1
|
Li R, Liu J, Li L, Luo G, Yuan X, Shen S, Shi Y, Wu J, Yan B, Yang L. Porcine decellularized nerve matrix hydrogel attenuates neuroinflammation after peripheral nerve injury by inhibiting the TLR4/MyD88/NF-κB axis. Neural Regen Res 2026; 21:1222-1235. [PMID: 39589179 DOI: 10.4103/nrr.nrr-d-24-00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/19/2024] [Indexed: 11/27/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202603000-00045/figure1/v/2025-06-16T082406Z/r/image-tiff Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge. Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological properties and tissue specificity, highlighting its potential as a biomedical material for the repair of severe peripheral nerve injury; however, its role in modulating neuroinflammation post-peripheral nerve injury remains unknown. Here, we aimed to characterize the anti-inflammatory properties of porcine decellularized nerve matrix hydrogel and their underlying molecular mechanisms. Using peripheral nerve injury model rats treated with porcine decellularized nerve matrix hydrogel, we evaluated structural and functional recovery, macrophage phenotype alteration, specific cytokine expression, and changes in related signaling molecules in vivo . Similar parameters were evaluated in vitro using monocyte/macrophage cell lines stimulated with lipopolysaccharide and cultured on porcine decellularized nerve matrix hydrogel-coated plates in complete medium. These comprehensive analyses revealed that porcine decellularized nerve matrix hydrogel attenuated the activation of excessive inflammation at the early stage of peripheral nerve injury and increased the proportion of the M2 subtype in monocytes/macrophages. Additionally, porcine decellularized nerve matrix hydrogel negatively regulated the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB axis both in vivo and in vitro . Our findings suggest that the efficacious anti-inflammatory properties of porcine decellularized nerve matrix hydrogel induce M2 macrophage polarization via suppression of the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB pathway, providing new insights into the therapeutic mechanism of porcine decellularized nerve matrix hydrogel in peripheral nerve injury.
Collapse
Affiliation(s)
- Rui Li
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy, Shenzhen Second People's Hospital (the First Affiliated Hospital, Shenzhen University), Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Jianquan Liu
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy, Shenzhen Second People's Hospital (the First Affiliated Hospital, Shenzhen University), Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Liuxun Li
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy, Shenzhen Second People's Hospital (the First Affiliated Hospital, Shenzhen University), Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Guotian Luo
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy, Shenzhen Second People's Hospital (the First Affiliated Hospital, Shenzhen University), Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Xinrong Yuan
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy, Shenzhen Second People's Hospital (the First Affiliated Hospital, Shenzhen University), Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Shichao Shen
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy, Shenzhen Second People's Hospital (the First Affiliated Hospital, Shenzhen University), Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Yongpeng Shi
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy, Shenzhen Second People's Hospital (the First Affiliated Hospital, Shenzhen University), Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Jianlong Wu
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy, Shenzhen Second People's Hospital (the First Affiliated Hospital, Shenzhen University), Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Bin Yan
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy, Shenzhen Second People's Hospital (the First Affiliated Hospital, Shenzhen University), Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Lei Yang
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy, Shenzhen Second People's Hospital (the First Affiliated Hospital, Shenzhen University), Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Gulberk Ozcebe S, Tristan M, Zorlutuna P. Adult human heart extracellular matrix improves human iPSC-CM function via mitochondrial and metabolic maturation. Stem Cells 2025; 43:sxaf005. [PMID: 39862185 PMCID: PMC12080356 DOI: 10.1093/stmcls/sxaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Myocardial infarction can lead to the loss of billions of cardiomyocytes, and while cell-based therapies are an option, immature nature of in vitro-generated human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) is a roadblock to their development. Existing iPSC differentiation protocols don't go beyond producing fetal iCMs. Recently, adult extracellular matrix (ECM) was shown to retain tissue memory and have some success driving tissue-specific differentiation in unspecified cells in various organ systems. Therefore, we focused on investigating the effect of adult human heart-derived extracellular matrix (ECM) on iPSC cardiac differentiation and subsequent maturation. By preconditioning iPSCs with ECM, we tested whether creating cardiac environments around iPSCs would drive iPSCs toward cardiac fate and which ECM components might be involved. We report novel high- and low-abundance proteomes of young, adult, and aged human hearts, with relative abundances to total proteins and each other. We found that adult ECM had extracellular galactin-1, fibronectin, fibrillins, and perlecan (HSPG2) which are implicated in normal heart development. We also showed preconditioning iPSCs with adult cardiac ECM resulted in enhanced cardiac differentiation, yielding iCMs with higher functional maturity, more developed mitochondrial network and coverage, enhanced metabolic maturity, and shift towards more energetic profile. These findings demonstrate the potential use of cardiac ECM in iCM maturation and as a promising strategy for developing iCM-based therapies, disease modeling, and drug screening studies. Upon manipulating ECM, we concluded that the beneficial effects observed were not solely due to the ECM proteins, which might be related to the decorative units attached.
Collapse
Affiliation(s)
- S Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, 46556 IN, United States
- National Institute of Environmental Health Sciences (NIEHS), Durham, 27709 NC, United States
| | - Mateo Tristan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, 46556 IN, United States
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, 46556 IN, United States
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, 46556 IN, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, 46556 IN, United States
| |
Collapse
|
3
|
Buckenmeyer MJ, Brooks EA, Taylor MS, Orenuga IK, Yang L, Holewinski RJ, Meyer TJ, Galloux M, Garmendia-Cedillos M, Pohida TJ, Andresson T, Croix B, Wolf MT. A 3D Self-Assembly Platform Integrating Decellularized Matrix Recapitulates In Vivo Tumor Phenotypes and Heterogeneity. Cancer Res 2025; 85:1577-1595. [PMID: 39888317 PMCID: PMC12048290 DOI: 10.1158/0008-5472.can-24-1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/17/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Three-dimensional (3D) in vitro cell culture models are invaluable tools for investigating the tumor microenvironment. However, analyzing the impact of critical stromal elements, such as extracellular matrix (ECM), remains a challenge. In this study, we developed a hydrogel-free self-assembly platform to establish ECM-rich 3D "MatriSpheres" to deconvolute cancer cell-ECM interactions. Mouse and human colorectal cancer MatriSpheres actively incorporated microgram quantities of decellularized small intestine submucosa ECM, which proteomically mimicked colorectal cancer tumor ECM compared with traditional formulations like Matrigel. Solubilized ECM, at subgelation concentrations, was organized by colorectal cancer cells into intercellular stroma-like regions within 5 days, displaying morphologic similarity to colorectal cancer clinical pathology. MatriSpheres featured ECM-dependent transcriptional and cytokine profiles associated with malignancy, lipid metabolism, and immunoregulation. Model benchmarking with single-cell RNA sequencing demonstrated that MatriSpheres enhanced correlation with in vivo tumor cells over traditional ECM-poor spheroids. This facile approach enables tumor-specific tissue morphogenesis, promoting cell-ECM communication to improve fidelity for disease modeling applications. Significance: MatriSpheres provide a hydrogel-free 3D platform for decoupling the influence of heterogeneous extracellular matrix components on tumor biology and can broadly facilitate high-throughput drug discovery and screening applications. See related commentary by Ernst and De Wever, p. 1568.
Collapse
Affiliation(s)
- Michael J. Buckenmeyer
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Elizabeth A. Brooks
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Madison S. Taylor
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ireolu K. Orenuga
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ronald J. Holewinski
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mélissa Galloux
- Independent Bioinformatician, Marseille, Provence-Alpes-Côte d’Azur, France
| | - Marcial Garmendia-Cedillos
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas J. Pohida
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Brad Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Matthew T. Wolf
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
4
|
Chen Y, Ke Z, Wang H, Zhang R, Zhou Y, Marsili E, Mei J. The environmental impact of extracellular matrix preparation. FEBS J 2025; 292:2208-2218. [PMID: 39756012 DOI: 10.1111/febs.17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/26/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
The extracellular matrix (ECM) is a network of proteins and other molecules that encase and support cells and tissues in the body. As clinical and biotechnological uses of ECM are expanding, it is essential to assess the environmental impact associated with its production. Due to high levels of customization, various laboratories employ distinct methods; therefore, this study evaluates three common protocols. Life cycle assessment (LCA) methodology has been developed to evaluate the environmental impacts of products produced through diverse processes. Despite its widespread application in the pharmaceutical industry, LCA has seldom been utilized to estimate the environmental effects of laboratory protocols. This Viewpoint applies LCA to assess the functionality and environmental impacts of ECM produced via P1, P2, and P3. The results of this assessment indicate that the protocol with the highest impact generates approximately 43 times more CO2-equivalent emissions (CO2 eq) than that with the lowest impact, while the ECM produced using the least impactful protocol demonstrates the highest biocompatibility. Additional environmental indicators such as eutrophication, photochemical oxidation, and acidification also vary among the tested protocols. This work underscores the need to factor environmental impact in the development of novel biomedical materials.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China
| | - Zihao Ke
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo university, China
| | - Haiyang Wang
- School of Basic Medical Science, Wenzhou Medical University, China
| | - Rui Zhang
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China
| | - Yingjie Zhou
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China
| | - Enrico Marsili
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo, China
| | - Jin Mei
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China
- School of Basic Medical Science, Wenzhou Medical University, China
| |
Collapse
|
5
|
Ibne Mahbub MS, Park M, Park SS, Won MJ, Lee BR, Kim HD, Lee BT. dECM and β-TCP incorporation effect on the highly porous injectable bio-glass bead for enhanced bone regeneration: In-vitro, in-vivo insights. Int J Biol Macromol 2025; 305:141040. [PMID: 39978514 DOI: 10.1016/j.ijbiomac.2025.141040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
This study presents the development of an innovative injectable bioactive material, BG-ETa, for bone regeneration. Porcine-derived dermal extracellular matrix (dECM) was decellularized and combined with beta-tri calcium phosphate (β-TCP) and porous bio-glass (BG) beads, followed by freeze-drying to produce surface-modified BG beads. Incorporating sodium alginate (SA) enhanced injectability of the system, enabling effective delivery to defect sites. Bio-glass promotes osteogenic support and osteogenesis. dECM, rich in essential proteins and growth factors, mimics the bone microenvironment to improve cell adhesion, proliferation, and differentiation. The bioactive dECM/β-TCP coating on the bead surface offers neovascularization and early mineralization properties which ultimately facilitates new bone formation. In vitro assays demonstrated BG-ETa's biocompatibility, antimicrobial properties, and potential for osteogenic differentiation, with significant results in alkaline phosphatase (ALP) activity, alizarin red staining (ARS), immunocytochemistry (ICC), and gene expression through real-time PCR. In vivo implantation in rabbit femoral defects revealed promising degradation and significant bone regeneration after 4 and 8 weeks, as observed by histological analysis and micro-CT imaging. This injectable BG-ETa system holds promise as an effective alternative to traditional grafts, providing bioactive environment for enhanced bone regeneration with the potential to overcome limitations associated with autologous or allogeneic grafting.
Collapse
Affiliation(s)
- Md Sowaib Ibne Mahbub
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Mi Jin Won
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | | | - Hai-Doo Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
6
|
Suzuki M, Kimura T, Hashimoto Y, Kishida A. Application of decellularized tissue for soft-hard interregional regeneration. Front Bioeng Biotechnol 2025; 13:1394714. [PMID: 40309504 PMCID: PMC12040882 DOI: 10.3389/fbioe.2025.1394714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
Decellularized tissue refers to extracellular matrix (ECM) derived from living tissue by removing the cellular components and is used for tissue regeneration. Various decellularized tissue sheets and powders, such as the dermis, urinary bladder matrix, and small intestinal submucosa, have been clinically used as covering and prosthetic materials. Moreover, there is growing interest in the use of decellularized tissue for soft-hard interregional tissue regeneration, including in the ligament-bone, tendon-bone, and periodontal ligament-bone interfaces. The focus in these applications lies in the mechanical properties of the decellularized tissue. Decellularized ligaments and tendons have been developed using various decellularization methods, with a focus on maintaining their shape and mechanical properties, and have been applied orthotopically or ectopically to ligaments and tendons. In the ligament-bone interface, it is suggested that decellularized ligament and tendon are regenerated through the migration and rearrangement of host cells, which is referred to as "in situ tissue regeneration." It is also proposed that decellularized tissue can be used to prepare the complex structure of soft-hard interregional tissue, which consists of an ECM and cell populations with gradual change. In this case, the decellularized soft tissues of ligaments, tendons, pericardium, and others are fabricated and modified with hard tissue components to mimic the gradual structure of soft-hard interregional tissue. In this review, we present a detailed discussion of the regeneration of soft-hard interregional tissue using decellularized tissue.
Collapse
Affiliation(s)
- Mika Suzuki
- Laboratory for Biomaterials and Bioengineering, Institute of Science Tokyo, Tokyo, Japan
| | - Tsuyoshi Kimura
- Laboratory for Biomaterials and Bioengineering, Institute of Science Tokyo, Tokyo, Japan
- Department of Biomedical Engineering, Toyo University, Saitama, Japan
| | - Yoshihide Hashimoto
- Laboratory for Biomaterials and Bioengineering, Institute of Science Tokyo, Tokyo, Japan
- Joining and Welding Research Institute, Osaka University, Osaka, Japan
| | - Akio Kishida
- Laboratory for Biomaterials and Bioengineering, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Luevano-Colmenero GH, Rocha-Juache R, Vargas-Mancilla J, Flores-Moreno JM, Rojo FJ, Guinea GV, Mendoza-Novelo B. Pericardial bioscaffold coated with ECM gels and urothelial cells for the repair of a rabbit urinary bladder defect. Biomater Sci 2025; 13:1671-1682. [PMID: 39686765 DOI: 10.1039/d4bm00846d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Repair of damaged or faulty complex modular organs such as the urinary bladder is a current clinical challenge. The design of constructs for reconstructive urological surgery can draw advantage from the bioactivity of natural extracellular matrix (ECM) bioscaffolds, as well as the activity provided by cells seeded into constructs. Considering these benefits, this work compares the performance of pericardial ECM bioscaffolds and constructs seeded with gel-supported urothelial cells in the repair of urinary bladder defects in rabbits. The bioscaffolds considered in this study are of porcine (pM) and bovine (bM) origin and exhibited a residual composition that confers bioactivity in mesh presentation. Coating an ECM gel on the bioscaffolds promoted the adhesion and viability of urothelial cells. Repairing a full-thickness urinary bladder defect in a rabbit model with the bioscaffolds and constructs resulted in the integration with the host bladder; meanwhile, bladder volumetric capacity was promoted using bM and constructs. Although no contribution of gel/cell seeding to the failure of mechanical properties of the urinary neobladder was observed, this seeding technique is suitable for integration with different strategies to engineer constructs for urinary bladder reconstructive surgery.
Collapse
Affiliation(s)
- Guadalupe H Luevano-Colmenero
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del bosque 103, 37150, León, Gto, Mexico.
- Unidad Profesional Interdisciplinaria de Ingeniería, Campus Guanajuato, Instituto Politécnico Nacional, Mineral de Valenciana 200, 36275, Silao de la Victoria, Gto, Mexico
| | - Rosalinda Rocha-Juache
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del bosque 103, 37150, León, Gto, Mexico.
- Unidad Profesional Interdisciplinaria de Ingeniería, Campus Guanajuato, Instituto Politécnico Nacional, Mineral de Valenciana 200, 36275, Silao de la Victoria, Gto, Mexico
| | - Juan Vargas-Mancilla
- Unidad Profesional Interdisciplinaria de Ingeniería, Campus Guanajuato, Instituto Politécnico Nacional, Mineral de Valenciana 200, 36275, Silao de la Victoria, Gto, Mexico
| | - Jorge M Flores-Moreno
- Centro de Investigaciones en Óptica, AC, Lomas del bosque 115, 37150, León, Gto, Mexico
| | - Francisco J Rojo
- Centro de Tecnología Biomédica. Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Spain
- Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle del Prof Martín Lagos, s/n, 28040, Madrid, Spain
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica. Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Spain
- Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle del Prof Martín Lagos, s/n, 28040, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Birzabith Mendoza-Novelo
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del bosque 103, 37150, León, Gto, Mexico.
| |
Collapse
|
8
|
Wang J, Zhang Y, Zhong H, Zhang Y, Han R, Guo Y, Huang S, Yu H, Zhong Y. Silicone Oil Affects Fibrosis of Human Trabecular Meshwork Cells by Upregulating Ferroptosis Through a ROS/NOX4/Smad3 Axis. Invest Ophthalmol Vis Sci 2025; 66:25. [PMID: 40067295 PMCID: PMC11918095 DOI: 10.1167/iovs.66.3.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Purpose Silicone oil (SiO) is commonly employed as an intravitreal tamponade to manage complex retinal detachments associated with proliferative diabetic retinopathy, trauma, or severe myopia and to facilitate retinal reattachment. Nevertheless, SiO usage is linked to several complications, notably secondary glaucoma, which constitutes a significant proportion of adverse effects. This study investigated the impact of SiO on trabecular meshwork cells, given their pivotal role in regulating aqueous humor outflow. Methods Human trabecular meshwork cells (HTMCs) were co-cultured with SiO. The impact on proliferation, fibrosis-related markers, and ferroptosis levels on these cells was evaluated using 5-ethynyl-2'-deoxyuridine (EdU), western blot, and immunofluorescence assays. Further gene knockdown experiments with NOX4 and Smad3 were conducted to elucidate the underlying mechanisms of SiO-induced changes. Results SiO intervention inhibited HTMC proliferation, upregulated fibrosis-related markers, and elevated ferroptosis levels. Gene knockdown experiments revealed that SiO-induced ferroptosis and reactive oxygen species (ROS) increase were mediated through NOX4 upregulation and Smad3 activation. Conclusions These findings highlight the significance of ferroptosis and the ROS/NOX4/Smad3 axis in the mechanism of SiO-induced intraocular pressure elevation. The insights gained from this study identify potential therapeutic targets to mitigate postoperative complications associated with SiO tamponade in ophthalmic surgery.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yang Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Huimin Zhong
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Ruiqi Han
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yanzhi Guo
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
9
|
Martinet A, Miebach L, Weltmann K, Emmert S, Bekeschus S. Biomimetic Hydrogels - Tools for Regenerative Medicine, Oncology, and Understanding Medical Gas Plasma Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2403856. [PMID: 39905967 PMCID: PMC11878268 DOI: 10.1002/smll.202403856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Biomimetic hydrogels enable biochemical, cell biology, and tissue-like studies in the third dimension. Smart hydrogels are also frequently used in tissue engineering and as drug carriers for intra- or extracutaneous regenerative medicine. They have also been studied in bio-sensor development, 3D cell culture, and organoid growth optimization. Yet, many hydrogel types, adjuvant components, and cross-linking methods have emerged over decades, diversifying and complexifying such studies. Here, an evaluative overview is provided, mapping potential applications to the corresponding hydrogel tuning. Strikingly, hydrogels are ideal for studying locoregional therapy modalities, such as cold medical gas plasma technology. These partially ionized gases produce various reactive oxygen species (ROS) types along with other physico-chemical components such as ions and electric fields, and the spatio-temporal effects of these components delivered to diseased tissues remain largely elusive to date. Hence, this work outlines the promising applications of hydrogels in biomedical research in general and cold plasma science in particular and underlines the great potential of these smart scaffolds for current and future research and therapy.
Collapse
Affiliation(s)
- Alice Martinet
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Klaus‐Dieter Weltmann
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
| | - Steffen Emmert
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
| | - Sander Bekeschus
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| |
Collapse
|
10
|
Hayam R, Hamias S, Skitel Moshe M, Davidov T, Yen FC, Baruch L, Machluf M. Porcine Bone Extracellular Matrix Hydrogel as a Promising Graft for Bone Regeneration. Gels 2025; 11:173. [PMID: 40136879 PMCID: PMC11942433 DOI: 10.3390/gels11030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Bone defects resulting from trauma, tumors, or congenital conditions pose significant challenges for natural healing and often require grafting solutions. While autografts remain the gold standard, their limitations, such as restricted availability and donor site complications, underscore the need for alternative approaches. The present research investigates the potential of porcine-derived bone extracellular matrix (pbECM) hydrogel as a highly promising bioactive scaffold for bone regeneration, comparing it to the human-derived bECM (hbECM). Porcine and human cancellous bones were decellularized and characterized in terms of their composition and structure. Further, the ECMs were processed into hydrogels, and their rheological properties and cytocompatibility were studied in vitro while their biocompatibility was studied in vivo using a mouse model. The potential of the pbECM hydrogel as a bone graft was evaluated in vivo using a rat femoral defect model. Our results demonstrated the excellent preservation of essential ECM components in both the pbECM and hbECM with more than 90% collagen out of all proteins. Rheological analyses revealed the superior mechanical properties of the pbECM hydrogel compared to the hbECM, with an approximately 10-fold higher storage modulus and a significantly later deformation point. These stronger gel properties of the pbECM were attributed to the higher content of structural proteins and residual minerals. Both the pbECM and hbECM effectively supported mesenchymal stem cell adhesion, viability, and proliferation, achieving a 20-fold increase in cell number within 10 days and highlighting their strong bioactive potential. In vivo, pbECM hydrogels elicited a minimal immunogenic response. Most importantly, when implanted in a rat femoral defect model, pbECM hydrogel had significantly enhanced bone regeneration through graft integration, stem cell recruitment, and differentiation. New bone formation was observed at an average of 50% of the defect volume, outperforming the commercial demineralized bone matrix (DBM), in which the new bone filled only 35% of the defect volume. These results position pbECM hydrogel as a highly effective and biocompatible scaffold for bone tissue engineering, offering a promising alternative to traditional grafting methods and paving the way for future clinical applications in bone repair.
Collapse
Affiliation(s)
- Rotem Hayam
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Shani Hamias
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Michal Skitel Moshe
- The Interdisciplinary Program for Biotechnology, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Tzila Davidov
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Feng-Chun Yen
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| |
Collapse
|
11
|
Soltanmohammadi F, Mahmoudi Gharehbaba A, Alizadeh E, Javadzadeh Y. Innovative approaches to tissue engineering: Utilizing decellularized extracellular matrix hydrogels for mesenchymal stem cell transport. Int J Biol Macromol 2025; 290:138893. [PMID: 39706433 DOI: 10.1016/j.ijbiomac.2024.138893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
In recent years, the realm of tissue regeneration experienced significant advancements, leading to the development of innovative therapeutic agents. The systemic delivery of mesenchymal stem cells (MSCs) emerged as a promising strategy for promoting tissue regeneration. However, this approach is hindered by hurdles such as poor cell survival, limited cell propagation, and inadequate cell integration. Decellularized extracellular matrix (dECM) hydrogel serves as an innovative carrier that protects MSCs from the detrimental effects of the hostile microenvironment, facilitates their localization and retention at the injection site, and preserves their viability. Regarding its low immunogenicity, low cytotoxicity, high biocompatibility, and its ability to mimic natural extracellular matrix (ECM), this natural hydrogel offers a new avenue for systemic delivery of MSCs. This review digs into the properties of dECM hydrogels (dECMHs), the methods employed for decellularization and the utilization of dECMH as carriers for various types of MSCs for tissue regeneration purposes. This review also sheds light on the benefits of hybrid hydrogels composed of dECMH and other components such as proteins and polysaccharides. By addressing the limitations of conventional hydrogels and enhancing efficacy of cell therapy, dECMH opens new pathways for the future of tissue regeneration.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Effat Alizadeh
- Endocrin Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Dean J, Hoch C, Wollenberg B, Navidzadeh J, Maheta B, Mandava A, Knoedler S, Sherwani K, Baecher H, Schmitz A, Alfertshofer M, Heiland M, Kreutzer K, Koerdt S, Knoedler L. Advancements in bioengineered and autologous skin grafting techniques for skin reconstruction: a comprehensive review. Front Bioeng Biotechnol 2025; 12:1461328. [PMID: 39840132 PMCID: PMC11747595 DOI: 10.3389/fbioe.2024.1461328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
The reconstruction of complex skin defects challenges clinical practice, with autologous skin grafts (ASGs) as the traditional choice due to their high graft take rate and patient compatibility. However, ASGs have limitations such as donor site morbidity, limited tissue availability, and the necessity for multiple surgeries in severe cases. Bioengineered skin grafts (BSGs) aim to address these drawbacks through advanced tissue engineering and biomaterial science. This study conducts a systematic review to describe the benefits and shortcomings of BSGs and ASGs across wound healing efficacy, tissue integration, immunogenicity, and functional outcomes focusing on wound re-epithelialization, graft survival, and overall aesthetic outcomes. Preliminary findings suggest ASGs show superior early results, while BSGs demonstrate comparable long-term outcomes with reduced donor site morbidity. This comparative analysis enhances understanding of bioengineered alternatives in skin reconstruction, potentially redefining best practices based on efficacy, safety, and patient-centric outcomes, highlighting the need for further innovation in bioengineered solutions.
Collapse
Affiliation(s)
- Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cosima Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Justin Navidzadeh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bhagvat Maheta
- California Northstate University College of Medicine, Elk Grove, CA, United States
| | - Anisha Mandava
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Khalil Sherwani
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Helena Baecher
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Alina Schmitz
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Michael Alfertshofer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Max Heiland
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Kilian Kreutzer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Steffen Koerdt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Leonard Knoedler
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| |
Collapse
|
13
|
Yao J, Zu D, Dong Q, Xia J, Wang X, Guo J, Ma G, Wu B, Fang B. Functionalized Periosteum-Derived Microsphere-Hydrogel with Sequential Release of E7 Short Peptide/miR217 for Large Bone Defect Repairing. Biomater Res 2025; 29:0127. [PMID: 39780960 PMCID: PMC11704090 DOI: 10.34133/bmr.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Large bone defects are still a persistent challenge in orthopedics. The availability limitations and associated complications of autologous and allogeneic bone have prompted an increasing reliance on tissue engineering and regenerative medicine. In this study, we developed an injectable scaffold combining an acellular extracellular periosteal matrix hydrogel with poly(d,l-lactate-co-glycol-acetate) microspheres loaded with the E7 peptide and miR217 (miR217/E7@MP-GEL). Characterization of the composites included morphological analysis by scanning electron microscopy, degradation and swelling tests, in vitro and in vivo biological evaluation, and the biological activity evaluation of mesenchymal stem cells (MSCs) through their effects on cell recruitment, proliferation, and osteogenic differentiation. The designed hydrogels demonstrated good physical and chemical properties that are cytocompatible and suitable for cell recruitment. In vitro studies confirmed the high biological activity of the release agent, which markedly enhanced the proliferation and osteogenic differentiation of MSCs. In vivo application to a rat model of a femur defect exhibited a significant increase in bone volume and density over 7 weeks, resulting in enhanced bone regeneration. Acellular periosteum-based hydrogels combined with the E7 peptide and miR217-loaded poly(d,l-lactate-co-glycol-acetate) microspheres can promote effective bone regeneration through the recruitment, proliferation, and osteogenic differentiation of MSCs, which provides a promising approach for the treatment of large bone defects.
Collapse
Affiliation(s)
- Jun Yao
- Department of Orthopedic Surgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing 312030, China
| | - Dan Zu
- School of Life Sciences,
Tianjin University, Tianjin 300100, China
| | - Qi Dong
- Department of Spine Surgery, Honghui Hospital,
Xi’an Jiaotong University, Xi’an, Shaanxi 710054, China
| | - Jiajie Xia
- Department of Neurosurgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing 312030, China
| | - Xiaonan Wang
- Department of Pharmacy, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing 312030, China
| | - Jingjing Guo
- Department of Pharmacy, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing 312030, China
| | - Gaoxiang Ma
- Department of Orthopedic Surgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing 312030, China
| | - Bing Wu
- Department of Orthopedic Surgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing 312030, China
| | - Bin Fang
- Department of Orthopedics,
The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, China
| |
Collapse
|
14
|
Zhong S, Lan Y, Liu J, Seng Tam M, Hou Z, Zheng Q, Fu S, Bao D. Advances focusing on the application of decellularization methods in tendon-bone healing. J Adv Res 2025; 67:361-372. [PMID: 38237768 PMCID: PMC11725151 DOI: 10.1016/j.jare.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The tendon or ligament is attached to the bone by a triphasic but continuous area of heterogeneous tissue called the tendon-bone interface (TBI). The rapid and functional regeneration of TBI is challenging owing to its complex composition and difficulty in self-healing. The development of new technologies, such as decellularization, has shown promise in the regeneration of TBI. Several ex vivo and in vivo studies have shown that decellularized grafts and decellularized biomaterial scaffolds achieved better efficacy in enhancing TBI healing. However further information on the type of review that is available is needed. AIM OF THE REVIEW In this review, we discuss the current application of decellularization biomaterials in promoting TBI healing and the possible mechanisms involved. With this work, we would like to reveal how tissues or biomaterials that have been decellularized can improve tendon-bone healing and to provide a theoretical basis for future related studies. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Decellularization is an emerging technology that utilizes various chemical, enzymatic and/or physical strategies to remove cellular components from tissues while retaining the structure and composition of the extracellular matrix (ECM). After decellularization, the cellular components of the tissue that cause an immune response are removed, while various biologically active biofactors are retained. This review further explores how tissues or biomaterials that have been decellularized improve TBI healing.
Collapse
Affiliation(s)
- Sheng Zhong
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yujian Lan
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jinyu Liu
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | | | - Zhipeng Hou
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qianghua Zheng
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shijie Fu
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Dingsu Bao
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| |
Collapse
|
15
|
Jeon MJ, Randhawa A, Kim H, Dutta SD, Ganguly K, Patil TV, Lee J, Acharya R, Park H, Seol Y, Lim KT. Electroconductive Nanocellulose, a Versatile Hydrogel Platform: From Preparation to Biomedical Engineering Applications. Adv Healthc Mater 2025; 14:e2403983. [PMID: 39668476 DOI: 10.1002/adhm.202403983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/18/2024] [Indexed: 12/14/2024]
Abstract
Nanocelluloses have garnered significant attention recently in the attempt to create sustainable, improved functional materials. Nanocellulose possesses wide varieties, including rod-shaped crystalline cellulose nanocrystals and elongated cellulose nanofibers, also known as microfibrillated cellulose. In recent times, nanocellulose has sparked research into a wide range of biomedical applications, which vary from developing 3D printed hydrogel to preparing structures with tunable characteristics. Owing to its multifunctional properties, different categories of nanocellulose, such as cellulose nanocrystals, cellulose nanofibers, and bacterial nanocellulose, as well as their unique properties are discussed here. Here, different methods of nanocellulose-based hydrogel preparation are covered, which include 3D printing and crosslinking methods. Subsequently, advanced nanocellulose-hydrogels addressing conductivity, shape memory, adhesion, and structural color are highlighted. Finally, the application of nanocellulose-based hydrogel in biomedical applications is explored here. In summary, numerous perspectives on novel approaches based on nanocellulose-based research are presented here.
Collapse
Affiliation(s)
- Myoung Joon Jeon
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Youjin Seol
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
16
|
Lee MC, Lee JS, Kim S, Jamaiyar A, Wu W, Gonzalez ML, Acevedo Durán TC, Madrigal-Salazar AD, Bassous N, Carvalho V, Choi C, Kim DS, Seo JW, Rodrigues N, Teixeira SF, Alkhateeb AF, Lozano Soto JA, Hussain MA, Leijten J, Feinberg MW, Shin SR. Synergistic effect of Hypoxic Conditioning and Cell-Tethering Colloidal Gels enhanced Productivity of MSC Paracrine Factors and Accelerated Vessel Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408488. [PMID: 39380372 PMCID: PMC11757084 DOI: 10.1002/adma.202408488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Microporous hydrogels have been widely used for delivering therapeutic cells. However, several critical issues, such as the lack of control over the harsh environment they are subjected to under pathological conditions and rapid egression of cells from the hydrogels, have produced limited therapeutic outcomes. To address these critical challenges, cell-tethering and hypoxic conditioning colloidal hydrogels containing mesenchymal stem cells (MSCs) are introduced to increase the productivity of paracrine factors locally and in a long-term manner. Cell-tethering colloidal hydrogels that are composed of tyramine-conjugated gelatin prevent cells from egressing through on-cell oxidative phenolic crosslinks while providing mechanical stimulation and interconnected microporous networks to allow for host-implant interactions. Oxygenating microparticles encapsulated in tyramine-conjugated colloidal microgels continuously generated oxygen for 2 weeks with rapid diffusion, resulting in maintaining a mild hypoxic condition while MSCs consumed oxygen under severe hypoxia. Synergistically, local retention of MSCs within the mild hypoxic-conditioned and mechanically robust colloidal hydrogels significantly increased the secretion of various angiogenic cytokines and chemokines. The oxygenating colloidal hydrogels induced anti-inflammatory responses, reduced cellular apoptosis, and promoted numerous large blood vessels in vivo. Finally, mice injected with the MSC-tethered oxygenating colloidal hydrogels significantly improved blood flow restoration and muscle regeneration in a hindlimb ischemia (HLI) model.
Collapse
Affiliation(s)
- Myung Chul Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae Seo Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, 02139, USA
| | - Seongsoo Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Center for Biomaterials, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea
| | - Anurag Jamaiyar
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Winona Wu
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Montserrat Legorreta Gonzalez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Tania Carolina Acevedo Durán
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Andrea Donaxi Madrigal-Salazar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Nicole Bassous
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Violeta Carvalho
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- ALGORITMI/LASI Center, University of Minho, Campus de Azurém, 4800‐058 Guimarães, Portugal
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Cholong Choi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Da-Seul Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jeong Wook Seo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Nelson Rodrigues
- ALGORITMI/LASI Center, University of Minho, Campus de Azurém, 4800‐058 Guimarães, Portugal
- COMEGI - Center for Research in Organizations, Markets and Industrial Management, Lusíada Norte University, Portugal
| | | | - Abdulhameed F. Alkhateeb
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Javier Alejandro Lozano Soto
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Mohammad Asif Hussain
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jeroen Leijten
- Leijten Lab, Department of BioEngineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
17
|
Xi Y, Collins LB, Bai H, Biehl A, Mora-Navarro C, Freytes D, Islam Williams T. A Multi-enzyme Protocol Improves Total Proteome Coverage in Extracellular Matrix. Methods Mol Biol 2025; 2884:179-191. [PMID: 39716004 DOI: 10.1007/978-1-0716-4298-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Extracellular matrix (ECM) from decellularized mammalian tissues has been used in many therapeutic applications. The tissue-specific composition of the ECM is critically associated with therapeutic performance. However, ECM translation needs to be improved because of the complex composition and limited understanding of ECM repairing mechanisms due partly to incomplete proteomic interrogation of ECM samples. In this chapter, we describe a multi-enzyme, bottom-up proteomics workflow employing trypsin, Lys-C, collagenase, and elastase to enhance the digestion of ECM and increase total protein coverage. The outcomes from the reported approach, in a standardized manner, enable users to pinpoint changes in the ECM composition, thereby facilitating the establishment of mechanistic correlations between ECM composition and its effects.
Collapse
Affiliation(s)
- Ying Xi
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Leonard B Collins
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, USA
| | - Hongxia Bai
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Andreea Biehl
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Camilo Mora-Navarro
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Mayaguez, PR, USA
| | - Donald Freytes
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Taufika Islam Williams
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA.
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
18
|
Li ZY, Li TY, Yang HC, Ding MH, Chen LJ, Yu SY, Meng XS, Jin JJ, Sun SZ, Zhang J, Tian H. Design and Fabrication of Viscoelastic Hydrogels as Extracellular Matrix Mimicry for Cell Engineering. CHEM & BIO ENGINEERING 2024; 1:916-933. [PMID: 39975568 PMCID: PMC11835267 DOI: 10.1021/cbe.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 02/21/2025]
Abstract
The extracellular matrix (ECM) performs both as a static scaffold and as a dynamic, viscoelastic milieu that actively participates in cell signaling and mechanical feedback loops. Recently, biomaterials with tunable viscoelastic properties have been utilized to mimic the native ECM in the fields of tissue engineering and regenerative medicines. These materials can be designed to support cell attachment, proliferation, and differentiation, facilitating the repair or replacement of damaged tissues. Moreover, viscoelasticity modulation of ECM mimicry helps to develop therapeutic strategies for diseases involving altered mechanical properties of tissues such as fibrosis or cancer. The study of biomaterial viscoelasticity thus intersects with a broad spectrum of biological and medical disciplines, offering insights into fundamental cell biology and practical solutions for improving human health. This review delves into the design and fabrication strategies of viscoelastic hydrogels, focusing particularly on two major viscoelastic parameters, mechanical strength and stress relaxation, and how the hydrogel mechanics influence the interactions between living cells and surrounding microenvironments. Meanwhile, this review discusses current bottlenecks in hydrogel-cell mechanics studies, highlighting the challenges in viscoelastic parameter decoupling, long-term stable maintenance of viscoelastic microenvironment, and the general applicability of testing standards and conversion protocols.
Collapse
Affiliation(s)
- Zi-Yuan Li
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tian-Yue Li
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao-Chen Yang
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mu-Hua Ding
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lin-Jie Chen
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shi-Yun Yu
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang-Sen Meng
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jia-Jun Jin
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shi-Zhe Sun
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Zhang S, Guo Y, Lu Y, Liu F, Heng BC, Deng X. The considerations on selecting the appropriate decellularized ECM for specific regeneration demands. Mater Today Bio 2024; 29:101301. [PMID: 39498148 PMCID: PMC11532911 DOI: 10.1016/j.mtbio.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
An ideal biomaterial should create a customized tissue-specific microenvironment that can facilitate and guide the tissue repair process. Due to its good biocompatibility and similar biochemical properties to native tissues, decellularized extracellular matrix (dECM) generally yields enhanced regenerative outcomes, with improved morphological and functional recovery. By utilizing various decellularization techniques and post-processing protocols, dECM can be flexibly prepared in different states from various sources, with specifically customized physicochemical properties for different tissues. To initiate a well-orchestrated tissue-regenerative response, dECM exerts multiple effects at the wound site by activating various overlapping signaling pathways to promote cell adhesion, proliferation, and differentiation, as well as suppressing inflammation via modulation of various immune cells, including macrophages, T cells, and mastocytes. Functional tissue repair is likely the main aim when employing the optimized dECM biomaterials. Here, we review the current applications of different kinds of dECMs in an attempt to improve the efficiency of tissue regeneration, highlighting key considerations on developing dECM for specific tissue engineering applications.
Collapse
Affiliation(s)
- Shihan Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yixuan Lu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Fangyong Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
20
|
Li X, Cao Y, Liu C, Tan J, Zhou X. l-Proline and GelMA hydrogel complex:An efficient antifreeze system for cell cryopreservation. Cryobiology 2024; 116:104942. [PMID: 39032528 DOI: 10.1016/j.cryobiol.2024.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Cryopreservation of biological samples is an important technology for expanding their applications in the biomedical field. However, the quality and functionality of samples after rewarming are limited by the toxicity of commonly used cryoprotectant agents (CPAs). Here, we developed a novel preservation system by combining the natural amino acid l-proline (L-Pro) with gelatin methacryloyl (GelMA) hydrogels. Compared with dimethyl sulfoxide (DMSO), L-Pro and GelMA demonstrated excellent biocompatibility when co-culturing with cells. Cryopreservation procedures were optimized using 3T3 as model cells. The results showed that rapid cooling was the most suitable cooling procedure for L-Pro and GelMA among the three cooling procedures. Co-culturing with cells for 3 h before cryopreservation, 6 % L-Pro +7 % GelMA had the highest survival rate, reaching up to 80 %. Differential Scanning Calorimetry (DSC) analysis showed that 6 % L-Pro + 7 % GelMA lowered the freezing point of the solution to -4.2 °C and increased the unfrozen water content to 20 %. To the best of our knowledge, this is the first report of cell cryopreservation using a combination of L-Pro and GelMA hydrogels, which provides a new strategy for improving cell cryopreservation.
Collapse
Affiliation(s)
- Xin Li
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, 200093, China
| | - Yukun Cao
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, 200093, China
| | - Chenxi Liu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, 200093, China
| | - Jia Tan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, 200093, China
| | - Xinli Zhou
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, 200093, China.
| |
Collapse
|
21
|
Liu D, Li Y, Bao Z, He J, Lan Y, Xu Z, Chen G. Pericardial Delivery of Sodium Alginate-Infusible Extracellular Matrix Composite Hydrogel Promotes Angiogenesis and Intercellular Electrical Conduction after Myocardial Infarction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44623-44635. [PMID: 39145889 DOI: 10.1021/acsami.4c12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Injectable extracellular matrix (iECM) is a versatile biological material with beneficial properties such as good degradability, promotion of cell survival, immunomodulation, and facilitation of vascular formation. However, intravenous injection of iECM faces challenges like a short retention time in vivo and low concentration at the lesion site. To address these issues, we prepared a composite hydrogel composed of sodium alginate and iECM and administered it via intrapericardial injection, forming a structure akin to cardiac patches within the pericardium. Compared with intramyocardial injection, intrapericardial injection avoids direct myocardial injury and ectopic tumor formation, offering less invasiveness and better biocompatibility. This study demonstrates that the sodium alginate/infusible extracellular matrix (SA/iECM) composite hydrogel can effectively prolong the local retention time of iECM in the heart, enhance electrical conduction between cardiomyocytes, promote angiogenesis at ischemic myocardial sites, inhibit apoptosis in the infarcted region, mitigate left ventricular remodeling postmyocardial infarction (MI), and improve cardiac function after infarction. Precise coordination of cardiomyocyte contraction and relaxation depends on the rhythmic occurrence of calcium-dependent action potentials. Cardiac dysfunction is partially attributed to the disruption of the excitation-contraction coupling (ECC) mechanism, which is associated with prolonged intracellular Ca2+ transients and alterations in contraction and relaxation Ca2+ levels. Our results show that the SA/iECM composite hydrogel improves electrical conduction, as evidenced by increased Cx43 expression and enhanced intercellular electrical connectivity. This research establishes that intrapericardial injection of a SA/iECM composite hydrogel is a safe and effective treatment modality, providing a theoretical basis for the use of biomaterials in MI therapy.
Collapse
Affiliation(s)
- Dahe Liu
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou 511400, People's Republic of China
| | - Yajing Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, People's Republic of China
| | - Ziwei Bao
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou 511400, People's Republic of China
| | - Jiaqi He
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, People's Republic of China
| | - Yanxing Lan
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou 511400, People's Republic of China
| | - Zijun Xu
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou 511400, People's Republic of China
| | - Guoqin Chen
- Department of Cardiology of The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, People's Republic of China
- Cardiovascular Diseases Research Institute of Panyu District, Guangzhou 511400, People's Republic of China
| |
Collapse
|
22
|
Di Francesco D, Marcello E, Casarella S, Copes F, Chevallier P, Carmagnola I, Mantovani D, Boccafoschi F. Characterization of a decellularized pericardium extracellular matrix hydrogel for regenerative medicine: insights on animal-to-animal variability. Front Bioeng Biotechnol 2024; 12:1452965. [PMID: 39205858 PMCID: PMC11350490 DOI: 10.3389/fbioe.2024.1452965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
In the past years, the use of hydrogels derived from decellularized extracellular matrix (dECM) for regenerative medicine purposes has significantly increased. The intrinsic bioactive and immunomodulatory properties indicate these materials as promising candidates for therapeutical applications. However, to date, limitations such as animal-to-animal variability still hinder the clinical translation. Moreover, the choice of tissue source, decellularization and solubilization protocols leads to differences in dECM-derived hydrogels. In this context, detailed characterization of chemical, physical and biological properties of the hydrogels should be performed, with attention to how these properties can be affected by animal-to-animal variability. Herein, we report a detailed characterization of a hydrogel derived from the decellularized extracellular matrix of bovine pericardium (dBP). Protein content, rheological properties, injectability, surface microstructure, in vitro stability and cytocompatibility were evaluated, with particular attention to animal-to-animal variability. The gelation process showed to be thermoresponsive and the obtained dBP hydrogels are injectable, porous, stable up to 2 weeks in aqueous media, rapidly degrading in enzymatic environment and cytocompatible, able to maintain cell viability in human mesenchymal stromal cells. Results from proteomic analysis proved that dBP hydrogels are highly rich in composition, preserving bioactive proteoglycans and glycoproteins in addition to structural proteins such as collagen. With respect to the chemical composition, animal-to-animal variability was shown, but the biological properties were not affected, which remained consistent in different batches. Taken together these results show that dBP hydrogels are excellent candidates for regenerative medicine applications.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Elena Marcello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- Polito BioMed Lab, Politecnico di Torino, Torino, Italy
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- Polito BioMed Lab, Politecnico di Torino, Torino, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| |
Collapse
|
23
|
Fan MH, Pi JK, Zou CY, Jiang YL, Li QJ, Zhang XZ, Xing F, Nie R, Han C, Xie HQ. Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy. Bioact Mater 2024; 38:1-30. [PMID: 38699243 PMCID: PMC11061651 DOI: 10.1016/j.bioactmat.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.
Collapse
Affiliation(s)
- Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiu-Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, 610212, PR China
| |
Collapse
|
24
|
Zelus EI, Panduro A, Deshmukh I, Grime J, Alperin M, Vahabzadeh-Hagh AM, Christman KL. Immunomodulatory extracellular matrix hydrogel induces tissue regeneration in a model of partial glossectomy. Bioact Mater 2024; 38:528-539. [PMID: 38803824 PMCID: PMC11128682 DOI: 10.1016/j.bioactmat.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
While oropharyngeal cancer treatment regimens, including surgical resection, irradiation, and chemotherapy, are effective at removing tumors, they lead to muscle atrophy, denervation, and fibrosis, contributing to the pathogenesis of oropharyngeal dysphagia - difficulty swallowing. Current standard of care of rehabilitative tongue strengthening and swallowing exercises is ineffective. Here, we evaluate an alternative approach utilizing an acellular and injectable biomaterial to preserve muscle content and reduce fibrosis of the tongue after injury. Skeletal muscle extracellular matrix (SKM) hydrogel is fabricated from decellularized porcine skeletal muscle tissue. A partial glossectomy injury in the rat is used to induce tongue fibrosis, and SKM hydrogels along with saline controls are injected into the site of scarring two weeks after injury. Tissues are harvested at 3 and 7 days post-injection for gene expression and immunohistochemical analyses, and at 4 weeks post-injection to evaluate histomorphological properties. SKM hydrogel reduces scar formation and improves muscle regeneration at the site of injury compared to saline. SKM additionally modulates the immune response towards an anti-inflammatory phenotype. This study demonstrates the immunomodulatory and tissue-regenerative capacity of an acellular and minimally invasive ECM hydrogel in a rodent model of tongue injury.
Collapse
Affiliation(s)
- Emma I. Zelus
- Shu Chien-Gene Lay Department of Bioengineering, UC San Diego, 9500 Gilman Dr. MC 0412, La Jolla, CA, 92093-0412, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Aaron Panduro
- Shu Chien-Gene Lay Department of Bioengineering, UC San Diego, 9500 Gilman Dr. MC 0412, La Jolla, CA, 92093-0412, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Isha Deshmukh
- Shu Chien-Gene Lay Department of Bioengineering, UC San Diego, 9500 Gilman Dr. MC 0412, La Jolla, CA, 92093-0412, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Jacqueline Grime
- Shu Chien-Gene Lay Department of Bioengineering, UC San Diego, 9500 Gilman Dr. MC 0412, La Jolla, CA, 92093-0412, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Marianna Alperin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, UC San Diego School of Medicine, 9300 Campus Point, MC 7433, La Jolla, CA, 92037-7433, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Andrew M. Vahabzadeh-Hagh
- Department of Otolaryngology – Head & Neck Surgery, UC San Diego School of Medicine, 9300 Campus Point, MC 7400, La Jolla, CA, 92037-7400, USA
| | - Karen L. Christman
- Shu Chien-Gene Lay Department of Bioengineering, UC San Diego, 9500 Gilman Dr. MC 0412, La Jolla, CA, 92093-0412, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Sanford Stem Cell Institute, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| |
Collapse
|
25
|
Zhang J, Sun X, Heng Y, Zeng Y, Wang Y, Shen Y, Peng A, Tang W, Zeng M, Yu Z. Transforming Cell-Drug Interaction through Granular Hydrogel-Mediated Delivery of Polyplex Nanoparticles for Enhanced Safety and Extended Efficacy in Gene Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39784-39795. [PMID: 39036892 DOI: 10.1021/acsami.4c05425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The utilization of hydrogels for DNA/cationic polymer polyplex nanoparticle (polyplex) delivery has significantly advanced gene therapy in tissue regeneration and cancer treatment. However, persistent challenges related to the efficacy and safety of encapsulated polyplexes, stemming from issues such as aggregation, degradation, or difficulties in controlled release during or postintegration with hydrogel scaffolds, necessitate further exploration. Here, we introduce an injectable gene therapy gel achieved by incorporating concentrated polyplexes onto densely packed hydrogel microparticles (HMPs). Polyplexes, when uniformly adhered to the gene therapy gel through reversible electrostatic interactions, can detach from the HMP surface in a controlled manner, contrasting with free polyplexes, and thereby reducing dose-dependent toxicity during transfection. Additionally, the integration of RGD cell adhesion peptides enhances the scaffolding characteristics of the gel, facilitating cell adhesion, migration, and further minimizing toxicity during gene drug administration. Notably, despite the overall transfection efficiency showing average performance, utilizing confocal microscopy to meticulously observe and analyze the cellular states infiltrating into various depths of the gene therapy gel resulted in the groundbreaking discovery of significantly enhanced local transfection efficiency, with primary cell transfection approaching 80%. This phenomenon could be potentially attributed to the granular hydrogel-mediated delivery of polyplex nanoparticles, which revolutionizes the spatial and temporal distribution and thus the "encounter" mode between polyplexes and cells. Moreover, the gene therapy gel's intrinsic injectability and self-healing properties offer ease of administration, making it a highly promising candidate as a novel gene transfection gel dressing with significant potential across various fields, including regenerative medicine and innovative living materials.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Ximeng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Yongyuan Heng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Yunfeng Zeng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Yijia Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Yu Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Anhui Peng
- Electric Power Branch, Huaibei Mining Co., Ltd, Huaibei 235000, P. R. China
| | - Wenzhe Tang
- Electric Power Branch, Huaibei Mining Co., Ltd, Huaibei 235000, P. R. China
| | - Ming Zeng
- Department of Dermatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| |
Collapse
|
26
|
Zhu T, Alves SM, Adamo A, Wen X, Corn KC, Shostak A, Johnson S, Shaub ND, Martello SE, Hacker BC, D'Amore A, Bardhan R, Rafat M. Mammary tissue-derived extracellular matrix hydrogels reveal the role of irradiation in driving a pro-tumor and immunosuppressive microenvironment. Biomaterials 2024; 308:122531. [PMID: 38531198 PMCID: PMC11065579 DOI: 10.1016/j.biomaterials.2024.122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Radiation therapy (RT) is essential for triple negative breast cancer (TNBC) treatment. However, patients with TNBC continue to experience recurrence after RT. The role of the extracellular matrix (ECM) of irradiated breast tissue in tumor recurrence is still unknown. In this study, we evaluated the structure, molecular composition, and mechanical properties of irradiated murine mammary fat pads (MFPs) and developed ECM hydrogels from decellularized tissues (dECM) to assess the effects of RT-induced ECM changes on breast cancer cell behavior. Irradiated MFPs were characterized by increased ECM deposition and fiber density compared to unirradiated controls, which may provide a platform for cell invasion and proliferation. ECM component changes in collagens I, IV, and VI, and fibronectin were observed following irradiation in both MFPs and dECM hydrogels. Encapsulated TNBC cell proliferation and invasive capacity was enhanced in irradiated dECM hydrogels. In addition, TNBC cells co-cultured with macrophages in irradiated dECM hydrogels induced M2 macrophage polarization and exhibited further increases in proliferation. Our study establishes that the ECM in radiation-damaged sites promotes TNBC invasion and proliferation as well as an immunosuppressive microenvironment. This work represents an important step toward elucidating how changes in the ECM after RT contribute to breast cancer recurrence.
Collapse
Affiliation(s)
- Tian Zhu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Steven M Alves
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Arianna Adamo
- Ri.MED Foundation, Palermo, Italy; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaona Wen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kevin C Corn
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Anastasia Shostak
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Nicholas D Shaub
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Shannon E Martello
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Benjamin C Hacker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Antonio D'Amore
- Ri.MED Foundation, Palermo, Italy; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
27
|
Yi P, Chen S, Zhao Y, Ku W, Lu H, Yu D, Zhao W. An injectable dental pulp-derived decellularized matrix hydrogel promotes dentin repair through modulation of macrophage response. BIOMATERIALS ADVANCES 2024; 161:213883. [PMID: 38762928 DOI: 10.1016/j.bioadv.2024.213883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Maintaining the viability of damaged pulp is critical in clinical dentistry. Pulp capping, by placing dental material over the exposed pulp, is a main approach to promote pulp-dentin healing and mineralized tissue formation. The dental materials are desired to impact on intricate physiological mechanisms in the healing process, including early regulation of inflammation, immunity, and cellular events. In this study, we developed an injectable dental pulp-derived decellularized matrix (DPM) hydrogel to modulate macrophage responses and promote dentin repair. The DPM derived from porcine dental pulp has high collagen retention and low DNA content. The DPM was solubilized by pepsin digestion (named p-DPM) and subsequently injected through a 25G needle to form hydrogel facilely at 37 °C. In vitro results demonstrated that the p-DPM induced the M2-polarization of macrophages and the migration, proliferation, and dentin differentiation of human dental pulp stem cells from deciduous teeth (SHEDs). In a mouse subcutaneous injection test, the p-DPM hydrogel was found to facilitate cell recruitment and M2 polarization during the early phase of implantation. Additionally, the acute pulp restoration in rat models proved that injectable p-DPM hydrogel as a pulp-capping agent had excellent efficacy in dentin regeneration. This study demonstrates that the DPM promotes dentin repair by modulating macrophage responses, and has a potential for pulp-capping applications in dental practice.
Collapse
Affiliation(s)
- Ping Yi
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China
| | - Sixue Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China
| | - Yifan Zhao
- Changsha Medical University, Changsha, Hunan, China
| | - Weili Ku
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China
| | - Hui Lu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China
| | - Dongsheng Yu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China.
| | - Wei Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Yang J, Liu Y, Wang M, Chen S, Miao Q, Liu Z, Zhang B, Deng G. Repair Effect of Umbilical Cord Mesenchymal Stem Cells Embedded in Hydrogel on Mouse Insulinoma 6 Cells Injured by Streptozotocin. Polymers (Basel) 2024; 16:1845. [PMID: 39000700 PMCID: PMC11244345 DOI: 10.3390/polym16131845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Umbilical cord mesenchymal stem cells (UC-MSCs) possess the capabilities of differentiation and immune modulation, which endow them with therapeutic potential in the treatment of type 2 diabetes mellitus (T2DM). In this study, to investigate the repair mechanism of UC-MSCs in hydrogel on pancreatic β-cells in diabetes, mouse insulinoma 6 (MIN-6) cells damaged by streptozotocin (STZ) in vitro were used in co-culture with UC-MSCs in hydrogel (UC-MSCs + hydrogel). It was found that UC-MSCs + hydrogel had a significant repair effect on injured MIN-6 cells, which was better than the use of UC-MSCs alone (without hydrogel). After repair, the expression of superoxide dismutase (SOD) and catalase (CAT) as well as the total antioxidant capacity (T-AOC) of the repaired MIN-6 cells were increased, effectively reducing the oxidative stress caused by STZ. In addition, UC-MSCs + hydrogel were able to curb the inflammatory response by promoting the expression of anti-inflammatory factor IL-10 and reducing inflammatory factor IL-1β. In addition, the expression of both nuclear antigen Ki67 for cell proliferation and insulin-related genes such as Pdx1 and MafA was increased in the repaired MIN-6 cells by UC-MSCs + hydrogel, suggesting that the repair effect promotes the proliferation of the injured MIN-6 cells. Compared with the use of UC-MSCs alone, UC-MSCs + hydrogel exhibit superior antioxidant stress resistance against injured MIN-6 cells, better proliferation effects and a longer survival time of UC-MSCs because the porous structure and hydrophilic properties of the hydrogel could affect the growth of cells and slow down their metabolic activities, resulting in a better repair effect on the injured MIN-6 cells.
Collapse
Affiliation(s)
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, China; (J.Y.); (M.W.); (S.C.); (Q.M.); (Z.L.); (B.Z.); (G.D.)
| | | | | | | | | | | | | |
Collapse
|
29
|
XiaoMing X, Yan C, JiaMing G, LiTao L, LiJuan Z, Ying S, Lu Y, Qian S, Jian D. Human umbilical cord mesenchymal stem cells combined with porcine small intestinal submucosa promote the healing of full-thickness skin injury in SD rats. Future Sci OA 2024; 10:FSO955. [PMID: 38817375 PMCID: PMC11137796 DOI: 10.2144/fsoa-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Aim: To assess the therapeutic potential of human umbilical cord mesenchymal stem cells (hUCMSCs) combined with porcine small intestinal submucosa (SIS) on full-thickness skin injuries in rats. Methods: We established full-thickness skin injury models in Sprague-Dawley rats, dividing them into blank control, SIS, hUCMSCs and hUCMSCs combined with SIS. We monitored wound healing, scores and area, and analyzed inflammatory cells, microvessel density and collagen fibers after 12 days. Results: The blank group showed no healing, forming a scar of 0.6 × 0.5 cm2, while SIS and hUCMSCs groups exhibited incomplete healing with 0.4 × 0.5 cm2 scabs. Wound healing was significantly better in the hUCMSCs combined with the SIS group. Conclusion: Local application of hUCMSCs combined with SIS enhances full-thickness skin injury wound healing in rats.
Collapse
Affiliation(s)
- Xu XiaoMing
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Chen Yan
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Gu JiaMing
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Liang LiTao
- Department of Obstetrics, The Second Affiliated Hospital of Kunming Medical University,Kunming,Yunnan, 650101, China
| | - Zhang LiJuan
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital, Kunming, Yunnan, 650118, China
| | - Song Ying
- Department of Obstetrics, Kunming Maternal & Child Health Hospital, Kunming, Yunnan, 650011, China
| | - Yuan Lu
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Song Qian
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Dong Jian
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| |
Collapse
|
30
|
Han H, Kim M, Yong U, Jo Y, Choi YM, Kim HJ, Hwang DG, Kang D, Jang J. Tissue-specific gelatin bioink as a rheology modifier for high printability and adjustable tissue properties. Biomater Sci 2024; 12:2599-2613. [PMID: 38546094 DOI: 10.1039/d3bm02111d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Decellularized extracellular matrix (dECM) has emerged as an exceptional biomaterial that effectively recapitulates the native tissue microenvironment for enhanced regenerative potential. Although various dECM bioinks derived from different tissues have shown promising results, challenges persist in achieving high-resolution printing of flexible tissue constructs because of the inherent limitations of dECM's weak mechanical properties and poor printability. Attempts to enhance mechanical rigidity through chemical modifications, photoinitiators, and nanomaterial reinforcement have often compromised the bioactivity of dECM and mismatched the desired mechanical properties of target tissues. In response, this study proposes a novel method involving a tissue-specific rheological modifier, gelatinized dECM. This modifier autonomously enhances bioink modulus pre-printing, ensuring immediate and precise shape formation upon extrusion. The hybrid bioink with GeldECM undergoes a triple crosslinking system-physical entanglement for pre-printing, visible light photocrosslinking during printing for increased efficiency, and thermal crosslinking post-printing during tissue culture. A meticulous gelatinization process preserves the dECM protein components, and optimal hybrid ratios modify the mechanical properties, tailoring them to specific tissues. The application of this sequential multiple crosslinking designs successfully yielded soft yet resilient tissue constructs capable of withstanding vigorous agitation with high shape fidelity. This innovative method, founded on mechanical modulation by GeldECM, holds promise for the fabrication of flexible tissues with high resilience.
Collapse
Affiliation(s)
- Hohyeon Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), South Korea
| | - Minji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), South Korea
| | - Uijung Yong
- Future IT Innovation Laboratory (i-Lab), Pohang University of Science and Technology (POSTECH), South Korea
| | - Yeonggwon Jo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), South Korea
| | - Yoo-Mi Choi
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), South Korea
| | - Hye Jin Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), South Korea.
| | - Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), South Korea
| | - Dayoon Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), South Korea
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), South Korea
| | - Jinah Jang
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), South Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), South Korea
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), South Korea
- Institute of Convergence Science, Yonsei University, South Korea
| |
Collapse
|
31
|
Wiebe-Ben Zakour KE, Kaya S, Grumm L, Matros J, Hacker MC, Geerling G, Witt J. Modulation of Decellularized Lacrimal Gland Hydrogel Biodegradation by Genipin Crosslinking. Invest Ophthalmol Vis Sci 2024; 65:24. [PMID: 38748430 PMCID: PMC11098053 DOI: 10.1167/iovs.65.5.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Hydrogels derived from decellularized tissues are promising biomaterials in tissue engineering, but their rapid biodegradation can hinder in vitro cultivation. This study aimed to retard biodegradation of a hydrogel derived from porcine decellularized lacrimal glands (dLG-HG) by crosslinking with genipin to increase the mechanical stability without affecting the function and viability of lacrimal gland (LG)-associated cells. Methods The effect of different genipin concentrations on dLG-HG stiffness was measured rheologically. Cell-dependent biodegradation was quantified over 10 days, and the impact on matrix metalloproteinase (MMP) activity was quantified by gelatin and collagen zymography. The viability of LG epithelial cells (EpCs), mesenchymal stem cells (MSCs), and endothelial cells (ECs) cultured on genipin-crosslinked dLG-HG was assessed after 10 days, and EpC secretory activity was analyzed by β-hexosaminidase assay. Results The 0.5-mM genipin increased the stiffness of dLG-HG by about 46%, and concentrations > 0.25 mM caused delayed cell-dependent biodegradation and reduced MMP activity. The viability of EpCs, MSCs, and ECs was not affected by genipin concentrations of up to 0.5 mM after 10 days. Moreover, up to 0.5-mM genipin did not negatively affect EpC secretory activity compared to control groups. Conclusions A concentration of 0.5-mM genipin increased dLG-HG stiffness, and 0.25-mM genipin was sufficient to prevent MMP-dependent degradation. Importantly, concentrations of up to 0.5-mM genipin did not compromise the viability of LG-associated cells or the secretory activity of EpCs. Thus, crosslinking with genipin improves the properties of dLG-HG for use as a substrate in LG tissue engineering.
Collapse
Affiliation(s)
| | - Sema Kaya
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Luis Grumm
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Matros
- Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael C. Hacker
- Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gerd Geerling
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joana Witt
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
32
|
Henderson T, Christman KL, Alperin M. Regenerative Medicine in Urogynecology: Where We Are and Where We Want to Be. UROGYNECOLOGY (PHILADELPHIA, PA.) 2024; 30:519-527. [PMID: 38683203 PMCID: PMC11342648 DOI: 10.1097/spv.0000000000001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
ABSTRACT Pelvic floor disorders (PFDs) constitute a major public health issue given their negative effect on quality of life for millions of women worldwide and the associated economic burden. As the prevalence of PFDs continues to increase, novel therapeutic approaches for the effective treatment of these disorders are urgently needed. Regenerative medicine techniques, including cellular therapies, extracellular vesicles, secretomes, platelet-rich plasma, laser therapy, and bioinductive acellular biomaterial scaffolds, are emerging as viable clinical options to counteract urinary and fecal incontinence, as well as pelvic organ prolapse. This brief expert review explores the current state-of-science regarding application of these therapies for the treatment of PFDs. Although regenerative approaches have not been widely deployed in clinical care to date, these innovative techniques show a promising safety profile and potential to positively affect the quality of life of patients with PFDs. Furthermore, investigations focused on regeneration of the main constituents of the pelvic floor and lower urinary tract improve our understanding of the underlying pathophysiology of PFDs. Regenerative medicine techniques have a high potential not only to revolutionize treatment of PFDs but also to prevent these complex conditions.
Collapse
Affiliation(s)
- Tatyanna Henderson
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences
| | - Karen L. Christman
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Marianna Alperin
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| |
Collapse
|
33
|
Qiao S, Peijie T, Nan J. Crosslinking strategies of decellularized extracellular matrix in tissue regeneration. J Biomed Mater Res A 2024; 112:640-671. [PMID: 37990863 DOI: 10.1002/jbm.a.37650] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
By removing the immunogenic cellular components through various decellularization methods, decellularized extracellular matrix (dECM) is considered a promising material in the field of tissue engineering and regenerative medicine with highly preserved physicochemical properties and superior biocompatibility. However, decellularization treatment can lead to some loss of structural integrity, mechanical strength, degradation stability, and biological performance of dECM biomaterials. Therefore, physical and chemical crosslinking methods are preferred to restore or even improve the biomechanical properties, stability, and bioactivity, and to achieve a delicate balance between degradation of the implanted biomaterial and regeneration of the host tissue. This review provides an overview of dECM biomaterials, and describes and compares the mechanisms and characteristics of commonly used crosslinking methods for dECM, with a focus on the potential applications of versatile dECM-based biomaterials derived from skin, cardiac tissues (pericardium, heart valves, myocardial tissue), blood vessels, liver, and kidney, modified with different chemical crosslinking reagents, in tissue and organ regeneration.
Collapse
Affiliation(s)
- Su Qiao
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tan Peijie
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiang Nan
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Shi L, Zhou Y, Yin Y, Zhang J, Chen K, Liu S, Chen P, Jiang H, Liu J, Wu Y. Advancing Tissue Damage Repair in Geriatric Diseases: Prospects of Combining Stem Cell-Derived Exosomes with Hydrogels. Int J Nanomedicine 2024; 19:3773-3804. [PMID: 38708181 PMCID: PMC11068057 DOI: 10.2147/ijn.s456268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Geriatric diseases are a group of diseases with unique characteristics related to senility. With the rising trend of global aging, senile diseases now mainly include endocrine, cardiovascular, neurodegenerative, skeletal, and muscular diseases and cancer. Compared with younger populations, the structure and function of various cells, tissues and organs in the body of the elderly undergo a decline as they age, rendering them more susceptible to external factors and diseases, leading to serious tissue damage. Tissue damage presents a significant obstacle to the overall health and well-being of older adults, exerting a profound impact on their quality of life. Moreover, this phenomenon places an immense burden on families, society, and the healthcare system.In recent years, stem cell-derived exosomes have become a hot topic in tissue repair research. The combination of these exosomes with biomaterials allows for the preservation of their biological activity, leading to a significant improvement in their therapeutic efficacy. Among the numerous biomaterial options available, hydrogels stand out as promising candidates for loading exosomes, owing to their exceptional properties. Due to the lack of a comprehensive review on the subject matter, this review comprehensively summarizes the application and progress of combining stem cell-derived exosomes and hydrogels in promoting tissue damage repair in geriatric diseases. In addition, the challenges encountered in the field and potential prospects are presented for future advancements.
Collapse
Affiliation(s)
- Ling Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yunjun Zhou
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yongkui Yin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jin Zhang
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, Quzhou, 324004, People’s Republic of China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Sen Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Peijian Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Hua Jiang
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| |
Collapse
|
35
|
Buckenmeyer MJ, Brooks EA, Taylor MS, Yang L, Holewinski RJ, Meyer TJ, Galloux M, Garmendia-Cedillos M, Pohida TJ, Andresson T, Croix B, Wolf MT. Engineering Tumor Stroma Morphogenesis Using Dynamic Cell-Matrix Spheroid Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585805. [PMID: 38903106 PMCID: PMC11188064 DOI: 10.1101/2024.03.19.585805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The tumor microenvironment consists of resident tumor cells organized within a compositionally diverse, three-dimensional (3D) extracellular matrix (ECM) network that cannot be replicated in vitro using bottom-up synthesis. We report a new self-assembly system to engineer ECM-rich 3D MatriSpheres wherein tumor cells actively organize and concentrate microgram quantities of decellularized ECM dispersions which modulate cell phenotype. 3D colorectal cancer (CRC) MatriSpheres were created using decellularized small intestine submucosa (SIS) as an orthotopic ECM source that had greater proteomic homology to CRC tumor ECM than traditional ECM formulations such as Matrigel. SIS ECM was rapidly concentrated from its environment and assembled into ECM-rich 3D stroma-like regions by mouse and human CRC cell lines within 4-5 days via a mechanism that was rheologically distinct from bulk hydrogel formation. Both ECM organization and transcriptional regulation by 3D ECM cues affected programs of malignancy, lipid metabolism, and immunoregulation that corresponded with an in vivo MC38 tumor cell subpopulation identified via single cell RNA sequencing. This 3D modeling approach stimulates tumor specific tissue morphogenesis that incorporates the complexities of both cancer cell and ECM compartments in a scalable, spontaneous assembly process that may further facilitate precision medicine.
Collapse
Affiliation(s)
- Michael J. Buckenmeyer
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Elizabeth A. Brooks
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Madison S. Taylor
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ronald J. Holewinski
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mélissa Galloux
- Independent Bioinformatician, Marseille, Provence-Alpes-Côte d’Azur, France
| | - Marcial Garmendia-Cedillos
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas J. Pohida
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Brad Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Matthew T. Wolf
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
36
|
Li X, Zhao W, Zhou D, Li P, Zhao C, Zhou Q, Wang Y. Construction of Integral Decellularized Cartilage Using a Novel Hydrostatic Pressure Bioreactor. Tissue Eng Part C Methods 2024; 30:113-129. [PMID: 38183634 DOI: 10.1089/ten.tec.2023.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024] Open
Abstract
The decellularized extracellular matrix (ECM) of cartilage is a widely used natural bioscaffold for constructing tissue-engineered cartilage due to its good biocompatibility and regeneration properties. However, current decellularization methods for accessing decellularized cartilaginous tissues require multiple steps and a relatively long duration to produce decellularized cartilage. In addition, most decellularization strategies lead to damage of the microstructure and loss of functional components of the cartilaginous matrix. In this study, a novel decellularization strategy based on a hydrostatic pressure (HP) bioreactor was introduced, which aimed to improve the efficiency of producing integral decellularized cartilage pieces by combining physical and chemical decellularization methods in a perfusing manner. Two types of cartilaginous tissues, auricular cartilage (AC) and nucleus pulposus (NP) fibrocartilage, were selected for comparison of the effects of ordinary, positive, and negative HP-based decellularization according to the cell clearance ratio, microstructural changes, ECM components, and mechanical properties. The results indicated that applying positive HP improved the efficiency of producing decellularized AC, but no significant differences in decellularization efficiency were found between the ordinary and negative HP-treated groups. However, compared with the ordinary HP treatment, the application of the positive or negative HP did not affect the efficiency of decellularized NP productions. Moreover, neither positive nor negative HP influenced the preservation of the microstructure and components of the AC matrix. However, applying negative HP disarranged the fibril distribution of the NP matrix and reduced glycosaminoglycans and collagen type II contents, two essential ECM components. In addition, the positive HP was beneficial for maintaining the mechanical properties of decellularized cartilage. The recellularization experiments also verified the good biocompatibility of the decellularized cartilage produced by the present bioreactor-based decellularization method under positive HP. Overall, applying positive HP-based decellularization resulted in a superior effect on the production of close-to-natural scaffolds for cartilage tissue engineering. Impact statement In this study, we successfully constructed a novel hydrostatic pressure (HP) bioreactor and used this equipment to produce decellularized cartilage by combining physical and chemical decellularization methods in a perfusing manner. We found that positive HP-based decellularization could improve the production efficiency of integral decellularized cartilage pieces and promote the maintenance of matrix components and mechanical properties. This new decellularization strategy exhibited a superior effect in the production of close-to-natural scaffolds and positively impacts cartilage tissue engineering.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weikang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dandan Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Gastroenterology, Jiulongpo People's Hospital of Chongqing, Chongqing, China
| | - Pei Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Zhao
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyang Wang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Guo W, Liu H, Zhang J, Zhang J, Wang F, Zhang P, Yang Y. Preparation and characterization of a novel composite acellular matrix/hyaluronic acid thermosensitive hydrogel for interstitial cystitis/bladder pain syndrome. J Biomed Mater Res A 2024; 112:449-462. [PMID: 37975156 DOI: 10.1002/jbm.a.37643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Bladder mucosa damage that causes harm to the interstitium is a recognized pathogenesis of interstitial cystitis/bladder pain syndrome (IC/BPS). The intravesical instillation of drugs is an important second-line therapy, but it is often necessary to use drugs repeatedly in the clinic because of their short residence time in the bladder cavity, which alters the therapeutic effect. To overcome this drawback, this study developed a novel composite acellular matrix/hyaluronic acid (HA) thermosensitive hydrogel (HA-Gel) using rabbit small intestinal submucosa extracellular matrix (ECM) as the thermosensitive material and HA as the drug component and examined its composition, microstructure, thermodynamic properties, temperature sensitivity, rheological properties, biocompatibility, drug release, hydrogel residue, and bacteriostatic properties. The study showed HA-Gel was liquid at temperatures of 15-37.5°C and solid at 37.5-50°C, its swelling rate decreased with increasing temperature, and its lower critical solution temperature occurred at approximately 37.5°C. This property made the hydrogel liquid at room temperature convenient for intravesical perfusion and turned into a solid about 1 min after entering the body and rising to body temperature to increase its residence time. Subsequent experiments also proved that the gel residue time of HA-Gel in vivo and the drug release time of HA in vivo could reach more than 5 days, which was significantly higher than that of HA alone, and it had good biocompatibility and antibacterial properties. Therefore, this hydrogel possesses the proper characteristics to possibly make it an ideal dosage form for IC/BPS intravesical instillation therapy.
Collapse
Affiliation(s)
- Wei Guo
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Haichao Liu
- Department of Urology, Hebei Yanda Hospital, West of SiPuLan Road, Langfang, China
| | - Jiaxing Zhang
- Department of Urology, Hebei Yanda Hospital, West of SiPuLan Road, Langfang, China
| | - Jianzhong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Fei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Peng Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Yunbo Yang
- Department of Urology, Hebei Yanda Hospital, West of SiPuLan Road, Langfang, China
| |
Collapse
|
38
|
Xie C, Xu J, Wang X, Jiang S, Zheng Y, Liu Z, Jia Z, Jia Z, Lu X. Smart Hydrogels for Tissue Regeneration. Macromol Biosci 2024; 24:e2300339. [PMID: 37848181 DOI: 10.1002/mabi.202300339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Indexed: 10/19/2023]
Abstract
The rapid growth in the portion of the aging population has led to a consequent increase in demand for biomedical hydrogels, together with an assortment of challenges that need to be overcome in this field. Smart hydrogels can autonomously sense and respond to the physiological/pathological changes of the tissue microenvironment and continuously adapt the response according to the dynamic spatiotemporal shifts in conditions. This along with other favorable properties, make smart hydrogels excellent materials for employing toward improving the precision of treatment for age-related diseases. The key factor during the smart hydrogel design is on accurately identifying the characteristics of natural tissues and faithfully replicating the composition, structure, and biological functions of these tissues at the molecular level. Such hydrogels can accurately sense distinct physiological and external factors such as temperature and biologically active molecules, so they may in turn actively and promptly adjust their response, by regulating their own biological effects, thereby promoting damaged tissue repair. This review summarizes the design strategies employed in the creation of smart hydrogels, their response mechanisms, as well as their applications in field of tissue engineering; and concludes by briefly discussing the relevant challenges and future prospects.
Collapse
Affiliation(s)
- Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jie Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xinyi Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Shengxi Jiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yujia Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zexin Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhuo Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhanrong Jia
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
39
|
Li Y, Liu S, Zhang J, Wang Y, Lu H, Zhang Y, Song G, Niu F, Shen Y, Midgley AC, Li W, Kong D, Zhu M. Elastic porous microspheres/extracellular matrix hydrogel injectable composites releasing dual bio-factors enable tissue regeneration. Nat Commun 2024; 15:1377. [PMID: 38355941 PMCID: PMC10866888 DOI: 10.1038/s41467-024-45764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Injectable biomaterials have garnered increasing attention for their potential and beneficial applications in minimally invasive surgical procedures and tissue regeneration. Extracellular matrix (ECM) hydrogels and porous synthetic polymer microspheres can be prepared for injectable administration to achieve in situ tissue regeneration. However, the rapid degradation of ECM hydrogels and the poor injectability and biological inertness of most polymeric microspheres limit their pro-regenerative capabilities. Here, we develop a biomaterial system consisting of elastic porous poly(l-lactide-co-ε-caprolactone) (PLCL) microspheres mixed with ECM hydrogels as injectable composites with interleukin-4 (IL-4) and insulin-like growth factor-1 (IGF-1) dual-release functionality. The developed multifunctional composites have favorable injectability and biocompatibility, and regulate the behavior of macrophages and myogenic cells following injection into muscle tissue. The elicited promotive effects on tissue regeneration are evidenced by enhanced neomusle formation, vascularization, and neuralization at 2-months post-implantation in a male rat model of volumetric muscle loss. Our developed system provides a promising strategy for engineering bioactive injectable composites that demonstrates desirable properties for clinical use and holds translational potential for application as a minimally invasive and pro-regenerative implant material in multiple types of surgical procedures.
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Siyang Liu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jingjing Zhang
- Chifeng Municipal Hospital, Chifeng, 024000, Inner Mongolia, China
| | - Yumeng Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Hongjiang Lu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yuexi Zhang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| | - Guangzhou Song
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Fanhua Niu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yufan Shen
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Wen Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Deling Kong
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Meifeng Zhu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
40
|
Wiebe-Ben Zakour KE, Kaya S, Matros JC, Hacker MC, Cheikh-Rouhou A, Spaniol K, Geerling G, Witt J. Enhancement of lacrimal gland cell function by decellularized lacrimal gland derived hydrogel. Biofabrication 2024; 16:025008. [PMID: 38241707 DOI: 10.1088/1758-5090/ad2082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Sustainable treatment of aqueous deficient dry eye (ADDE) represents an unmet medical need and therefore requires new curative and regenerative approaches based on appropriatein vitromodels. Tissue specific hydrogels retain the individual biochemical composition of the extracellular matrix and thus promote the inherent cell´s physiological function. Hence, we created a decellularized lacrimal gland (LG) hydrogel (dLG-HG) meeting the requirements for a bioink as the basis of a LG model with potential forin vitroADDE studies. Varying hydrolysis durations were compared to obtain dLG-HG with best possible physical and ultrastructural properties while preserving the original biochemical composition. A particular focus was placed on dLG-HG´s impact on viability and functionality of LG associated cell types with relevance for a futurein vitromodel in comparison to the unspecific single component hydrogel collagen type-I (Col) and the common cell culture substrate Matrigel. Proliferation of LG epithelial cells (EpC), LG mesenchymal stem cells, and endothelial cells cultured on dLG-HG was enhanced compared to culture on Matrigel. Most importantly with respect to a functionalin vitromodel, the secretion capacity of EpC cultured on dLG-HG was higher than that of EpC cultured on Col or Matrigel. In addition to these promising cell related properties, a rapid matrix metalloproteinase-dependent biodegradation was observed, which on the one hand suggests a lively cell-matrix interaction, but on the other hand limits the cultivation period. Concluding, dLG-HG possesses decisive properties for the tissue engineering of a LGin vitromodel such as cytocompatibility and promotion of secretion, making it superior to unspecific cell culture substrates. However, deceleration of biodegradation should be addressed in future experiments.
Collapse
Affiliation(s)
- Katharina E Wiebe-Ben Zakour
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Sema Kaya
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Julia C Matros
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Michael C Hacker
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Amina Cheikh-Rouhou
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Kristina Spaniol
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Gerd Geerling
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Joana Witt
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
41
|
Browne S, Petit N, Quondamatteo F. Functionalised biomaterials as synthetic extracellular matrices to promote vascularisation and healing of diabetic wounds. Cell Tissue Res 2024; 395:133-145. [PMID: 38051351 DOI: 10.1007/s00441-023-03849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Diabetic foot ulcers (DFU) are a type of chronic wound that constitute one of the most serious and debilitating complications associated with diabetes. The lack of clinically efficacious treatments to treat these recalcitrant wounds can lead to amputations for those worst affected. Biomaterial-based approaches offer great hope in this regard, as they provide a template for cell infiltration and tissue repair. However, there is an additional need to treat the underlying pathophysiology of DFUs, in particular insufficient vascularization of the wound which significantly hampers healing. Thus, the addition of pro-angiogenic moieties to biomaterials is a promising strategy to promote the healing of DFUs and other chronic wounds. In this review, we discuss the potential of biomaterials as treatments for DFU and the approaches that can be taken to functionalise these biomaterials such that they promote vascularisation and wound healing in pre-clinical models.
Collapse
Affiliation(s)
- Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, H91 W2TY, Galway, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland.
| | - Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland
| | - Fabio Quondamatteo
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland.
| |
Collapse
|
42
|
Hamsho K, Broadwin M, Stone CR, Sellke FW, Abid MR. The Current State of Extracellular Matrix Therapy for Ischemic Heart Disease. Med Sci (Basel) 2024; 12:8. [PMID: 38390858 PMCID: PMC10885030 DOI: 10.3390/medsci12010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The extracellular matrix (ECM) is a three-dimensional, acellular network of diverse structural and nonstructural proteins embedded within a gel-like ground substance composed of glycosaminoglycans and proteoglycans. The ECM serves numerous roles that vary according to the tissue in which it is situated. In the myocardium, the ECM acts as a collagen-based scaffold that mediates the transmission of contractile signals, provides means for paracrine signaling, and maintains nutritional and immunologic homeostasis. Given this spectrum, it is unsurprising that both the composition and role of the ECM has been found to be modulated in the context of cardiac pathology. Myocardial infarction (MI) provides a familiar example of this; the ECM changes in a way that is characteristic of the progressive phases of post-infarction healing. In recent years, this involvement in infarct pathophysiology has prompted a search for therapeutic targets: if ECM components facilitate healing, then their manipulation may accelerate recovery, or even reverse pre-existing damage. This possibility has been the subject of numerous efforts involving the integration of ECM-based therapies, either derived directly from biologic sources or bioengineered sources, into models of myocardial disease. In this paper, we provide a thorough review of the published literature on the use of the ECM as a novel therapy for ischemic heart disease, with a focus on biologically derived models, of both the whole ECM and the components thereof.
Collapse
Affiliation(s)
- Khaled Hamsho
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - Christopher R. Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| |
Collapse
|
43
|
De Castilho T, Rosa GDS, Stievani FC, Apolônio EVP, Pfeifer JPH, Altheman VG, Palialogo V, Santos NJ, Fonseca-Alves CE, Alves ALG. Biocompatibility of hydrogel derived from equine tendon extracellular matrix in horses subcutaneous tissue. Front Bioeng Biotechnol 2024; 11:1296743. [PMID: 38260745 PMCID: PMC10801062 DOI: 10.3389/fbioe.2023.1296743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Tendinopathies account for a substantial proportion of musculoskeletal injuries. To improve treatment outcomes for partial and total tendon ruptures, new therapies are under investigation. These include the application of mesenchymal stem cells (MSCs) and biocompatible scaffolds derived from the Extracellular Matrix (ECM). Synthetic polymer hydrogels have not demonstrated results as promising as those achieved with ECM hydrogels sourced from the original tissue. This study aimed to evaluate the biocompatibility of a hydrogel formulated from equine tendon ECM. Six horses were administered three subcutaneous doses of the hydrogel, with a saline solution serving as a control. Biopsies were conducted on days 7, 14, and 56 post-application to gauge the hydrogel's impact. Throughout the experiment, the horse's physical condition remained stable. Thermographic analyses revealed a temperature increase in the treated groups compared to the control group within the initial 12 h. The von Frey test, used to measure the mechanical nociceptive threshold, also showed significant differences between the treated group and the control group at 6 h, 21 days, and 28 days. Histopathological analyses identified an inflammatory response on day 7, which was absent on days 14 and 56. Transmission electron microscopy indicated a decrease in inflammatory cellularity, while immunohistochemistry staining suggested an increased presence of inflammatory factors on day 14. In summary, the hydrogel is easily injectable, triggers a temporary local inflammatory response, and integrates into the adjacent tissue from day 14 onwards.
Collapse
Affiliation(s)
- Thiago De Castilho
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Gustavo dos Santos Rosa
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Fernanda de Castro Stievani
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Emanuel Vítor Pereira Apolônio
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - João Pedro Hübbe Pfeifer
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Vittoria Guerra Altheman
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Valéria Palialogo
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Nilton José Dos Santos
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Liz Garcia Alves
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
44
|
Gujjar S, Tyagi A, Sainger S, Bharti P, Nain V, Sood P, Jayabal P, Sharma JC, Sharma P, Rajput S, Pandey AK, Pandey AK, Abnave P, Mathapati S. Biocompatible Human Placental Extracellular Matrix Derived Hydrogels. Adv Biol (Weinh) 2024; 8:e2300349. [PMID: 37786307 DOI: 10.1002/adbi.202300349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Indexed: 10/04/2023]
Abstract
Solubilizing extracellular matrix (ECM) materials and transforming them into hydrogels has expanded their potential applications both in vitro and in vivo. In this study, hydrogels are prepared by decellularization of human placental tissue using detergent and enzymes and by the subsequent creation of a homogenized acellular placental tissue powder (P-ECM). A perfusion-based decellularization approach is employed using detergent and enzymes. The P-ECM with and without gamma irradiation is then utilized to prepare P-ECM hydrogels. Physical and biological evaluations are conducted to assess the suitability of the P-ECM hydrogels for biocompatibility. The decellularized tissue has significantly reduced cellular content and retains the major ECM proteins. Increasing the concentration of P-ECM leads to improved mechanical properties of the P-ECM hydrogels. The biocompatibility of the P-ECM hydrogel is demonstrated through cell proliferation and viability assays. Notably, gamma-sterilized P-ECM does not support the formation of a stable hydrogel. Nonetheless, the use of HCl during the digestion process effectively decreases spore growth and bacterial bioburden. The study demonstrates that P-ECM hydrogels exhibit physical and biological attributes conducive to soft tissue reconstruction. These hydrogels establish a favorable microenvironment for cell growth and the need for investigating innovative sterilization methods.
Collapse
Affiliation(s)
- Sunil Gujjar
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Anurag Tyagi
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Saloni Sainger
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Puja Bharti
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Vaibhav Nain
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Pratibha Sood
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Prakash Jayabal
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Jagadish Chandra Sharma
- Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, 121012, India
| | - Priyanka Sharma
- Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, 121012, India
| | - Sanjay Rajput
- Shriram Institute for Industrial Research, Delhi, 110007, India
| | - Anil Kumar Pandey
- Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, 121012, India
| | - Amit Kumar Pandey
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Prasad Abnave
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Santosh Mathapati
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| |
Collapse
|
45
|
Almalla A, Elomaa L, Bechtella L, Daneshgar A, Yavvari P, Mahfouz Z, Tang P, Koksch B, Sauer I, Pagel K, Hillebrandt KH, Weinhart M. Papain-Based Solubilization of Decellularized Extracellular Matrix for the Preparation of Bioactive, Thermosensitive Pregels. Biomacromolecules 2023; 24:5620-5637. [PMID: 38009757 PMCID: PMC10716854 DOI: 10.1021/acs.biomac.3c00602] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023]
Abstract
Solubilized, gel-forming decellularized extracellular matrix (dECM) is used in a wide range of basic and translational research and due to its inherent bioactivity can promote structural and functional tissue remodeling. The animal-derived protease pepsin has become the standard proteolytic enzyme for the solubilization of almost all types of collagen-based dECM. In this study, pepsin was compared with papain, α-amylase, and collagenase for their potential to solubilize porcine liver dECM. Maximum preservation of bioactive components and native dECM properties was used as a decisive criterion for further application of the enzymes, with emphasis on minimal destruction of the protein structure and maintained capacity for physical thermogelation at neutral pH. The solubilized dECM digests, and/or their physically gelled hydrogels were characterized for their rheological properties, gelation kinetics, GAG content, proteomic composition, and growth factor profile. This study highlights papain as a plant-derived enzyme that can serve as a cost-effective alternative to animal-derived pepsin for the efficient solubilization of dECM. The resulting homogeneous papain-digested dECM preserved its thermally triggered gelation properties similar to pepsin digests, and the corresponding dECM hydrogels demonstrated their enhanced bioadhesiveness in single-cell force spectroscopy experiments with fibroblasts. The viability and proliferation of human HepaRG cells on dECM gels were similar to those on pure rat tail collagen type I gels. Papain is not only highly effective and economically attractive for dECM solubilization but also particularly interesting when digesting human-tissue-derived dECM for regenerative applications, where animal-derived materials are to be avoided.
Collapse
Affiliation(s)
- Ahed Almalla
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Laura Elomaa
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Leïla Bechtella
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Assal Daneshgar
- Experimental
Surgery, Department of Surgery, CCM|CVK, Charité − Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Prabhu Yavvari
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Zeinab Mahfouz
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Peter Tang
- Experimental
Surgery, Department of Surgery, CCM|CVK, Charité − Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beate Koksch
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Igor Sauer
- Experimental
Surgery, Department of Surgery, CCM|CVK, Charité − Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Karl Herbert Hillebrandt
- Experimental
Surgery, Department of Surgery, CCM|CVK, Charité − Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin
Institute of Health at Charité − Universitätsmedizin
Berlin, BIH Biomedical Innovation Academy, BIH Charité, Clinician
Scientist Program, Charitéplatz
1, 10117 Berlin, Germany
| | - Marie Weinhart
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität
Hannover, 30167 Hannover, Germany
| |
Collapse
|
46
|
Li X, Shan J, Chen X, Cui H, Wen G, Yu Y. Decellularized diseased tissues: current state-of-the-art and future directions. MedComm (Beijing) 2023; 4:e399. [PMID: 38020712 PMCID: PMC10661834 DOI: 10.1002/mco2.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
Decellularized matrices derived from diseased tissues/organs have evolved in the most recent years, providing novel research perspectives for understanding disease occurrence and progression and providing accurate pseudo models for developing new disease treatments. Although decellularized matrix maintaining the native composition, ultrastructure, and biomechanical characteristics of extracellular matrix (ECM), alongside intact and perfusable vascular compartments, facilitates the construction of bioengineered organ explants in vitro and promotes angiogenesis and tissue/organ regeneration in vivo, the availability of healthy tissues and organs for the preparation of decellularized ECM materials is limited. In this paper, we review the research advancements in decellularized diseased matrices. Considering that current research focuses on the matrices derived from cancers and fibrotic organs (mainly fibrotic kidney, lungs, and liver), the pathological characterizations and the applications of these diseased matrices are mainly discussed. Additionally, a contrastive analysis between the decellularized diseased matrices and decellularized healthy matrices, along with the development in vitro 3D models, is discussed in this paper. And last, we have provided the challenges and future directions in this review. Deep and comprehensive research on decellularized diseased tissues and organs will promote in-depth exploration of source materials in tissue engineering field, thus providing new ideas for clinical transformation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianyang Shan
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Chen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Haomin Cui
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gen Wen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaling Yu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
47
|
Le HT, Phan HL, Lenshof A, Duong VT, Choi C, Cha C, Laurell T, Koo KI. Ultrasound standing wave spatial patterning of human umbilical vein endothelial cells for 3D micro-vascular networks formation. Biofabrication 2023; 16:015009. [PMID: 37844581 DOI: 10.1088/1758-5090/ad03be] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Generating functional and perfusable micro-vascular networks is an important goal for the fabrication of large and three-dimensional tissues. Up to now, the fabrication of micro-vascular networks is a complicated multitask involving several different factors such as time consuming, cells survival, micro-diameter vasculature and strict alignment. Here, we propose a technique combining multi-material extrusion and ultrasound standing wave forces to create a network structure of human umbilical vein endothelial cells within a mixture of calcium alginate and decellularized extracellular matrix. The functionality of the matured microvasculature networks was demonstrated through the enhancement of cell-cell adhesion, angiogenesis process, and perfusion tests with microparticles, FITC-dextran, and whole mouse blood. Moreover, animal experiments exhibited the implantability including that the pre-existing blood vessels of the host sprout towards the preformed vessels of the scaffold over time and the microvessels inside the implanted scaffold matured from empty tubular structures to functional blood-carrying microvessels in two weeks.
Collapse
Affiliation(s)
- Huong Thi Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Huu Lam Phan
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Andreas Lenshof
- Department of Biomedical Engineering, Lund University, S-221 00 Lund, Sweden
| | - Van Thuy Duong
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Cholong Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, S-221 00 Lund, Sweden
| | - Kyo-In Koo
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
48
|
Turan Sorhun D, Kuşoğlu A, Öztürk E. Developing Bovine Brain-Derived Extracellular Matrix Hydrogels: a Screen of Decellularization Methods for Their Impact on Biochemical and Mechanical Properties. ACS OMEGA 2023; 8:36933-36947. [PMID: 37841171 PMCID: PMC10569007 DOI: 10.1021/acsomega.3c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Tissue models that recapitulate the key biochemical and physical aspects of the brain have been highly pursued in neural tissue engineering. Decellularization of native organs offers the advantage of preserving the composition of native extracellular matrix (ECM). Brain ECM has distinct features which play a major role in neural cell behavior. Cell instructive ligands and mechanical properties take part in the regulation of cellular processes in homeostasis and diseases. One of the main challenges in decellularization is maintaining mechanical integrity in reconstituted hydrogels and achieving physiologically relevant stiffness. The effect of the decellularization process on different mechanical aspects, particularly the viscoelasticity of brain-derived hydrogels, has not been addressed. In this study, we developed bovine brain-derived hydrogels for the first time. We pursued seven protocols for decellularization and screened their effect on biochemical content, hydrogel formation, and mechanical characteristics. We show that bovine brain offers an easily accessible alternative for in vitro brain tissue modeling. Our data demonstrate that the choice of decellularization method strongly alters gelation as well as the stiffness and viscoelasticity of the resulting hydrogels. Lastly, we investigated the cytocompatibility of brain ECM hydrogels and the effect of modulated mechanical properties on the growth and morphological features of neuroblastoma cells.
Collapse
Affiliation(s)
- Duygu Turan Sorhun
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Alican Kuşoğlu
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Ece Öztürk
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Department
of Medical Biology, School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
49
|
Wang T, Huang Q, Rao Z, Liu F, Su X, Zhai X, Ma J, Liang Y, Quan D, Liao G, Bai Y, Zhang S. Injectable decellularized extracellular matrix hydrogel promotes salivary gland regeneration via endogenous stem cell recruitment and suppression of fibrogenesis. Acta Biomater 2023; 169:256-272. [PMID: 37557943 DOI: 10.1016/j.actbio.2023.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Saliva is key to the maintenance of oral homeostasis. However, several forms of salivary gland (SG) disorders, followed by hyposalivation, often result in dental caries, oral infection, and decreased taste, which dramatically affect the quality of patient's life. Functional biomaterials hold great potential for tissue regeneration in damaged or dysfunctional SGs and maintaining the good health of oral cavity. Herein, we prepared an injectable hydrogel derived from decellularized porcine submandibular glands (pDSG-gel), the material and biological properties of the hydrogel were systematically investigated. First, good biocompatibility and bioactivities of the pDSG-gel were validated in 2D and 3D cultures of primary submandibular gland mesenchymal stem cells (SGMSCs). Especially, the pDSG-gel effectively facilitated SGMSCs migration and recruitment through the activation of PI3K/AKT signaling pathway, suggested by transcriptomic analysis and immunoblotting. Furthermore, proteomic analysis of the pDSG revealed that many extracellular matrix components and secreted factors were preserved, which may contribute to stem cell homing. The recruitment of endogenous SG cells was confirmed in vivo, upon in situ injection of the pDSG-gel into the defective SGs in rats. Acinar and ductal-like structures were evident in the injury sites after pDSG-gel treatment, suggesting the reconstruction of functional SG units. Meanwhile, histological characterizations showed that the administration of the pDSG-gel also significantly suppressed fibrogenesis within the injured SG tissues. Taken together, this tissue-specific hydrogel provides a pro-regenerative microenvironment for endogenous SG regeneration and holds great promise as a powerful and bioactive material for future treatments of SG diseases. STATEMENT OF SIGNIFICANCE: Decellularized extracellular matrix (dECM) has been acknowledged as one of the most promising biomaterials that recapitalizes the microenvironment in native tissues. Hydrogel derived from the dECM allows in situ administration for tissue repair. Herein, a tissue-specific dECM hydrogel derived from porcine salivary glands (pDSG-gel) was successfully prepared and developed for functional reconstruction of defective salivary gland (SG) tissues. The pDSG-gel effectively accelerated endogenous SG stem cells migration and their recruitment for acinar- and ductal-like regeneration, which was attributed to the activation of PI3K/AKT signaling pathway. Additionally, the introduction of the pDSG-gel resulted in highly suppressed fibrogenesis in the defective tissues. These outcomes indicated that the pDSG-gel holds great potential in clinical translation toward SG regeneration through cell-free treatments.
Collapse
Affiliation(s)
- Tao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Qiting Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fan Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xinyun Su
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xuefan Zhai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Jingxin Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Sien Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| |
Collapse
|
50
|
Song Y, You Y, Xu X, Lu J, Huang X, Zhang J, Zhu L, Hu J, Wu X, Xu X, Tan W, Du Y. Adipose-Derived Mesenchymal Stem Cell-Derived Exosomes Biopotentiated Extracellular Matrix Hydrogels Accelerate Diabetic Wound Healing and Skin Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304023. [PMID: 37712174 PMCID: PMC10602544 DOI: 10.1002/advs.202304023] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Indexed: 09/16/2023]
Abstract
Wound healing is an urgent clinical challenge, particularly in the case of chronic wounds. Traditional approaches to wound healing have limited therapeutic efficacy due to lengthy healing times, risk of immune rejection, and susceptibility to infection. Recently, adipose-derived mesenchymal stem cell-derived exosomes (ADSC-exos) have emerged as a promising modality for tissue regeneration and wound repair. In this study, the development of a novel extracellular matrix hydrogel@exosomes (ECM@exo) is reported, which entails incorporation of ADSC-exos into an extracellular matrix hydrogel (ECM hydrogel). This solution forms a hydrogel at physiological temperature (≈37 °C) upon local injection into the wound site. ECM@exo enables sustained release of ADSC-exos from the ECM hydrogel, which maintains high local concentrations at the wound site. The ECM hydrogel displays good biocompatibility and biodegradability. The in vivo and in vitro results demonstrate that ECM@exo treatment effectively reduces inflammation and promotes angiogenesis, collagen deposition, cell proliferation, and migration, thereby accelerating the wound healing process. Overall, this innovative therapeutic approach offers a new avenue for wound healing via a biological hydrogel with controlled exosome release.
Collapse
Affiliation(s)
- Yanling Song
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Yuchan You
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xinyi Xu
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Jingyi Lu
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiajie Huang
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Jucong Zhang
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Luwen Zhu
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Jiahao Hu
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiaochuan Wu
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiaoling Xu
- Shulan International Medical CollegeZhejiang Shuren UniversityHangzhouZhejiang310015P. R. China
| | - Weiqiang Tan
- Department of Plastic SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
| | - Yongzhong Du
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
- Department of Plastic SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Department of PharmacySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Innovation Center of Translational PharmacyJinhua Institute of Zhejiang UniversityJinhua321299P. R. China
| |
Collapse
|