1
|
Nguyen DT, Pant J, Sapkota A, Goudie MJ, Singha P, Brisbois EJ, Handa H. Instant clot forming and antibacterial wound dressings: Achieving hemostasis in trauma injuries with S-nitroso-N-acetylpenicillamine-tranexamic acid-propolis formulation. J Biomed Mater Res A 2024; 112:1930-1940. [PMID: 38769626 DOI: 10.1002/jbm.a.37738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Wound infection and excessive blood loss are the two major challenges associated with trauma injuries that account for 10% of annual deaths in the United States. Nitric oxide (NO) is a gasotransmitter cell signaling molecule that plays a crucial role in the natural wound healing process due to its antibacterial, anti-inflammatory, cell proliferation, and tissue remodeling abilities. Tranexamic acid (TXA), a prothrombotic agent, has been used topically and systemically to control blood loss in reported cases of epistaxis and combat-related trauma injuries. Its properties could be incorporated in wound dressings to induce immediate clot formation, which is a key factor in controlling excessive blood loss. This study introduces a novel, instant clot-forming NO-releasing dressing, and fabricated using a strategic bi-layer configuration. The layer adjacent to the wound was designed with TXA suspended on a resinous bed of propolis, which is a natural bioadhesive possessing antibacterial and anti-inflammatory properties. The base layer, located furthest away from the wound, has an NO donor, S-nitroso-N-acetylpenicillamine (SNAP), embedded in a polymeric bed of Carbosil®, a copolymer of polycarbonate urethane and silicone. Propolis was integrated with a uniform layer of TXA in variable concentrations: 2.5, 5.0, and 7.5 vol % of propolis. This design of the TXA-SNAP-propolis (T-SP) wound dressing allows TXA to form a more stable clot by preventing the lysis of fibrin. The lactate dehydrogenase-based platelet adhesion assay showed an increase in fibrin activation with 7.5% T-SP as compared with control within the first 15 min of its application. A scanning electron microscope (SEM) confirmed the presence of a dense fibrin network stabilizing the clot for fabricated dressing. The antibacterial activity of NO and propolis resulted in a 98.9 ± 1% and 99.4 ± 1% reduction in the colony-forming unit of Staphylococcus aureus and multidrug-resistant Acinetobacter baumannii, respectively, which puts forward the fabricated dressing as an emergency first aid for traumatic injuries, preventing excessive blood loss and soil-borne infections.
Collapse
Affiliation(s)
- Dieu Thao Nguyen
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | - Jitendra Pant
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | - Aasma Sapkota
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | - Marcus James Goudie
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Aveyard J, Richards S, Li M, Pitt G, Hughes GL, Akpan A, Akhtar R, Kazaili A, D'Sa RA. Nitric oxide releasing coatings for the prevention of viral and bacterial infections. Biomater Sci 2024; 12:4664-4681. [PMID: 38980705 PMCID: PMC11385708 DOI: 10.1039/d4bm00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Healthcare associated infections (HCAI) represent a significant burden worldwide contributing to morbidity and mortality and result in substantial economic consequences equating to billions annually. Although the impacts of HCAI have been felt for many years, the coronavirus pandemic has had a profound effect, escalating rates of HCAI, even with extensive preventative measures such as vaccination, personal protective equipment, and deep cleaning regimes. Therefore, there is an urgent need for new solutions to mitigate this serious health emergency. In this paper, the fabrication of nitric oxide (NO) releasing dual action polymer coatings for use in healthcare applications is described. The coatings are doped with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) and release high payloads of NO in a sustained manner for in excess of 50 hours. These coatings are extensively characterized in multiple biologically relevant solutions and the antibacterial/antiviral efficacy is studied. For the first time, we assess antibacterial activity in a time course study (1, 2, 4 and 24 h) in both nutrient rich and nutrient poor conditions. Coatings exhibit excellent activity against Pseudomonas aeruginosa and methicillin resistant Staphylococcus aureus (MRSA), with up to complete reduction observed over 24 hours. Additionally, when tested against SARS-CoV-2, the coatings significantly reduced active virus in as little as 10 minutes. These promising results suggest that these coatings could be a valuable addition to existing preventative measures in the fight against HCAIs.
Collapse
Affiliation(s)
- Jenny Aveyard
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill, Liverpool, L69 3GH, UK.
| | - Siobhan Richards
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Man Li
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill, Liverpool, L69 3GH, UK.
| | - Graeme Pitt
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill, Liverpool, L69 3GH, UK.
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Asangaedem Akpan
- Department of Musculoskeletal & Ageing Sciences, University of Liverpool, Liverpool L69 3GL, UK
- Liverpool University Hospitals NHS FT, Liverpool L7 8XP, UK
| | - Riaz Akhtar
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill, Liverpool, L69 3GH, UK.
| | - Ahmed Kazaili
- Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Raechelle A D'Sa
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill, Liverpool, L69 3GH, UK.
| |
Collapse
|
3
|
Marzullo P, Gruttadauria M, D’Anna F. Quaternary Ammonium Salts-Based Materials: A Review on Environmental Toxicity, Anti-Fouling Mechanisms and Applications in Marine and Water Treatment Industries. Biomolecules 2024; 14:957. [PMID: 39199346 PMCID: PMC11352365 DOI: 10.3390/biom14080957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
The adherence of pathogenic microorganisms to surfaces and their association to form antibiotic-resistant biofilms threatens public health and affects several industrial sectors with significant economic losses. For this reason, the medical, pharmaceutical and materials science communities are exploring more effective anti-fouling approaches. This review focuses on the anti-fouling properties, structure-activity relationships and environmental toxicity of quaternary ammonium salts (QAS) and, as a subclass, ionic liquid compounds. Greener alternatives such as QAS-based antimicrobial polymers with biocide release, non-fouling (i.e., PEG, zwitterions), fouling release (i.e., poly(dimethylsiloxanes), fluorocarbon) and contact killing properties are highlighted. We also report on dual-functional polymers and stimuli-responsive materials. Given the economic and environmental impacts of biofilms in submerged surfaces, we emphasize the importance of less explored QAS-based anti-fouling approaches in the marine industry and in developing efficient membranes for water treatment systems.
Collapse
Affiliation(s)
- Paola Marzullo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (M.G.); (F.D.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| | - Michelangelo Gruttadauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (M.G.); (F.D.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| | - Francesca D’Anna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (M.G.); (F.D.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| |
Collapse
|
4
|
Tian Y, Tian X, Li T, Wang W. Overview of the effects and mechanisms of NO and its donors on biofilms. Crit Rev Food Sci Nutr 2023; 65:647-666. [PMID: 37942962 DOI: 10.1080/10408398.2023.2279687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microbial biofilm is undoubtedly a challenging problem in the food industry. It is closely associated with human health and life, being difficult to remove and antibiotic resistance. Therefore, an alternate method to solve these problems is needed. Nitric oxide (NO) as an antimicrobial agent, has shown great potential to disrupt biofilms. However, the extremely short half-life of NO in vivo (2 s) has facilitated the development of relatively more stable NO donors. Recent studies reported that NO could permeate biofilms, causing damage to cellular biomacromolecules, inducing biofilm dispersion by quorum sensing (QS) pathway and reducing intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) levels, and significantly improving the bactericidal effect without drug resistance. In this review, biofilm hazards and formation processes are presented, and the characteristics and inhibitory effects of NO donors are carefully discussed, with an emphasis on the possible mechanisms of NO resistance to biofilms and some advanced approaches concerning the remediation of NO donor deficiencies. Moreover, the future perspectives, challenges, and limitations of NO donors were summarized comprehensively. On the whole, this review aims to provide the application prospects of NO and its donors in the food industry and to make reliable choices based on these available research results.
Collapse
Affiliation(s)
- Yanan Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Teng Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
5
|
Chug M, Brisbois EJ. Recent Developments in Multifunctional Antimicrobial Surfaces and Applications toward Advanced Nitric Oxide-Based Biomaterials. ACS MATERIALS AU 2022; 2:525-551. [PMID: 36124001 PMCID: PMC9479141 DOI: 10.1021/acsmaterialsau.2c00040] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
Implant-associated infections arising from biofilm development are known to have detrimental effects with compromised quality of life for the patients, implying a progressing issue in healthcare. It has been a struggle for more than 50 years for the biomaterials field to achieve long-term success of medical implants by discouraging bacterial and protein adhesion without adversely affecting the surrounding tissue and cell functions. However, the rate of infections associated with medical devices is continuously escalating because of the intricate nature of bacterial biofilms, antibiotic resistance, and the lack of ability of monofunctional antibacterial materials to prevent the colonization of bacteria on the device surface. For this reason, many current strategies are focused on the development of novel antibacterial surfaces with dual antimicrobial functionality. These surfaces are based on the combination of two components into one system that can eradicate attached bacteria (antibiotics, peptides, nitric oxide, ammonium salts, light, etc.) and also resist or release adhesion of bacteria (hydrophilic polymers, zwitterionic, antiadhesive, topography, bioinspired surfaces, etc.). This review aims to outline the progress made in the field of biomedical engineering and biomaterials for the development of multifunctional antibacterial biomedical devices. Additionally, principles for material design and fabrication are highlighted using characteristic examples, with a special focus on combinational nitric oxide-releasing biomedical interfaces. A brief perspective on future research directions for engineering of dual-function antibacterial surfaces is also presented.
Collapse
Affiliation(s)
- Manjyot
Kaur Chug
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Chug MK, Brisbois EJ. Smartphone compatible nitric oxide releasing insert to prevent catheter-associated infections. J Control Release 2022; 349:227-240. [PMID: 35777483 PMCID: PMC9680949 DOI: 10.1016/j.jconrel.2022.06.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
A large fraction of nosocomial infections is associated with medical devices that are deemed life-threatening in immunocompromised patients. Medical device-related infections are a result of bacterial colonization and biofilm formation on the device surface that affects >1 million people annually in the US alone. Over the past few years, light-based antimicrobial therapy has made substantial advances in tackling microbial colonization. Taking the advantage of light and antibacterial properties of nitric oxide (NO), for the first time, a robust, biocompatible, anti-infective approach to design a universal disposable catheter disinfection insert (DCDI) that can both prevent bacterial adhesion and disinfect indwelling catheters in situ is reported. The DCDI is engineered using a photo-initiated NO donor molecule, incorporated in polymer tubing that is mounted on a side glow fiber optic connected to an LED light source. Using a smartphone application, the NO release from DCDI is photoactivated via white light resulting in tunable physiological levels of NO for up to 24 h. When challenged with microorganisms S. aureus and E. coli, the NO-releasing DCDI statistically reduced microbial attachment by >99% versus the controls with just 4 h of exposure. The DCDI also eradicated ∼97% of pre-colonized bacteria on the CVC catheter model demonstrating the ability to exterminate an established catheter infection. The smart, mobile-operated novel universal antibacterial device can be used to both prevent catheter infections or can be inserted within an infected catheter to eradicate the bacteria without complex surgical interventions. The therapeutic levels of NO generated via illuminating fiber optics can be the next-generation biocompatible solution for catheter-related bloodstream infections.
Collapse
Affiliation(s)
- Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Chug MK, Massoumi H, Wu Y, Brisbois E. Prevention of medical device infections via multi-action nitric oxide and chlorhexidine diacetate releasing medical grade silicone biointerfaces. J Biomed Mater Res A 2022; 110:1263-1277. [PMID: 35170212 PMCID: PMC8986591 DOI: 10.1002/jbm.a.37372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
Abstract
The presence of bacteria and biofilm on medical device surfaces has been linked to serious infections, increased health care costs, and failure of medical devices. Therefore, antimicrobial biointerfaces and medical devices that can thwart microbial attachment and biofilm formation are urgently needed. Both nitric oxide (NO) and chlorhexidine diacetate (CHXD) possess broad-spectrum antibacterial properties. In the past, individual polymer release systems of CHXD and NO donor S-nitroso-N-acetylpenicillamine (SNAP) incorporated polymer platforms have attracted considerable attention for biomedical/therapeutic applications. However, the combination of the two surfaces has not yet been explored. Herein, the synergy of NO and CHXD was evaluated to create an antimicrobial medical-grade silicone rubber. The 10 wt% SNAP films were fabricated using solvent casting with a topcoat of CHXD (1, 3, and 5 wt%) to generate a dual-active antibacterial interface. Chemiluminescence studies confirmed the NO release from SNAP-CHXD films at physiologically relevant levels (0.5-4 × 10-10 mol min-1 cm-2 ) for at least 3 weeks and CHXD release for at least 7 days. Further characterization of the films via SEM-EDS confirmed uniform distribution of SNAP and presence of CHXD within the polymer films without substantial morphological changes, as confirmed by contact angle hysteresis. Moreover, the dual-active SNAP-CHXD films were able to significantly reduce Escherichia coli and Staphylococcus aureus bacteria (>3-log reduction) compared to controls with no explicit toxicity towards mouse fibroblast cells. The synergy between the two potent antimicrobial agents will help combat bacterial contamination on biointerfaces and enhance the longevity of medical devices.
Collapse
Affiliation(s)
- Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA USA
| | - Hamed Massoumi
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA USA
| | - Yi Wu
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA USA
| | - Elizabeth Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA USA
| |
Collapse
|
8
|
Yazdani-Ahmadabadi H, Felix DF, Yu K, Yeh HH, Luo HD, Khoddami S, Takeuchi LE, Alzahrani A, Abbina S, Mei Y, Fazli L, Grecov D, Lange D, Kizhakkedathu JN. Durable Surfaces from Film-Forming Silver Assemblies for Long-Term Zero Bacterial Adhesion without Toxicity. ACS CENTRAL SCIENCE 2022; 8:546-561. [PMID: 35647287 PMCID: PMC9136974 DOI: 10.1021/acscentsci.1c01556] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Indexed: 06/15/2023]
Abstract
The long-term prevention of biofilm formation on the surface of indwelling medical devices remains a challenge. Silver has been reutilized in recent years for combating biofilm formation due to its indisputable bactericidal potency; however, the toxicity, low stability, and short-term activity of the current silver coatings have limited their use. Here, we report the development of silver-based film-forming antibacterial engineered (SAFE) assemblies for the generation of durable lubricous antibiofilm surface long-term activity without silver toxicity that was applicable to diverse materials via a highly scalable dip/spray/solution-skinning process. The SAFE coating was obtained through a large-scale screening, resulting in effective incorporation of silver nanoparticles (∼10 nm) into a stable nonsticky coating with high surface hierarchy and coverage, which guaranteed sustained silver release. The lead coating showed zero bacterial adhesion over a 1 month experiment in the presence of a high load of diverse bacteria, including difficult-to-kill and stone-forming strains. The SAFE coating showed high biocompatibility and excellent antibiofilm activity in vivo.
Collapse
Affiliation(s)
- Hossein Yazdani-Ahmadabadi
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Centre
for Blood Research, Life Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Demian F. Felix
- The
Stone Centre at Vancouver General Hospital, Department of Urologic
Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Kai Yu
- Centre
for Blood Research, Life Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Pathology and Laboratory Medicine, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Han H. Yeh
- Department
of Mechanical Engineering, University of
British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Haiming D. Luo
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Centre
for Blood Research, Life Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sara Khoddami
- The
Stone Centre at Vancouver General Hospital, Department of Urologic
Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Lily E. Takeuchi
- Centre
for Blood Research, Life Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Pathology and Laboratory Medicine, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Amal Alzahrani
- The
Stone Centre at Vancouver General Hospital, Department of Urologic
Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Srinivas Abbina
- Centre
for Blood Research, Life Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yan Mei
- Centre
for Blood Research, Life Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Pathology and Laboratory Medicine, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ladan Fazli
- Vancouver
Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Dana Grecov
- Department
of Mechanical Engineering, University of
British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- The
School of Biomedical Engineering, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Dirk Lange
- The
Stone Centre at Vancouver General Hospital, Department of Urologic
Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Jayachandran N. Kizhakkedathu
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Centre
for Blood Research, Life Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Pathology and Laboratory Medicine, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- The
School of Biomedical Engineering, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
9
|
Ghalei S, Handa H. A Review on Antibacterial Silk Fibroin-based Biomaterials: Current State and Prospects. MATERIALS TODAY. CHEMISTRY 2022; 23:100673. [PMID: 34901586 PMCID: PMC8664245 DOI: 10.1016/j.mtchem.2021.100673] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bacterial contamination of biomaterials is a common problem and a serious threat to human health worldwide. Therefore, the development of multifunctional biomaterials that possess antibacterial properties and can resist infection is a continual goal for biomedical applications. Silk fibroin (SF), approved by U.S. Food and Drug Administration (FDA) as a biomaterial, is one of the most widely studied natural polymers for biomedical applications due to its unique mechanical properties, biocompatibility, tunable biodegradation, and versatile material formats. In the last decade, many methods have been employed for the development of antibacterial SF-based biomaterials (SFBs) such as physical loading or chemical functionalization of SFBs with different antibacterial agents and bio-inspired surface modifications. In this review, we first describe the current understanding of the composition and structure-properties relationship of SF as a leading-edge biomaterial. Then we demonstrate the different antibacterial agents and methods implemented for the development of bactericidal SFBs, their mechanisms of action, and different applications. We briefly address their fabrication methods, advantages, and limitations, and finally discuss the emerging technologies and future trends in this research area.
Collapse
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
10
|
Khoerunnisa F, Nurhayati M, Annisa NAA, Fatimah S, Nashrah N, Hendrawan H, Ko YG, Ng EP, Opaprakasit P. Effects of Benzalkonium Chloride Contents on Structures, Properties, and Ultrafiltration Performances of Chitosan-Based Nanocomposite Membranes. MEMBRANES 2022; 12:268. [PMID: 35323744 PMCID: PMC8952018 DOI: 10.3390/membranes12030268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023]
Abstract
The effects of benzalkonium chloride (BKC) contents on the structure, properties, and ultrafiltration performance of chitosan-based nanocomposite membranes containing poly(ethylene glycol) and multi-walled carbon nanotube (chitosan/BKC/PEG/CNT) were examined. The membranes were prepared by a mixing solution method and phase inversion before being characterized with microscopic techniques, tensile tests, thermogravimetric analysis, water contact angle, and porosity measurements. The performance of the nanocomposite membranes in regard to permeability (flux) and permselectivity (rejection) was examined. The results show that the incorporation of BKC produced nanocomposite membranes with smaller pore structures and improved physico-chemical properties, such as an increase in porosity and surface roughness (Ra = 45.15 to 145.35 nm and Rq = 53.69 to 167.44 nm), an enhancement in the elongation at break from 45 to 109%, and an enhancement in the mechanical strength from 31.2 to 45.8 MPa. In contrast, a decrease in the membrane hydrophilicity (water contact angle increased from 56.3 to 82.8°) and a decrease in the average substructure pore size from 32.64 to 10.08 nm were observed. The membrane rejection performances toward Bovine Serum Albumin (BSA) increased with the BKC composition in both dead-end and cross-flow filtration processes. The chitosan/BKC/PEG/CNT nanocomposite membranes have great potential in wastewater treatments for minimizing biofouling without reducing the water purification performance.
Collapse
Affiliation(s)
- Fitri Khoerunnisa
- Department of Chemistry, Indonesia University of Education, Setiabudhi 229, Bandung 40154, Indonesia; (M.N.); (N.A.A.A.); (H.H.)
| | - Mita Nurhayati
- Department of Chemistry, Indonesia University of Education, Setiabudhi 229, Bandung 40154, Indonesia; (M.N.); (N.A.A.A.); (H.H.)
| | - Noor Azmi Aulia Annisa
- Department of Chemistry, Indonesia University of Education, Setiabudhi 229, Bandung 40154, Indonesia; (M.N.); (N.A.A.A.); (H.H.)
| | - Siti Fatimah
- School of Material Science & Engineering, Yeungnam University, Gyeongsan 38541, Korea; (S.F.); (N.N.); (Y.-G.K.)
| | - Nisa Nashrah
- School of Material Science & Engineering, Yeungnam University, Gyeongsan 38541, Korea; (S.F.); (N.N.); (Y.-G.K.)
| | - Hendrawan Hendrawan
- Department of Chemistry, Indonesia University of Education, Setiabudhi 229, Bandung 40154, Indonesia; (M.N.); (N.A.A.A.); (H.H.)
| | - Young-Gun Ko
- School of Material Science & Engineering, Yeungnam University, Gyeongsan 38541, Korea; (S.F.); (N.N.); (Y.-G.K.)
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia;
| | - Pakorn Opaprakasit
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Khlong Luang 12121, Thailand
| |
Collapse
|
11
|
Khoerunnisa F, Sihombing M, Nurhayati M, Dara F, Triadi HA, Nasir M, Hendrawan H, Pratiwi A, Ng EP, Opaprakasit P. Poly(ether sulfone)-based ultrafiltration membranes using chitosan/ammonium chloride to enhance permeability and antifouling properties. Polym J 2022. [DOI: 10.1038/s41428-021-00607-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Recent advances in development of poly (dimethylaminoethyl methacrylate) antimicrobial polymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Jann J, Drevelle O, Chen XG, Auclair-Gilbert M, Soucy G, Faucheux N, Fortier LC. Rapid antibacterial activity of anodized aluminum-based materials impregnated with quaternary ammonium compounds for high-touch surfaces to limit transmission of pathogenic bacteria. RSC Adv 2021; 11:38172-38188. [PMID: 35498065 PMCID: PMC9044312 DOI: 10.1039/d1ra07159a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Infections caused by multidrug-resistant bacteria are a major public health problem. Their transmission is strongly linked to cross contamination via inert surfaces, which can serve as reservoirs for pathogenic microorganisms. To address this problem, antibacterial materials applied to high-touch surfaces have been developed. However, reaching a rapid and lasting effectiveness under real life conditions of use remains challenging. In the present paper, hard-anodized aluminum (AA) materials impregnated with antibacterial agents (quaternary ammonium compounds (QACs) and/or nitrate silver (AgNO3)) were prepared and characterized. The thickness of the anodized layer was about 50 μm with pore diameter of 70 nm. AA with QACs and/or AgNO3 had a water contact angle varying between 45 and 70°. The antibacterial activity of the materials was determined under different experimental settings to better mimic their use, and included liquid, humid, and dry conditions. AA-QAC surfaces demonstrated excellent efficiency, killing >99.9% of bacteria in 5 min on a wide range of Gram-positive (Staphylococcus aureus, Clostridioides difficile, vancomycin-resistant Enterococcus faecium) and Gram-negative (streptomycin-resistant Salmonella typhimurium and encapsulated Klebsiella pneumoniae) pathogens. AA-QACs showed a faster antibacterial activity (from 0.25 to 5 min) compared with antibacterial copper used as a reference (from 15 min to more than 1 h). We show that to maintain their high performance, AA-QACs should be used in low humidity environments and should be cleaned with solutions composed of QACs. Altogether, AA-QAC materials constitute promising candidates to prevent the transmission of pathogenic bacteria on high-touch surfaces.
Collapse
Affiliation(s)
- Jessica Jann
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada .,Clinical Research Center of Centre Hospitalier Universitaire de Sherbrooke 12e Avenue N Sherbrooke Québec J1H 5N4 Canada.,Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke 3201 rue Jean Mignault Sherbrooke Québec J1E 4K8 Canada
| | - Olivier Drevelle
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada
| | - X Grant Chen
- Department of Applied Science, University of Quebec in Chicoutimi Saguenay Quebec G7H 2B1 Canada
| | | | - Gervais Soucy
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada .,Clinical Research Center of Centre Hospitalier Universitaire de Sherbrooke 12e Avenue N Sherbrooke Québec J1H 5N4 Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke 3201 rue Jean Mignault Sherbrooke Québec J1E 4K8 Canada
| |
Collapse
|
14
|
Polydopamine-Assisted Surface Modification of Ti-6Al-4V Alloy with Anti-Biofilm Activity for Dental Implantology Applications. COATINGS 2021. [DOI: 10.3390/coatings11111385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coating the surfaces of implantable materials with various active principles to ensure inhibition of microbial adhesion, is a solution to reduce infections associated with dental implant. The aim of the study was to optimize the polydopamine films coating on the Ti-6Al-6V alloy surface in order to obtain a maximum of antimicrobial/antibiofilm efficacy and reduced cytotoxicity. Surface characterization was performed by evaluating the morphology (SEM, AFM) and structures (Solid-state 13C NMR and EPR). Antimicrobial activity was assessed by logarithmic reduction of CFU/mL, and the antibiofilm activity by reducing the adhesion of Escherichia coli, Staphylococcus aureus, and Candida albicans strains. The release of NO was observed especially for C. albicans strain, which confirms the results obtained for microbial adhesion. Among the PDA coatings, for 0.45:0.88 (KMnO4:dopamine) molar ratio the optimal compromise was obtained in terms of antimicrobial activity and cytotoxicity, while the 0.1:1.5 ratio (KMnO4:dopamine) led to higher NO release and implicitly the reduction of the adhesion capacities only for C. albicans, being slightly cytotoxic but with moderate release of LDH. The proposed materials can be used to reduce the adhesion of yeast to the implantable material and thus inhibit the formation of microbial biofilms.
Collapse
|
15
|
Bäumler W, Eckl D, Holzmann T, Schneider-Brachert W. Antimicrobial coatings for environmental surfaces in hospitals: a potential new pillar for prevention strategies in hygiene. Crit Rev Microbiol 2021; 48:531-564. [PMID: 34699296 DOI: 10.1080/1040841x.2021.1991271] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent reports provide evidence that contaminated healthcare environments represent major sources for the acquisition and transmission of pathogens. Antimicrobial coatings (AMC) may permanently and autonomously reduce the contamination of such environmental surfaces complementing standard hygiene procedures. This review provides an overview of the current status of AMC and the demands to enable a rational application of AMC in health care settings. Firstly, a suitable laboratory test norm is required that adequately quantifies the efficacy of AMC. In particular, the frequently used wet testing (e.g. ISO 22196) must be replaced by testing under realistic, dry surface conditions. Secondly, field studies should be mandatory to provide evidence for antimicrobial efficacy under real-life conditions. The antimicrobial efficacy should be correlated to the rate of nosocomial transmission at least. Thirdly, the respective AMC technology should not add additional bacterial resistance development induced by the biocidal agents and co- or cross-resistance with antibiotic substances. Lastly, the biocidal substances used in AMC should be safe for humans and the environment. These measures should help to achieve a broader acceptance for AMC in healthcare settings and beyond. Technologies like the photodynamic approach already fulfil most of these AMC requirements.
Collapse
Affiliation(s)
- Wolfgang Bäumler
- Department of Dermatology, University Hospital, Regensburg, Germany
| | - Daniel Eckl
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Thomas Holzmann
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| |
Collapse
|
16
|
Mondal A, Singha P, Douglass M, Estes L, Garren M, Griffin L, Kumar A, Handa H. A Synergistic New Approach Toward Enhanced Antibacterial Efficacy via Antimicrobial Peptide Immobilization on a Nitric Oxide-Releasing Surface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43892-43903. [PMID: 34516076 DOI: 10.1021/acsami.1c08921] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite technological advancement, nosocomial infections are prevalent due to the rise of antibiotic resistance. A combinatorial approach with multimechanistic antibacterial activity is desired for an effective antibacterial medical device surface strategy. In this study, an antimicrobial peptide, nisin, is immobilized onto biomimetic nitric oxide (NO)-releasing medical-grade silicone rubber (SR) via mussel-inspired polydopamine (PDA) as a bonding agent to reduce the risk of infection. Immobilization of nisin on NO-releasing SR (SR-SNAP-Nisin) and the surface characteristics were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy and contact angle measurements. The NO release profile (7 days) and diffusion of SNAP from SR-SNAP-Nisin were quantified using chemiluminescence-based nitric oxide analyzers and UV-vis spectroscopy, respectively. Nisin quantification showed a greater affinity of nisin immobilization toward SNAP-doped SR. Matrix-assisted laser desorption/ionization mass spectrometry analysis on surface nisin leaching for 120 h under physiological conditions demonstrated the stability of nisin immobilization on PDA coatings. SR-SNAP-Nisin shows versatile in vitro anti-infection efficacy against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus in the planktonic and adhered states. Furthermore, the combination of NO and nisin has a superior ability to impair biofilm formation on polymer surfaces. SR-SNAP-Nisin leachates did not elicit cytotoxicity toward mouse fibroblast cells and human umbilical vein endothelial cells, indicating the biocompatibility of the material in vitro. The preventative and therapeutic potential of SR-SNAP-Nisin dictated by two bioactive agents may offer a promising antibacterial surface strategy.
Collapse
Affiliation(s)
- Arnab Mondal
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Priyadarshini Singha
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Megan Douglass
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Lori Estes
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Garren
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Lauren Griffin
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Anil Kumar
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
17
|
Endogenous nitric oxide-generating surfaces via polydopamine-copper coatings for preventing biofilm dispersal and promoting microbial killing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112297. [PMID: 34474848 DOI: 10.1016/j.msec.2021.112297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Accepted: 06/30/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Peri-implantitis is a bacterially induced inflammatory disease which affects the hard and soft tissues around a dental implant. Microbial biofilm formation is an important causative factor in peri-implantitis. The aim of this study is to develop an effective multifunctional surface coating for antimicrobial property and to counteract oral biofilm-associated infections via a single polydopamine copper coating (PDAM@Cu) on titanium implant surface to regulate endogenous nitric oxide (NO) generation. METHODS PDAM@Cu coatings were made with different concentrations of CuCl2 on titanium surfaces with a simple dip coating technique. Coatings were characterised to evaluate Cu concentrations as well as NO release rates from the coatings. Further, salivary biofilms were made on the coatings using Brain Heart Infusion (BHI) media in an anaerobic chamber. Biofilms were prepared with three different mixtures, one of which was saliva only, the second had an addition of sheep's blood, and the third was prepared with NO donors S-nitrosoglutathione (GSNO) and L-glutathione (GSH) in the mixture of saliva and blood to evaluate the effects of endogenously produced NO on biofilms. The effectiveness of coated surfaces on biofilms were assessed using four different methods, namely, crystal violet assay, scanning electron microscopy imaging, 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) metabolic assay, and live/dead staining. RESULTS NO release rates could be controlled with different Cu concentration in PDAM@Cu coatings. NO generated from the PDAM@Cu coatings effectively induced dispersal of biofilms shown by the reduction in biofilm biomass as well as reduced biofilm attachment in samples prepared with blood and NO donors. Cu ions released from the PDAM@Cu coatings resulted in killing of the dispersed bacteria, which was evidenced by the live/dead cell staining and reduced metabolic activity noted from the XTT assay. In contrast, samples prepared with saliva showed no significant reduction in biofilms, indicating the important effect of endogenously generated NO on biofilm dispersal. CONCLUSION In conclusion, PDAM@Cu coatings with NO generating surfaces have a dual anti-biofilm function, with a synergistic effect on biofilm dispersal from regulated NO generation and bactericidal effects from Cu ions from the coatings.
Collapse
|
18
|
Zhu Z, Gao Q, Long Z, Huo Q, Ge Y, Vianney N, Daliko NA, Meng Y, Qu J, Chen H, Wang B. Polydopamine/poly(sulfobetaine methacrylate) Co-deposition coatings triggered by CuSO 4/H 2O 2 on implants for improved surface hemocompatibility and antibacterial activity. Bioact Mater 2021; 6:2546-2556. [PMID: 33665495 PMCID: PMC7887402 DOI: 10.1016/j.bioactmat.2021.01.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Implanted biomaterials such as medical catheters are prone to be adhered by proteins, platelets and bacteria due to their surface hydrophobicity characteristics, and then induce related infections and thrombosis. Hence, the development of a versatile strategy to endow surfaces with antibacterial and antifouling functions is particularly significant for blood-contacting materials. In this work, CuSO4/H2O2 was used to trigger polydopamine (PDA) and poly-(sulfobetaine methacrylate) (PSBMA) co-deposition process to endow polyurethane (PU) antibacterial and antifouling surface (PU/PDA(Cu)/PSBMA). The zwitterions contained in the PU/PDA(Cu)/PSBMA coating can significantly improve surface wettability to reduce protein adsorption, thereby improving its blood compatibility. In addition, the copper ions released from the metal-phenolic networks (MPNs) imparted them more than 90% antibacterial activity against E. coli and S. aureus. Notably, PU/PDA(Cu)/PSBMA also exhibits excellent performance in vivo mouse catheter-related infections models. Thus, the PU/PDA(Cu)/PSBMA has great application potential for developing multifunctional surface coatings for blood-contacting materials so as to improve antibacterial and anticoagulant properties.
Collapse
Affiliation(s)
- Zhongqiang Zhu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiang Gao
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ziyue Long
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiuyi Huo
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yifan Ge
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ntakirutimana Vianney
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Nishimwe Anodine Daliko
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yongchun Meng
- Central Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Yantai, Shandong, 264100, China
| | - Jia Qu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
19
|
Delivering nitric oxide with poly(n-butyl methacrylate) films doped with S-nitroso-N-acetylpenicillamine. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Lim HK, Tan SJ, Wu Z, Ong BC, Tan KW, Dong Z, Tay CY. Diatom-inspired 2D nitric oxide releasing anti-infective porous nanofrustules. J Mater Chem B 2021; 9:7229-7237. [PMID: 34031686 DOI: 10.1039/d1tb00458a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional (2D) nanomaterials (NM) have emerged as promising platforms for antibacterial applications. However, the inherent "flatness" of 2D NM often limits the loading of antimicrobial components needed for synergistic bactericidal actions. Here, inspired by the highly ornamented siliceous frustules of diatoms, we prepared 2D ultrathin (<20 nm) and rigid "nanofrustule" plates via the out-of-plane growth of cetyltrimethylammonium bromide (CTAB) directed silica mesostructures on the surfaces of 2D graphene oxide nanosheets. The nanofrustules were characterized by the presence of mesoporous channels with a pore size of 3 nm and a high specific surface area of 674 m2 g-1. S-nitrosothiol-modification on the silica surfaces enables the development of a novel anti-infective nitric oxide (NO) releasing NO-nanofrustule system. The cage-like mesoporous silica architecture enabled a controlled and sustainable release of NO from the NO-nanofrustules under physiological conditions. The NO-nanofrustules displayed broad antibacterial effects against Staphylococcus aureus and Escherichia coli with a minimum inhibitory concentration of 250 μg ml-1. Mechanistic studies revealed that the antibacterial property of NO-nanofrustules was attained via a unique "capture-and-release" mode-of-action. The first step entailed the capture of the bacteria by the NO-nanofrustules to form micro-aggregates. This was followed by the release of high levels of NO to the captured bacteria to elicit a potent anti-infective effect. In combination with the lack of cytotoxicity in human dermal cells, the 2D hybrid NO-nanofrustules may be utilized to combat wound infections in clinical settings.
Collapse
Affiliation(s)
- Hong Kit Lim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Shao Jie Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Zhuoran Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Boon Chong Ong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Kwan Wee Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Zhili Dong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore. and School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore and Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| |
Collapse
|
21
|
Devine R, Douglass M, Ashcraft M, Tayag N, Handa H. Development of Novel Amphotericin B-Immobilized Nitric Oxide-Releasing Platform for the Prevention of Broad-Spectrum Infections and Thrombosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19613-19624. [PMID: 33904311 PMCID: PMC9683085 DOI: 10.1021/acsami.1c01330] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Indwelling medical devices currently used to diagnose, monitor, and treat patients invariably suffer from two common clinical complications: broad-spectrum infections and device-induced thrombosis. Currently, infections are managed through antibiotic or antifungal treatment, but the emergence of antibiotic resistance, the formation of recalcitrant biofilms, and difficulty identifying culprit pathogens have made treatment increasingly challenging. Additionally, systemic anticoagulation has been used to manage device-induced thrombosis, but subsequent life-threatening bleeding events associated with all available therapies necessitates alternative solutions. In this study, a broad-spectrum antimicrobial, antithrombotic surface combining the incorporation of the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) with the immobilization of the antifungal Amphotericin B (AmB) on polydimethylsiloxane (PDMS) was developed in a two-step process. This novel strategy combines the key advantages of NO, a bactericidal agent and platelet inhibitor, with AmB, a potent antifungal agent. We demonstrated that SNAP-AmB surfaces significantly reduced the viability of adhered Staphylococcus aureus (99.0 ± 0.2%), Escherichia coli (89.7 ± 1.0%), and Candida albicans (93.5 ± 4.2%) compared to controls after 24 h of in vitro exposure. Moreover, SNAP-AmB surfaces reduced the number of platelets adhered by 74.6 ± 3.9% compared to controls after 2 h of in vitro porcine plasma exposure. Finally, a cytotoxicity assay validated that the materials did not present any cytotoxic side effects toward human fibroblast cells. This novel approach is the first to combine antifungal surface functionalization with NO-releasing technology, providing a promising step toward reducing the rate of broad-spectrum infection and thrombosis associated with indwelling medical devices.
Collapse
Affiliation(s)
- Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Morgan Ashcraft
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Nicole Tayag
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
22
|
Tummanapalli SS, Kuppusamy R, Yeo JH, Kumar N, New EJ, Willcox MDP. The role of nitric oxide in ocular surface physiology and pathophysiology. Ocul Surf 2021; 21:37-51. [PMID: 33940170 DOI: 10.1016/j.jtos.2021.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) has a wide array of biological functions including the regulation of vascular tone, neurotransmission, immunomodulation, stimulation of proinflammatory cytokine expression and antimicrobial action. These functions may depend on the type of isoform that is responsible for the synthesis of NO. NO is found in various ocular tissues playing a pivotal role in physiological mechanisms, namely regulating vascular tone in the uvea, retinal blood circulation, aqueous humor dynamics, neurotransmission and phototransduction in retinal layers. Unregulated production of NO in ocular tissues may result in production of toxic superoxide free radicals that participate in ocular diseases such as endotoxin-induced uveitis, ischemic proliferative retinopathy and neurotoxicity of optic nerve head in glaucoma. However, the role of NO on the ocular surface in mediating physiology and pathophysiological processes is not fully understood. Moreover, methods used to measure levels of NO in the biological samples of the ocular surface are not well established due to its rapid oxidation. The purpose of this review is to highlight the role of NO in the physiology and pathophysiology of ocular surface and propose suitable techniques to measure NO levels in ocular surface tissues and tears. This will improve the understanding of NO's role in ocular surface biology and the development of new NO-based therapies to treat various ocular surface diseases. Further, this review summarizes the biochemistry underpinning NO's antimicrobial action.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- School of Optometry & Vision Science, University of New South Wales, Australia; School of Chemistry, University of New South Wales, Australia
| | - Jia Hao Yeo
- The University of Sydney, School of Chemistry, NSW, 2006, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Australia
| | - Elizabeth J New
- The University of Sydney, School of Chemistry, NSW, 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Australia
| | - Mark D P Willcox
- School of Optometry & Vision Science, University of New South Wales, Australia
| |
Collapse
|
23
|
Manouras T, Koufakis E, Vasilaki E, Peraki I, Vamvakaki M. Antimicrobial Hybrid Coatings Combining Enhanced Biocidal Activity under Visible-Light Irradiation with Stimuli-Renewable Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17183-17195. [PMID: 33734694 DOI: 10.1021/acsami.0c21230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid, organic-inorganic, biocidal films exhibiting polishing properties were developed as effective long-lasting antimicrobial surface coatings. The films were prepared using cationically modified chitosan, synthesized by the reaction with 3-bromo-N,N,N-trimethylpropan-1-aminium bromide, to introduce permanent biocidal quaternary ammonium salt (QAS) groups along the polymer backbone and were cross-linked by a novel, pH-cleavable acetal cross-linker, which allowed polishing the hybrid coatings with the solution pH. TiO2 nanoparticles, modified with reduced graphene oxide (rGO) sheets, to narrow their band gap energy value and shift their photocatalytic activity in the visible light regime, were introduced within the polymer film to enhance its antibacterial activity. The hybrid coatings exhibited an effective biocidal activity in the dark (∼2 Log and ∼3 Log reduction for Gram-negative and Gram-positive bacteria, respectively), when only the QAS sites interacted with the bacteria membrane, and an excellent biocidal action upon visible-light irradiation (∼5 Log and ∼6 Log reduction for Gram-negative and Gram-positive bacteria, respectively) due to the synergistic antimicrobial effect of the QAS moieties and the rGO-modified TiO2 nanoparticles. The gradual decrease in the film thickness, upon immersion of the coatings in mildly basic (pH 8), neutral (pH 7), and acidic (pH 6) media, reaching 10, 20, and 70% reduction, respectively, after 60 days of immersion time, confirmed the polishing behavior of the films, whereas their effective antimicrobial action was retained. The biocompatibility of the hybrid films was verified in human cell culture studies. The proposed approach enables the facile development of highly functional coatings, combining biocompatibility and bactericidal action with a "kill and self-clean" mechanism that allows the regeneration of the outer surface of the coating leading to a strong and prolonged antimicrobial action.
Collapse
Affiliation(s)
- Theodore Manouras
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | - Eleftherios Koufakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | - Evangelia Vasilaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | - Ioanna Peraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Crete, Greece
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| |
Collapse
|
24
|
Hu Q, Shi J, Zhang J, Wang Y, Guo Y, Zhang Z. Progress and Prospects of Regulatory Functions Mediated by Nitric Oxide on Immunity and Immunotherapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qian Hu
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Jingyu Shi
- Liyuan Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Jiao Zhang
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yi Wang
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yuanyuan Guo
- Liyuan Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Zhiping Zhang
- Tongji School of Pharmacy, National Engineering Research Centre for Nanomedicine, Hubei Engineering Research Centre for Novel Drug Delivery System Huazhong University of Science and Technology Wuhan Hubei 430030 China
| |
Collapse
|
25
|
Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater 2021; 6:1083-1106. [PMID: 33102948 PMCID: PMC7569269 DOI: 10.1016/j.bioactmat.2020.10.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Polyurethanes (PUs) are a major family of polymers displaying a wide spectrum of physico-chemical, mechanical and structural properties for a large range of fields. They have shown suitable for biomedical applications and are used in this domain since decades. The current variety of biomass available has extended the diversity of starting materials for the elaboration of new biobased macromolecular architectures, allowing the development of biobased PUs with advanced properties such as controlled biotic and abiotic degradation. In this frame, new tunable biomedical devices have been successfully designed. PU structures with precise tissue biomimicking can be obtained and are adequate for adhesion, proliferation and differentiation of many cell's types. Moreover, new smart shape-memory PUs with adjustable shape-recovery properties have demonstrated promising results for biomedical applications such as wound healing. The fossil-based starting materials substitution for biomedical implants is slowly improving, nonetheless better renewable contents need to be achieved for most PUs to obtain biobased certifications. After a presentation of some PU generalities and an understanding of a biomaterial structure-biocompatibility relationship, recent developments of biobased PUs for non-implantable devices as well as short- and long-term implants are described in detail in this review and compared to more conventional PU structures.
Collapse
Affiliation(s)
- Sophie Wendels
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
26
|
Khoerunnisa F, Kulsum C, Dara F, Nurhayati M, Nashrah N, Fatimah S, Pratiwi A, Hendrawan H, Nasir M, Ko YG, Ng EP, Opaprakasit P. Toughened chitosan-based composite membranes with antibiofouling and antibacterial properties via incorporation of benzalkonium chloride. RSC Adv 2021; 11:16814-16822. [PMID: 35479121 PMCID: PMC9031719 DOI: 10.1039/d1ra01830b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/28/2021] [Indexed: 12/01/2022] Open
Abstract
Biofouling due to biofilm formation is a major problem in ultrafiltration membrane applications. In this work, a potential approach to solve this issue has been developed by functionalization of chitosan-based membranes with benzalkonium chloride (BKC). The chitosan composite membranes consisting of poly(ethylene glycol) (PEG), multiwalled carbon nanotubes (MWCNT), and BKC were synthesized by mixing the membrane precursors and the antibacterial solution, and casting via an inversed phase technique. The effects of the BKC content on the morphology and performance of the membranes are investigated by varying the BKC feed compositions. The composite membranes demonstrate better antibacterial efficacy against Staphylococcus aureus than Escherichia coli. The permeability and selectivity performances of the composites as filter membranes are examined by employing a dead-end filtration system. Interestingly, enhanced toughness of the membranes is observed as a function of the BKC content. Mechanisms of the structural formation are investigated. The results from SEM, XRD, and FTIR spectroscopy revealed that MWCNT/BKC are located as nanoclusters with π–π stacking interactions, and are covered by PEG chains. The shape of the dispersed domains is spherical at low BKC contents, but becomes elongated at high BKC contents. These act as soft domains with an anisotropic shape with toughening of the brittle chitosan matrix, leading to enhanced durability of the membranes, especially in ultrafiltration applications. The composite membranes also demonstrate improved rejection in dead-end ultrafiltration systems due to high porosity, high hydrophilicity, and the positive charges of the membrane surface. Chitosan/PEG/MWCNT/BKC membranes exhibit enhanced antibiofouling properties against S. aureus and E. coli. MWCNT/BKC are located as dispersed nano-clusters with π–π stacking interactions in the chitosan matrix, and are coved by PEG chains.![]()
Collapse
|
27
|
Ricardo SIC, Anjos IIL, Monge N, Faustino CMC, Ribeiro IAC. A Glance at Antimicrobial Strategies to Prevent Catheter-Associated Medical Infections. ACS Infect Dis 2020; 6:3109-3130. [PMID: 33245664 DOI: 10.1021/acsinfecdis.0c00526] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urinary and intravascular catheters are two of the most used invasive medical devices; however, microbial colonization of catheter surfaces is responsible for most healthcare-associated infections (HAIs). Several antimicrobial-coated catheters are available, but recurrent antibiotic therapy can decrease their potential activity against resistant bacterial strains. The aim of this Review is to question the actual effectiveness of currently used (coated) catheters and describe the progress and promise of alternative antimicrobial coatings. Different strategies have been reviewed with the common goal of preventing biofilm formation on catheters, including release-based approaches using antibiotics, antiseptics, nitric oxide, 5-fluorouracil, and silver as well as contact-killing approaches employing quaternary ammonium compounds, chitosan, antimicrobial peptides, and enzymes. All of these strategies have given proof of antimicrobial efficacy by modifying the physiology of pathogens or disrupting their structural integrity. The aim for synergistic approaches using multitarget processes and the combination of both antifouling and bactericidal properties holds potential for the near future. Despite intensive research in biofilm preventive strategies, laboratorial studies still present some limitations since experimental conditions usually are not the same and also differ from biological conditions encountered when the catheter is inserted in the human body. Consequently, in most cases, the efficacy data obtained from in vitro studies is not properly reflected in the clinical setting. Thus, further well-designed clinical trials and additional cytotoxicity studies are needed to prove the efficacy and safety of the developed antimicrobial strategies in the prevention of biofilm formation at catheter surfaces.
Collapse
Affiliation(s)
- Susana I. C. Ricardo
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês I. L. Anjos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Monge
- Centro Interdisciplinar de Estudos Educacionais (CIED), Escola Superior de Educação de Lisboa, Instituto Politécnico de Lisboa, Campus de Benfica do IPL, 1549-003 Lisboa, Portugal
| | - Célia M. C. Faustino
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Isabel A. C. Ribeiro
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
28
|
Ghalei S, Mondal A, Hopkins S, Singha P, Devine R, Handa H. Silk Nanoparticles: A Natural Polymeric Platform for Nitric Oxide Delivery in Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53615-53623. [PMID: 33205962 DOI: 10.1021/acsami.0c13813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, the preparation and characterization of nitric oxide (NO) releasing silk fibroin nanoparticles (SF NPs) are described for the first time. S-Nitroso-N-acetylpenicillamine (SNAP)-loaded SF NPs (SNAP-SF NPs) were prepared via an antisolvent/self-assembling method by adding a SNAP/ethanol solution to an aqueous SF solution and freeze-thawing. The prepared SNAP-SF NPs had a diameter ranging from 300 to 400 nm and an overall negative charge of -28.76 ± 0.73 mV. Among the different SNAP/SF ratios tested, the highest encapsulation efficiency (18.3 ± 1.3%) and loading capacity (9.1 ± 0.6%) values were attributed to the 1:1 ratio. The deconvolution of the amide I band in the FTIR spectra of SF NPs and SNAP-SF NPs showed an increase in the β-sheet content for SNAP-SF NPs, confirming the hydrophobic interactions between SNAP and silk macromolecules. SNAP-SF NPs released up to 1.31 ± 0.02 × 10-10 mol min-1 mg-1 NO over a 24 h period. Moreover, SNAP-SF NPs showed concentration-dependent antibacterial effects against methicillin-resistant Staphylococcus aureus and Escherichia coli. Furthermore, they did not elicit any marked cytotoxicity against 3T3 mouse fibroblast cells at concentrations equal to or below 2 mg/mL. Overall, these results demonstrated that SNAP-SF NPs have great potential to be used as a NO delivery platform for biomedical applications such as tissue engineering and wound healing, where synergistic properties of SF and NO are desired.
Collapse
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sean Hopkins
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
29
|
Hopkins SP, Pant J, Goudie MJ, Nguyen DT, Handa H. Electrospun Bioabsorbable Fibers Containing S-Nitrosoglutathione for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2020; 3:7677-7686. [PMID: 35019507 DOI: 10.1021/acsabm.0c00862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Blended and coaxial fibers comprising polycaprolactone and gelatin, containing the endogenous nitric oxide (NO) donor S-nitrosoglutathione (GSNO), were electrospun. Both types of fibers had their NO release profiles tested under physiological conditions to examine their potential applications as biomedical scaffolds. The coaxial fibers exhibited a prolonged and consistent release of NO over the course of 4 d from the core-encapsulated GSNO, while the blended fibers had a large initial release and leaching of GSNO that was exhausted over a shorter period of time. Bacterial testing of both fiber scaffolds was conducted over a 24 h period against Staphylococcus aureus (S. aureus) and demonstrated a 3-log reduction in bacterial viability. In addition, no cytotoxic response was reported when the material was tested on mouse fibroblast cells in vitro. These fibrous matrices were also shown to support cell growth, attachment, and overall activity of fibroblasts when exposed to NO, especially when GSNO was encapsulated within coaxial fibers. From an application point of view, these NO-releasing fibers offer great potential in tissue engineering and biomedical applications because of the crucial role of NO in regulating a variety of biological processes in humans such as angiogenesis, tissue remodeling, and eliminating foreign pathogens.
Collapse
Affiliation(s)
- Sean P Hopkins
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Jitendra Pant
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Marcus J Goudie
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Dieu Thao Nguyen
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| |
Collapse
|
30
|
Ghosh S, Mukherjee R, Basak D, Haldar J. One-Step Curable, Covalently Immobilized Coating for Clinically Relevant Surfaces That Can Kill Bacteria, Fungi, and Influenza Virus. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27853-27865. [PMID: 32538606 DOI: 10.1021/acsami.9b22610] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microbial attachment and subsequent colonization onto surfaces lead to the spread of deadly community-acquired and hospital-acquired (nosocomial) infections. Cationic polymeric coatings have gained enormous attention to tackle this scenario. However, non-biodegradable cationic polymer coated surfaces suffer from accumulation of microbial debris leading to toxicity and consequent complexities. Synthetic reproducibility and sophisticated coating techniques further limit their application. In this present study, we have developed one-step curable, covalent coatings based on two organo- and water-soluble small molecules, quaternary benzophenone-based ester and quaternary benzophenone-based amide, which can cross-link on surfaces upon UV irradiation. Upon contact, the coating completely killed bacteria and fungi in vitro including drug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and fluconazole-resistant Candida albicans spp. The coating also showed antiviral activity against notorious influenza virus with 100% killing. The coated surfaces also killed stationary-phase cells of MRSA, which cannot be eradicated by traditional antibiotics. Upon hydrolysis, the surfaces switched to an antifouling state displaying significant reduction in bacterial adherence. To the best of our knowledge, this is the first report of an antimicrobial coating which could kill all of bacteria, fungi, and influenza virus. Taken together, the antimicrobial coating reported herein holds great promise to be developed for further application in healthcare settings.
Collapse
Affiliation(s)
- Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Debajyoti Basak
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
31
|
Ahmadabadi HY, Yu K, Kizhakkedathu JN. Surface modification approaches for prevention of implant associated infections. Colloids Surf B Biointerfaces 2020; 193:111116. [PMID: 32447202 DOI: 10.1016/j.colsurfb.2020.111116] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023]
Abstract
In this highlight, we summarize the surface modification approaches for development of infection-resistant coatings for biomedical devices and implants. We discuss the relevant key and highly cited research that have been published over the last five years which report the generation of infection-resistant coatings. An important strategy utilized to prevent bacterial adhesion and biofilm formation on device/implant surface is anti-adhesive protein repellant polymeric coatings based on polymer brushes or highly hydrated hydrogel networks. Further, the attachment of antimicrobial agents that can efficiently kill bacteria on the surface while also prevent bacterial adhesion on the surface is also investigated. Other approaches include the incorporation of antimicrobial agents to the surface coating resulting in a depot of bactericides which can be released on-demand or with time to prevent bacterial colonization on the surface that kill the adhered bacteria on the surface to make surface infection resistant.
Collapse
Affiliation(s)
- Hossein Yazdani Ahmadabadi
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Kai Yu
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
32
|
Devine R, Goudie MJ, Singha P, Schmiedt C, Douglass M, Brisbois EJ, Handa H. Mimicking the Endothelium: Dual Action Heparinized Nitric Oxide Releasing Surface. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20158-20171. [PMID: 32271542 PMCID: PMC7962625 DOI: 10.1021/acsami.9b22277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The management of thrombosis and bacterial infection is critical to ensure the functionality of medical devices. While administration of anticoagulants is the current antithrombotic clinical practice, a variety of complications, such as uncontrolled hemorrhages or heparin-induced thrombocytopenia, can occur. Additionally, infection rates remain a costly and deadly complication associated with use of these medical devices. It has been hypothesized that if a synthetic surface could mimic the biochemical mechanisms of the endothelium of blood vessels, thrombosis could be reduced, anticoagulant use could be avoided, and infection could be prevented. Herein, the interfacial biochemical effects of the endothelium were mimicked by altering the surface of medical grade silicone rubber (SR). Surface modification was accomplished via heparin surface immobilization (Hep) and the inclusion of a nitric oxide (NO) donor into the SR polymeric matrix to achieve synergistic effects (Hep-NO-SR). An in vitro bacteria adhesion study revealed that Hep-NO-SR exhibited a 99.46 ± 0.17% reduction in viable bacteria adhesion compared to SR. An in vitro platelet study revealed Hep-NO-SR reduced platelet adhesion by 84.12 ± 6.19% compared to SR, while not generating a cytotoxic response against fibroblast cells. In a 4 h extracorporeal circuit model without systemic anticoagulation, all Hep-NO-SR samples were able to maintain baseline platelet count and device patency; whereas 66% of SR samples clotted within the first 2 h of study. Results indicate that Hep-NO-SR creates a more hemocompatible and antibacterial surface by mimicking two key biochemical functions of the native endothelium.
Collapse
Affiliation(s)
- Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA USA
| | - Marcus J. Goudie
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA USA
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA USA
| | - Chad Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA USA
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA USA
| | - Elizabeth J. Brisbois
- Department of Materials Science & Engineering, College of Engineering and Computer Science, University of Central Florida, Orlando, FL USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA USA
- Corresponding author Dr. Hitesh Handa, College of Engineering, University of Georgia, 220 Riverbend Road, Athens, GA 30602, Telephone: (706) 542-8109,
| |
Collapse
|
33
|
Kabirian F, Brouki Milan P, Zamanian A, Heying R, Mozafari M. Additively manufactured small-diameter vascular grafts with improved tissue healing using a novel SNAP impregnation method. J Biomed Mater Res B Appl Biomater 2020; 108:1322-1331. [PMID: 31469517 DOI: 10.1002/jbm.b.34481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
The vascular network has a complex architecture such as branches, curvatures, and bifurcations which is even more complicated in view of individual patients' defect anatomy requiring custom-specifically designed vascular implants. In this work, 3D printing is used to overcome these challenges and a new shorter impregnation method was developed to incorporate S-nitroso-N-acetyl-d-penicillamine (SNAP) as a nitric oxide (NO) donor to printed grafts. The 3D-printed small-diameter vascular grafts (SDVGs) were impregnated with SNAP solution during SNAP synthesis (S1) or with SNAP dissolved in methanol (S2). The advantage of the newly developed S1 impregnation method is the elimination of the synthesis step by direct impregnation inside the S1 solution. Scanning electron microscopy imaging reveals the successful crystal formation in both methods. The results demonstrate that both S1- and S2-impregnated grafts, after covering with polycaprolactone topcoat, can release NO in a controlled manner and in the physiological range (0.5-4.0 × 10-10 mol cm-2 min-1 ) over a 15 days period. The created grafts with a NO-releasing surface have also shown bactericidal effect while the healing properties of the implant were improved by promoting migration and proliferation of endothelial cells (ECs). These results suggest that incorporation of 3D printing technology with the newly developed S1 impregnation of SNAP can optimize and shorten the manufacturing process of the next generation of patient-based antibacterial SDVGs with a higher attraction for ECs.
Collapse
Affiliation(s)
- Fatemeh Kabirian
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Peiman Brouki Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zamanian
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Ruth Heying
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Giglio LP, Picheth GF, Løvschall KB, Zelikin AN, de Oliveira MG. S-nitrosothiol-terminated poly(vinyl alcohol): Nitric oxide release and skin blood flow response. Nitric Oxide 2020; 98:41-49. [DOI: 10.1016/j.niox.2020.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
|
35
|
Islam M, Durie I, Ramadan R, Purchase D, Marvasi M. Exploitation of nitric oxide donors to control bacterial adhesion on ready-to-eat vegetables and dispersal of pathogenic biofilm from polypropylene. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3078-3086. [PMID: 32077490 DOI: 10.1002/jsfa.10340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Nitric oxide (NO) donors have been used to control biofilm formation. Nitric oxide can be delivered in situ using organic carriers and acts as a signaling molecule. Cells exposed to NO shift from biofilm to the planktonic state and are better exposed to the action of disinfectants. In this study, we investigate the capability of the NO donors molsidomine, MAHAMA NONOate, NO-aspirin and diethylamine NONOate to act as anti-adhesion agents on ready-to-eat vegetables, as well as dispersants for a number of pathogenic biofilms on plastic. RESULTS Our results showed that 10 pM molsidomine reduced the attachment of Salmonella enterica sv Typhimurium 14 028 to pea shoots and coriander leaves of about 0.5 Log(CFU/leaf) when compared with untreated control. The association of 10 pmol L-1 molsidomine with 0.006% H2 O2 showed a synergistic effect, leading to a significant reduction in cell collection on the surface of the vegetable of about 1 Log(CFU/leaf). Similar results were obtained for MAHMA NONOate. We also showed that the association of diethylamine NONOate at 10 mmol L-1 and 10 pmol L-1 with the quaternary ammonium compound diquat bromide improved the effectiveness of biofilm dispersal by 50% when compared with the donor alone. CONCLUSIONS Our findings reveal a dual role of NO compounds in biofilm control. Molsidomine, MAHMA NONOate, and diethylamine NONOate are good candidates for either preventing biofilm formation or dispersing biofilm, especially when used in conjunction with disinfectants. Nitric oxide compounds have the potential to be developed into a toolkit for pro-active practices for good agricultural practices (GAPs), hazard analysis and critical control points (HACCP), and cleaning-in-place (CIP) protocols in industrial settings where washing is routinely applied. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohammad Islam
- Department of Natural Sciences, Middlesex University London, London, UK
| | - Ian Durie
- Soil and Water Department, University of Florida, Gainesville, FL, USA
| | - Reham Ramadan
- Department of Natural Sciences, Middlesex University London, London, UK
| | - Diane Purchase
- Department of Natural Sciences, Middlesex University London, London, UK
| | | |
Collapse
|
36
|
Pant J, Mondal A, Manuel J, Singha P, Mancha J, Handa H. H 2S-Releasing Composite: a Gasotransmitter Platform for Potential Biomedical Applications. ACS Biomater Sci Eng 2020; 6:2062-2071. [PMID: 33455343 DOI: 10.1021/acsbiomaterials.0c00146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter in the human body involved in various physiological functions including cytoprotection, maintaining homeostasis, and regulation of organ development. Therefore, H2S-releasing polymers that can imitate endogenous H2S release can offer great therapeutic potential. Despite decades of research, the use of H2S donors in medical device applications is mostly unexplored largely due to the challenge of the steady H2S release from a suitable polymeric platform that does not compromise the normal cellular functions of the host. In this work, an exogenous H2S release system was developed by integrating sodium sulfide (Na2S), a common H2S donor, into a medical-grade thermoplastic silicone-polycarbonate-urethane polymer, Carbosil 20 80A (hereon as Carbosil), via a facile solvent evaporation technique. The spatial distribution and nature of Na2S in Carbosil were characterized through X-ray diffraction (XRD) spectroscopy and field emission scanning electron microscopy (FESEM) with energy-dispersive spectroscopy (EDS), indicating an amorphous phase shift upon incorporating Na2S in Carbosil. The composite, Na2S-Carbosil, is responsive in physiological conditions, resulting in sustained H2S release measured for 3 h. In vitro cellular responses of 3T3 mouse fibroblasts, human lung epithelial (HLE), and primary human umbilical vein endothelial cells (HUVEC) were investigated. Fibroblast cells showed cell proliferation in 24 h and complete cell migration in 42 h in vitro. The Na2S-Carbosil composites were cytocompatible toward HUVEC and HLE cells. This study provided important in vitro proof of concept that warrants potential use of these H2S-releasing platforms in engineering biomedical devices, tissue engineering, and drug delivery applications.
Collapse
Affiliation(s)
- Jitendra Pant
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602, United States
| | - James Manuel
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602, United States
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602, United States
| | - Juhi Mancha
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
37
|
Koufakis E, Manouras T, Anastasiadis SH, Vamvakaki M. Film Properties and Antimicrobial Efficacy of Quaternized PDMAEMA Brushes: Short vs Long Alkyl Chain Length. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3482-3493. [PMID: 32168453 DOI: 10.1021/acs.langmuir.9b03266] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quaternized poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes bearing quaternary ammonium groups of different alkyl chain lengths (ACLs) were prepared and assessed as biocidal coatings. For the synthesis of the antimicrobial brushes, first well-defined PDMAEMA chains were grown by surface-initiated atom transfer radical polymerization on glass and silicon substrates. Next, the tertiary amine groups of the polymer brushes were modified via a quaternization reaction, using alkyl halides, to obtain the cationic polymers. The polymer films were characterized by Fourier-transform infrared spectroscopy, ellipsometry, atomic force microscopy, and water contact angle measurements. The effect of the ACL of the quaternary ammonium groups on the physicochemical properties of the films as well as the contact killing efficiency of the surfaces against representative Gram-positive and Gram-negative bacteria was investigated. A hydrophilic to hydrophobic transition of the surfaces and a significant decrease of the degree of quaternization of the DMAEMA moieties was found upon increasing the ACL of the quaternization agent above six carbon atoms, allowing the wettability, the thickness, and the pH-response of the brushes to be tuned via a facile postpolymerization, quaternization reaction. At the same time, antimicrobial tests revealed that the hydrophilic polymer brushes exhibited enhanced bactericidal activity against Escherichia coli and Bacillus cereus, whereas the hydrophobic surfaces showed a significant deterioration of the in vitro bactericidal performance. Our results elucidate the antimicrobial action of quaternized polymer brushes, dictating the appropriate choice of the ACL of the quaternization agent for the development of coatings that effectively inhibit biofilm formation on surfaces.
Collapse
Affiliation(s)
- Eleftherios Koufakis
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Theodore Manouras
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
| | - Spiros H Anastasiadis
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
- Department of Chemistry, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Maria Vamvakaki
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Crete, Greece
| |
Collapse
|
38
|
Free radical-releasing systems for targeting biofilms. J Control Release 2020; 322:248-273. [PMID: 32243972 DOI: 10.1016/j.jconrel.2020.03.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/05/2023]
Abstract
The recent rise in antibiotic drug resistance and biofilm formation by microorganisms has driven scientists from different fields to develop newer strategies to target microorganisms responsible for infectious diseases. There is a growing interest in free radicals as therapeutic agents for antimicrobial applications. However, limitations such as short half-life has hindered their usage. Currently, several research groups are exploring various biomaterials that can prolong the half-life, increase storage duration and control the release of the therapeutic ranges of free radicals required for different applications, including biofilm eradication. This review paper initially provides a background to, and theoretical knowledge on, free radicals; and then proceeds to review studies that have employed various free radical-incorporated drug delivery systems as an approach to target biofilm formation and eradication. Some of the free radical releasing systems highlighted include polymers, nanoparticles and hydrogels, with a focus on biofilm eradication, where they impact significantly. The various challenges associated with their application are also discussed. Further, the review identifies future research and strategies that can potentiate the application of free radical-incorporated drug delivery systems for inhibiting biofilm formation and eradicating formed biofilms.
Collapse
|
39
|
Optimization of Antibacterial Properties of “Hybrid” Metal-Sputtered Superhydrophobic Surfaces. COATINGS 2019. [DOI: 10.3390/coatings10010025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial attachment and colonization to hygiene sensitive surfaces, both public and nosocomial, as well as in food industry areas, poses a serious problem to human healthcare. Several infection incidents are reported, while bacterial resistance to antibiotics is increasing. Recently, novel techniques for the design of antibacterial surfaces to limit bacterial spreading have emerged, including bifunctional antibacterial surfaces with antifouling and bactericidal action. In this context, we have recently developed smart, universal, metal-sputtered superhydrophobic surfaces, demonstrating both bacterial repulsion and killing efficacy. Herein, we present the optimization process that led to the realization of these “hybrid” antibacterial surfaces. To this end, two bactericidal agents, silver and copper, were tested for their efficiency against Gram-negative bacteria, with copper showing a stronger bactericidal action. In addition, between two low surface energy coatings, the fluorinated-alkyl self-assembled chlorosilane layer from perfluorinated octyltrichlorosilane (pFOTS) solution and the fluorocarbon layer from octafluorocyclobutane (C4F8) plasma were both approved for their anti-adhesive properties after immersion in bacterial solution. However, the latter was found to be more efficient when engrafted with the bactericidal agent in shielding its killing performance. Furthermore, the thickness of the plasma-deposited fluorocarbon layer was optimized, in order to simultaneously retain both the superhydrophobicity of the surface and its long-term bactericidal activity.
Collapse
|
40
|
Rong F, Tang Y, Wang T, Feng T, Song J, Li P, Huang W. Nitric Oxide-Releasing Polymeric Materials for Antimicrobial Applications: A Review. Antioxidants (Basel) 2019; 8:E556. [PMID: 31731704 PMCID: PMC6912614 DOI: 10.3390/antiox8110556] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Polymeric materials releasing nitric oxide have attracted significant attention for therapeutic use in recent years. As one of the gaseous signaling agents in eukaryotic cells, endogenously generated nitric oxide (NO) is also capable of regulating the behavior of bacteria as well as biofilm formation in many metabolic pathways. To overcome the drawbacks caused by the radical nature of NO, synthetic or natural polymers bearing NO releasing moiety have been prepared as nano-sized materials, coatings, and hydrogels. To successfully design these materials, the amount of NO released within a certain duration, the targeted pathogens and the trigger mechanisms upon external stimulation with light, temperature, and chemicals should be taken into consideration. Meanwhile, NO donors like S-nitrosothiols (RSNOs) and N-diazeniumdiolates (NONOates) have been widely utilized for developing antimicrobial polymeric agents through polymer-NO donor conjugation or physical encapsulation. In addition, antimicrobial materials with visible light responsive NO donor are also reported as strong and physiological friendly tools for rapid bacterial clearance. This review highlights approaches to delivery NO from different types of polymeric materials for combating diseases caused by pathogenic bacteria, which hopefully can inspire researchers facing common challenges in the coming 'post-antibiotic' era.
Collapse
Affiliation(s)
- Fan Rong
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Yizhang Tang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Tengjiao Wang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Tao Feng
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Jiang Song
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- School of Electronics & Information, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Peng Li
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Wei Huang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| |
Collapse
|
41
|
Chug MK, Feit C, Brisbois EJ. Increasing the Lifetime of Insulin Cannula with Antifouling and Nitric Oxide Releasing Properties. ACS APPLIED BIO MATERIALS 2019; 2:5965-5975. [DOI: 10.1021/acsabm.9b00908] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Manjyot Kaur Chug
- Department of Materials Science & Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Corbin Feit
- Department of Materials Science & Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Elizabeth J. Brisbois
- Department of Materials Science & Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
42
|
Yañez-Macías R, Muñoz-Bonilla A, De Jesús-Tellez MA, Maldonado-Textle H, Guerrero-Sánchez C, Schubert US, Guerrero-Santos R. Combinations of Antimicrobial Polymers with Nanomaterials and Bioactives to Improve Biocidal Therapies. Polymers (Basel) 2019; 11:E1789. [PMID: 31683853 PMCID: PMC6918310 DOI: 10.3390/polym11111789] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
The rise of antibiotic-resistant microorganisms has become a critical issue in recent years and has promoted substantial research efforts directed to the development of more effective antimicrobial therapies utilizing different bactericidal mechanisms to neutralize infectious diseases. Modern approaches employ at least two mixed bioactive agents to enhance bactericidal effects. However, the combinations of drugs may not always show a synergistic effect, and further, could also produce adverse effects or stimulate negative outcomes. Therefore, investigations providing insights into the effective utilization of combinations of biocidal agents are of great interest. Sometimes, combination therapy is needed to avoid resistance development in difficult-to-treat infections or biofilm-associated infections treated with common biocides. Thus, this contribution reviews the literature reports discussing the usage of antimicrobial polymers along with nanomaterials or other inhibitors for the development of more potent biocidal therapies.
Collapse
Affiliation(s)
- Roberto Yañez-Macías
- Centro de Investigación en Química Aplicada (CIQA), Boulevard Enrique Reyna No. 140, 25294 Saltillo, Mexico.
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Marco A De Jesús-Tellez
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) Unidad Mérida, A.P. 73, Cordemex, 97310 Mérida, México.
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, D-07743 Jena, Germany.
| | - Hortensia Maldonado-Textle
- Centro de Investigación en Química Aplicada (CIQA), Boulevard Enrique Reyna No. 140, 25294 Saltillo, Mexico.
| | - Carlos Guerrero-Sánchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, D-07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, D-07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.
| | - Ramiro Guerrero-Santos
- Centro de Investigación en Química Aplicada (CIQA), Boulevard Enrique Reyna No. 140, 25294 Saltillo, Mexico.
| |
Collapse
|
43
|
Sadrearhami Z, Namivandi-Zangeneh R, Price E, Krasowska M, Al-Bataineh SA, Whittle J, Wong EHH, Blencowe A, Boyer C. S-Nitrosothiol Plasma-Modified Surfaces for the Prevention of Bacterial Biofilm Formation. ACS Biomater Sci Eng 2019; 5:5881-5887. [DOI: 10.1021/acsbiomaterials.9b01063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zahra Sadrearhami
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Emily Price
- Future Industries Institute, The University of South Australia, Mawson Lakes, South Australia 5095, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Marta Krasowska
- Future Industries Institute, The University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Sameer A. Al-Bataineh
- Future Industries Institute, The University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Jason Whittle
- Future Industries Institute, The University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Anton Blencowe
- Future Industries Institute, The University of South Australia, Mawson Lakes, South Australia 5095, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| |
Collapse
|
44
|
Feit CG, Chug MK, Brisbois EJ. Development of S-Nitroso-N-Acetylpenicillamine Impregnated Medical Grade Polyvinyl Chloride for Antimicrobial Medical Device Interfaces. ACS APPLIED BIO MATERIALS 2019; 2:4335-4345. [DOI: 10.1021/acsabm.9b00593] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Corbin G. Feit
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Manjyot Kaur Chug
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Elizabeth J. Brisbois
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
45
|
Nitric oxide releasing two-part creams containing S-nitrosoglutathione and zinc oxide for potential topical antimicrobial applications. Nitric Oxide 2019; 90:1-9. [DOI: 10.1016/j.niox.2019.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/19/2019] [Accepted: 05/28/2019] [Indexed: 12/23/2022]
|
46
|
Nitric oxide releasing chitosan-poly (vinyl alcohol) hydrogel promotes angiogenesis in chick embryo model. Int J Biol Macromol 2019; 136:901-910. [DOI: 10.1016/j.ijbiomac.2019.06.136] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/09/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
|
47
|
Pant J, Pedaparthi S, Hopkins SP, Goudie MJ, Douglass ME, Handa H. Antibacterial and Cellular Response Toward a Gasotransmitter-Based Hybrid Wound Dressing. ACS Biomater Sci Eng 2019; 5:4002-4012. [DOI: 10.1021/acsbiomaterials.9b00737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jitendra Pant
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Shriya Pedaparthi
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sean P. Hopkins
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Marcus J. Goudie
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Megan E. Douglass
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
48
|
Kabirian F, Brouki Milan P, Zamanian A, Heying R, Mozafari M. Nitric oxide-releasing vascular grafts: A therapeutic strategy to promote angiogenic activity and endothelium regeneration. Acta Biomater 2019; 92:82-91. [PMID: 31059835 DOI: 10.1016/j.actbio.2019.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
Small-diameter vascular grafts (SDVGs) are associated with a high incidence of failure due to infection and obstruction. Although several vascular grafts are commercially available, specific anatomical differences of defect sites require patient-based design and fabrication. Design and fabrication of such custom-tailored grafts are possible with 3d-printing technology. The aim of this study is to develop 3d-printed SDVGs with a nitric oxide (NO)-releasing coating to improve the success rate of implantation. The SDVGs were printed from polylactic acid and coated with blending of 10 wt% S-nitroso-N-acetyl-D-penicillamine into the polymeric substrate consisting of poly (ethylene glycol) and polycaprolactone. Our results show that NO is released in the physiological range (0.5-4 × 10-10 mol·cm-2·min-1) for 14 days and NO-releasing coating showed significant antibacterial potential against Gram-positive and Gram-negative strains. It was shown that both NO-releasing and control grafts are biocompatible in-vitro and in-vivo. Interestingly, the NO-releasing SDVGs dramatically enhanced ECs proliferation and significantly enhanced ECs migration in-vitro compared to control grafts. In addition, the NO-releasing SDVGs showed angiogenic potential in-vivo which can further prove the results of our in-vitro study. These findings are expected to facilitate tissue regeneration and integration of custom-made vascular implants with enhanced clinical success. STATEMENT OF SIGNIFICANCE: A series of 3d-printed small-diameter vascular grafts (SDVGs, <6 mm) with controlled release of nitric oxide (NO) were prepared to combine the advantages of 3D printing technology and NO-releasing systems. The resulting NO-releasing grafts were promisingly showing sustained NO release in the physiological range over a two weeks period. In addition to the evaluation of endothelial cell migration in-vitro, we implanted for the first time the NO-releasing vascular grafts in a chick chorioallantoic membrane (CAM) to investigate the effect of the prepared grafts on the angiogenesis in-vivo. The fabricated grafts also exhibited bactericidal properties which prevent the formation of a biofilm layer and can thereby enhance the chance of endothelialization on the surface. Taken together, the innovative combination of rapid and highly accurate 3d-printing technology as a patient-specific fabrication method with NO-releasing coating represents a promising approach to develop bactericidal SDVGs with improved endothelialization.
Collapse
Affiliation(s)
- Fatemeh Kabirian
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Zamanian
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Ruth Heying
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
49
|
Singha P, Workman CD, Pant J, Hopkins SP, Handa H. Zinc-oxide nanoparticles act catalytically and synergistically with nitric oxide donors to enhance antimicrobial efficacy. J Biomed Mater Res A 2019; 107:1425-1433. [PMID: 30737882 PMCID: PMC6527449 DOI: 10.1002/jbm.a.36657] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/26/2018] [Accepted: 01/29/2019] [Indexed: 01/08/2023]
Abstract
The development of infection-resistant materials is of substantial importance as seen with an increase in antibiotic resistance. In this project, the nitric oxide (NO)-releasing polymer has an added topcoat of zinc oxide nanoparticle (ZnO-NP) to improve NO-release and match the endogenous NO flux (0.5-4 × 10-10 mol cm-2 min-1 ). The ZnO-NP is incorporated to act as a catalyst and provide the additional benefit of acting synergistically with NO as an antimicrobial agent. The ZnO-NP topcoat is applied on a polycarbonate-based polyurethane (CarboSil) that contains blended NO donor, S-nitroso-N-acetylpenicillamine (SNAP). This sample, SNAP-ZnO, continuously sustained NO release above 0.5 × 10-10 mol cm-2 min-1 for 14 days while samples containing only SNAP dropped below physiological levels within 24 h. The ZnO-NP topcoat improved NO release and reduced the amount of SNAP leached by 55% over a 7-day period. ICP-MS data observed negligible Zn ion release into the environment, suggesting longevity of the catalyst within the material. Compared to samples with no NO-release, the SNAP-ZnO films had a 99.03% killing efficacy against Staphylococcus aureus and 87.62% killing efficacy against Pseudomonas aeruginosa. A cell cytotoxicity study using mouse fibroblast 3T3 cells also noted no significant difference in viability between the controls and the SNAP-ZnO material, indicating no toxicity toward mammalian cells. The studies indicate that the synergy of combining a metal ion catalyst with a NO-releasing polymer significantly improved NO-release kinetics and antimicrobial activity for device coating applications. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 00A: 000-000, 2019.
Collapse
Affiliation(s)
| | | | - Jitendra Pant
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA USA
| | - Sean P. Hopkins
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA USA
| |
Collapse
|
50
|
Antibacterial activity of [1Fe-2S]- and [2Fe-2S]-nitrosyl complexes as nitric oxide donors. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2514-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|