME and the precise stretching and cutting technique of CaliCut for manufacturing consistency and dimensional control of the inserts. The developed insert(s) have been systematically characterized for their physicochemical properties, release profile, and in vivo efficacy. In silico molecular docking studies have also been conducted to assess the binding affinities of formulation components with ocular mucin, elucidating their binding affinities. Preliminary results demonstrate promising potential for the developed insert in managing DES, offering preservative-free treatment, sustained drug delivery, and improved patient compliance. This study highlights the integration of advanced technologies and formulation strategies in ocular drug delivery for effective DES management.
Collapse
Affiliation(s)
- Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), India
| | - Jayesh Beladiya
- Department of Pharmacology, L.M. College of Pharmacy, Ahmedabad, India
| | - Devang Sheth
- Department of Pharmacology, L.M. College of Pharmacy, Ahmedabad, India
| | - Hansal Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (Bits Pilani), Pilani Campus, Rajasthan 333031, India
| | - Gunjan Shah
- Gunjan Eye Hospital, Ahmedabad 380063, India
| | - Amit Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), India
| | - Sanat Kumar Dash
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (Bits Pilani), Pilani Campus, Rajasthan 333031, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), India.
| |
Collapse
|
5
|
Chawnani D, Ranch K, Patel C, Jani H, Jacob S, Al-Tabakha MM, Boddu SHS. Design and optimization of acetazolamide nanoparticle-laden contact lens using statistical experimental design for controlled ocular drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2884-2908. [PMID: 39155730 DOI: 10.1080/09205063.2024.2391233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
This study aims to formulate and evaluate Eudragit nanoparticles-laden hydrogel contact lenses for controlled delivery of acetazolamide (ACZ) using experimental design. Eudragit S-100 was selected for the preparation of nanoparticles. The optimization of Eudragit S100 concentration (X1), polyvinyl alcohol concentration (X2), and the sonication time (X3) was attempted by applying a central composite experimental design. Mean size of nanoparticles (nm), percent in vitro drug release and drug leaching from the ACZ-ENs laden contact lens were considered as dependent variables. Nanoparticles-laden contact lens was prepared through the direct loading method and characterized. Optimum check-point formulation was selected based on validated quadratic polynomial equations developed using response surface methodology. The optimized formulation of ACZ-ENs exhibited spherical shape with a size of 244.3 nm and a zeta potential of -13.2 mV. The entrapment efficiency of nanoparticles was found to be 82.7 ± 1.21%. Transparent contact lenses loaded ACZ-ENs were successfully prepared using the free radical polymerization technique. ACZ-ENs incorporated in contact lens exhibited a swelling of 83.4 ± 0.82% and transmittance of 80.1 ± 1.23%. ACZ-ENs showed a significantly lower burst release of the drug when incorporated in the contact lens and release was sustained over a period of 24 h. The sterilized formulation of ACZ-ENs laden contact lens did not show any sign of toxicity in rabbit eyes. ACZ-ENs incorporated in contact lens could be considered as a potential alternative in glaucoma patients due to their ability to provide sustained drug release and thus enhance patient compliance.
Collapse
Affiliation(s)
- Disha Chawnani
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Ketan Ranch
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Chirag Patel
- Deparment of Pharmacology, L. M. College of Pharmacy, Ahmedabad, India
| | - Harshilkumar Jani
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
- Research Scholar, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Moawia M Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| |
Collapse
|
6
|
Zhu Q, Wang Y, Wang L, Su G. Elucidating acceptance and clinical indications to support the rational design of drug-eluting contact lenses. Int J Pharm 2024; 665:124702. [PMID: 39270761 DOI: 10.1016/j.ijpharm.2024.124702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The advent of drug-eluting contact lenses (DECLs) has opened up new avenues for the treatment of eye diseases. DECLs is expected to partially overcome the shortcomings of eye drops due to single-dose packaging, accurate dosing, prolonged drug elution behavior, and simplified dosing procedures. Currently, a significant proportion of the DECLs design effort has been directed towards enhancing the compatibility of contact lenses with drugs. The appropriate elution time for the drug remains unclear. Additionally, it is ambiguous for which ophthalmic diseases DECLs offers the greatest therapeutic advantage. To rationally design DECLs in practice, it is necessary to understand the acceptance of DECLs by patients and practitioners and to clarify the indications for DECLs. This review will first focus on the acceptance of DECLs by different patients and practitioners and discuss the factors that influence its acceptance. Secondly, this review presents an overview of the current effectiveness of DECLs treatments in animals and in the clinical phase, with a particular focus on the suitability of DECLs for the treatment of ophthalmic diseases. Overall, patients and practitioners expressed positive attitudes towards DECLs. However, this is related to factors such as DECLs' treatment cycle, safety, and price. In addition, DECLs has good application prospects for ocular wound healing, postoperative management, and treatment of contact lenses-related complications. Furthermore, chronic diseases such as glaucoma that necessitate long-term medication and intraocular diseases that require implants or injections represent additional potential applications for DECLs. It is hoped that this review will facilitate a deeper understanding of DECLs acceptance and indications, thereby supporting the rational design of DECLs. At the same time, this review provides a reference for the design of other drug-device combination products.
Collapse
Affiliation(s)
- Qiang Zhu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, China
| | - Yong Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University and First People's Hospital of Nantong City, Nantong 226001, China
| | - Linlin Wang
- Department of Food Engineering, Shandong Business Institute, Yantai 264670, China
| | - Gaoxing Su
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, China.
| |
Collapse
|
7
|
Leonardi F, Simonazzi B, Martini FM, D’Angelo P, Foresti R, Botti M. Synthetic and Natural Biomaterials in Veterinary Medicine and Ophthalmology: A Review of Clinical Cases and Experimental Studies. Vet Sci 2024; 11:368. [PMID: 39195822 PMCID: PMC11360824 DOI: 10.3390/vetsci11080368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, there has been a growing interest in 3D printing technology within the field of bioengineering. This technology offers the ability to create devices with intricate macro- and micro-geometries, as well as specific models. It has particularly gained attention for its potential in personalized medicine, allowing for the production of organ or tissue models tailored to individual patient needs. Further, 3D printing has opened up possibilities to manufacture structures that can substitute, complement, or enhance damaged or dysfunctional organic parts. To apply 3D printing in the medical field, researchers have studied various materials known as biomaterials, each with distinct chemical and physical characteristics. These materials fall into two main categories: hard and soft materials. Each biomaterial needs to possess specific characteristics that are compatible with biological systems, ensuring long-term stability and biocompatibility. In this paper, we aim to review some of the materials used in the biomedical field, with a particular focus on those utilized in veterinary medicine and ophthalmology. We will discuss the significant findings from recent scientific research, focusing on the biocompatibility, structure, applicability, and in vitro and in vivo biological characteristics of two hard and four soft materials. Additionally, we will present the current state and prospects of veterinary ophthalmology.
Collapse
Affiliation(s)
- Fabio Leonardi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
| | - Barbara Simonazzi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
| | - Filippo Maria Martini
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
| | - Pasquale D’Angelo
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43126 Parma, Italy; (P.D.); (R.F.)
| | - Ruben Foresti
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43126 Parma, Italy; (P.D.); (R.F.)
- Department of Medicine and Surgery, University of Parma, 43123 Parma, Italy
- CERT, Center of Excellence for Toxicological Research, 43123 Parma, Italy
| | - Maddalena Botti
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43126 Parma, Italy; (P.D.); (R.F.)
| |
Collapse
|
8
|
Gao D, Yan C, Wang Y, Yang H, Liu M, Wang Y, Li C, Li C, Cheng G, Zhang L. Drug-eluting contact lenses: Progress, challenges, and prospects. Biointerphases 2024; 19:040801. [PMID: 38984804 DOI: 10.1116/6.0003612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024] Open
Abstract
Topical ophthalmic solutions (eye drops) are becoming increasingly popular in treating and preventing ocular diseases for their safety, noninvasiveness, and ease of handling. However, the static and dynamic barriers of eyes cause the extremely low bioavailability (<5%) of eye drops, making ocular therapy challenging. Thus, drug-eluting corneal contact lenses (DECLs) have been intensively investigated as a drug delivery device for their attractive properties, such as sustained drug release and improved bioavailability. In order to promote the clinical application of DECLs, multiple aspects, i.e., drug release and penetration, safety, and biocompatibility, of these drug delivery systems were thoroughly examined. In this review, we systematically discussed advances in DECLs, including types of preparation materials, drug-loading strategies, drug release mechanisms, strategies for penetrating ocular barriers, in vitro and in vivo drug delivery and penetration detection, safety, and biocompatibility validation methods, as well as challenges and future perspectives.
Collapse
Affiliation(s)
- Dongdong Gao
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116033, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Chunxiao Yan
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| | - Yong Wang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Heqing Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Mengxin Liu
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| | - Yi Wang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | - Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116033, China
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| |
Collapse
|
9
|
Puertas-Bartolomé M, Gutiérrez-Urrutia I, Teruel-Enrico LL, Duong CN, Desai K, Trujillo S, Wittmann C, Del Campo A. Self-Lubricating, Living Contact Lenses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313848. [PMID: 38583064 DOI: 10.1002/adma.202313848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Indexed: 04/08/2024]
Abstract
The increasing prevalence of dry eye syndrome in aging and digital societies compromises long-term contact lens (CL) wear and forces users to regular eye drop instillation to alleviate discomfort. Here a novel approach with the potential to improve and extend the lubrication properties of CLs is presented. This is achieved by embedding lubricant-secreting biofactories within the CL material. The self-replenishable reservoirs autonomously produce and release hyaluronic acid (HA), a natural lubrication and wetting agent, long term. The hydrogel matrix regulates the growth of the biofactories and the HA production, and allows the diffusion of nutrients and HA for at least 3 weeks. The continuous release of HA sustainably reduces the friction coefficient of the CL surface. A self-lubricating CL prototype is presented, where the functional biofactories are contained in a functional ring at the lens periphery, outside of the vision area. The device is cytocompatible and fulfils physicochemical requirements of commercial CLs. The fabrication process is compatible with current manufacturing processes of CLs for vision correction. It is envisioned that the durable-by-design approach in living CL could enable long-term wear comfort for CL users and minimize the need for lubricating eye drops.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| | | | | | - Cao Nguyen Duong
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Krupansh Desai
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Sara Trujillo
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | - Aránzazu Del Campo
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
10
|
Bhujel B, Oh SH, Kim CM, Yoon YJ, Chung HS, Ye EA, Lee H, Kim JY. Current Advances in Regenerative Strategies for Dry Eye Diseases: A Comprehensive Review. Bioengineering (Basel) 2023; 11:39. [PMID: 38247916 PMCID: PMC10813666 DOI: 10.3390/bioengineering11010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Dry eye disease (DED) is an emerging health issue affecting millions of individuals annually. Ocular surface disorders, such as DED, are characterized by inflammation triggered by various factors. This condition can lead to tear deficiencies, resulting in the desiccation of the ocular surface, corneal ulceration/perforation, increased susceptibility to infections, and a higher risk of severe visual impairment and blindness. Currently, the clinical management of DED primarily relies on supportive and palliative measures, including the frequent and lifelong use of different lubricating agents. While some advancements like punctal plugs, non-steroidal anti-inflammatory drugs, and salivary gland autografts have been attempted, they have shown limited effectiveness. Recently, there have been promising developments in the treatment of DED, including biomaterials such as nano-systems, hydrogels, and contact lenses for drug delivery, cell-based therapies, biological approaches, and tissue-based regenerative therapy. This article specifically explores the different strategies reported so far for treating DED. The aim is to discuss their potential as long-term cures for DED while also considering the factors that limit their feasibility and effectiveness. These advancements offer hope for more effective and sustainable treatment options in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jae-Yong Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.B.); (S.-H.O.); (C.-M.K.); (Y.-J.Y.); (H.-S.C.); (E.-A.Y.); (H.L.)
| |
Collapse
|
11
|
Zhu Q, Zhang Q, Fu DY, Su G. Polysaccharides in contact lenses: From additives to bulk materials. Carbohydr Polym 2023; 316:121003. [PMID: 37321708 DOI: 10.1016/j.carbpol.2023.121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 06/17/2023]
Abstract
As the number of applications has increased, so has the demand for contact lenses comfort. Adding polysaccharides to lenses is a popular way to enhance comfort for wearers. However, this may also compromise some lens properties. It is still unclear how to balance the variation of individual lens parameters in the design of contact lenses containing polysaccharides. This review provides a comprehensive overview of how polysaccharide addition impacts lens wear parameters, such as water content, oxygen permeability, surface wettability, protein deposition, and light transmittance. It also examines how various factors, such as polysaccharide type, molecular weight, amount, and mode of incorporation into lenses modulate these effects. Polysaccharide addition can improve some wear parameters while reducing others depending on the specific conditions. The optimal method, type, and amount of added polysaccharides depend on the trade-off between various lens parameters and wear requirements. Simultaneously, polysaccharide-based contact lenses may be a promising option for biodegradable contact lenses as concerns regarding environmental risks associated with contact lens degradation continue to increase. It is hoped that this review will shed light on the rational use of polysaccharides in contact lenses to make personalized lenses more accessible.
Collapse
Affiliation(s)
- Qiang Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Qiao Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ding-Yi Fu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
12
|
Kudryavtseva V, Otero M, Zhang J, Bukatin A, Gould D, Sukhorukov GB. Drug-Eluting Sandwich Hydrogel Lenses Based on Microchamber Film Drug Encapsulation. ACS NANOSCIENCE AU 2023; 3:256-265. [PMID: 37360846 PMCID: PMC10288497 DOI: 10.1021/acsnanoscienceau.2c00066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/28/2023]
Abstract
Corticosteroids are widely used as an anti-inflammatory treatment for eye inflammation, but the current methods used in clinical practice for delivery are in the form of eye drops which is usually complicated for patients or ineffective. This results in an increase in the risk of detrimental side effects. In this study, we demonstrated proof-of-concept research for the development of a contact lens-based delivery system. The sandwich hydrogel contact lens consists of a polymer microchamber film made via soft lithography with an encapsulated corticosteroid, in this case, dexamethasone, located inside the contact lens. The developed delivery system showed sustained and controlled release of the drug. The central visual part of the lenses was cleared from the polylactic acid microchamber in order to maintain a clean central aperture similar to the cosmetic-colored hydrogel contact lenses.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
- National
Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian
Federation
| | - Mariana Otero
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Jiaxin Zhang
- Biochemical
Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Anton Bukatin
- Alferov
Saint Petersburg National Research Academic University of the Russian
Academy of Sciences, 8/3A Khlopina str., Saint Petersburg 194021, Russian
Federation
- Institute
for Analytical Instrumentation of the Russian Academy of Sciences, 31-33 A, Ivana Chernykh str., Saint Petersburg 198095, Russia
| | - David Gould
- Biochemical
Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Gleb B. Sukhorukov
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
- Skolkovo
Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russian
Federation
- Siberian
State Medical University, Moskovskiy Trakt, 2, Tomsk 634050, Russian Federation
| |
Collapse
|
13
|
Sarmout M, Xiao Y, Hu X, Rakhmetova A, Koole LH. A novel approach to achieve semi-sustained drug delivery to the eye through asymmetric loading of soft contact lenses. Heliyon 2023; 9:e16916. [PMID: 37484374 PMCID: PMC10360931 DOI: 10.1016/j.heliyon.2023.e16916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Soft contact lenses are increasingly being explored as a vehicle for controlled delivery of ophthalmic drugs. However, traditional methods of drug-loading by soaking have limitations such as burst delivery and the release of drugs at the front side of the lens, leading to poor drug efficacy and systemic side effects. This study introduces a new methodology, termed asymmetric drug loading, whereby the ophthalmic drug 'Rebamipide' is attached to and released from the post-lens (=cornea-contacting) surface exclusively. The methodology involves using polymeric microparticles that carry a lipophilic crystalline ophthalmic drug at their surface. These drug-loaded microparticles first transfer the drug to the concave surface of the contact lens, and when worn, the drug is transferred again, now from the lens to the cornea. This is achieved through the diffusion of the drug from one hydrophobic microenvironment (the silicone moieties of the contact lens polymer network) to another hydrophobic microenvironment (the corneal epithelium) over a short pathway. The second drug transfer was observed and studied in experiments using an ex vivo porcine eye model. The results show that the drug amount that was absorbed by the cornea after applying the rebamipide-loaded contact lenses is approximately 3× (10.7 ± 3.1 μg) as much as the amount of rebamipide that gets transferred after the instillation of one eye drop (1% solution (p < 0.001). The new drug-loading method offers a practical and reproducible means of delivering ophthalmic drugs to the cornea through soft contact lenses. The drug payloads achieved are comparable to dosages used during eye drop therapy.
Collapse
Affiliation(s)
| | | | | | | | - Leo H. Koole
- Corresponding author. The Eye Hospital of Wenzhou Medical University, School of Ophthalmology & Optometry, School of Biomedical Engineering, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
14
|
Nguyen L, Lin X, Verma S, Puri S, Hascall V, Gesteira TF, Coulson-Thomas VJ. Characterization of the Molecular Weight of Hyaluronan in Eye Products Using a Novel Method of Size Exclusion High-Pressure Liquid Chromatography. Transl Vis Sci Technol 2023; 12:13. [PMID: 37052911 PMCID: PMC10103721 DOI: 10.1167/tvst.12.4.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Purpose Hyaluronan (HA) exists in two forms, high molecular weight HA (HMWHA) and low molecular weight HA (LMWHA), which have distinct physiological functions. Therefore it is imperative to know the form of HA within pharmaceutical products, including eye products. This study developed an accurate, sensitive, and quantitative method to characterize the form of HA in eye products. Thereafter, the effects of the HA-containing eye products on corneal wound healing were investigated. Methods The MW distributions and concentrations of HA in over the counter eye products were determined by size exclusion chromatography (SEC) high-pressure liquid chromatography (HPLC). The effects of the eye products containing HA on corneal wound healing were characterized both in vitro and in vivo using the scratch assay and the debridement wound model, respectively. Results The concentrations and MWs of HA were successfully determined within a range of 0.014 to 0.25 mg/mL using SEC HPLC. The concentrations of HA in the ophthalmic products varied from 0.14 to 4.0 mg/mL and the MWs varied from ∼100 kDa to >2500 kDa. All but one HA-containing eye product had an inhibitory effect on corneal wound healing, whereas pure HA promoted corneal wound healing. Conclusions A novel SEC-HPLC method was developed for quantifying and characterizing the MW of HA in eye products. Although HA promoted corneal wound healing, HA-containing eye products inhibited corneal wound healing, likely caused by preservatives. Translational Relevance SEC-HPLC could be implemented as a routine method for determining the form of HA in commercially available ophthalmic products.
Collapse
Affiliation(s)
- Lawrence Nguyen
- College of Optometry, University of Houston, Houston, TX, USA
| | - Xiao Lin
- College of Optometry, University of Houston, Houston, TX, USA
| | - Sudhir Verma
- College of Optometry, University of Houston, Houston, TX, USA
- Department of Zoology, Deen Dayal Upadhyaya College (University of Delhi), Delhi, India
| | - Sudan Puri
- College of Optometry, University of Houston, Houston, TX, USA
| | | | | | | |
Collapse
|
15
|
Mondal H, Kim HJ, Mohanto N, Jee JP. A Review on Dry Eye Disease Treatment: Recent Progress, Diagnostics, and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15030990. [PMID: 36986851 PMCID: PMC10051136 DOI: 10.3390/pharmaceutics15030990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Dry eye disease is a multifactorial disorder of the eye and tear film with potential damage to the ocular surface. Various treatment approaches for this disorder aim to alleviate disease symptoms and restore the normal ophthalmic environment. The most widely used dosage form is eye drops of different drugs with 5% bioavailability. The use of contact lenses to deliver drugs increases bioavailability by up to 50%. Cyclosporin A is a hydrophobic drug loaded onto contact lenses to treat dry eye disease with significant improvement. The tear is a source of vital biomarkers for various systemic and ocular disorders. Several biomarkers related to dry eye disease have been identified. Contact lens sensing technology has become sufficiently advanced to detect specific biomarkers and predict disease conditions accurately. This review focuses on dry eye disease treatment with cyclosporin A-loaded contact lenses, contact lens biosensors for ocular biomarkers of dry eye disease, and the possibility of integrating sensors in therapeutic contact lenses.
Collapse
Affiliation(s)
- Himangsu Mondal
- Drug Delivery Research Lab, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Nijaya Mohanto
- Drug Delivery Research Lab, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Jun-Pil Jee
- Drug Delivery Research Lab, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
16
|
Kim TY, Lee GH, Mun J, Cheong S, Choi I, Kim H, Hahn SK. Smart Contact Lens Systems for Ocular Drug Delivery and Therapy. Adv Drug Deliv Rev 2023; 196:114817. [PMID: 37004938 DOI: 10.1016/j.addr.2023.114817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Ocular drug delivery and therapy systems have been extensively investigated with various methods including direct injections, eye drops and contact lenses. Nowadays, smart contact lens systems are attracting a lot of attention for ocular drug delivery and therapy due to their minimally invasive or non-invasive characteristics, highly enhanced drug permeation, high bioavailability, and on-demand drug delivery. Furthermore, smart contact lens systems can be used for direct light delivery into the eyes for biophotonic therapy replacing the use of drugs. Here, we review smart contact lens systems which can be classified into two groups of drug-eluting contact lens and ocular device contact lens. More specifically, this review covers smart contact lens systems with nanocomposite-laden systems, polymeric film-incorporated systems, micro and nanostructure systems, iontophoretic systems, electrochemical systems, and phototherapy systems for ocular drug delivery and therapy. After that, we discuss the future opportunities, challenges and perspectives of smart contact lens systems for ocular drug delivery and therapy.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Geon-Hui Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jonghwan Mun
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sunah Cheong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Inhoo Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; PHI BIOMED Co., 168 Yeoksam-ro, Gangnamgu, Seoul 06248, Republic of Korea.
| |
Collapse
|
17
|
Abdi B, Mofidfar M, Hassanpour F, Kirbas Cilingir E, Kalajahi SK, Milani PH, Ghanbarzadeh M, Fadel D, Barnett M, Ta CN, Leblanc RM, Chauhan A, Abbasi F. Therapeutic contact lenses for the treatment of corneal and ocular surface diseases: advances in extended and targeted drug delivery. Int J Pharm 2023; 638:122740. [PMID: 36804524 DOI: 10.1016/j.ijpharm.2023.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
The eye is one of the most important organs in the human body providing critical information on the environment. Many corneal diseases can lead to vision loss affecting the lives of people around the world. Ophthalmic drug delivery has always been a major challenge in the medical sciences. Since traditional methods are less efficient (∼ 5%) at delivering drugs to ocular tissues, contact lenses have generated growing interest in ocular drug delivery due to their potential to enhance drug bioavailability in ocular tissues. The main techniques used to achieve sustained release are discussed in this review, including soaking in drug solutions, incorporating drug into multilayered contact lenses, use of vitamin E barriers, molecular imprinting, nanoparticles, micelles and liposomes. The most clinically relevant results on different eye pathologies are presented. In addition, this review summarizes the benefits of contact lenses over eye drops, strategies for incorporating drugs into lenses to achieve sustained release, results of in vitro and in vivo studies, and the recent advances in the commercialization of therapeutic contact lenses for allergic conjunctivitis.
Collapse
Affiliation(s)
- Behnam Abdi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, CA, USA; School of Medicine, Stanford University, Stanford, CA, USA
| | - Fatemeh Hassanpour
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | | | - Sepideh K Kalajahi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Paria H Milani
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Mahsa Ghanbarzadeh
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Daddi Fadel
- Center for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Melissa Barnett
- University of California, Davis Eye Center, Sacramento, CA, USA
| | - Christopher N Ta
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL, USA.
| | - Anuj Chauhan
- Chemical and Biological Engineering Department, Colorado School of Mines, CO, USA.
| | - Farhang Abbasi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran.
| |
Collapse
|
18
|
Wang YJ, Li L, Yu J, Hu HY, Liu ZX, Jiang WJ, Xu W, Guo XP, Wang FS, Sheng JZ. Imaging of Escherichia coli K5 and glycosaminoglycan precursors via targeted metabolic labeling of capsular polysaccharides in bacteria. SCIENCE ADVANCES 2023; 9:eade4770. [PMID: 36800421 PMCID: PMC9937569 DOI: 10.1126/sciadv.ade4770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/13/2023] [Indexed: 05/25/2023]
Abstract
The introduction of unnatural chemical moieties into glycosaminoglycans (GAGs) has enormous potential to facilitate studies of the mechanism and application of these critical, widespread molecules. Unnatural N-acetylhexosamine analogs were metabolically incorporated into the capsule polysaccharides of Escherichia coli and Bacillus subtilis via bacterial metabolism. Targeted metabolic labeled hyaluronan and the precursors of heparin and chondroitin sulfate were obtained. The azido-labeled polysaccharides (purified or in capsules) were reacted with dyes, via bioorthogonal chemistry, to enable detection and imaging. Site-specific introduction of fluorophores directly onto cell surfaces affords another choice for observing and quantifying bacteria in vivo and in vitro. Furthermore, azido-polysaccharides retain similar biological properties to their natural analogs, and reliable and predictable introduction of functionalities, such as fluorophores, onto azido-N-hexosamines in the disaccharide repeat units provides chemical tools for imaging and metabolic analysis of GAGs in vivo and in vitro.
Collapse
Affiliation(s)
- Yu-Jia Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lian Li
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Jie Yu
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hong-Yu Hu
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zi-Xu Liu
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wen-Jie Jiang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Wei Xu
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Xue-Ping Guo
- Bloomage BioTechnology Corp., Ltd., Jinan 250010, China
| | - Feng-Shan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Ju-Zheng Sheng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| |
Collapse
|
19
|
Akbari E, Imani R, Shokrollahi P, Jarchizadeh R, Heidari keshel S. Hydrogel-based formulations for drug delivery to the anterior segment of the eye. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Thacker M, Singh V, Basu S, Singh S. Biomaterials for dry eye disease treatment: Current overview and future perspectives. Exp Eye Res 2023; 226:109339. [PMID: 36470431 DOI: 10.1016/j.exer.2022.109339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 12/09/2022]
Abstract
Dry eye disease (DED) is an emerging health problem affecting millions of individuals every year. The current treatments for DED include lubricating eye drops and anti-inflammatory agents. These agents have to be used frequently and contain preservatives, which can damage the ocular surface. A substantially long-acting treatment with better bioavailability on the ocular surface might reduce the frequency of drug use and its side effects. This review summarizes the current state of different biomaterials-nanosystems, hydrogels, and contact lenses used as drug delivery systems in DED. The explored drugs in biomaterial formulation are cyclosporin, ocular lubricants, and topical steroids. Most of the data is from animal models where increased drug delivery and desired therapeutic effects could be obtained; however, trials involving human participants are yet to happen. There is no published study comparing the different types of biomaterials for DED use. Long-term studies evaluating their ocular toxicity and biocompatibility would enhance their transition to human use. Overall they look promising for DED treatment, but they are still in the stage of technological advancement and clinical studies.
Collapse
Affiliation(s)
- Minal Thacker
- Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Vivek Singh
- Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Sayan Basu
- Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; The Cornea Institute, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Swati Singh
- Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; Ophthalmic Plastic Surgery Services, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India.
| |
Collapse
|
21
|
Akbari E, Imani R, Shokrollahi P, Heidari Keshel S. Corneal sustained delivery of hyaluronic acid from nanofiber-containing ring-implanted contact lens. J Biomater Appl 2023; 37:992-1006. [PMID: 36564919 DOI: 10.1177/08853282221146390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dry eye syndrome, as a persist corneal epithelial defect (PED), is an inconvenient ocular disorder that is generally treated by high-dosage, conventional eye drops. Addressing low efficacy and rather restricted bioavailability of the conventional eye drops, drug-eluting contact lenses (CLs) are widely used as alternatives in ophthalmic drug delivery applications. In the present study, a nanofiber-containing ring implant poly (vinyl alcohol) (PVA) hydrogel is designed as a carrier for hyaluronic acid (HA) delivery. hyaluronic acid is physically encapsulated in a nanofiber-containing ring-shaped hydrogel with a 2 mm width that is implanted in the final CLs hydrogel. The designed CL has 59% porosity, 275% swelling ratio and undergoes no weight loss at physiological conditions in14 days. In-vitro release studies were performed on the CLs with and without nanofibers. The results showed that nanofiber incorporation in the designed CL was highly influential in decreasing burst release and supported sustained release of HA over 14 days. In addition, nanofiber incorporation in the designed system strengthened the lens, and the young modulus of the PVA hydrogel increased from 6 to 10 kPa. Cell viability study also revealed no cell cytotoxicity and cell attachment. Overall, the study demonstrated the effective role of nanofibers in the physical strengthening of the CL. Also, the designed system holds promise as a potential candidate for HA delivery over an extended period for treating dry eye syndrome.
Collapse
Affiliation(s)
- Elham Akbari
- Biomedical Engineering Department, 48410Amirkabir University of Technology, Tehran, Iran
| | - Rana Imani
- Biomedical Engineering Department, 48410Amirkabir University of Technology, Tehran, Iran
| | - Parvin Shokrollahi
- Faculty of Science, Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies InMedicine, 556492Shahid Beheshti University of Medical Sciences, Iran
| |
Collapse
|
22
|
Recent Advances in Hydrogels for the Diagnosis and Treatment of Dry Eye Disease. Gels 2022; 8:gels8120816. [PMID: 36547340 PMCID: PMC9778550 DOI: 10.3390/gels8120816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Dry eye disease (DED) is the most common clinical ocular surface disease. Given its multifactorial etiology, no consensus has been reached on the diagnosis criteria for dry eye disease. Topical drug administration remains the mainstay of treatment but is limited to the rapid clearance from the eye surface. To address these problems, hydrogel-based materials were designed to detect biomarkers or act as drug delivery systems by taking advantage of their good biocompatibility, excellent physical and mechanical properties, and long-term implant stability. Biosensors prepared using biocompatible hydrogels can be sensitive in diagnosing DED, and the designed hydrogels can also improve the drug bioavailability and retention time for more effective and long-term treatment. This review summarizes recent advances in the use of hydrogels for diagnosing and treating dry eye, aiming to provide a novel reference for the eventual clinical translation of hydrogels in the context of dry eye disease.
Collapse
|
23
|
Hynnekleiv L, Magno M, Vernhardsdottir RR, Moschowits E, Tønseth KA, Dartt DA, Vehof J, Utheim TP. Hyaluronic acid in the treatment of dry eye disease. Acta Ophthalmol 2022; 100:844-860. [PMID: 35514082 PMCID: PMC9790727 DOI: 10.1111/aos.15159] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 12/31/2022]
Abstract
Dry eye disease (DED) is a highly prevalent and debilitating condition affecting several hundred million people worldwide. Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan commonly used in the treatment of DED. This review aims to critically evaluate the literature on the safety and efficacy of artificial tears containing HA used in DED treatment. Literature searches were conducted in PubMed, including MEDLINE, and in Embase via Ovid with the search term: "(hyaluronic acid OR hyaluronan OR hyaluronate) AND (dry eye OR sicca)". A total of 53 clinical trials are included in this review, including eight placebo-controlled trials. Hyaluronic acid concentrations ranged from 0.1% to 0.4%. Studies lasted up to 3 months. A broad spectrum of DED types and severities was represented in the reviewed literature. No major complications or adverse events were reported. Artificial tears containing 0.1% to 0.4% HA were effective at improving both signs and symptoms of DED. Two major gaps in the literature have been identified: 1. no study investigated the ideal drop frequency for HA-containing eyedrops, and 2. insufficient evidence was presented to recommend any specific HA formulation over another. Future investigations assessing the optimal drop frequency for different concentrations and molecular weights of HA, different drop formulations, including tonicity, and accounting for DED severity and aetiology are essential for an evidence-based, individualized approach to DED treatment.
Collapse
Affiliation(s)
- Leif Hynnekleiv
- Department of Plastic and Reconstructive SurgeryOslo University HospitalOsloNorway,Department of OphthalmologyHaukeland University HospitalBergenNorway,Department of Twin Research & Genetic EpidemiologyKing's College LondonSt Thomas' HospitalLondonUK
| | - Morten Magno
- Department of Plastic and Reconstructive SurgeryOslo University HospitalOsloNorway,Department of Medical BiochemistryOslo University HospitalOsloNorway,Department of Ophthalmology and EpidemiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands,Faculty of MedicineInstitute of Clinical MedicineUniversity of OsloOsloNorway
| | | | - Emily Moschowits
- Department of Medical BiochemistryOslo University HospitalOsloNorway
| | - Kim Alexander Tønseth
- Department of Plastic and Reconstructive SurgeryOslo University HospitalOsloNorway,Faculty of MedicineInstitute of Clinical MedicineUniversity of OsloOsloNorway
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and EarDepartment of OphthalmologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Jelle Vehof
- Department of Twin Research & Genetic EpidemiologyKing's College LondonSt Thomas' HospitalLondonUK,Department of Ophthalmology and EpidemiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands,Department of OphthalmologyVestfold Hospital TrustTønsbergNorway
| | - Tor P. Utheim
- Department of Plastic and Reconstructive SurgeryOslo University HospitalOsloNorway,Department of Medical BiochemistryOslo University HospitalOsloNorway,Department of OphthalmologySørlandet Hospital ArendalArendalNorway,Department of OphthalmologyStavanger University HospitalOsloNorway,Department of OphthalmologyVestre Viken HospitalDrammenNorway
| |
Collapse
|
24
|
Padjasek M, Qasem B, Cisło-Pakuluk A, Marycz K. Cyclosporine A Delivery Platform for Veterinary Ophthalmology—A New Concept for Advanced Ophthalmology. Biomolecules 2022; 12:biom12101525. [PMID: 36291734 PMCID: PMC9599649 DOI: 10.3390/biom12101525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclosporine A (CsA) is a selective and reversible immunosuppressant agent that is widely used as a medication for a wide spectrum of diseases in humans such as graft versus host disease, non-infectious uveitis, rheumatoid arthritis, psoriasis, and atopic dermatitis. Furthermore, the CsA is used to treat keratoconjunctivitis sicca, chronic superficial keratitis, immune-mediated keratitis and equine recurrent uveitis in animals. The selective activity of Cyclosporine A (CsA) was demonstrated to be an immunomodulation characteristic of T-lymphocyte proliferation and inhibits cytokine gene expression. Moreover, the lipophilic characteristics with poor bioavailability and low solubility in water, besides the side effects, force the need to develop new formulations and devices that will provide adequate penetration into the anterior and posterior segments of the eye. This review aims to summarize the effectiveness and safety of cyclosporine A delivery platforms in veterinary ophthalmology.
Collapse
|
25
|
Casey-Power S, Ryan R, Behl G, McLoughlin P, Byrne ME, Fitzhenry L. Hyaluronic Acid: Its Versatile Use in Ocular Drug Delivery with a Specific Focus on Hyaluronic Acid-Based Polyelectrolyte Complexes. Pharmaceutics 2022; 14:pharmaceutics14071479. [PMID: 35890371 PMCID: PMC9323903 DOI: 10.3390/pharmaceutics14071479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022] Open
Abstract
Extensive research is currently being conducted into novel ocular drug delivery systems (ODDS) that are capable of surpassing the limitations associated with conventional intraocular anterior and posterior segment treatments. Nanoformulations, including those synthesised from the natural, hydrophilic glycosaminoglycan, hyaluronic acid (HA), have gained significant traction due to their enhanced intraocular permeation, longer retention times, high physiological stability, inherent biocompatibility, and biodegradability. However, conventional nanoformulation preparation methods often require large volumes of organic solvent, chemical cross-linkers, and surfactants, which can pose significant toxicity risks. We present a comprehensive, critical review of the use of HA in the field of ophthalmology and ocular drug delivery, with a discussion of the physicochemical and biological properties of HA that render it a suitable excipient for drug delivery to both the anterior and posterior segments of the eye. The pivotal focus of this review is a discussion of the formation of HA-based nanoparticles via polyelectrolyte complexation, a mild method of preparation driven primarily by electrostatic interaction between opposing polyelectrolytes. To the best of our knowledge, despite the growing number of publications centred around the development of HA-based polyelectrolyte complexes (HA-PECs) for ocular drug delivery, no review articles have been published in this area. This review aims to bridge the identified gap in the literature by (1) reviewing recent advances in the area of HA-PECs for anterior and posterior ODD, (2) describing the mechanism and thermodynamics of polyelectrolyte complexation, and (3) critically evaluating the intrinsic and extrinsic formulation parameters that must be considered when designing HA-PECs for ocular application.
Collapse
Affiliation(s)
- Saoirse Casey-Power
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
- Correspondence:
| | - Richie Ryan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Gautam Behl
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Peter McLoughlin
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Mark E. Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices & Drug Delivery Laboratories, Department of Biomedical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA;
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| |
Collapse
|
26
|
Ali F, Khan I, Chen J, Akhtar K, Bakhsh EM, Khan SB. Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels 2022; 8:gels8040205. [PMID: 35448106 PMCID: PMC9024659 DOI: 10.3390/gels8040205] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Recently, hydrogels have been investigated for the controlled release of bioactive molecules, such as for living cell encapsulation and matrices. Due to their remote controllability and quick response, hydrogels are widely used for various applications, including drug delivery. The rate and extent to which the drugs reach their targets are highly dependent on the carriers used in drug delivery systems; therefore the demand for biodegradable and intelligent carriers is progressively increasing. The biodegradable nature of hydrogel has created much interest for its use in drug delivery systems. The first part of this review focuses on emerging fabrication strategies of hydrogel, including physical and chemical cross-linking, as well as radiation cross-linking. The second part describes the applications of hydrogels in various fields, including drug delivery systems. In the end, an overview of the application of hydrogels prepared from several natural polymers in drug delivery is presented.
Collapse
Affiliation(s)
- Fayaz Ali
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, Macau 999078, China;
| | - Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, No. 1133 Xueyuan Zhong Jie, Putian 351100, China
- Correspondence: (J.C.); (S.B.K.)
| | - Kalsoom Akhtar
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (J.C.); (S.B.K.)
| |
Collapse
|
27
|
Peng C, Kuang L, Zhao J, Ross AE, Wang Z, Ciolino JB. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. J Control Release 2022; 345:625-645. [PMID: 35321827 DOI: 10.1016/j.jconrel.2022.03.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To perform a bibliometric analysis in the field of ocular drug delivery research to characterize the current international trends and to present visual representations of the past and emerging trends on ocular drug delivery research over the past decade. METHOD In this cross-sectional study, a bibliometric analysis of data retrieved and extracted from the Web of Science Core Collection (WoSCC) database was performed to analyze evolution and theme trends on ocular drug delivery research from January 1, 2001, to December 31, 2020. A total of 4334 articles on ocular drug delivery were evaluated for specific characteristics, such as publication year, journals, authors, institutions, countries/regions, references, and keywords. Co-authorship analysis, co-occurrence analysis, co-citation analysis, and network visualization were constructed by VOSviewer. Some important subtopics identified by bibliometric characterization were further discussed and reviewed. RESULTS From 2001 to 2020, the annual global publications increased by 746.15%, from 52 to 440. International Journal of Pharmaceutics published the most manuscripts (250 publications) and produced the highest citations (9509 citations), followed by Investigative Ophthalmology & Visual Science (202 publications) and Journal of Ocular Pharmacology and Therapeutics (136 publications). The United States (1289 publications, 31,512 citations), the University of Florida (82 publications, 2986 citations), and Chauhan, Anuj (52 publications, 2354 citations) were the most productive and impactful institution, country, and author respectively. The co-occurrence cluster analysis of the top 100 keywords form five clusters: (1) micro/nano ocular drug delivery systems; (2) the treatment of inflammation and posterior diseases; (3) macroscopic ocular drug delivery systems/devices; (4) the characteristics of drug delivery systems; (5) and the ocular drug delivery for glaucoma treatment. Diabetic macular edema, anti-VEGF, ranibizumab, bevacizumab, micelles and latanoprost, were the latest high-frequency keywords, indicating the emerging frontiers of ocular drug delivery. Further discussions into the subtopics were provided to assist researchers to determine the range of research topics and plan research direction. CONCLUSIONS Over the last two decades there has been a progressive increase in the number of publications and citations on research related to ocular drug delivery across many countries, institutions, and authors. The present study sheds light on current trends, global collaboration patterns, basic knowledge, research hotspots, and emerging frontiers of ocular drug delivery. Novel solutions for ocular drug delivery and the treatment of inflammation and posterior diseases were the major themes over the last 20 years.
Collapse
|
28
|
Hosseinian H, Hosseini S, Martinez-Chapa SO, Sher M. A Meta-Analysis of Wearable Contact Lenses for Medical Applications: Role of Electrospun Fiber for Drug Delivery. Polymers (Basel) 2022; 14:185. [PMID: 35012207 PMCID: PMC8747307 DOI: 10.3390/polym14010185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/14/2023] Open
Abstract
In recent years, wearable contact lenses for medical applications have attracted significant attention, as they enable continuous real-time recording of physiological information via active and noninvasive measurements. These devices play a vital role in continuous monitoring of intraocular pressure (IOP), noninvasive glucose monitoring in diabetes patients, drug delivery for the treatment of ocular illnesses, and colorblindness treatment. In specific, this class of medical devices is rapidly advancing in the area of drug loading and ocular drug release through incorporation of electrospun fibers. The electrospun fiber matrices offer a high surface area, controlled morphology, wettability, biocompatibility, and tunable porosity, which are highly desirable for controlled drug release. This article provides an overview of the advances of contact lens devices in medical applications with a focus on four main applications of these soft wearable devices: (i) IOP measurement and monitoring, (ii) glucose detection, (iii) ocular drug delivery, and (iv) colorblindness treatment. For each category and application, significant challenges and shortcomings of the current devices are thoroughly discussed, and new areas of opportunity are suggested. We also emphasize the role of electrospun fibers, their fabrication methods along with their characteristics, and the integration of diverse fiber types within the structure of the wearable contact lenses for efficient drug loading, in addition to controlled and sustained drug release. This review article also presents relevant statistics on the evolution of medical contact lenses over the last two decades, their strengths, and the future avenues for making the essential transition from clinical trials to real-world applications.
Collapse
Affiliation(s)
- Hamed Hosseinian
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
| | - Samira Hosseini
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
- Writing Lab, Institute for the Future of Education, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
| | - Mazhar Sher
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery. Int J Pharm 2021; 608:121090. [PMID: 34530102 DOI: 10.1016/j.ijpharm.2021.121090] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
The delivery of drugs that target ocular tissues is challenging due to the physiological barriers of the eye like tear dilution, nasolacrimal drainage, blinking, tear turnover rate and low residence time Drug-laden contact lenses can be a possible solution to overcome some of these challenges. Nanoparticles are being extensively studied as novel systems for loading drugs into therapeutic contact lenses. The versatile features of the organic and inorganic nanoparticles and their diverse physicochemical properties make it possible to load and sustain drug release from the contact lenses. Nevertheless, several issues remains to be solved before its clinical application and commercialization such as changes in contact lens swelling (water content), transmittance, protein adherence, surface roughness, tensile strength, ion and oxygen permeability and drug leaching during contact lens manufacture. However, clinical studies demonstrated the potential of therapeutic contact lenses to manage the scientific, commercial and regulatory challenges to make its place in the market. This review highlights the different methodologies used to fabricate nanoparticle-laden contact lenses and highlights the major advances and challenges to commercialization.
Collapse
|
30
|
Ko J, Kang HJ, Ahn J, Zhao ZJ, Jeong Y, Hwang SH, Bok M, Jeon S, Gu J, Ha JH, Rho J, Jeong JH, Park I. Biocompatible Nanotransfer Printing Based on Water Bridge Formation in Hyaluronic Acid and Its Application to Smart Contact Lenses. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35069-35078. [PMID: 34282875 DOI: 10.1021/acsami.1c06225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many conventional micropatterning and nanopatterning techniques employ toxic chemicals, rendering them nonbiocompatible and unsuited for biodevice production. Herein the formation of water bridges on the surface of hyaluronic acid (HA) films is exploited to develop a transfer-based nanopatterning method applicable to diverse structures and materials. The HA film surface, made deformable via water bridge generation, is brought into contact with a functional material and subjected to thermal treatment, which results in film shrinkage, allowing a robust pattern transfer. The proposed biocompatible method, which avoids the use of extra chemicals, enables the transfer of nanoscale, microscale, and thin-film structures as well as functional materials such as metals and metal oxides. A nanopatterned HA film is transferred onto a moisture-containing contact lens to fabricate smart contact lenses with unique optical characteristics of rationally designed optical nanopatterns. These lenses demonstrated binocular parallax-induced stereoscopy via nanoline array polarization and acted as cutoff filters, with nanodot arrays, capable of treating Irlen syndrome.
Collapse
Affiliation(s)
- Jiwoo Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-gu, Daejeon, 34103, South Korea
| | - Hyeok Joong Kang
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-gu, Daejeon, 34103, South Korea
| | - Junseong Ahn
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-gu, Daejeon, 34103, South Korea
| | - Zhi-Jun Zhao
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-gu, Daejeon, 34103, South Korea
| | - Yongrok Jeong
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-gu, Daejeon, 34103, South Korea
| | - Soon Hyoung Hwang
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-gu, Daejeon, 34103, South Korea
| | - Moonjeong Bok
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-gu, Daejeon, 34103, South Korea
| | - Sohee Jeon
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-gu, Daejeon, 34103, South Korea
| | - Jimin Gu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Ji-Hwan Ha
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-gu, Daejeon, 34103, South Korea
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, South Korea
| | - Jun-Ho Jeong
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-gu, Daejeon, 34103, South Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
31
|
Topical delivery of cyclosporine loaded tailored niosomal nanocarriers for improved skin penetration and deposition in psoriasis: Optimization, ex vivo and animal studies. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Wuchte LD, DiPasquale SA, Byrne ME. In vivo drug delivery via contact lenses: The current state of the field from origins to present. J Drug Deliv Sci Technol 2021; 63:102413. [PMID: 34122626 PMCID: PMC8192067 DOI: 10.1016/j.jddst.2021.102413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Over the past half century, contact lenses have been investigated for their potential as drug delivery devices for ocular therapeutics. Hundreds of studies have been published in the pursuit of the most effective and efficient release strategies and methods for contact lens drug delivery. This paper provides a thorough overview of the various contact lens drug delivery strategies, with a specific, comprehensive focus on in vivo studies that have been published since the field began in 1965. Significant accomplishments, current trends, as well as future strategies and directions are highlighted. In vivo study analysis provides a straightforward perspective and assessment of method success and commercialization potential in comparison to benchtop, in vitro studies. Analysis of the majority of published work indicates in vitro and in vivo studies do not correlate with a correlation coefficient of 0.25, with many in vitro studies grossly overestimating drug release duration and not showing appreciable drug release control. However, there has been an increase in activity in the last decade, and some methods have generated promising results exhibiting controlled release with commercialization potential. Clinical translation of drug releasing lenses is on the horizon and has high potential to impact a large number of patients providing efficacious treatment compared to current topical treatments.
Collapse
Affiliation(s)
- Liana D. Wuchte
- Biomimetic & Biohybrid Materials, Biomedical Devices, & Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Stephen A. DiPasquale
- Biomimetic & Biohybrid Materials, Biomedical Devices, & Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
- OcuMedic, Inc, 107 Gilbreth Parkway, Mullica Hill, NJ, 08062, USA
| | - Mark E. Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices, & Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
- OcuMedic, Inc, 107 Gilbreth Parkway, Mullica Hill, NJ, 08062, USA
| |
Collapse
|
33
|
Fang G, Yang X, Wang Q, Zhang A, Tang B. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112212. [PMID: 34225864 DOI: 10.1016/j.msec.2021.112212] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
An increasing number of people worldwide are affected by eye diseases, eventually leading to visual impairment or complete blindness. Conventional treatment involves the use of eye drops. However, these formulations often confer low ocular bioavailability and frequent dosing is required. Therefore, there is an urgent need to develop more effective drug delivery systems to tackle the current limitations. Hydrogels are multifunctional ophthalmic drug delivery systems capable of extending drug residence time and sustaining release of drugs. In this review, common ocular diseases and corresponding therapeutic drugs are briefly introduced. In addition, various types of hydrogels reported for ophthalmic drug delivery, including in-situ gelling hydrogels, contact lenses, low molecular weight supramolecular hydrogels, cyclodextrin/poly (ethylene glycol)-based supramolecular hydrogels and hydrogel-forming microneedles, are summarized. Besides, marketed hydrogel-based opthalmic formulations and clinical trials are also highlighted. Finally, critical considerations regarding clinical translation of biologics-loaded hydrogels are discussed.
Collapse
Affiliation(s)
- Guihua Fang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xuewen Yang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Qiuxiang Wang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Aiwen Zhang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Bo Tang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
34
|
Akbari E, Imani R, Shokrollahi P, Heidari Keshel S. Preparation of Nanoparticle-Containing Ring-Implanted Poly(Vinyl Alcohol) Contact Lens for Sustained Release of Hyaluronic Acid. Macromol Biosci 2021; 21:e2100043. [PMID: 34015173 DOI: 10.1002/mabi.202100043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Here, a novel ring-implanted poly vinyl alcohol (PVA) contact lens (CL) is fabricated and evaluated as a therapeutic CL with potential of sustained release of hyaluronic acid (HA). HA is loaded on chitosan (CS) nanoparticles (NPs) and then the HA-loaded NPs are dispersed in a ring shape PVA hydrogel which is implanted in the final PVA CL. Results show that HA is successfully loaded on NPs (520 ± 18 nm) with loading efficacy of 87% and loading capacity of 50%. The CL hydrogel has a 275% swelling ratio, no degradation during 14 days, 97% light transmittance, and desirable rheological stability under physiological shear force. The release data show a sustained release for HA from the ring implanted CL up to 14 days. The cellular study reveals no corneal epithelial cell cytotoxicity and cell attachment on the CL. The study demonstrates the successful application of the ring-implanted CL to sustain the delivery of HA for treating the dry eye syndrome.
Collapse
Affiliation(s)
- Elham Akbari
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 1591634311, Iran
| | - Rana Imani
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 1591634311, Iran
| | - Parvin Shokrollahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, 1311514977, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| |
Collapse
|
35
|
Jones L, Hui A, Phan CM, Read ML, Azar D, Buch J, Ciolino JB, Naroo SA, Pall B, Romond K, Sankaridurg P, Schnider CM, Terry L, Willcox M. CLEAR - Contact lens technologies of the future. Cont Lens Anterior Eye 2021; 44:398-430. [PMID: 33775384 DOI: 10.1016/j.clae.2021.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Contact lenses in the future will likely have functions other than correction of refractive error. Lenses designed to control the development of myopia are already commercially available. Contact lenses as drug delivery devices and powered through advancements in nanotechnology will open up further opportunities for unique uses of contact lenses. This review examines the use, or potential use, of contact lenses aside from their role to correct refractive error. Contact lenses can be used to detect systemic and ocular surface diseases, treat and manage various ocular conditions and as devices that can correct presbyopia, control the development of myopia or be used for augmented vision. There is also discussion of new developments in contact lens packaging and storage cases. The use of contact lenses as devices to detect systemic disease has mostly focussed on detecting changes to glucose levels in tears for monitoring diabetic control. Glucose can be detected using changes in colour, fluorescence or generation of electric signals by embedded sensors such as boronic acid, concanavalin A or glucose oxidase. Contact lenses that have gained regulatory approval can measure changes in intraocular pressure to monitor glaucoma by measuring small changes in corneal shape. Challenges include integrating sensors into contact lenses and detecting the signals generated. Various techniques are used to optimise uptake and release of the drugs to the ocular surface to treat diseases such as dry eye, glaucoma, infection and allergy. Contact lenses that either mechanically or electronically change their shape are being investigated for the management of presbyopia. Contact lenses that slow the development of myopia are based upon incorporating concentric rings of plus power, peripheral optical zone(s) with add power or non-monotonic variations in power. Various forms of these lenses have shown a reduction in myopia in clinical trials and are available in various markets.
Collapse
Affiliation(s)
- Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong.
| | - Alex Hui
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| | - Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Michael L Read
- Eurolens Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dimitri Azar
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, USA; Verily Life Sciences, San Francisco, CA, USA
| | - John Buch
- Johnson & Johnson Vision Care, Jacksonville, FL, USA
| | - Joseph B Ciolino
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Shehzad A Naroo
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Brian Pall
- Johnson & Johnson Vision Care, Jacksonville, FL, USA
| | - Kathleen Romond
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, USA
| | - Padmaja Sankaridurg
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia; Brien Holden Vision Institute, Sydney, Australia
| | | | - Louise Terry
- School of Optometry and Vision Sciences, Cardiff University, UK
| | - Mark Willcox
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
Quarterman JC, Geary SM, Salem AK. Evolution of drug-eluting biomedical implants for sustained drug delivery. Eur J Pharm Biopharm 2021; 159:21-35. [PMID: 33338604 PMCID: PMC7856224 DOI: 10.1016/j.ejpb.2020.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
In the field of drug delivery, the most commonly used treatments have traditionally been systemically delivered using oral or intravenous administration. The problems associated with this type of delivery is that the drug concentration is controlled by first pass metabolism, and therefore may not always remain within the therapeutic window. Implantable drug delivery systems (IDDSs) are an excellent alternative to traditional delivery because they offer the ability to precisely control the drug release, deliver drugs locally to the target tissue, and avoid the toxic side effects often experienced with systemic administration. Since the creation of the first FDA-approved IDDS in 1990, there has been a surge in research devoted to fabricating and testing novel IDDS formulations. The versatility of these systems is evident when looking at the various biomedical applications that utilize IDDSs. This review provides an overview of the history of IDDSs, with examples of the different types of IDDS formulations, as well as looking at current and future biomedical applications for such systems. Though there are still obstacles that need to be overcome, ever-emerging new technologies are making the manufacturing of IDDSs a rewarding therapeutic endeavor with potential for further improvements.
Collapse
Affiliation(s)
- Juliana C Quarterman
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Sean M Geary
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States.
| |
Collapse
|
37
|
Fouling in ocular devices: implications for drug delivery, bioactive surface immobilization, and biomaterial design. Drug Deliv Transl Res 2021; 11:1903-1923. [PMID: 33454927 DOI: 10.1007/s13346-020-00879-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The last 30 years has seen a proliferation of research on protein-resistant biomaterials targeted at designing bio-inert surfaces, which are prerequisite for optimal performance of implantable devices that contact biological fluids and tissues. These efforts have only been able to yield minimal results, and hence, the ideal anti-fouling biomaterial has remained elusive. Some studies have yielded biomaterials with a reduced fouling index among which high molecular weight polyethylene glycols have remained dominant. Interestingly, the field of implantable ocular devices has not experienced an outflow of research in this area, possibly due to the assumption that biomaterials tested in other body fluids can be translated for application in the ocular space. Unfortunately, progression in the molecular understanding of many ocular conditions has brought to the fore the need for treatment options that necessitates the use of anti-fouling biomaterials. From the earliest implanted horsehair and silk seton for glaucoma drainage to the recent mini telescopes for sight recovery, this review provides a concise incursion into the gradual evolution of biomaterials for the design of implantable ocular devices as well as approaches used to overcome the challenges with fouling. The implication of fouling for drug delivery, the design of immune-responsive biomaterials, as well as advanced surface immobilization approaches to support the overall performance of implantable ocular devices are also reviewed.
Collapse
|
38
|
Toffoletto N, Saramago B, Serro AP. Therapeutic Ophthalmic Lenses: A Review. Pharmaceutics 2020; 13:36. [PMID: 33379411 PMCID: PMC7824655 DOI: 10.3390/pharmaceutics13010036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
An increasing incidence of eye diseases has been registered in the last decades in developed countries due to the ageing of population, changes in lifestyle, environmental factors, and the presence of concomitant medical conditions. The increase of public awareness on ocular conditions leads to an early diagnosis and treatment, as well as an increased demand for more effective and minimally invasive solutions for the treatment of both the anterior and posterior segments of the eye. Despite being the most common route of ophthalmic drug administration, eye drops are associated with compliance issues, drug wastage by lacrimation, and low bioavailability due to the ocular barriers. In order to overcome these problems, the design of drug-eluting ophthalmic lenses constitutes a non-invasive and patient-friendly approach for the sustained drug delivery to the eye. Several examples of therapeutic contact lenses and intraocular lenses have been developed, by means of different strategies of drug loading, leading to promising results. This review aims to report the recent advances in the development of therapeutic ophthalmic lenses for the treatment and/or prophylaxis of eye pathologies (i.e., glaucoma, cataract, corneal diseases, or posterior segment diseases) and it gives an overview of the future perspectives and challenges in the field.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
39
|
Wei Y, Hu Y, Shen X, Zhang X, Guan J, Mao S. Design of circular-ring film embedded contact lens for improved compatibility and sustained ocular drug delivery. Eur J Pharm Biopharm 2020; 157:28-37. [DOI: 10.1016/j.ejpb.2020.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
|
40
|
Kumar N, Aggarwal R, Chauhan MK. Extended levobunolol release from Eudragit nanoparticle-laden contact lenses for glaucoma therapy. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00128-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Majorly, the reason for the permanent loss of vision is glaucoma. But the currently available common treatment methodologies such as eye drops have various disadvantages like patient incompliance due to repeated administration and poor (1–5%) bioavailability leading to poor efficiency. The objective of this research was to formulate Eudragit-based nanoparticles of levobunolol incorporated into a contact lens to obtain sustained ocular delivery of levobunolol at the therapeutics level. Eudragit nanoparticles of levobunolol were formulated by nanoprecipitation methodology utilizing different ratios of Eudragit S100 and polyvinyl alcohol. The prepared nanoparticles were evaluated and optimized by efficiency of entrapment, particle size, morphology of surface and zeta potential. The optimized nanoparticles were then entrapped into the matrix of the contact lens by the soaking method which were then characterized and compared for optical clarity study, equilibrium swelling study, shelf life and in vitro drug release in simulated tear fluid followed by ex vivo transcorneal permeation study.
Results
Formulation F3 was obtained as optimized nanoparticle formulation with 102.61 nm ± 3.92 of particle size, − 22.2 mV ± 2.76 of zeta potential and 86.995% ± 1.902 of efficiency of entrapment. The equilibrium swelling index and transmittance of nanoparticle incorporated into contact lenses showed better results when compared to drug solution-loaded lenses. In vitro release indicated more sustained drug profiles (84.33% ± 0.34 of drug release over a period of 12 days) as compared to drug solution-loaded lenses (89.282% ± 0.900 of drug release over a period of 3 days). Ex vivo transcorneal permeation studies showed more permeation (6.75% ± 0.170) through contact lenses as compared to marketed eye drops (3.03% ± 0.088).
Conclusion
This research demonstrates the remarkable results of drug-laden contact lenses to serve as a great medium for the continued delivery of ocular drugs without affecting the physical and optical characteristics of the lens content.
Collapse
|
41
|
Huang C, Zhang X, Li Y, Yang X. Hyaluronic acid and graphene oxide loaded silicon contact lens for corneal epithelial healing. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:372-384. [PMID: 33058750 DOI: 10.1080/09205063.2020.1836926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hyaluronic acid (HA) eye drop solution is widely used to treat and manage various corneal diseases like keratoconus (after corneal cross-linking) and dry eye syndrome. However, ocular dosage forms like eye drop solution affect the routine life style of patients due to frequent dosing schedule. In this study, HA and reduced graphene oxide (rGO) was directly loaded in the silicon contact lenses (HA-GO-DL) and compared with the conventional soaking method (HA-GO-SM). The contact lenses at lower level of rGO showed permissible swelling and transmittance properties. The water retention property of HA-GO-DL contact lenses was confirmed by water evaporation studies. The flux data of HA-GO-SM contact lenses showed high burst release with 24 h release duration. While, HA-GO-DL lenses confirmed low burst with sustained release up to 96 h. In ocular irritation study, the HA-GO-DL-2 lenses was found to be safe. The HA-GO-DL-2 batch showed high HA-tear fluid concentration (rabbit model) and improvement in the rabbit tear fluid volume (Schirmer strip studies) in comparison to the soaking method (HA-GO-SM-2) and eye drop solution. The study successfully demonstrate the potential of HA-GO loaded contact lenses to improve tear fluid volume to manage various ocular diseases like dry eye syndrome.
Collapse
Affiliation(s)
- Chao Huang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong Province, China
| | - Xin Zhang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong Province, China
| | - Yanchun Li
- Department of Ophthalmology, The Second Affiliated Hospital of Shandong First Medical University, Taian City, Shandong Province, China
| | - Xiaolan Yang
- Department of Fundus Disease, The Second People's Hospital of Jinan, Jinan, Shandong Province, China
| |
Collapse
|
42
|
Maulvi FA, Patel PJ, Soni PD, Desai AR, Desai DT, Shukla MR, Ranch KM, Shah SA, Shah DO. Novel Poly(vinylpyrrolidone)-Coated Silicone Contact Lenses to Improve Tear Volume During Lens Wear: In Vitro and In Vivo Studies. ACS OMEGA 2020; 5:18148-18154. [PMID: 32743189 PMCID: PMC7391853 DOI: 10.1021/acsomega.0c01764] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Poly(vinylpyrrolidone) (PVP-K90) is widely used to manage dry eye syndrome (DES). The marketed eye drop solutions (high dose) need frequent instillation, affecting the routine lifestyle of patients. PVP-K90-laden contact lenses can be used to overcome the limitations of eye drop solutions (low bioavailability and frequent instillation). However, the conventional methods of PVP-K90 loading show poor loading capacity and short duration of effect. In the present study, we have developed PVP-K90-coated contact lenses via a short curing approach to increase the PVP-K90 loading capacity with a sustained release profile to manage dry eye syndrome. PVP-K90 was loaded by a soaking method (SM-PVP), direct loading (during fabrication, DL-PVP), a combination of soaking and direct loading (DL-SM-PVP), and a novel coating process (SM-PVP-C and DL-SM-PVP-C). The swelling studies suggested improvement in the water uptake (hydration) property of the contact lenses due to the presence of PVP-K90. The optical transparency was within an acceptable range. The in vitro release of PVP-K90 was in the following order: PVP-coated contact lens (168 h) > DL-SM-PVP (168 h) > DL-PVP (96 h) > SM-PVP (72-96 h). PVP-coated contact lenses showed a high burst effect (lubricating effect) and sustained release (3161-448 ng/h between 24 and 168 h) due to high PVP loading/coating in comparison to the uncoated respective contact lenses (964-113 ng/h between 24 and 96 h). In animal studies, the PVP-K90-coated contact lens showed higher tear volume in comparison to the respective uncoated contact lenses and an eye drop solution. This study demonstrates a novel approach of coating a high amount of PVP-K90 on contact lenses for sustained release to manage several ocular diseases like dry eye syndrome, conjunctivitis, and other ocular injuries.
Collapse
Affiliation(s)
- Furqan A. Maulvi
- Maliba
Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Pooja J. Patel
- Maliba
Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Parth D. Soni
- Maliba
Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Ankita R. Desai
- Maliba
Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Ditixa T. Desai
- Maliba
Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Manish R. Shukla
- Centre
for Ocular Research & Education (CORE), School of Optometry and
Vision Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ketan M. Ranch
- Maliba
Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Shailesh A. Shah
- Maliba
Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Dinesh O. Shah
- Department
of Chemical Engineering and Department of Anesthesiology, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
43
|
Lanier OL, Christopher KG, Macoon RM, Yu Y, Sekar P, Chauhan A. Commercialization challenges for drug eluting contact lenses. Expert Opin Drug Deliv 2020; 17:1133-1149. [DOI: 10.1080/17425247.2020.1787983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Olivia L. Lanier
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | | | - Russell M. Macoon
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Yifan Yu
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Poorvajan Sekar
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Anuj Chauhan
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| |
Collapse
|
44
|
Maulvi FA, Parmar RJ, Desai AR, Desai DM, Shukla MR, Ranch KM, Shah SA, Shah DO. Tailored gatifloxacin Pluronic® F-68-loaded contact lens: Addressing the issue of transmittance and swelling. Int J Pharm 2020; 581:119279. [PMID: 32240806 DOI: 10.1016/j.ijpharm.2020.119279] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
Loading of gatifloxacin in contact lenses affects critical lens properties (optical and swelling) owing to drug precipitation in the contact lens matrix. The presence of Pluronic® F-68 in the packaging solution creates in-situ micelles in the contact lens to dissolve gatifloxacin precipitates and provide sustained drug release. The micelles further improved the drug uptake from the drug-packaging solution to create an equilibrium of drug between the lens matrix and the packaging solution. In this study, we optimized gatifloxacin-pluronic-loaded contact lenses to achieve the desired optical transmittance, swelling, and gatifloxacin loading capacity as well as sustained drug delivery. Optimization of gatifloxacin-pluronic-loaded contact lens was carried out using a 32 factorial design by tailoring the concentration of Pluronic® F-68 in the packaging solution (X1) and the amount of gatifloxacin in the monomer solution (X2) to achieve the desired lens properties. The optimized batch (X1 = 0.3%w/v and X2 = 0.3%w/v) showed an optical transmittance of 92.84%, swelling of 92.36% and gatifloxacin loading capacity of 92.56 μg. The in vitro flux data of the optimized batch (GT-Pl-CL) showed sustained release up to 72 h, whereas soaked contact lenses (SM-CL) and direct gatifloxacin-loaded contact lenses (DL-CL) showed a sustained release up to 48 h. The in vivo gatifloxacin release data for rabbit tear fluid showed sustained release with a high gatifloxacin level for the GT-Pl-CL lens in comparison to the SM-CL and the eye drop solution. This study demonstrates the application of the 32 full factorial design to optimize gatifloxacin-pluronic-loaded contact lenses to achieve the desired optical transmittance, swelling, and drug loading capacity.
Collapse
Affiliation(s)
- Furqan A Maulvi
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India.
| | - Riya J Parmar
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Ankita R Desai
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Ditixa M Desai
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Manish R Shukla
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India; Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ketan M Ranch
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Shailesh A Shah
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Dinesh O Shah
- Department of Chemical Engineering and Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
45
|
Multiple drug delivery from the drug-implants-laden silicone contact lens: Addressing the issue of burst drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110885. [PMID: 32409042 DOI: 10.1016/j.msec.2020.110885] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/20/2020] [Indexed: 01/17/2023]
Abstract
A fixed combination of bimatoprost/timolol eye drop solution is used to manage the elevated intra-ocular pressure in glaucoma patients, including individuals whose condition is poorly controlled by monotherapy. Eye drop solutions are generally given in high dose, due to poor ocular bioavailability. The high ocular dose of bimatoprost and timolol lead to hyperaemia and systemic cardiac side effects respectively. Here, we introduce multiple implant-laden contact lenses (IM) to passively deliver timolol, bimatoprost and hyaluronic acid at therapeutically relevant doses without high burst release. The drug-loaded implants were individually implanted in the outer periphery of the silicone contact lenses. Atomic force microscopy showed the smooth surface of the implant contact lens, as the implants were inside the contact lens matrix. The implant lens (IM) showed major loss of drugs [timolol = 60.60%, bimatoprost = 61.75% and HA = 46.03%] during the monomer extraction and wet sterilization, while the option of dry radiation sterilization (IM-R lens) and hydration for 24 h prior to use showed relatively lower loss of drugs [timolol = 16.87%, bimatoprost = 47.95% and HA = 24.41%]. The in-vitro drugs release data of IM-R lens, showed sustained release for 72 h, with low burst release in comparison to the soaked (SM) and direct drug-laden contact lenses (DL). The in vivo drug release data in the rabbit tear fluid showed sustained release using IM-R lens in comparison to the SM lens and eye drop therapy. The burst release with the IM-R lens was many folds reduced, which could bypass the side effects associated with multiple eye drop therapy. The in vivo pharmacodynamic study in the rabbit model showed peak and valley profile with multiple eye drop therapy, while IM-R lens showed prolong reduction in intra ocular pressure (IOP) for 120 h. The study demonstrates the application of implantation technology to deliver multiple drug through contact lenses to treat glaucoma.
Collapse
|
46
|
Zhang X, Cao X, Qi P. Therapeutic contact lenses for ophthalmic drug delivery: major challenges. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:549-560. [PMID: 31902299 DOI: 10.1080/09205063.2020.1712175] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xiuju Zhang
- Department of General Practice, Linyi People’s Hospital, Linyi, Shandong, China
| | - Xiuzhen Cao
- Department of Anus and Intestine Surgery, Taian Central Hospital, Taian, Shandong, China
| | - Ping Qi
- Department of General Practice, Linyi People’s Hospital, Linyi, Shandong, China
| |
Collapse
|
47
|
|
48
|
Phenylboronic acid-tethered chondroitin sulfate-based mucoadhesive nanostructured lipid carriers for the treatment of dry eye syndrome. Acta Biomater 2019; 99:350-362. [PMID: 31449929 DOI: 10.1016/j.actbio.2019.08.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
Dry eye syndrome is a common eye disease that affects many people worldwide. It is usually treated with eye drops, which has low bioavailability owing to rapid clearance from the ocular surface and leads to poor patient compliance and side effects. For the purpose of improving the therapeutic efficacy, nanostructured lipid carrier (NLC)-loaded dexamethasone (DEX) was prepared and functionalized with (3-aminomethylphenyl)boronic acid-conjugated chondroitin sulfate (APBA-ChS). As APBA has a boronic acid group, it can form a high-affinity complex with sialic acids present in the ocular mucin, which contributes to extension of corneal retention time and improvement of drug delivery. Compared with eye drops, Rhodamine B (RhB)-labeled APBA-ChS-NLC could significantly prolong the residence time on the corneal surface. Moreover, the DEX-APBA-ChS-NLC showed no irritation to the rabbit eye as indicated in irritation studies and histological images. The pharmacodynamics study indicated that DEX-APBA-ChS-NLC could relieve symptoms of dry eye disease in rabbits. These results demonstrated that the developed mucoadhesive drug carrier could improve the delivery of drugs and have promising potential to treat anterior eye diseases. STATEMENT OF SIGNIFICANCE: In this research, (3-aminomethylphenyl)boronic acid-conjugated chondroitin sulfate (APBA-ChS)-based nanostructured lipid carriers (NLCs) including dexamethasone (DEX) were designed and constructed. APBA-ChS, which is present on the surface of DEX-NLC and contains the boronic acid group, can form complex with sialic acids in the ocular mucin, hence leading to prolonged precorneal retention. This affinity between boronic acid and sialic acids was used to develop a mucoadhesive drug delivery system. The developed mucoadhesive drug carrier demonstrated prolonged retention time and alleviation of dry eye syndrome. APBA-ChS-based NLC may be considered a promising ocular drug delivery system for treating anterior eye diseases.
Collapse
|
49
|
Plackett-Burman design for screening of critical variables and their effects on the optical transparency and swelling of gatifloxacin-Pluronic-loaded contact lens. Int J Pharm 2019; 566:513-519. [DOI: 10.1016/j.ijpharm.2019.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
|
50
|
Zhang W, Li W, Zhang C, Zhu C, Yi X, Zhou Y, Lv Y. Effects of Vitamin A on Expressions of Apoptosis Genes Bax and Bcl-2 in Epithelial Cells of Corneal Tissues Induced by Benzalkonium Chloride in Mice with Dry Eye. Med Sci Monit 2019; 25:4583-4589. [PMID: 31257361 PMCID: PMC6598464 DOI: 10.12659/msm.913478] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background The apoptosis of corneal epithelial cells participates in the pathological processes of dry eye, which is expected to be a treatment target for dry eye. The aim of this study was to investigate the effects of vitamin A (VA) on apoptosis of corneal epithelial cells in a mouse model with dry eye induced by benzalkonium chloride (BAC). Material/Methods We randomly divided 60 male BALB/c mice aged 8–10 weeks into 3 groups: the blank control group, the dry eye+vehicle group, and the dry eye+drug group. On the 7th day after the dry eye model successfully induced, the mouse eyeballs removed, and the mouse corneal tissues were isolated. The expression levels of Bax and Bcl-2 in corneal tissues were detected via reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. The apoptotic corneal epithelial cells were quantified using terminal deoxynucleotidyl transferase (TdT) deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) staining technique. Results VA suppressed the upregulation of the Bax gene at the mRNA and protein levels, and upregulated the expression of the Bcl-2 gene (P<0.05). TUNEL results revealed that the number of apoptotic epithelial cells in the dry eye group was 40 times larger as that in the blank control group. After the intervention of VA at an appropriate concentration, the number of apoptotic corneal epithelial cells was remarkably reduced to about 10 times that in the blank control group (P<0.05). Conclusions VA can inhibit upregulation of the expressions of Bax and Bcl-2 in the epithelial cells of mice with dry eye induced by BAC, so as to suppress the apoptosis of epithelial cells in mice with dry eye.
Collapse
Affiliation(s)
- Weihua Zhang
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Weijing Li
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Cuiying Zhang
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Chunfang Zhu
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Xiangling Yi
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Yan Zhou
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Yan Lv
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| |
Collapse
|