1
|
Song W, Liu W, Li SY, Yu Y, Xu H, Shi T, Yu HP, He Y, Zhu YJ, Yu W. Remodeling the Senescent Microenvironment for Promoting Osteoporotic Tendon-to-Bone Healing via Synergizing Senolytic Quercetin and Aligned Nanowire-Structured Hydrogels. ACS NANO 2025. [PMID: 40325895 DOI: 10.1021/acsnano.5c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Osteoporotic tendon-to-bone healing remains a major challenge, as cellular senescence disrupts tissue regeneration and impairs repair outcomes. Although the role of cellular senescence in rotator cuff repair is increasingly recognized, current strategies often overlook the complex pathological context, particularly the dual impacts of senescence on both bone marrow-derived mesenchymal stem cells (BMSCs) and tendon-derived stem cells (TDSCs). This gap hampers effective tendon-to-bone healing and integration, especially under osteoporotic conditions. Herein, a composite hydrogel system, quercetin-loaded aligned ultralong hydroxyapatite nanowire/gelatin-hyaluronic acid hydrogel (Que-AHNW/GH), has been developed to address these challenges. By integrating senolytic quercetin as a biological cue with highly aligned ultralong hydroxyapatite (HAP) nanowires as a topographical cue, the system remodels the senescent microenvironment, alleviating senescence in both BMSCs and TDSCs and promoting osteogenesis and tenogenesis. Que-AHNW/GH suppresses the PI3K/AKT pathway, enhances autophagy, and reduces senescence in both cell types. In vivo, Que-AHNW/GH improves bone tunnel regeneration, tendon repair, and tendon-to-bone integration in osteoporotic rats with rotator cuff injury. This system enhances biomechanical strength and gait performance and demonstrates excellent biosafety. These findings highlight the promising potential of Que-AHNW/GH as a multifunctional biomaterial for effectively promoting senescence-related tendon-to-bone healing, offering a promising solution for treating osteoporotic tendon-to-bone injuries.
Collapse
Affiliation(s)
- Wei Song
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Wencai Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Si-Yi Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Yuhao Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Hui Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Tingwang Shi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Yaohua He
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Weilin Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| |
Collapse
|
2
|
Cheng L, Zhang H, Zhou B, Wang H, Sun Y, Pang Y, Dong B. Polydopamine-modified hydroxyapatite and manganese tetroxide nanozyme incorporated gelatin methacryloyl hydrogel: A multifunctional platform for anti-bacteria, immunomodulation, angiogenesis, and enhanced regeneration in infected wounds. Int J Biol Macromol 2025; 307:141834. [PMID: 40081722 DOI: 10.1016/j.ijbiomac.2025.141834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Intensive inflammation induced via bacterial infection seriously disturbs the immune-microenvironment and compromise the neovascularization in the skin wound. On the basis of reducing bacterial infections, alleviating inflammatory response and rebuild the crosstalk between macrophages and vascular endothelial cell (VEC) serve as the key strategy for facilitating infected wound healing. Herein, manganese tetroxide (Mn3O4) nanozymes and polydopamine-coated hydroxyapatite (PHA) nanoparticles were loaded on the gelatin methacryloyl (GelMA) hydrogel, which was subsequently crosslinked by the UV light to construct a multifunctional hydrogel wound dressing GelMA-PHA-Mn3O4 with excellent anti-bacterial, immuno-regulation and angiogenic properties. Triggered by near infrared (NIR), PHA exhibited photothermal effect and effectively eradicated Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) biofilm. On the other hand, Mn3O4 nanozymes in hydrogel exhibit desirable reactive oxygen species (ROS) scavenging capacity due to the redox cycle between Mn2+ and Mn3+, which successfully transform the LPS-induced macrophage phenotype from pro-inflammation M1 to anti-inflammation M2. Notably, the interaction between macrophages and VECs was subsequently reconstructed and exhibited an evident pro-angiogenic phenomenon along with the improvement of local immuno-microenvironment. In vivo study further verified that the GelMA-PHA-Mn3O4 hydrogel combined with NIR irradiation could accelerate the healing of infected wound through the prominent anti-bacterial and immuno-regulation effect. The collagen deposition and formation of blood vessel in the wound were active. Above, this study demonstrated that the GelMA-PHA-Mn3O4 hydrogel represents a promising approach for managing infected wounds, with an anticipated prospect in clinical application.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| | - Huan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Bingshuai Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| | - Huaiwu Wang
- Director of Surgery Center, The Changchun hospital of Guowen Medical Group, Changchun 130022, China
| | - Yue Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China; Department of Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China, 130021.
| | - Yuxuan Pang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Wu X, Zhao F, Wang H, Schirhagl R, Włodarczyk-Biegun MK. Integrating melt electrowriting (MEW) PCL scaffolds with fibroblast-laden hydrogel toward vascularized skin tissue engineering. Mater Today Bio 2025; 31:101593. [PMID: 40104645 PMCID: PMC11914512 DOI: 10.1016/j.mtbio.2025.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Three-dimensional (3D) skin equivalents (SEs) are promising platforms for studying skin disease or assessing the safety of skin-relevant products. Vascularization, which improves the functionality of reconstructed skin, is one of the remaining hurdles in SE production that, when successfully introduced, can widen SE applications. Here, combining porous polycaprolactone (PCL) melt electrowritten (MEW) scaffolds with fibroblast-laden methacrylated gelatin hydrogel (GelMA), we developed SEs with cellular vascular structure. The MEW scaffolds were composed of two layers: random fibers for culturing the keratinocytes to fabricate the epidermis; and well-aligned shapes filled with fibroblast-laden GelMA to mimic the dermis. Three dermal designs varying in porosities and pore sizes were compared to optimize the dermis reconstruction. Within one week, the design with bigger pore sizes achieved optimal cell distribution, penetration, and extracellular matrix (ECM) deposition. Additionally, Retinoic acid (RTA) was tested for improving ECM deposition. To mimic vasculature, we incorporated vascular grafts into the optimized SEs. These were fabricated by casting endothelial fibroblast-laden Matrigel onto small-diameter MEW-tubular structures. The versatility and reproducibility of the obtained SEs offer a robust new tool for in vitro testing and exploration of fundamental biological processes of skin tissue.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Biomaterials and Biotechnology, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Fenghua Zhao
- Department of Biomaterials and Biotechnology, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hui Wang
- Nanostructured Materials and Interfaces, Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG, the Netherlands
| | - Romana Schirhagl
- Department of Biomaterials and Biotechnology, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Małgorzata K Włodarczyk-Biegun
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, the Netherlands
- Biotechnology Centre, The Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| |
Collapse
|
4
|
Li X, Sim D, Wang Y, Feng S, Longo B, Li G, Andreassen C, Hasturk O, Stout A, Yuen JSK, Cai Y, Sanders E, Sylvia R, Hatz S, Olsen T, Herget T, Chen Y, Kaplan DL. Fiber-based biomaterial scaffolds for cell support towards the production of cultivated meat. Acta Biomater 2025; 191:292-307. [PMID: 39522627 DOI: 10.1016/j.actbio.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The in vitro production of animal-derived foods via cellular agriculture is emerging as a key solution to global food security challenges. Here, the potential for fiber-based scaffolds, including silk and cotton, in the cultivation of muscle cells for tissue formation was pursued. Mechanical properties and cytocompatibility with the mouse myoblast cell line C2C12 and immortalized bovine muscle satellite cells (iBSCs) were assessed, as well as pre-digestion options for the materials due to their resilience within the human digestive track. The fibers supported cell adhesion, proliferation, and guided muscle cell orientation, facilitating myotube formation per differentiation. A progressive increase in biomass was also documented. Interestingly, iBSC proliferation was enhanced with coatings of recombinant proteins while C2C12 cells showed minimal response. Thus, both cotton and silk yarns were suitable as fiber-based scaffolds towards cell supportive goals, suggesting an alternative path toward structured protein-rich foods via this initial stage of textile engineering for food. Biomass prediction models were generated, enabling forecasts of cell growth and maturation across various scaffold conditions and cell types. This capability enhances the precision of the cultivation process towards an engineering approach, building on the inherent benefits of hierarchical muscle tissue structure, but here via textile engineering with these initial muscle-coated edible fibers. Further, the approach offers to reduce costs by optimizing cultivation time and media needs. These approaches are part of a foundation for future scalable and sustainable cultivated meat production. STATEMENT OF SIGNIFICANCE: This research investigates the use of one-dimensional fiber-based scaffolds for cultivated meat production, contributing to advancements in cellular agriculture. It introduces a method to measure changes in biomass and scaffold degradation throughout the cultivation process. Additionally, our development of biomass prediction models improves the precision and predictability of cultivated meat production. This research not only aids in scaling up cultivated meats but also enhances the use of textile engineering techniques in tissue engineering, paving the way for producing complex, three-dimensional meat structures more sustainably.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Davin Sim
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Shuo Feng
- Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brooke Longo
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Christel Andreassen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Andrew Stout
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - John S K Yuen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Yixin Cai
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Ella Sanders
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Ryan Sylvia
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, Massachusetts 1803, USA
| | - Sonja Hatz
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| | - Timothy Olsen
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, Massachusetts 1803, USA
| | - Thomas Herget
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA.
| |
Collapse
|
5
|
Zhang Z, Fan C, Xu Q, Guo F, Li W, Zeng Z, Xu Y, Yu J, Ge H, Yang C, Chang J. A New Strategy to Inhibit Scar Formation by Accelerating Normal Healing Using Silicate Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407718. [PMID: 39340818 DOI: 10.1002/advs.202407718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Inspired by the scar-free wound healing in infants, an anti-scar strategy is proposed by accelerating wound healing using silicate bioactive materials. Bioglass/alginate composite hydrogels are applied, which significantly inhibit scar formation in rabbit ear scar models. The underlining mechanisms include stimulation of Integrin Subunit Alpha 2 expression in dermal fibroblasts to accelerate wound healing, and induction of apoptosis of hypertrophic scar fibroblasts by directly stimulating the N-Acylsphingosine Amidohydrolase 2 expression in hypertrophic scar fibroblasts, and indirectly upregulating the secretion of Cathepsin K in dermal fibroblasts. Considering specific functions of the bioactive silicate materials, two scar treatment regimes are tested. For severe scars, a regenerative intervention is applied by surgical removal of the scar followed by the treatment with bioactive hydrogels to reduce the formation of scars by activating dermal fibroblasts. For mild scars, the bioactive dressing is applied on the formed scar and reduces scar by inducing scar fibroblasts apoptosis.
Collapse
Affiliation(s)
- Zhaowenbin Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Chen Fan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Qing Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200050, P. R. China
| | - Wenbo Li
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200050, P. R. China
| | - Zhen Zeng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Yuze Xu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jing Yu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Hongping Ge
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
6
|
Chen X, Liu W, Su C, Shan J, Li X, Chai Y, Yu Y, Wen G. Multimodal effects of an extracellular matrix on cellular morphology, dynamics and functionality. J Mater Chem B 2024; 12:7946-7958. [PMID: 39041314 DOI: 10.1039/d4tb00360h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Articular cartilage defects can lead to pain and even disability in patients and have significant socioeconomic loss. Repairing articular cartilage defects remains a long-term challenge in medicine owing to the limited ability of cartilage to regenerate. At present, the treatment methods adopted in clinical practice have many limitations, thereby necessitating the rapid development of biomaterials. Among them, decellularized biomaterials have been particularly prominent, with numerous breakthroughs in research progress and translational applications. Although many studies show that decellularized cartilage biomaterials promote tissue regeneration, any differences in cellular morphology, dynamics, and functionality among various biomaterials upon comparison have not been reported. In this study, we prepared cartilage-derived extracellular matrix (cdECM) biomaterials with different bioactive contents and various physical properties to compare their effects on the morphology, dynamics and functionality of chondrocytes. This cellular multimodal analysis of the characteristics of cdECM biomaterials provided a theoretical basis for understanding the interactions between biomaterials and cells, thus laying an experimental foundation for the translation and application of decellularized cartilage biomaterials in the treatment of cartilage defects.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhao Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Chi Su
- Deyang Hospital of Integrated Traditional Chinese and Western Medicine, Sichuan, 618000, China
| | - Jianyang Shan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xiang Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
7
|
Kasula V, Padala V, Gupta N, Doyle D, Bagheri K, Anastasio A, Adams SB. The Use of Extracellular Vesicles in Achilles Tendon Repair: A Systematic Review. Biomedicines 2024; 12:942. [PMID: 38790904 PMCID: PMC11117955 DOI: 10.3390/biomedicines12050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Achilles tendon (AT) pathologies are common musculoskeletal conditions that can significantly impair function. Despite various traditional treatments, recovery is often slow and may not restore full functionality. The use of extracellular vesicles (EVs) has emerged as a promising therapeutic option due to their role in cell signaling and tissue regeneration. This systematic review aims to consolidate current in vivo animal study findings on the therapeutic effects of EVs on AT injuries. An extensive literature search was conducted using the PubMed, Scopus, and Embase databases for in vivo animal studies examining the effects of EVs on AT pathologies. The extracted variables included but were not limited to the study design, type of EVs used, administration methods, efficacy of treatment, and proposed therapeutic mechanisms. After screening, 18 studies comprising 800 subjects were included. All but one study reported that EVs augmented wound healing processes in the AT. The most proposed mechanisms through which this occurred were gene regulation of the extracellular matrix (ECM), the enhancement of macrophage polarization, and the delivery of therapeutic microRNAs to the injury site. Further research is warranted to not only explore the therapeutic potential of EVs in the context of AT pathologies, but also to establish protocols for their clinical application.
Collapse
Affiliation(s)
- Varun Kasula
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Vikram Padala
- Department of Orthopedic Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nithin Gupta
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - David Doyle
- Department of Orthopedic Surgery, Central Michigan University College of Medicine, Saginaw, MI 48602, USA
| | - Kian Bagheri
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Albert Anastasio
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Samuel Bruce Adams
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
8
|
Zhang S, Zhang X, Gao H, Zhang X, Sun L, Huang Y, Zhang J, Ding B. Cell Membrane-Coated Biomimetic Nanoparticles in Cancer Treatment. Pharmaceutics 2024; 16:531. [PMID: 38675192 PMCID: PMC11055162 DOI: 10.3390/pharmaceutics16040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Nanoparticle-based drug delivery systems hold promise for cancer treatment by enhancing the solubility and stability of anti-tumor drugs. Nonetheless, the challenges of inadequate targeting and limited biocompatibility persist. In recent years, cell membrane nano-biomimetic drug delivery systems have emerged as a focal point of research and development, due to their exceptional traits, including precise targeting, low toxicity, and good biocompatibility. This review outlines the categorization and advantages of cell membrane bionic nano-delivery systems, provides an introduction to preparation methods, and assesses their applications in cancer treatment, including chemotherapy, gene therapy, immunotherapy, photodynamic therapy, photothermal therapy, and combination therapy. Notably, the review delves into the challenges in the application of various cell membrane bionic nano-delivery systems and identifies opportunities for future advancement. Embracing cell membrane-coated biomimetic nanoparticles presents a novel and unparalleled avenue for personalized tumor therapy.
Collapse
Affiliation(s)
- Shu Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 214122, China;
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Xiaojuan Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Huan Gao
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Xiaoqin Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Lidan Sun
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Yueyan Huang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Jie Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| |
Collapse
|
9
|
Song W, Ma Z, Wang X, Wang Y, Wu D, Wang C, He D, Kong L, Yu W, Li JJ, Li H, He Y. Macroporous Granular Hydrogels Functionalized with Aligned Architecture and Small Extracellular Vesicles Stimulate Osteoporotic Tendon-To-Bone Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304090. [PMID: 37867219 PMCID: PMC10700691 DOI: 10.1002/advs.202304090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Osteoporotic tendon-to-bone healing (TBH) after rotator cuff repair (RCR) is a significant orthopedic challenge. Considering the aligned architecture of the tendon, inflammatory microenvironment at the injury site, and the need for endogenous cell/tissue infiltration, there is an imminent need for an ideal scaffold to promote TBH that has aligned architecture, ability to modulate inflammation, and macroporous structure. Herein, a novel macroporous hydrogel comprising sodium alginate/hyaluronic acid/small extracellular vesicles from adipose-derived stem cells (sEVs) (MHA-sEVs) with aligned architecture and immunomodulatory ability is fabricated. When implanted subcutaneously, MHA-sEVs significantly improve cell infiltration and tissue integration through its macroporous structure. When applied to the osteoporotic RCR model, MHA-sEVs promote TBH by improving tendon repair through macroporous aligned architecture while enhancing bone regeneration by modulating inflammation. Notably, the biomechanical strength of MHA-sEVs is approximately two times higher than the control group, indicating great potential in reducing postoperative retear rates. Further cell-hydrogel interaction studies reveal that the alignment of microfiber gels in MHA-sEVs induces tenogenic differentiation of tendon-derived stem cells, while sEVs improve mitochondrial dysfunction in M1 macrophages (Mφ) and inhibit Mφ polarization toward M1 via nuclear factor-kappaB (NF-κb) signaling pathway. Taken together, MHA-sEVs provide a promising strategy for future clinical application in promoting osteoporotic TBH.
Collapse
Affiliation(s)
- Wei Song
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Zhijie Ma
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xin Wang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yifei Wang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Di Wu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Chongyang Wang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Dan He
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Lingzhi Kong
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Weilin Yu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Jiao Jiao Li
- School of Biomedical EngineeringFaculty of Engineering and ITUniversity of Technology SydneySydneyNew South Wales2007Australia
| | - Haiyan Li
- Chemical and Environmental Engineering DepartmentSchool of EngineeringSTEM CollegeRMIT University124 La Trobe St.MelbourneVictoria3000Australia
| | - Yaohua He
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
- Department of Orthopedic SurgeryJinshan District Central Hospital affiliated to Shanghai University of Medicine & Health SciencesJinshan Branch of Shanghai Sixth People's HospitalShanghai201500China
| |
Collapse
|
10
|
Wang Y, luo M, Li T, Xie C, Li S, Lei B. Multi-layer-structured bioactive glass nanopowder for multistage-stimulated hemostasis and wound repair. Bioact Mater 2023; 25:319-332. [PMID: 36844363 PMCID: PMC9946820 DOI: 10.1016/j.bioactmat.2023.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/13/2023] Open
Abstract
Current treatments for full-thickness skin injuries are still unsatisfactory due to the lack of hierarchically stimulated dressings that can integrate the rapid hemostasis, inflammation regulation, and skin tissue remodeling into the one system instead of single-stage boosting. In this work, a multilayer-structured bioactive glass nanopowder (BGN@PTE) is developed by coating the poly-tannic acid and ε-polylysine onto the BGN via facile layer-by-layer assembly as an integrative and multilevel dressing for the sequential management of wounds. In comparison to BGN and poly-tannic acid coated BGN, BGN@PTE exhibited the better hemostatic performance because of its multiple dependent approaches to induce the platelet adhesion/activation, red blood cells (RBCs) aggregation and fibrin network formation. Simultaneously, the bioactive ions from BGN facilitate the regulation of the inflammatory response while the poly-tannic acid and antibacterial ε-polylysine prevent the wound infection, promoting the wound healing during the inflammatory stage. In addition, BGN@PTE can serve as a reactive oxygen species scavenger, alleviate the oxidation stress in wound injury, induce the cell migration and angiogenesis, and promote the proliferation stage of wound repair. Therefore, BGN@PTE demonstrated the significantly higher wound repair capacity than the commercial bioglass dressing Dermlin™. This multifunctional BGN@PTE is a potentially valuable dressing for full-thickness wound management and may be expected to extend to the other wounds therapy.
Collapse
Affiliation(s)
- Yidan Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Meng luo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Ting Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Chenxi Xie
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Sihua Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710054, China
- Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
11
|
Zhu Y, Wang Y, Xia G, Zhang X, Deng S, Zhao X, Xu Y, Chang G, Tao Y, Li M, Li H, Huang X, Chan HF. Oral Delivery of Bioactive Glass-Loaded Core-Shell Hydrogel Microspheres for Effective Treatment of Inflammatory Bowel Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207418. [PMID: 37092589 PMCID: PMC10288274 DOI: 10.1002/advs.202207418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Resolving inflammation and promoting intestinal tissue regeneration are critical for inflammatory bowel disease (IBD) treatment. Bioactive glass (BG) is a clinically approved bone graft material and has been shown to modulate inflammatory response, but it is unknown whether BG can be applied to treat IBD. Here, it is reported that BG attenuates pro-inflammatory response of lipopolysaccharide (LPS)-stimulated macrophages and hence reduces inflammatory damage to intestinal organoids in vitro. In addition, zein/sodium alginate-based core-shell microspheres (Zein/SA/BG) are developed for oral delivery of BG, which helps prevent premature dissolution of BG in the stomach. The results show that Zein/SA/BG protects BG from a gastric-simulated environment while dissolved in an intestinal-simulated environment. When administered to acute and chronic colitis mice model, Zein/SA/BG significantly reduces intestinal inflammation, promotes epithelial tissue regeneration, and partially restores microbiota homeostasis. These findings are the first to reveal the therapeutic efficacy of BG against IBD, which may provide a new therapeutic approach at low cost for effective IBD treatment.
Collapse
Affiliation(s)
- Yanlun Zhu
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Yiwei Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RdShanghai200233China
| | - Guanggai Xia
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RdShanghai200233China
| | - Xuerao Zhang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Shuai Deng
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Cell Therapy and Cell Drugs of Luzhou Key LaboratorySchool of PharmacySouthwest Medical UniversityLuzhouSichuan646000China
| | - Xiaoyu Zhao
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Guozhu Chang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Haiyan Li
- Chemical and Environmental EngineeringSchool of EngineeringRMIT University124 La Trobe StMelbourneVIC3000Australia
| | - Xinyu Huang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RdShanghai200233China
| | - Hon Fai Chan
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics999077Hong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SAR999077China
| |
Collapse
|
12
|
Zhang Y, Sheng R, Chen J, Wang H, Zhu Y, Cao Z, Zhao X, Wang Z, Liu C, Chen Z, Zhang P, Kuang B, Zheng H, Shen C, Yao Q, Zhang W. Silk Fibroin and Sericin Differentially Potentiate the Paracrine and Regenerative Functions of Stem Cells Through Multiomics Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210517. [PMID: 36915982 DOI: 10.1002/adma.202210517] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/08/2023] [Indexed: 05/19/2023]
Abstract
Silk fibroin (SF) and sericin (SS), the two major proteins of silk, are attractive biomaterials with great potential in tissue engineering and regenerative medicine. However, their biochemical interactions with stem cells remain unclear. In this study, multiomics are employed to obtain a global view of the cellular processes and pathways of mesenchymal stem cells (MSCs) triggered by SF and SS to discern cell-biomaterial interactions at an in-depth, high-throughput molecular level. Integrated RNA sequencing and proteomic analysis confirm that SF and SS initiate widespread but distinct cellular responses and potentiate the paracrine functions of MSCs that regulate extracellular matrix deposition, angiogenesis, and immunomodulation through differentially activating the integrin/PI3K/Akt and glycolysis signaling pathways. These paracrine signals of MSCs stimulated by SF and SS effectively improve skin regeneration by regulating the behavior of multiple resident cells (fibroblasts, endothelial cells, and macrophages) in the skin wound microenvironment. Compared to SS, SF exhibits better immunomodulatory effects in vitro and in vivo, indicating its greater potential as a carrier material of MSCs for skin regeneration. This study provides comprehensive and reliable insights into the cellular interactions with SF and SS, enabling the future development of silk-based therapeutics for tissue engineering and stem cell therapy.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Renwang Sheng
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yue Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhicheng Cao
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Xinyi Zhao
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhimei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Chuanquan Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhixuan Chen
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Po Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Baian Kuang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Haotian Zheng
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chuanlai Shen
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qingqiang Yao
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
13
|
Cell–scaffold interactions in tissue engineering for oral and craniofacial reconstruction. Bioact Mater 2023; 23:16-44. [DOI: 10.1016/j.bioactmat.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
|
14
|
Yu B, Li H, Zhang Z, Chen P, Wang L, Fan X, Ning X, Pan Y, Zhou F, Hu X, Chang J, Ou C. Extracellular vesicles engineering by silicates-activated endothelial progenitor cells for myocardial infarction treatment in male mice. Nat Commun 2023; 14:2094. [PMID: 37055411 PMCID: PMC10102163 DOI: 10.1038/s41467-023-37832-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Extracellular vesicles have shown good potential in disease treatments including ischemic injury such as myocardial infarction. However, the efficient production of highly active extracellular vesicles is one of the critical limitations for their clinical applications. Here, we demonstrate a biomaterial-based approach to prepare high amounts of extracellular vesicles with high bioactivity from endothelial progenitor cells (EPCs) by stimulation with silicate ions derived from bioactive silicate ceramics. We further show that hydrogel microspheres containing engineered extracellular vesicles are highly effective in the treatment of myocardial infarction in male mice by significantly enhancing angiogenesis. This therapeutic effect is attributed to significantly enhanced revascularization by the high content of miR-126a-3p and angiogenic factors such as VEGF and SDF-1, CXCR4 and eNOS in engineered extracellular vesicles, which not only activate endothelial cells but also recruit EPCs from the circulatory system.
Collapse
Affiliation(s)
- Bin Yu
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Hekai Li
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Zhaowenbin Zhang
- Wenzhou Institute, Zhejiang Engineering Research Center for Tissue Repair Materials, University of Chinese Academy of Sciences, 325000, Wenzhou, China
- State Key Laboratory of High-Performance Ceramics and Super fine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, People's Republic of China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Peier Chen
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Ling Wang
- School of Biomedical Engineering, Biomaterials Research Center, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Xianglin Fan
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Xiaodong Ning
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China
| | - Yuxuan Pan
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China
| | - Feiran Zhou
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Xinyi Hu
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Jiang Chang
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China.
- Wenzhou Institute, Zhejiang Engineering Research Center for Tissue Repair Materials, University of Chinese Academy of Sciences, 325000, Wenzhou, China.
- State Key Laboratory of High-Performance Ceramics and Super fine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, People's Republic of China.
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| | - Caiwen Ou
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China.
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
15
|
Xu H, Zhu Y, Hsiao AWT, Xu J, Tong W, Chang L, Zhang X, Chen YF, Li J, Chen W, Zhang Y, Chan HF, Lee CW. Bioactive glass-elicited stem cell-derived extracellular vesicles regulate M2 macrophage polarization and angiogenesis to improve tendon regeneration and functional recovery. Biomaterials 2023; 294:121998. [PMID: 36641814 DOI: 10.1016/j.biomaterials.2023.121998] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Effective countermeasures for tendon injury remains unsatisfactory. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs)-based therapy via regulation of Mφ-mediated angiogenesis has emerged as a promising strategy for tissue regeneration. Still, approaches to tailor the functions of EVs to treat tendon injuries have been limited. We reported a novel strategy by applying MSC-EVs boosted with bioactive glasses (BG). BG-elicited EVs (EVB) showed up-regulation of medicinal miRNAs, including miR-199b-3p and miR-125a-5p, which play a pivotal role in M2 Mφ-mediated angiogenesis. EVB accelerated angiogenesis via the reprogrammed anti-inflammatory M2 Mφs compared with naïve MSC-EVs (EVN). In rodent Achilles tendon rupture model, EVB local administration activated anti-inflammatory responses via M2 polarization and led to a spatial correlation between M2 Mφs and newly formed blood vessels. Our results showed that EVB outperformed EVN in promoting tenogenesis and in reducing detrimental morphological changes without causing heterotopic ossification. Biomechanical test revealed that EVB significantly improved ultimate load, stiffness, and tensile modulus of the repaired tendon, along with a positive correlation between M2/M1 ratio and biomechanical properties. On the basis of the boosted nature to reprogram regenerative microenvironment, EVB holds considerable potential to be developed as a next-generation therapeutic modality for enhancing functional regeneration to achieve satisfying tendon regeneration.
Collapse
Affiliation(s)
- Hongtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Allen Wei-Ting Hsiao
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xuerao Zhang
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yi-Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Jie Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Wei Chen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yingze Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, China.
| | - Chien-Wei Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
16
|
Zhou X, Feng P, Liu H, Song B. Bioinspired aligned wrinkling dressings for monitoring joint motion and promoting joint wound healing. Biomater Sci 2022; 10:5146-5157. [PMID: 35822515 DOI: 10.1039/d2bm00602b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Joint skin wounds are difficult to treat because of the frequent large motion of these active wounds; thus, dressings capable of simultaneous real-time monitoring of joint motion and promoting joint wound healing are highly needed. Herein, inspired by the aligned wrinkling microstructure and sensing functions of normal joint skins, we combine the electrospinning technique with a water-induced self-assembly approach to prepare bioinspired conductive dressings with aligned wrinkles for achieving the above-mentioned bifunctions. The results indicate that both the wavelength and height of the bioinspired aligned wrinkles can be facilely tuned by adjusting the thickness ratio of the two layers and the loading amount of conductive microparticles. Owing to the unique aligned wrinkling structure and good conductivity, the bioinspired dressing can monitor the donor student's diverse joint motions. Interestingly, the dressing can also accurately monitor different types of mouse neck motion, including up/down and left/right movements. The in vivo wound repairing results confirm that the bioinspired dressing can accelerate the healing of active wounds on the mouse neck by promoting collagen deposition, hair follicle regeneration, and epithelialization. The bioinspired dressing with the integration of real-time motion monitoring features and wound repairing functions will open a new avenue to improve the management of joint wounds.
Collapse
Affiliation(s)
- Xiaohui Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.
| | - Pingping Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.
| | - Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China.
| | - Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.
| |
Collapse
|
17
|
Que Y, Zhang Z, Zhang Y, Li X, Chen L, Chen P, Ou C, Yang C, Chang J. Silicate ions as soluble form of bioactive ceramics alleviate aortic aneurysm and dissection. Bioact Mater 2022; 25:716-731. [PMID: 37056259 PMCID: PMC10086764 DOI: 10.1016/j.bioactmat.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Aortic aneurysm and dissection (AAD) are leading causes of death in the elderly. Recent studies have demonstrated that silicate ions can manipulate multiple cells, especially vascular-related cells. We demonstrated in this study that silicate ions as soluble form of bioactive ceramics effectively alleviated aortic aneurysm and dissection in both Ang II and β-BAPN induced AAD models. Different from the single targeting therapeutic drug approaches, the bioactive ceramic derived approach attributes to the effect of bioactive silicate ions on the inhibition of the AAD progression through regulating the local vascular microenvironment of aorta systematically in a multi-functional way. The in vitro experiments revealed that silicate ions did not only alleviate senescence and inflammation of the mouse aortic endothelial cells, enhance M2 polarization of mouse bone marrow-derived macrophages, and reduce apoptosis of mouse aortic smooth muscle cells, but also regulate their interactions. The in vivo studies further confirm that silicate ions could effectively alleviate senescence, inflammation, and cell apoptosis of aortas, accomplished with reduced aortic dilation, collagen deposition, and elastin laminae degradation. This bioactive ceramic derived therapy provides a potential new treatment strategy in attenuating AAD progression.
Collapse
|
18
|
Ana ID, Barlian A, Hidajah AC, Wijaya CH, Notobroto HB, Kencana Wungu TD. Challenges and strategy in treatment with exosomes for cell-free-based tissue engineering in dentistry. Future Sci OA 2021; 7:FSO751. [PMID: 34840808 PMCID: PMC8609983 DOI: 10.2144/fsoa-2021-0050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
In dentistry, problems of craniofacial, osteochondral, periodontal tissue, nerve, pulp or endodontics injuries, and osteoarthritis need regenerative therapy. The use of stem cells in dental tissue engineering pays a lot of increased attention, but there are challenges for its clinical applications. Therefore, cell-free-based tissue engineering using exosomes isolated from stem cells is regarded an alternative approach in regenerative dentistry. However, practical use of exosome is restricted by limited secretion capability of cells. For future regenerative treatment with exosomes, efficient strategies for large-scale clinical applications are being studied, including the use of ceramics-based scaffold to enhance exosome production and secretion which can resolve limited exosome secretory from the cells when compared with the existing methods available. Indeed, more research needs to be done on these strategies going forward.
Collapse
Affiliation(s)
- Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Anggraini Barlian
- School of Life Sciences & Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Atik Choirul Hidajah
- Department of Epidemiology, Biostatistics, Population Studies, & Health Promotion, Faculty of Public Health, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Christofora Hanny Wijaya
- Department of Food Science & Technology, Faculty of Agricultural Engineering & Technology, IPB University, Bogor, 16002, Indonesia
| | - Hari Basuki Notobroto
- Department of Epidemiology, Biostatistics, Population Studies, & Health Promotion, Faculty of Public Health, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Triati Dewi Kencana Wungu
- Department of Physics, Faculty of Mathematics & Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
19
|
Li H, Wang W, Chang J. Calcium silicate enhances immunosuppressive function of MSCs to indirectly modulate the polarization of macrophages. Regen Biomater 2021; 8:rbab056. [PMID: 34804588 PMCID: PMC8597971 DOI: 10.1093/rb/rbab056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Bioactive silicate ceramics (BSCs) have been widely reported to be able to induce bone tissue regeneration, but the underlying mechanisms have not been fully elucidated. Previous studies have reported that ionic products of BSCs can promote bone regeneration by directly simulating osteogenic differentiation of mesenchymal stem cells (MSCs) and modulating the polarization of macrophages to create a favorable inflammation microenvironment for initiating bone regeneration cascades. However, the immunomodulatory ability of MSCs also plays a critical role in bone regeneration but the effects of BSCs on the immunomodulatory ability of MSCs have been rarely investigated. This study aims to investigate the effects of ionic products of BSCs on the immunoregulatory ability of MSCs to further understand the mechanism of BSCs enhancing bone regeneration. Results showed that ionic products of calcium silicate (CS), one of the representative BSCs, could enhance the immunosuppressive function of human bone marrow mesenchymal stem cells (HBMSCs) by up-regulating the expression of immunosuppressive factors in HBMSCs via NF-κB pathway. In addition, CS-activated HBMSCs showed stronger stimulatory effects on M2 polarization of macrophages than CS ionic products. Furthermore, the macrophages educated by CS-activated HBMSCs showed stronger stimulatory effects on the early osteogenic differentiation of HBMSCs than the ones regulated by CS ionic products. These results not only provide further understanding on the mechanism of BSCs enhancing bone regeneration but also suggest that it is critical to consider the effects of biomaterials on the immunomodulatory function of the tissue forming cells when the immunomodulatory function of biomaterials is investigated.
Collapse
Affiliation(s)
- Haiyan Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.,Chemical and Environment Engineering Department, School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, VIC 3001, Australia
| | - Wenrui Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Jiang Chang
- State Key Laboratory of Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| |
Collapse
|
20
|
Kim H, Shin YM, Chung S, Kim D, Park DB, Baek S, Park J, Kim SY, Kim D, Yi SW, Lee S, Lee JB, Ko J, Im G, Kang M, Sung H. Cell-Membrane-Derived Nanoparticles with Notch-1 Suppressor Delivery Promote Hypoxic Cell-Cell Packing and Inhibit Angiogenesis Acting as a Two-Edged Sword. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101558. [PMID: 34431568 PMCID: PMC11468545 DOI: 10.1002/adma.202101558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Cell-cell interactions regulate intracellular signaling via reciprocal contacts of cell membranes in tissue regeneration and cancer growth, indicating a critical need of membrane-derived tools in studying these processes. Hence, cell-membrane-derived nanoparticles (CMNPs) are produced using tonsil-derived mesenchymal stem cells (TMSCs) from children owing to their short doubling time. As target cell types, laryngeal cancer cells are compared to bone-marrow-derived MSCs (BMSCs) because of their cartilage damaging and chondrogenic characteristics, respectively. Treating spheroids of these cell types with CMNPs exacerbates interspheroid hypoxia with robust maintenance of the cell-cell interaction signature for 7 days. Both cell types prefer a hypoxic environment, as opposed to blood vessel formation that is absent in cartilage but is required for cancer growth. Hence, angiogenesis is inhibited by displaying the Notch-1 aptamer on CMNPs. Consequently, laryngeal cancer growth is suppressed efficiently in contrast to improved chondroprotection observed in a series of cell and animal experiments using a xenograft mouse model of laryngeal cancer. Altogether, CMNPs execute a two-edged sword function of inducing hypoxic cell-cell packing, followed by suppressing angiogenesis to promote laryngeal cancer death and chondrogenesis simultaneously. This study presents a previously unexplored therapeutic strategy for anti-cancer and chondroprotective treatment using CMNPs.
Collapse
Affiliation(s)
- Hye‐Seon Kim
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Young Min Shin
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Seyong Chung
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Dahee Kim
- Department of OtorhinolaryngologyYonsei University College of MedicineSeoul03722Republic of Korea
| | - Dan Bi Park
- TMD LAB Co., Ltd6th Floor, 31, Gwangnaru‐ro 8‐gilSeongdong‐guSeoul04799Republic of Korea
| | - Sewoom Baek
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Jeongeun Park
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Si Yeong Kim
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Dae‐Hyun Kim
- Department of Veterinary SurgeryCollege of Veterinary MedicineChungnam National University99, Daehak‐roYuseong‐guDaejeon34134Republic of Korea
| | - Se Won Yi
- TMD LAB Co., Ltd6th Floor, 31, Gwangnaru‐ro 8‐gilSeongdong‐guSeoul04799Republic of Korea
| | - Songhyun Lee
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Jung Bok Lee
- Department of Biological ScienceSookmyung Women's UniversityCheongpa‐ro 47‐gil 100, Yongsan‐guSeoul04310Republic of Korea
| | - Ji‐Yun Ko
- Department of Veterinary SurgeryCollege of Veterinary MedicineChungnam National University99, Daehak‐roYuseong‐guDaejeon34134Republic of Korea
- Research Institute of Convergence Life ScienceDongguk UniversityGoyang10326Republic of Korea
| | - Gun‐Il Im
- Department of OrthopedicsDongguk University Ilsan HospitalGoyang10326Republic of Korea
| | - Mi‐Lan Kang
- TMD LAB Co., Ltd6th Floor, 31, Gwangnaru‐ro 8‐gilSeongdong‐guSeoul04799Republic of Korea
| | - Hak‐Joon Sung
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| |
Collapse
|
21
|
Fibers by Electrospinning and Their Emerging Applications in Bone Tissue Engineering. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone tissue engineering (BTE) is an optimized approach for bone regeneration to overcome the disadvantages of lacking donors. Biocompatibility, biodegradability, simulation of extracellular matrix (ECM), and excellent mechanical properties are essential characteristics of BTE scaffold, sometimes including drug loading capacity. Electrospinning is a simple technique to prepare fibrous scaffolds because of its efficiency, adaptability, and flexible preparation of electrospinning solution. Recent studies about electrospinning in BTE are summarized in this review. First, we summarized various types of polymers used in electrospinning and methods of electrospinning in recent work. Then, we divided them into three parts according to their main role in BTE, (1) ECM simulation, (2) mechanical support, and (3) drug delivery system.
Collapse
|
22
|
Farzaneh S, Hosseinzadeh S, Samanipour R, Hatamie S, Ranjbari J, Khojasteh A. Fabrication and characterization of cobalt ferrite magnetic hydrogel combined with static magnetic field as a potential bio-composite for bone tissue engineering. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Li Y, Qin Z, Zhou L, Shahzad KA, Xia D. Collective influence of substrate chemistry with physiological fluid shear stress on human umbilical vein endothelial cells. Cell Biol Int 2021; 45:1926-1934. [PMID: 34009727 DOI: 10.1002/cbin.11632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/29/2021] [Accepted: 05/16/2021] [Indexed: 11/06/2022]
Abstract
In the treatment of cardiovascular diseases, vascular scaffold materials play an extremely important role. The appropriate substrate chemistries and 15 dynes/cm2 physiological fluid shear stress (FSS) are both required to ensure normal physiological activity of human umbilical vein endothelial cells (HUVECs). The present study reported the collective influence of substrate chemistries and FSS on HUVECs in the sense of its biological functions. The CH3 , NH2 , and OH functional groups were adopted to offer a variety of substrate chemistries on glass slides by the technology of self-assembled monolayers, whereas FSS was generated by a parallel-plate fluid flow system. Substrate chemistries on its own by no means had noticeable effects on eNOS, ATP, NO, and PGI2 expressions, while FSS stimuli enhanced their production. While substrate chemistries, as well as FSS, were both exerted, the releases of ATP, NO, and PGI2 were dependent on substrate chemistries. Study of F-actin organization and focal adhesions (FAs) formation of HUVECs before FSS exposure proves that F-action organization and FAs formation followed similar chemistry-dependence. Hereby proposed a feasible mechanism, that is, the F-actin organization and FAs formation of HUVECs are controlled by substrate chemistries, further advancing the modulation of FSS-triggered responses of HUVECs.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Taizhou Polytechnic College, Taizhou, China.,Bone Tissue Engineering Research Center of Taizhou, Taizhou, China
| | - Zhongjie Qin
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of South-west Medical University, Luzhou, China.,Orofacial Reconstruction and Regeneration, Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Lin Zhou
- School of Pharmacy, Taizhou Polytechnic College, Taizhou, China.,Bone Tissue Engineering Research Center of Taizhou, Taizhou, China
| | - Khawar Ali Shahzad
- School of Pharmacy, Taizhou Polytechnic College, Taizhou, China.,Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Delin Xia
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of South-west Medical University, Luzhou, China.,Orofacial Reconstruction and Regeneration, Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,Plastic and Maxillofacial Surgery Department, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Muzzio N, Moya S, Romero G. Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:792. [PMID: 34073311 PMCID: PMC8230126 DOI: 10.3390/pharmaceutics13060792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing demand for organ replacements in a growing world with an aging population as well as the loss of tissues and organs due to congenital defects, trauma and diseases has resulted in rapidly evolving new approaches for tissue engineering and regenerative medicine (TERM). The extracellular matrix (ECM) is a crucial component in tissues and organs that surrounds and acts as a physical environment for cells. Thus, ECM has become a model guide for the design and fabrication of scaffolds and biomaterials in TERM. However, the fabrication of a tissue/organ replacement or its regeneration is a very complex process and often requires the combination of several strategies such as the development of scaffolds with multiple functionalities and the simultaneous delivery of growth factors, biochemical signals, cells, genes, immunomodulatory agents, and external stimuli. Although the development of multifunctional scaffolds and biomaterials is one of the most studied approaches for TERM, all these strategies can be combined among them to develop novel synergistic approaches for tissue regeneration. In this review we discuss recent advances in which multifunctional scaffolds alone or combined with other strategies have been employed for TERM purposes.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| |
Collapse
|
25
|
Wu Z, He D, Li H. Bioglass enhances the production of exosomes and improves their capability of promoting vascularization. Bioact Mater 2021; 6:823-835. [PMID: 33024902 PMCID: PMC7530219 DOI: 10.1016/j.bioactmat.2020.09.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, exosomes have been extensively applied in tissue regeneration. However, their practical applications are severely restricted by the limited exosome secretion capability of cells. Therefore, developing strategies to enhance the production of exosomes and improve their biological function attracts great interest. Studies have shown that biomaterials can significantly enhance the paracrine effects of cells and exosomes are the main signal carriers of intercellular paracrine communication, thus biomaterials are considered to affect the exosome secretion of cells and their biological function. In this study, a widely recognized biomaterial, 45S5 Bioglass® (BG), is used to create a mild and cell-friendly microenvironment for mesenchymal stem cells (MSCs) with its ion products. Results showed that BG ion products can significantly improve exosome production of MSCs by upregulating the expression of neutral sphingomyelinase-2 (nSMase2) and Rab27a which enhanced the nSMases and Rab GTPases pathways, respectively. Besides, microRNA analysis indicates that BG ion products can modulate the cargoes of MSCs-derived exosomes by decreasing microRNA-342-5p level while increasing microRNA-1290 level. Subsequently, the function of exosomes is modified as their capabilities of promoting the vascularization of endothelial cells and facilitating the intradermal angiogenesis are enhanced. Taken together, BG ion products are confirmed to enhance exosome production and simultaneously improve exosome function, suggesting a feasible approach to improve the practical application of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Zhi Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Dan He
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Haiyan Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| |
Collapse
|
26
|
The effects of alignment and diameter of electrospun fibers on the cellular behaviors and osteogenesis of BMSCs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111787. [PMID: 33545913 DOI: 10.1016/j.msec.2020.111787] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Electrospun fiber scaffolds, due to their mimicry of bone extracellular matrix (ECM), have become an important biomaterial widely applied in bone tissue engineering in recent years. While topographic cues of electrospun membranes such as alignment and diameter played vital roles in determining cellular behaviors. Yet few researches about the effects of these two significant parameters on osteogenesis have been reported. Thus, the present work explored the influence of aligned and random poly (L-lactic acid) (PLLA) fiber matrices with diameters of nanoscale (0.6 μm) and microscale (1.2 μm), respectively, on cellular responses of bone marrow mesenchymal stem cells (BMSCs), such as cell adhesion, migration, proliferation and osteogenesis. Our results revealed that aligned nanofibers (AN) could affect cell morphology and promote the migration of BMSCs after 24 h of cell culturing. Besides, AN group was observed to possess excellent biocompatibility and have significantly improved cell growth comparing with random nanofibers. More importantly, in vitro osteogenesis researches including ALP and Alizarin Red S staining, qRT-PCR and immunofluorescence staining demonstrated that BMSCs culturing on AN group exhibited higher osteogenic induction proficiency than that on aligned microfibers (AM) and random fiber substrates (RN and RM). Accordingly, aligned nanofiber scaffolds have greater application potential in bone tissue engineering.
Collapse
|
27
|
Yan L, Li H, Xia W. Bioglass could increase cell membrane fluidity with ion products to develop its bioactivity. Cell Prolif 2020; 53:e12906. [PMID: 33043500 PMCID: PMC7653244 DOI: 10.1111/cpr.12906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Silicate bioactive glass (BG) has been widely demonstrated to stimulate both of the hard and soft tissue regeneration, in which ion products released from BG play important roles. However, the mechanism by which ion products act on cells on cells is unclear. MATERIALS AND METHODS Human umbilical vein endothelial cells and human bone marrow stromal cells were used in this study. Fluorescence recovery after photobleaching and generalized polarization was used to characterize changes in cell membrane fluidity. Migration, differentiation and apoptosis experiments were carried out. RNA and protein chip were detected. The signal cascade is simulated to evaluate the effect of increased cell membrane fluidity on signal transduction. RESULTS We have demonstrated that ion products released from BG could effectively enhance cell membrane fluidity in a direct and physical way, and Si ions may play a major role. Bioactivities of BG ion products on cells, such as migration and differentiation, were regulated by membrane fluidity. Furthermore, we have proved that BG ion products could promote apoptosis of injured cells based on our conclusion that BG ion products increased membrane fluidity. CONCLUSIONS This study proved that BG ion products could develop its bioactivity on cells by directly enhancing cell membrane fluidity and subsequently affected cell behaviours, which may provide an explanation for the general bioactivities of silicate material.
Collapse
Affiliation(s)
- Longxin Yan
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Micropatterning Decellularized ECM as a Bioactive Surface to Guide Cell Alignment, Proliferation, and Migration. Bioengineering (Basel) 2020; 7:bioengineering7030102. [PMID: 32878055 PMCID: PMC7552701 DOI: 10.3390/bioengineering7030102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Bioactive surfaces and materials have displayed great potential in a variety of tissue engineering applications but often struggle to completely emulate complex bodily systems. The extracellular matrix (ECM) is a crucial, bioactive component in all tissues and has recently been identified as a potential solution to be utilized in combination with biomaterials. In tissue engineering, the ECM can be utilized in a variety of applications by employing the biochemical and biomechanical cues that are crucial to regenerative processes. However, viable solutions for maintaining the dimensionality, spatial orientation, and protein composition of a naturally cell-secreted ECM remain challenging in tissue engineering. Therefore, this work used soft lithography to create micropatterned polydimethylsiloxane (PDMS) substrates of a three-dimensional nature to control cell adhesion and alignment. Cells aligned on the micropatterned PDMS, secreted and assembled an ECM, and were decellularized to produce an aligned matrix biomaterial. The cells seeded onto the decellularized, patterned ECM showed a high degree of alignment and migration along the patterns compared to controls. This work begins to lay the groundwork for elucidating the immense potential of a natural, cell-secreted ECM for directing cell function and offers further guidance for the incorporation of natural, bioactive components for emerging tissue engineering technologies.
Collapse
|
29
|
Ma Z, Song W, He Y, Li H. Multilayer Injectable Hydrogel System Sequentially Delivers Bioactive Substances for Each Wound Healing Stage. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29787-29806. [PMID: 32515577 DOI: 10.1021/acsami.0c06360] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wound healing is a dynamic and complex process that contains several sequential phases. However, most of the current drug delivery systems were designed to treat only one certain phase of wound repair, ignoring the fact that every stage plays critical roles in the wound healing process and those critical stages coordinately work to ensure optimal tissue regeneration. Therefore, a delivery system that can precisely meet the requirements of each wound healing stage is desired to enhance tissue regeneration. In this study, an injectable sodium alginate/bioglass (SA/BG) composite hydrogel was used to carry SA microparticles containing a conditioned medium (CM) of cells (SACM). Inside the SACM microparticles, poly(lactic-co-glycolic acid) (PLGA) microspheres containing pirfenidone (PFD) were encapsulated (PLGAPFD). This multilayer injectable hydrogel system (SA/BG-SACM-PLGAPFD) was designed to sequentially deliver bioactive molecules for meeting the bioactivity requirement and timeline of each wound healing stage. First, SA/BG hydrogels could rapidly release BG ionic products in the first 1-3 days to regulate the inflammatory response of the host and initiate the subsequent tissue regeneration. Then, SACM hydrogel microparticles could release CM of RAW 264.7 cells stimulated with BG ionic products in 2-7 days to facilitate the formation of the vascularized granulation tissue. Finally, PLGAPFD microspheres released PFD in 8-20 days to prevent the fibrosis and scar formation in the regenerated skin. Thus, this SA/BG-SACM-PLGAPFD delivery system could restrain host inflammation, accelerate wound healing, and inhibit the fibrosis formation in a diabetic mouse skin damage model, enhancing skin regeneration. As the bioactive components in each layer of the system can be adjusted according to the requirements of different tissue regeneration, this three-layered injectable biomaterial system has a wide application potential in the regenerative medicine field.
Collapse
Affiliation(s)
- Zhijie Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Wei Song
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Orthopedics, Shanghai Sixth People's Hospital, Jinshan Branch, 147 Jiankang Road, Shanghai 201599, China
| | - Yaohua He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Orthopedics, Shanghai Sixth People's Hospital, Jinshan Branch, 147 Jiankang Road, Shanghai 201599, China
| | - Haiyan Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
30
|
Stephens CJ, Spector JA, Butcher JT. Biofabrication of thick vascularized neo-pedicle flaps for reconstructive surgery. Transl Res 2019; 211:84-122. [PMID: 31170376 PMCID: PMC6702068 DOI: 10.1016/j.trsl.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023]
Abstract
Wound chronicity due to intrinsic and extrinsic factors perturbs adequate lesion closure and reestablishment of the protective skin barrier. Immediate and proper care of chronic wounds is necessary for a swift recovery and a reduction of patient vulnerability to infection. Advanced therapies supplemented with standard wound care procedures have been clinically implemented to restore aberrant tissue; however, these treatments are ineffective if local vasculature is too compromised to support minimally-invasive strategies. Autologous "flaps", which are tissues equipped with their own hierarchical vascular supply, can be harvested from one region of the patient and transplanted to the wound where it is reperfused upon microsurgical anastomosis to appropriate recipient vessels. Despite the success of autologous flap transfer, these procedures are extremely invasive, incur obligatory donor-site morbidity, and require sufficient donor-tissue availability, microsurgical expertise, and specialized equipment. 3D-bioprinting modalities, such as extrusion-based bioprinting, can be used to address the clinical constraints of autologous flap transfer, primarily addressing donor-site morbidity and tissue availability. This advancement in regenerative medicine allows the biofabrication of heterogeneous tissue structures with high shape fidelity and spatial resolution to generate biomimetic constructs with the anatomically-precise geometries of native tissue to ensure tissue-specific function. Yet, meaningful progress toward this clinical application has been limited by the lack of vascularization required to meet the nutrient and oxygen demands of clinically relevant tissue volumes. Thus, various criteria for the fabrication of functional tissues with hierarchical, patent vasculature must be considered when implementing 3D-bioprinting technologies for deep, chronic wounds.
Collapse
Affiliation(s)
- Chelsea J Stephens
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jason A Spector
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York; Division of Plastic Surgery, Weill Cornell Medical College, New York, New York
| | - Jonathan T Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.
| |
Collapse
|
31
|
Liu Y, Yu Q, Chang J, Wu C. Nanobiomaterials: from 0D to 3D for tumor therapy and tissue regeneration. NANOSCALE 2019; 11:13678-13708. [PMID: 31292580 DOI: 10.1039/c9nr02955a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nanobiomaterials have attracted tremendous attention in the biomedical field. Especially in the past few years, a large number of low dimensional nanobiomaterials, including 0D nanostructures, 1D nanotubes and 2D nanosheets, were employed for tumor therapy due to their optically triggered tumor therapy effects and drug loading capacities. However, these low dimensional nanobiomaterials cannot support cell adhesion and possess poor tissue regeneration ability, thus they are not suitable for application in regenerative medicine. Three dimensional (3D) nanofiber scaffolds have attracted extensive attention in tissue regeneration, including bone, skin, nerve and cardiac tissues, due to their similar extracellular matrix structures. Additionally, many 3D scaffolds displayed bone and cartilage regeneration abilities. Therefore, to obtain materials with both tumor therapy and tissue regeneration abilities, it is meaningful and necessary to develop 3D nanobiomaterials with multifunctions. In this review, we systematically review the research progress of nanobiomaterials with varied dimensional structures including 0D, 1D, 2D and 3D, as well as evolutional functions from single tumor therapy to simultaneous tumor therapy and tissue regeneration. This review may pave the way for developing an interdisciplinary research of nanobiomaterials in combination of tumor therapy and regenerative medicine.
Collapse
Affiliation(s)
- Yaqin Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qingqing Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
32
|
Lehman LFC, de Noronha MS, Diniz IMA, da Costa E Silva RMF, Andrade ÂL, de Sousa Lima LF, de Alcântara CEP, Domingues R, Ferreira AJ, da Silva TA, Mesquita RA. Bioactive glass containing 90% SiO 2 in hard tissue engineering: An in vitro and in vivo characterization study. J Tissue Eng Regen Med 2019; 13:1651-1663. [PMID: 31218837 DOI: 10.1002/term.2919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/07/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023]
Abstract
Bioactive glass has been proved to have many applications in bioengineering due to its bone regenerative properties. In this work, an innovative, highly resorbable bioactive glass containing 90% SiO2 (BG90) to be used as a bone substitute was developed. The BG90 was synthetized by the sol-gel process with the dry step at room temperature. The biomaterial showed in vitro and in vivo bioactivities even with silica content up to 90%. Moreover, the BG90 presented high porosity and surface area due to its homogenously interconnected porous network. In vitro, it was observed to have high cell viability and marked osteoblastic differentiation of rat bone marrow-derived cells when in contact with BG90 ion extracts. The BG90 transplantation into rat tibia defects was analysed at 1, 2, 3, 4, 7, and 10 weeks post-operatively and compared with the defects of negative (no graft) and positive (autogenous bone graft) controls. After 4 weeks of grafting, the BG90 was totally resorbed and induced higher bone formation than did the positive control. Bone morphogenetic protein 2 (BMP-2) expression at the grafting site peaked at 1 week and decreased similarly after 7 weeks for all groups. Only the BG90 group was still exhibiting BMP-2 expression in the last experimental time. Our data demonstrated that the BG90 could be an attractive candidate to provide useful approaches in hard-tissue bioengineering.
Collapse
Affiliation(s)
- Luiz Felipe Cardoso Lehman
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Saturnino de Noronha
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ângela Leão Andrade
- Department of Chemistry, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | | | - Rosana Domingues
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson José Ferreira
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tarcília Aparecida da Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
33
|
Chen T, Cao F, Wu X, Peng W, Zhi W, Weng J, Zhang X, Wang J. Constructing Gene-Enhanced Tissue Engineering for Regeneration and Repair of Osteochondral Defects. ACTA ACUST UNITED AC 2019; 3:e1900004. [PMID: 32648702 DOI: 10.1002/adbi.201900004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/06/2019] [Indexed: 11/07/2022]
Abstract
In situ sustained release of endogenous growth factors from cells is a challenge for repair and regeneration of tissue. Although recombinant adenovirus vectors are an effective delivery system that can prolong the release of growth factors and is very suitable for the therapy of growth factors, these recombinant adenovirus vectors that are widely used at present have low safety and stability in terms of long-term expression. In this study, the above problems are solved by knocking out both E1 and E3 genes at the same time and directly inserting the gene fragments encoding target proteins after the inverted terminal repeats. Finally, the combination of gene therapy with tissue engineering in regeneration and repair of full-thickness defects of osteochondral tissue are applied as an example. The results show that this strategy can achieve complete repair of articular osteochondral defects and recovery of their function, and meanwhile solve the problems of low safety and expression instability of recombinant adenovirus vectors. This method provides a bright prospect for the application of gene enhanced tissue engineering in the regeneration and repair of joint tissue, and also provides a reference for the repair and regeneration of other tissues.
Collapse
Affiliation(s)
- Taijun Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Fei Cao
- Department of Orthopaedics, Chengdu First People's Hospital, Chengdu, 610041, P. R. China
| | - Xin Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wenzhen Peng
- Department of Biochemistry and Molecular Biology, College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Wei Zhi
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xingdong Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- National Engineering Research Center for Biomaterials, Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
34
|
Electrospun Filaments Embedding Bioactive Glass Particles with Ion Release and Enhanced Mineralization. NANOMATERIALS 2019; 9:nano9020182. [PMID: 30717161 PMCID: PMC6410207 DOI: 10.3390/nano9020182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
Abstract
Efforts in tissue engineering aim at creating scaffolds that mimic the physiological environment with its structural, topographical and mechanical properties for restoring the function of damaged tissue. In this study we introduce composite fibres made by a biodegradable poly(lactic acid) (PLLA) matrix embedding bioactive silica-based glass particles (SBA2). Electrospinning is performed to achieve porous PLLA filaments with uniform dispersion of bioactive glass powder. The obtained composite fibres show in aligned arrays significantly increased elastic modulus compared with that of neat polymer fibres during uniaxial tensile stress. Additionally, the SBA2 bioactivity is preserved upon encapsulation as highlighted by the promoted deposition of hydroxycarbonate apatite (HCA) upon immersion in simulated body fluid solutions. HCA formation is sequential to earlier processes of polymer erosion and ion release leading to acidification of the surrounding solution environment. These findings suggest PLLA-SBA2 fibres as a composite, multifunctional system which might be appealing for both bone and soft tissue engineering applications.
Collapse
|
35
|
Jiang Y, Han Y, Wang J, Lv F, Yi Z, Ke Q, Xu H. Space-Oriented Nanofibrous Scaffold with Silicon-Doped Amorphous Calcium Phosphate Nanocoating for Diabetic Wound Healing. ACS APPLIED BIO MATERIALS 2019; 2:787-795. [DOI: 10.1021/acsabm.8b00657] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yuqi Jiang
- College of Chemistry and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - Yiming Han
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Wang
- College of Chemistry and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - Fang Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qinfei Ke
- College of Chemistry and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - He Xu
- College of Chemistry and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| |
Collapse
|
36
|
Li T, Ai F, Shen W, Yang Y, Zhou Y, Deng J, Li C, Ding X, Xin H, Wang X. Microstructural Orientation and Precise Regeneration: A Proof-of-Concept Study on the Sugar-Cane-Derived Implants with Bone-Mimetic Hierarchical Structure. ACS Biomater Sci Eng 2018; 4:4331-4337. [PMID: 33418828 DOI: 10.1021/acsbiomaterials.8b01052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is of great importance to develop a 3D scaffold that matches the bone in aspects of element and structure. In order to achieve this aim, the sugarcane aerogel derived borate glasses scaffolds were developed through in situ bioglass modification. Sol-gel-derived borate glasses of the 30-5B (Si/B ratio) have been prepared to produce 3D borate scaffolds with sugarcane morphologies. As a result, not only the elemental distribution but also the multilevel structure of this Gramineae plant derived implants were remarkably matched with natural bone. The subsequent animal implantation experiment found that the microstructural orientation of the implant had an important impact on the result of bone repair. The relative mechanisms were also discussed for the first time.
Collapse
Affiliation(s)
- Ting Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Fanrong Ai
- School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wanji Shen
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Yu Yang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Yan Zhou
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Jianjian Deng
- Department of Orthopedics Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chen Li
- Department of Orthopedics Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xinwei Ding
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Hongbo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Xiaolei Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| |
Collapse
|
37
|
Kong L, Wu Z, Zhao H, Cui H, Shen J, Chang J, Li H, He Y. Bioactive Injectable Hydrogels Containing Desferrioxamine and Bioglass for Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30103-30114. [PMID: 30113159 DOI: 10.1021/acsami.8b09191] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diabetic wound is hard to heal mainly because of the difficulty in vascularization in the wound area. Accumulating results have shown that desferrioxamine (DFO) can promote secretion of hypoxia inducible factor-1 (HIF-1α), thereby upregulating the expression of angiogenic growth factors and facilitating revascularization. Our preliminary study has demonstrated that Si ions in bioglass (BG) can upregulate vascular endothelial growth factor (VEGF) expression, thus promoting revascularization. It is hypothesized that the combined use of BG and DFO may have a synergistic effect in promoting VEGF expression and revascularization. To prove this, we first determined DFO concentration range that had no apparent cytotoxicity on human umbilical vein endothelial cells (HUVECs). Then, the optimal concentration of DFO promoting tube formation of HUVECs was determined by cell migration and tube formation assays. In addition, we demonstrated that combination use of BG and DFO improved the migration and tube formation of HUVECs as compared with the use of either BG or DFO alone as BG and DFO could synergistically upregulate VEGF expression. Furthermore, a sodium alginate hydrogel containing both BG and DFO was developed, and this hydrogel better facilitated diabetic skin wound healing than the use of either BG or DFO alone as BG and DFO in the hydrogels worked synergistically in promoting HIF-1α and VEGF expression and subsequently vascularization in the wound sites. Therefore, in this study, the synergistic effect in promoting revascularization between BG and DFO was first demonstrated and an injectable hydrogel simultaneously containing BG and DFO was developed for enhancing repair of diabetic chronic skin defects by taking advantages of the synergistic effects of BG and DFO in promoting revascularization. The study opens up a new prospect for the development of skin repair-promoting biomaterials.
Collapse
Affiliation(s)
- Lingzhi Kong
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | | | - Huakun Zhao
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | - Haomin Cui
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | - Ji Shen
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | - Jiang Chang
- State Key Laboratory of Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road , Shanghai 200050 , China
| | | | - Yaohua He
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| |
Collapse
|
38
|
Wu Z, Xu Y, Li H. Synergetic stimulation of nanostructure and chemistry cues on behaviors of fibroblasts and endothelial cells. Colloids Surf B Biointerfaces 2017; 160:500-509. [DOI: 10.1016/j.colsurfb.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/15/2017] [Accepted: 10/01/2017] [Indexed: 12/11/2022]
|
39
|
Bunpetch V, Zhang ZY, Zhang X, Han S, Zongyou P, Wu H, Hong-Wei O. Strategies for MSC expansion and MSC-based microtissue for bone regeneration. Biomaterials 2017; 196:67-79. [PMID: 29602560 DOI: 10.1016/j.biomaterials.2017.11.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained increasing attention as a potential approach for the treatment of bone injuries due to their multi-lineage differentiation potential and also their ability to recognize and home to damaged tissue sites, secreting bioactive factors that can modulate the immune system and enhance tissue repair. However, a wide gap between the number of MSCs obtainable from the donor site and the number required for implantation, as well as the lack of understanding of MSC functions under different in vitro and in vivo microenvironment, hinders the progression of MSCs toward clinical settings. The clinical translation of MSCs pre-requisites a scalable expansion process for the biomanufacturing of therapeutically qualified cells. This review briefly introduces the features of implanted MSCs to determine the best strategies to optimize their regenerative capacity, as well as the current MSC implantation for bone diseases. Current achievements for expansion of MSCs using various culturing methods, bioreactor technologies, biomaterial platforms, as well as microtissue-based expansion strategies are also discussed, providing new insights into future large-scale MSC expansion and clinical applications.
Collapse
Affiliation(s)
- Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| | - Xiaoan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shan Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Zongyou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ouyang Hong-Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China; Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| |
Collapse
|