1
|
Wang P, Shen S, Guo Y, Cao J, Zhu D, Xie M, Yu Q, Cui Z, Liu S, Zhang J, Chen J. Rho kinase inhibitor Y-27632 and dual media culture approach promote the construction and transplantation of rabbit limbal epithelial cell sheets via cell spheroid culture and auto-bioprinting. Acta Biomater 2025; 194:140-152. [PMID: 39800095 DOI: 10.1016/j.actbio.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
The shortage of corneal donors and the limitations in tissue engineering grafts, such as biocompatibility and mechanical properties, pose significant challenges in corneal transplantation. Here, for the first time, we investigate the effect of Rho kinase inhibitor Y-27632 and a dual media culture approach, including proliferative media (M1) and stabilizing media (M2), on rabbit limbal epithelial stem cells (LESCs), aiming to explore the feasibility of constructing corneal cell sheets in vitro through auto-bioprinting and assessing their corneal wound healing capacity in vivo. Y-27632 has primarily demonstrated significantly enhanced LESCs growth, proliferation, and reduced apoptosis. The dual media culture approach combined with Y-27632 improved LESCs proliferation while maintaining stemness. In spheroid culture, Y-27632 decreased cell death and promoted proliferation. Immunofluorescent staining and RNA sequencing revealed upregulation of genes related to tight junctions and cell adhesion and downregulation of genes associated with aging and cell cycle. Using a bioprinter, LESC spheroids were auto-bioprinted onto a custom-made curved collagen membrane, creating a bioactive, transplantable, tissue-engineered anterior corneal sheet. Anterior superficial corneal transplantation with these LESC sheets significantly accelerated epithelial wound healing in rabbit limbal stem cell deficiency (LSCD) models. Overall, the integration of Y-27632, dual-media culture, and spheroid cell culture led to the development of a highly bioactive and therapeutically promising bio-ink derived from LESCs. Auto-bioprinting these LESC spheroids produced a bioactive, transplantable corneal cell sheet, presenting a promising therapeutic option for LSCD. STATEMENT OF SIGNIFICANCE: The renewal and wound healing of the corneal epithelium are essential for maintaining normal vision and refractive function. Limbal stem cell deficiency (LSCD) is a major cause of blinding keratopathy, and current treatment options are limited. In this study, for the first time, we developed a highly bioactive and therapeutically potent bio-ink for ocular surface regeneration by integrating Y-27632, a dual-media culture approach, and spheroid cell culture. Additionally, using auto-bioprinting technology, the limbal epithelial stem cell (LESC) spheroid bio-ink was precisely auto-bioprinted onto the curved surface of the corneal membrane, significantly accelerating corneal epithelial healing in an LSCD rabbit model.
Collapse
Affiliation(s)
- Peiyuan Wang
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou, China
| | - Shuhao Shen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yonglong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jixing Cao
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Deliang Zhu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China; Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengyuan Xie
- Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Quan Yu
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Zekai Cui
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Shiwei Liu
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; Purui Eye Group, Shenzhen Purui Eye Hospital, Shenzhen, China
| | - Jun Zhang
- Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Jiansu Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China; Aier School of Ophthalmology, Central South University, Changsha, China.
| |
Collapse
|
2
|
Cui Z, Li X, Ou Y, Sun X, Gu J, Ding C, Yu Z, Guo Y, Liang Y, Mao S, Ma JH, Chan HF, Tang S, Chen J. Novel full-thickness biomimetic corneal model for studying pathogenesis and treatment of diabetic keratopathy. Mater Today Bio 2025; 30:101409. [PMID: 39807180 PMCID: PMC11729032 DOI: 10.1016/j.mtbio.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic keratopathy (DK), a significant complication of diabetes, often leads to corneal damage and vision impairment. Effective models are essential for studying DK pathogenesis and evaluating potential therapeutic interventions. This study developed a novel biomimetic full-thickness corneal model for the first time, incorporating corneal epithelial cells, stromal cells, endothelial cells, and nerves to simulate DK conditions in vitro. By exposing the model to a high-glucose (HG) environment, the pathological characteristics of DK, including nerve bundle disintegration, compromised barrier integrity, increased inflammation, and oxidative stress, were successfully replicated. Transcriptomic analysis revealed that HG downregulated genes associated with axon and synapse formation while upregulating immune response and oxidative stress pathways, with C-C Motif Chemokine Ligand 5 (CCL5) identified as a key hub gene in DK pathogenesis. The therapeutic effects of Lycium barbarum glycopeptide (LBGP) were evaluated using this model and validated in db/db diabetic mice. LBGP promoted nerve regeneration, alleviated inflammation and oxidative stress in both in vitro and in vivo models. Notably, LBGP suppressed the expression of CCL5, highlighting its potential mechanism of action. This study establishes a robust biomimetic platform for investigating DK and other corneal diseases, and identifies LBGP as a promising therapeutic candidate for DK. These findings provide valuable insights into corneal disease mechanisms and pave the way for future translational research and clinical applications.
Collapse
Affiliation(s)
- Zekai Cui
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Xiaoxue Li
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Yiwen Ou
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Xihao Sun
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Jianing Gu
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Chengcheng Ding
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Zhexiong Yu
- Tianren Goji Biotechnology Co., Ltd, Ningxia, China
| | - Yonglong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuqin Liang
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Shengru Mao
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Jacey Hongjie Ma
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shibo Tang
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Jiansu Chen
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| |
Collapse
|
3
|
Xie M, Liao M, Chen S, Zhu D, Zeng Q, Wang P, Su C, Lian R, Chen J, Zhang J. Cell spray printing combined with Lycium barbarum glycopeptide promotes repair of corneal epithelial injury. Exp Eye Res 2024; 244:109928. [PMID: 38750781 DOI: 10.1016/j.exer.2024.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
The corneal epithelium, located as the outermost layer of the cornea, is inherently susceptible to injuries that may lead to corneal opacities and compromise visual acuity. Rapid restoration of corneal epithelial injury is crucial for maintaining the transparency and integrity of the cornea. Cell spray treatment emerges as an innovative and effective approach in the field of regenerative medicine. In our study, a cell spray printing platform was established, and the optimal printing parameters were determined to be a printing air pressure of 5 PSI (34.47 kPa) and a liquid flow rate of 30 ml/h. Under these conditions, the viability and phenotype of spray-printed corneal epithelial cells were preserved. Moreover, Lycium barbarum glycopeptide (LBGP), a glycoprotein purified from wolfberry, enhanced proliferation while simultaneously inhibiting apoptosis of the spray-printed corneal epithelial cells. We found that the combination of cell spray printing and LBGP facilitated the rapid construction of multilayered cell sheets on flat and curved collagen membranes in vitro. Furthermore, the combined cell spray printing and LBGP accelerated the recovery of the rat corneal epithelium in the mechanical injury model. Our findings offer a therapeutic avenue for addressing corneal epithelial injuries and regeneration.
Collapse
Affiliation(s)
- Mengyuan Xie
- Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Meizhong Liao
- Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Sihui Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Deliang Zhu
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qiaolang Zeng
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570000, China
| | - Peiyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510623, China
| | - Caiying Su
- Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Ruiling Lian
- Aier Eye Institute, Changsha, Hunan, 410015, China
| | - Jiansu Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Aier Eye Institute, Changsha, Hunan, 410015, China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Jun Zhang
- Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Engineering Technology Research Center on Visible Light Communication, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Huang J, Jiang T, Li J, Qie J, Cheng X, Wang Y, Zhou T, Liu J, Han H, Yao K, Yu L. Biomimetic Corneal Stroma for Scarless Corneal Wound Healing via Structural Restoration and Microenvironment Modulation. Adv Healthc Mater 2024; 13:e2302889. [PMID: 37988231 DOI: 10.1002/adhm.202302889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Corneal injury-induced stromal scarring causes the most common subtype of corneal blindness, and there is an unmet need to promote scarless corneal wound healing. Herein, a biomimetic corneal stroma with immunomodulatory properties is bioengineered for scarless corneal defect repair. First, a fully defined serum-free system is established to derive stromal keratocytes (hAESC-SKs) from a current Good Manufacturing Practice (cGMP)-grade human amniotic epithelial stem cells (hAESCs), and RNA-seq is used to validate the phenotypic transition. Moreover, hAESC-SKs are shown to possess robust immunomodulatory properties in addition to the keratocyte phenotype. Inspired by the corneal stromal extracellular matrix (ECM), a photocurable gelatin-based hydrogel is fabricated to serve as a scaffold for hAESC-SKs for bioengineering of a biomimetic corneal stroma. The rabbit corneal defect model is used to confirm that this biomimetic corneal stroma rapidly restores the corneal structure, and effectively reshapes the tissue microenvironment via proteoglycan secretion to promote transparency and inhibition of the inflammatory cascade to alleviate fibrosis, which synergistically reduces scar formation by ≈75% in addition to promoting wound healing. Overall, the strategy proposed here provides a promising solution for scarless corneal defect repair.
Collapse
Affiliation(s)
- Jianan Huang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tuoying Jiang
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jinying Li
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui, 323000, P. R. China
| | - Jiqiao Qie
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Xiaoyu Cheng
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Yiyao Wang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Tinglian Zhou
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Jia Liu
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Haijie Han
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
5
|
Wang W, Yang T, Chen S, Liang L, Wang Y, Ding Y, Xiong W, Ye X, Guo Y, Shen S, Chen H, Chen J. Tissue engineering RPE sheet derived from hiPSC-RPE cell spheroids supplemented with Y-27632 and RepSox. J Biol Eng 2024; 18:7. [PMID: 38229139 DOI: 10.1186/s13036-024-00405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Retinal pigment epithelium (RPE) cell therapy is a promising way to treat many retinal diseases. However, obtaining transplantable RPE cells is time-consuming and less effective. This study aimed to develop novel strategies for generating engineered RPE patches with physiological characteristics. RESULTS Our findings revealed that RPE cells derived from human induced pluripotent stem cells (hiPSCs) successfully self-assembled into spheroids. The RPE spheroids treated with Y27632 and Repsox had increased expression of epithelial markers and RPE-specific genes, along with improved cell viability and barrier function. Transcriptome analysis indicated enhanced cell adhesion and extracellular matrix (ECM) organization in RPE spheroids. These RPE spheroids could be seeded and bioprinted on collagen vitrigel (CV) membranes to construct engineered RPE sheets. Circular RPE patches, obtained by trephining a specific section of the RPE sheet, exhibited abundant microvilli and pigment particles, as well as reduced proliferative capacity and enhanced maturation. CONCLUSIONS Our study suggests that the supplementation of small molecules and 3D spheroid culture, as well as the bioprinting technique, can be effective methods to promote RPE cultivation and construct engineered RPE sheets, which may support future clinical RPE cell therapy and the development of RPE models for research applications.
Collapse
Grants
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Wenxuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Tingting Yang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Sihui Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Liying Liang
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yingxin Wang
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yin Ding
- The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Wei Xiong
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Xiuhong Ye
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yonglong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuhao Shen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Hang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Jiansu Chen
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.
- Aier Eye Institute, Changsha, Hunan, China.
| |
Collapse
|
6
|
Jiao Y, Li X, Liu X, Li C, Yang X, Sun X, Wang F, Wang L. Cobweb-Inspired Micro/Nanostructured Scaffolds for Soft Tissue Regeneration with Inhibition Effect of Fibrosis under Dynamic Environment. Adv Healthc Mater 2023; 12:e2300997. [PMID: 37713107 DOI: 10.1002/adhm.202300997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Indexed: 09/16/2023]
Abstract
In soft tissue repair, fibrosis can lead to repair failure and long-term chronic pain in patients. Excessive mechanical stimulation of fibroblasts is one of the causes of fibrosis during abdominal wall regeneration. Inspired by the cobweb, a polycaprolactone beaded fiber is prepared by electrospinning. The cobweb-inspired structure attenuates the mechanical stimulation of cells under a dynamic environment. Nano-protrusions are introduced into the scaffold for further inhibition of fibrosis by self-induced crystallization. A machine is built for in vitro dynamic culture and rat abdominal subcutaneous embedding experiments are performed to verify the inhibiting effect of fibrosis in a dynamic environment in vivo. Results show that the expression of integrin β1 and α-smooth muscle actin is inhibited by the cobweb-inspired structure under dynamic culture. The results of hematoxylin and eosin and Masson's trichrome indicate that the cobweb-inspired structure has a good inhibitory effect on fibrosis in a dynamic environment in vivo. In general, the cobweb-inspired scaffold with nano-protrusions has a good ability to inhibit fibrosis under both static and dynamic environments. It is believed that the scaffold has promising applications in the field of inhibiting fibrosis caused by mechanical stimulation.
Collapse
Affiliation(s)
- Yongjie Jiao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Xiaojing Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xingxing Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Xiao Yang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xuwei Sun
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
7
|
Loiseau A, Raîche-Marcoux G, Maranda C, Bertrand N, Boisselier E. Animal Models in Eye Research: Focus on Corneal Pathologies. Int J Mol Sci 2023; 24:16661. [PMID: 38068983 PMCID: PMC10706114 DOI: 10.3390/ijms242316661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
The eye is a complex sensory organ that enables visual perception of the world. The dysfunction of any of these tissues can impair vision. Conduction studies on laboratory animals are essential to ensure the safety of therapeutic products directly applied or injected into the eye to treat ocular diseases before eventually proceeding to clinical trials. Among these tissues, the cornea has unique homeostatic and regenerative mechanisms for maintaining transparency and refraction of external light, which are essential for vision. However, being the outermost tissue of the eye and directly exposed to the external environment, the cornea is particularly susceptible to injury and diseases. This review highlights the evidence for selecting appropriate animals to better understand and treat corneal diseases, which rank as the fifth leading cause of blindness worldwide. The development of reliable and human-relevant animal models is, therefore, a valuable research tool for understanding and translating fundamental mechanistic findings, as well as for assessing therapeutic potential in humans. First, this review emphasizes the unique characteristics of animal models used in ocular research. Subsequently, it discusses current animal models associated with human corneal pathologies, their utility in understanding ocular disease mechanisms, and their role as translational models for patients.
Collapse
Affiliation(s)
- Alexis Loiseau
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Gabrielle Raîche-Marcoux
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Cloé Maranda
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Nicolas Bertrand
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, Québec, QC G1V 4G2, Canada;
| | - Elodie Boisselier
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| |
Collapse
|
8
|
Yam GHF, Pi S, Du Y, Mehta JS. Posterior corneoscleral limbus: Architecture, stem cells, and clinical implications. Prog Retin Eye Res 2023; 96:101192. [PMID: 37392960 DOI: 10.1016/j.preteyeres.2023.101192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
The limbus is a transition from the cornea to conjunctiva and sclera. In human eyes, this thin strip has a rich variation of tissue structures and composition, typifying a change from scleral irregularity and opacity to corneal regularity and transparency; a variation from richly vascularized conjunctiva and sclera to avascular cornea; the neural passage and drainage of aqueous humor. The limbal stroma is enriched with circular fibres running parallel to the corneal circumference, giving its unique role in absorbing small pressure changes to maintain corneal curvature and refractivity. It contains specific niches housing different types of stem cells for the corneal epithelium, stromal keratocytes, corneal endothelium, and trabecular meshwork. This truly reflects the important roles of the limbus in ocular physiology, and the limbal functionality is crucial for corneal health and the entire visual system. Since the anterior limbus containing epithelial structures and limbal epithelial stem cells has been extensively reviewed, this article is focused on the posterior limbus. We have discussed the structural organization and cellular components of the region beneath the limbal epithelium, the characteristics of stem cell types: namely corneal stromal stem cells, endothelial progenitors and trabecular meshwork stem cells, and recent advances leading to the emergence of potential cell therapy options to replenish their respective mature cell types and to correct defects causing corneal abnormalities. We have reviewed different clinical disorders associated with defects of the posterior limbus and summarized the available preclinical and clinical evidence about the developing topic of cell-based therapy for corneal disorders.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yiqin Du
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore (NUS) Medical School, Singapore.
| |
Collapse
|
9
|
Chen Z, Liu X, You J, Tomaskovic-Crook E, Yue Z, Talaei A, Sutton G, Crook J, Wallace G. Electro-compacted collagen for corneal epithelial tissue engineering. J Biomed Mater Res A 2023; 111:1151-1160. [PMID: 36651651 DOI: 10.1002/jbm.a.37500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/15/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Bioengineered corneal substitutes offer a solution to the shortage of donor corneal tissue worldwide. As one of the major structural components of the cornea, collagen has shown great potential for tissue-engineered cornea substitutes. Herein, free-standing collagen membranes fabricated using electro-compaction were assessed in corneal bioengineering application by comparing them with nonelectro-compacted collagen (NECC). The well-organized and biomimetic fibril structure resulted in a significant improvement in mechanical properties. A 10-fold increase in tensile and compressive modulus was recorded when compared with NECC membranes. In addition to comparable transparency in the visible light range, the glucose permeability of the electro-compacted collagen (ECC) membrane is higher than that of the native human cornea. Human corneal epithelial cells adhere and proliferate well on the ECC membrane, with a large cell contact area observed. The as-described ECC has appropriate structural, topographic, mechanical, optical, glucose permeable, and cell support properties to provide a platform for a bioengineered cornea; including the outer corneal epithelium and potentially deeper corneal tissues.
Collapse
Affiliation(s)
- Zhi Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia
| | - Jingjing You
- Lions New South Wales Eye Bank and New South Wales Bone Bank, New South Wales Organ and Tissue Donation Service, Sydney, New South Wales, Australia
| | - Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia
| | - Alireza Talaei
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia
| | - Gerard Sutton
- Lions New South Wales Eye Bank and New South Wales Bone Bank, New South Wales Organ and Tissue Donation Service, Sydney, New South Wales, Australia
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Chatswood Clinic, Vision Eye Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jeremy Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia
| |
Collapse
|
10
|
Liao K, Cui Z, Wang Z, Peng Y, Tang S, Chen J. Hyperosmolar Potassium Inhibits Corneal Myofibroblast Transformation and Prevent Corneal Scar. Curr Eye Res 2023; 48:238-250. [PMID: 36149345 DOI: 10.1080/02713683.2022.2129072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Corneal myofibroblasts play a crucial role in the process of corneal scarring. Potassium has been documented to reduce skin scar tissue formation. Herein, we investigated the ability of potassium to prevent corneal fibrosis in cell culture and in vivo. METHODS Corneal fibroblasts (CFs) were isolated from the corneal limbus and treated with TGF-β1 to transform into corneal myofibroblasts. Corneal myofibroblast markers were detected by quantitative real-time PCR, Western blot, and immunofluorescence. The contractive functions of corneal myofibroblast were evaluated by the scratch assay and the collagen gel contraction assay. RNA sequencing in corneal fibroblasts was performed to explore the mechanisms underlying hyperosmolar potassium treatment. GO and KEGG analysis were performed to explore the underlying mechanism by hyperosmolar potassium treatment. The ATP detection assay assessed the level of cell metabolism. KCl eye drops four times per day were administered to mice models of corneal injury to evaluate the ability to prevent corneal scar formation. Corneal opacity area was evaluated by Image J software. RESULTS Treatment with hyperosmolar potassium could suppress corneal myofibroblast transformation and collagen I synthesis induced by TGF-β1 in cell culture. Hyperosmolar potassium could inhibit wound healing and gel contraction in CFs. RNA sequencing results suggested that genes involved in the metabolic pathway were downregulated after KCl treatment. ATP levels were significantly decreased in the KCl group compared with the control group. Hyperosmolar potassium could prevent corneal myofibroblast transformation after corneal injury and corneal scar formation in mice. CONCLUSION Potassium can suppress corneal myofibroblast transformation and collagen I protein synthesis. Moreover, given that KCl eye drops can prevent corneal scar formation, it has been suggested to have huge prospects as a novel treatment approach during clinical practice.
Collapse
Affiliation(s)
- Kai Liao
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Zekai Cui
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Yu Peng
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Zhang L, Liang L, Su T, Guo Y, Yu Q, Zhu D, Cui Z, Zhang J, Chen J. Regulation of the Keratocyte Phenotype and Cell Behavior Derived from Human Induced Pluripotent Stem Cells by Substrate Stiffness. ACS Biomater Sci Eng 2023; 9:856-868. [PMID: 36668685 DOI: 10.1021/acsbiomaterials.2c01003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Substrate stiffness has been indicated as an important factor to control stem cell fate, including proliferation and differentiation. To optimize the stiffness for the differentiation process from h-iPSCs (human induced pluripotent stem cells) into h-iCSCs (human corneal stromal cells derived from h-iPSCs) and the phenotypic maintenance of h-iCSCs in vitro, h-iPSCs were cultured on matrigel-coated tissue culture plate (TCP) (106 kPa), matrigel-coated polydimethylsiloxane (PDMS) 184 (1250 kPa), and matrigel-coated PDMS 527 (4 kPa) before they were differentiated to h-iCSCs. Immunofluorescence staining, quantitative real-time polymerase chain reaction (RT-qPCR), and western blot demonstrated that the stiffer substrate TCP promoted the h-iCSCs' differentiation from h-iPSCs. On the contrary, softer PDMS 527 was more effective to maintain the phenotype of h-iCSCs cultured in vitro. Finally, we cultured h-iCSCs on PDMS 527 until P3 and seeded them on a biomimetic collagen membrane to form the single-layer and multiple-layer bioengineered corneal stroma with high transparency properties and cell survival rate. In conclusion, the study is helpful for differentiating h-iPSCs to h-iCSCs and corneal tissue engineering by manipulating stiffness mechanobiology.
Collapse
Affiliation(s)
- Lan Zhang
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Liying Liang
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Ting Su
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yonglong Guo
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Quan Yu
- Centric Laboratory, Medical College, Jinan University, Guangzhou 510632, China
| | - Deliang Zhu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, PR China
| | - Zekai Cui
- Aier Eye Institute, Changsha 410015, Hunan Province, China
| | - Jun Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies, Guangdong Higher Educational Institutes, Jinan University, Guangzhou 510632, China
| | - Jiansu Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.,Aier Eye Institute, Changsha 410015, Hunan Province, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Su T, Liang L, Zhang L, Wang J, Chen L, Su C, Cao J, Yu Q, Deng S, Chan HF, Tang S, Guo Y, Chen J. Retinal organoids and microfluidic chip-based approaches to explore the retinitis pigmentosa with USH2A mutations. Front Bioeng Biotechnol 2022; 10:939774. [PMID: 36185441 PMCID: PMC9524156 DOI: 10.3389/fbioe.2022.939774] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a leading cause of vision impairment and blindness worldwide, with limited medical treatment options. USH2A mutations are one of the most common causes of non-syndromic RP. In this study, we developed retinal organoids (ROs) and retinal pigment epithelium (RPE) cells from induced pluripotent stem cells (iPSCs) of RP patient to establish a sustainable in vitro RP disease model. RT-qPCR, western blot, and immunofluorescent staining assessments showed that USH2A mutations induced apoptosis of iPSCs and ROs, and deficiency of the extracellular matrix (ECM) components. Transcriptomics and proteomics findings suggested that abnormal ECM-receptor interactions could result in apoptosis of ROs with USH2A mutations via the PI3K-Akt pathway. To optimize the culture conditions of ROs, we fabricated a microfluidic chip to co-culture the ROs with RPE cells. Our results showed that this perfusion system could efficiently improve the survival rate of ROs. Further, ECM components such as laminin and collagen IV of ROs in the RP group were upregulated compared with those maintained in static culture. These findings illustrate the potential of microfluidic chip combined with ROs technology in disease modelling for RP.
Collapse
Affiliation(s)
- Ting Su
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Liying Liang
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Lan Zhang
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jianing Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Luyin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Caiying Su
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jixing Cao
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Quan Yu
- Centric Laboratory, Medical College, Jinan University, Guangzhou, China
| | - Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | | | - Yonglong Guo
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Jiansu Chen, ; Yonglong Guo,
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Aier Eye Institute, Changsha, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
- *Correspondence: Jiansu Chen, ; Yonglong Guo,
| |
Collapse
|
13
|
Prittinen J, Zhou X, Bano F, Backman L, Danielson P. Microstructured collagen films for 3D corneal stroma modelling. Connect Tissue Res 2022; 63:443-452. [PMID: 34894951 DOI: 10.1080/03008207.2021.2007901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM Corneal injury is a major cause of impaired vision around the globe. The fine structure of the corneal stroma plays a pivotal role in the phenotype and behavior of the embedded cells during homeostasis and healing after trauma or infection. In order to study healing processes in the cornea, it is important to create culture systems that functionally mimic the natural environment. MATERIALS AND METHODS Collagen solution was vitrified on top of a grated film to achieve thin collagen films with parallel microgrooves. Keratocytes (corneal stromal cells) were cultured on the films either as a single layer or as stacked layers of films and cells. SEM and F-actin staining were used to analyze the pattern transference onto the collagen and the cell orientation on the films. Cell viability was analyzed with MTS and live/dead staining. Keratocytes, fibroblasts, and myofibroblasts were cultured to study the pattern's effect on phenotype. RESULTS A microstructured collagen film-based culture system that guides keratocytes (stromal cells) to their native, layerwise perpendicular orientation in 3D and that can support fibroblasts and myofibroblasts was created. The films are thin and transparent enough to observe cells at least three layers deep. The cells maintain viability in 2D and 3D cultures and the films can support fibroblast and myofibroblast phenotypes. CONCLUSIONS The films provide an easily reproducible stroma model that maintains high cell viability and improves the preservation of the keratocyte phenotype in keratocytes that are differentiated to fibroblasts.
Collapse
Affiliation(s)
- Juha Prittinen
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Xin Zhou
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Fouzia Bano
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Ludvig Backman
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| | - Patrik Danielson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Cui Z, Liao K, Li S, Gu J, Wang Y, Ding C, Guo Y, Chan HF, Ma JH, Tang S, Chen J. LM22B-10 promotes corneal nerve regeneration through in vitro 3D co-culture model and in vivo corneal injury model. Acta Biomater 2022; 146:159-176. [PMID: 35562005 DOI: 10.1016/j.actbio.2022.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/01/2022]
Abstract
Corneal nerve wounding often causes abnormalities in the cornea and even blindness in severe cases. In this study, we construct a dorsal root ganglion-corneal stromal cell (DRG-CSC, DS) co-culture 3D model to explore the mechanism of corneal nerve regeneration. Firstly, this model consists of DRG collagen grafts sandwiched by orthogonally stacked and orderly arranged CSC-laden plastic compressed collagen. Nerve bundles extend into the entire corneal stroma within 14 days, and they also have orthogonal patterns. This nerve prevents CSCs from apoptosis in the serum withdrawal medium. The conditioned medium (CM) for CSCs in collagen scaffolds contains NT-3, IL-6, and other factors. Among them, NT-3 notably promotes the activation of ERK-CREB in the DRG, leading to the growth of nerve bundles, and IL-6 induces the upregulation of anti-apoptotic genes. Then, LM22B-10, an activator of the NT-3 receptor TrkB/TrkC, can also activate ERK-CREB to enhance nerve growth. After administering LM22B-10 eye drops to regular and diabetic mice with corneal wounding, LM22B-10 significantly improves the healing speed of the corneal epithelium, corneal sensitivity, and corneal nerve density. Overall, the DS co-culture model provides a promising platform and tools for the exploration of corneal physiological and pathological mechanisms, as well as the verification of drug effects in vitro. Meanwhile, we confirm that LM22B-10, as a non-peptide small molecule, has future potential in nerve wound repair. STATEMENT OF SIGNIFICANCE: The cornea accounts for most of the refractive power of the eye. Corneal nerves play an important role in maintaining corneal homeostasis. Once the corneal nerves are damaged, the corneal epithelium and stroma develop lesions. However, the mechanism of the interaction between corneal nerves and corneal cells is still not fully understood. Here, we construct a corneal stroma-nerve co-culture in vitro model and reveal that NT-3 expressed by stromal cells promotes nerve growth by activating the ERK-CREB pathway in nerves. LM22B-10, an activator of NT-3 receptors, can also induce nerve growth in vitro. Moreover, it is used as eye drops to enhance corneal epithelial wound healing, corneal nerve sensitivity and density of nerve plexus in corneal nerve wounding model in vivo.
Collapse
|
15
|
Formisano N, van der Putten C, Grant R, Sahin G, Truckenmüller RK, Bouten CVC, Kurniawan NA, Giselbrecht S. Mechanical Properties of Bioengineered Corneal Stroma. Adv Healthc Mater 2021; 10:e2100972. [PMID: 34369098 PMCID: PMC11468718 DOI: 10.1002/adhm.202100972] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Indexed: 12/26/2022]
Abstract
For the majority of patients with severe corneal injury or disease, corneal transplantation is the only suitable treatment option. Unfortunately, the demand for donor corneas greatly exceeds the availability. To overcome shortage issues, a myriad of bioengineered constructs have been developed as mimetics of the corneal stroma over the last few decades. Despite the sheer number of bioengineered stromas developed , these implants fail clinical trials exhibiting poor tissue integration and adverse effects in vivo. Such shortcomings can partially be ascribed to poor biomechanical performance. In this review, existing approaches for bioengineering corneal stromal constructs and their mechanical properties are described. The information collected in this review can be used to critically analyze the biomechanical properties of future stromal constructs, which are often overlooked, but can determine the failure or success of corresponding implants.
Collapse
Affiliation(s)
- Nello Formisano
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Cas van der Putten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Rhiannon Grant
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Gozde Sahin
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
16
|
Ebhodaghe SO. Natural Polymeric Scaffolds for Tissue Engineering Applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2144-2194. [PMID: 34328068 DOI: 10.1080/09205063.2021.1958185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural polymeric scaffolds can be used for tissue engineering applications such as cell delivery and cell-free supporting of native tissues. This is because of their desirable properties such as; high biocompatibility, tunable mechanical strength and conductivity, large surface area, porous- and extracellular matrix (ECM)-mimicked structures. Specifically, their less toxicity and biocompatibility makes them suitable for several tissue engineering applications. For these reasons, several biopolymeric scaffolds are currently being explored for numerous tissue engineering applications. To date, research on the nature, chemistry, and properties of nanocomposite biopolymers are been reported, while the need for a comprehensive research note on more tissue engineering application of these biopolymers remains. As a result, this present study comprehensively reviews the development of common natural biopolymers as scaffolds for tissue engineering applications such as cartilage tissue engineering, cornea repairs, osteochondral defect repairs, and nerve regeneration. More so, the implications of research findings for further studies are presented, while the impact of research advances on future research and other specific recommendations are added as well.
Collapse
|
17
|
Guo Y, Xue Y, Wang P, Cui Z, Cao J, Liu S, Yu Q, Zeng Q, Zhu D, Xie M, Zhang J, Li Z, Liu H, Zhong J, Chen J. Muse cell spheroids have therapeutic effect on corneal scarring wound in mice and tree shrews. Sci Transl Med 2021; 12:12/562/eaaw1120. [PMID: 32967971 DOI: 10.1126/scitranslmed.aaw1120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/02/2019] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Stem cell therapy holds promises for treating corneal scarring. Here, we use multilineage-differentiating stress-enduring (Muse) cells to study their differentiation and therapeutic potential for treating corneal injury. Muse cells were isolated from lipoaspirate, which presented biphenotype properties of both pluripotent stem cells and some mesenchymal stem cells. Muse cells expanded by about 100-fold from the initial seeding cell number to Muse spheroids with the maintenance of the Muse cell phenotype and high cell viability at 33 days by static spheroid culture. We revealed that Muse spheroids were activated by the dynamic rotary cell culture system (RCCS), as characterized by increased stemness, improved activity, and enhanced adherence. Gene and protein expression of the pluripotent markers OCT3/4, SOX2, and NANOG and of the proliferation marker KI67 in Muse spheroids cultured under RCCS were higher than those in the static group. These activated Muse spheroids enabled ready differentiation into corneal stromal cells (CSCs) expressing characteristic marker genes and proteins. Furthermore, implantation of Muse cells-differentiated CSCs (Muse-CSCs) laden assembled with two orthogonally stacked stretched compressed collagen (cell-SCC) in mouse and tree shrew wounded corneas prevented the formation of corneal scarring, increased corneal re-epithelialization and nerve regrowth, and reduced the severity of corneal inflammation and neovascularization. cell-SCC retained the capacity to suppress corneal scarring after long-distance cryopreserved transport. Thus, Muse cell therapy is a promising avenue for developing therapeutics for treating corneal scarring.
Collapse
Affiliation(s)
- Yonglong Guo
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yunxia Xue
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Peiyuan Wang
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zekai Cui
- Aier Eye Institute, 18th floor, the New century building, #198 Furong Middle Road, Changsha, Hunan 410015, China
| | - Jixing Cao
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shiwei Liu
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Quan Yu
- Centric Laboratory, Medical College, Jinan University, Guangzhou, China
| | - Qiaolang Zeng
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Deliang Zhu
- Key Laboratory of Optoelectronic Information and Sensing Technologies, Guangdong Higher Educational Institutes, Jinan University, Guangzhou 510632, China
| | - Mengyuan Xie
- Key Laboratory of Optoelectronic Information and Sensing Technologies, Guangdong Higher Educational Institutes, Jinan University, Guangzhou 510632, China
| | - Jun Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies, Guangdong Higher Educational Institutes, Jinan University, Guangzhou 510632, China
| | - Zhijie Li
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Hongwei Liu
- Department of Plastic Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingxiang Zhong
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jiansu Chen
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China.,Aier Eye Institute, 18th floor, the New century building, #198 Furong Middle Road, Changsha, Hunan 410015, China
| |
Collapse
|
18
|
Liao K, Cui Z, Zeng Y, Liu J, Wang Y, Wang Z, Tang S, Chen J. Inhibition of enhancer of zeste homolog 2 prevents corneal myofibroblast transformation in vitro. Exp Eye Res 2021; 208:108611. [PMID: 33992624 DOI: 10.1016/j.exer.2021.108611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Corneal fibroblast can be transformed into corneal myofibroblasts by TGF-β1. Enhancer of zeste homolog 2 (EZH2) upregulation has been observed in the occurrence of other fibrotic disorders. We investigated the role of EZH2 in the progression of corneal fibrosis and the antifibrotic effect of EZH2 inhibition in corneal fibroblasts (CFs). METHODS Primary CFs were isolated from corneal limbi and the CFs were treated with TGF-β1 to induce fibrosis. EPZ-6438 and EZH2 siRNA were used to inhibit EZH2 expression. Myofibroblast activation and extracellular matrix (ECM) protein synthesis was detected by quantitative real-time PCR, western blotting, and immunofluorescence staining assay. The functions of myofibroblast were evaluated by cell migration and collagen gel contraction assays. Molecular mechanisms involved in EZH2 inhibition were investigated by RNA sequencing. RESULTS TGF-β1 activated EZH2 expression in CFs. Treatment with EPZ-6438 (5 μM) and EZH2 siRNA considerably suppressed corneal myofibroblast activation and ECM protein synthesis in CFs induced by TGF-β1 when compared to the control group. EPZ-6438 (5 μM) suppressed cell migration and gel contraction in CFs. RNA sequencing results revealed that antifibrotic genes were activated after EZH2 inhibition to suppress corneal myofibroblast activation. CONCLUSION Inhibition of EZH2 suppresses corneal myofibroblast activation and ECM protein synthesis, and could serve as a novel therapeutic target for preventing corneal scarring.
Collapse
Affiliation(s)
- Kai Liao
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China; Aier Eye Institute, Changsha, Hunan Province, China
| | - Zekai Cui
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Yong Zeng
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Jian Liu
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Yini Wang
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China; Aier Eye Institute, Changsha, Hunan Province, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China; Aier Eye Institute, Changsha, Hunan Province, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China; Aier Eye Institute, Changsha, Hunan Province, China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.
| |
Collapse
|
19
|
McArdle C, Abbah SA, Bhowmick S, Collin E, Pandit A. Localized temporal co-delivery of interleukin 10 and decorin genes using amediated by collagen-based biphasic scaffold modulates the expression of TGF-β1/β2 in a rabbit ear hypertrophic scarring model. Biomater Sci 2021; 9:3136-3149. [PMID: 33725045 DOI: 10.1039/d0bm01928c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hypertrophic scarring (HS) is an intractable complication associated with cutaneous wound healing. Although transforming growth factor β1 (TGF-β1) has long been documented as a central regulatory cytokine in fibrogenesis and fibroplasia, there is currently no cure. Gene therapy is emerging as a powerful tool to attenuate the overexpression of TGF-β1 and its signaling activities. An effective approach may require transferring multiple genes to regulate different aspects of TGF-β1 signaling activities in a Spatio-temporal manner. Herein we report the additive anti-fibrotic effects of two plasmid DNAs encoding interleukin 10 (IL-10) and decorin (DCN) co-delivered via a biphasic 3D collagen scaffold reservoir platform. Combined gene therapy significantly attenuated inflammation and extracellular matrix components' accumulation in a rabbit ear ulcer model; and suppressed the expressions of genes associated with fibrogenesis, including collagen type I, as well as TGF-β1 and TGF-β2, while enhancing the genes commonly associated with regenerative healing including collagen type III. These findings may serve to provide a non-viral gene therapy platform that is safe, optimized, and effective to deliver multiple genes onto the diseased tissue in a wider range of tissue fibrosis-related maladies.
Collapse
Affiliation(s)
- Ciarstan McArdle
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Sunny Akogwu Abbah
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Sirsendu Bhowmick
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Estelle Collin
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| |
Collapse
|
20
|
Cui ZK, Li SY, Liao K, Wang ZJ, Guo YL, Tang LS, Tang SB, Ma JH, Chen JS. Characteristics of neural growth and cryopreservation of the dorsal root ganglion using three-dimensional collagen hydrogel culture versus conventional culture. Neural Regen Res 2021; 16:1856-1864. [PMID: 33510093 PMCID: PMC8328787 DOI: 10.4103/1673-5374.306097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In vertebrates, most somatosensory pathways begin with the activation of dorsal root ganglion (DRG) neurons. The development of an appropriate DRG culture method is a prerequisite for establishing in vitro peripheral nerve disease models and for screening therapeutic drugs. In this study, we compared the changes in morphology, molecular biology, and transcriptomics of chicken embryo DRG cultured on tissue culture plates (T-DRG) versus three-dimensional collagen hydrogels (C-DRG). Our results showed that after 7 days of culture, the transcriptomics of T-DRG and C-DRG were quite different. The upregulated genes in C-DRG were mainly related to neurogenesis, axon guidance, and synaptic plasticity, whereas the downregulated genes in C-DRG were mainly related to cell proliferation and cell division. In addition, the genes related to cycles/pathways such as the synaptic vesicle cycle, cyclic adenosine monophosphate signaling pathway, and calcium signaling pathway were activated, while those related to cell-cycle pathways were downregulated. Furthermore, neurogenesis- and myelination-related genes were highly expressed in C-DRG, while epithelial–mesenchymal transition-, apoptosis-, and cell division-related genes were suppressed. Morphological results indicated that the numbers of branches, junctions, and end-point voxels per C-DRG were significantly greater than those per T-DRG. Furthermore, cells were scattered in T-DRG and more concentrated in C-DRG, with a higher ratio of 5-ethynyl-2′-deoxyuridine (EdU)-positive cells in T-DRG compared with C-DRG. C-DRG also had higher S100 calcium-binding protein B (S100B) and lower α-smooth muscle actin (α-SMA) expression than T-DRG, and contained fewer terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells after 48 hours of serum starvation. After cryopreservation, C-DRG maintained more intact morphological characteristics, and had higher viability and less TUNEL-positive cells than T-DRG. Furthermore, newly formed nerve bundles were able to grow along the existing Schwann cells in C-DRG. These results suggest that C-DRG may be a promising in vitro culture model, with better nerve growth and anti-apoptotic ability, quiescent Schwann cells, and higher viability. Results from this study provide a reference for the construction, storage, and transportation of tissue-engineered nerves. The study was approved by the Ethics Committee of Aier School of Ophthalmology, Central South University, China (approval No. 2020-IRB16), on March 15, 2020.
Collapse
Affiliation(s)
- Ze-Kai Cui
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University; Aier Eye Institute; Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, China
| | - Shen-Yang Li
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, China
| | - Kai Liao
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, China
| | - Zhi-Jie Wang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, China
| | - Yong-Long Guo
- Institute of Ophthalmology, Medical College, Jinan University; Department of Ophthalmology, First Affiliated Hospital of Jinan University; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong Province, China
| | - Luo-Sheng Tang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Shi-Bo Tang
- Aier Eye Institute; Aier School of Ophthalmology, Central South University, Changsha, Hunan Province; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jacey Hongjie Ma
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University; Aier Eye Institute, Changsha, Hunan Province; Imaging and Functional Center, Guangzhou Aier Eye Hospital, Guangzhou, Guangdong Province, China
| | - Jian-Su Chen
- Aier Eye Institute; Aier School of Ophthalmology, Central South University, Changsha, Hunan Province; Institute of Ophthalmology, Medical College, Jinan University; Department of Ophthalmology, First Affiliated Hospital of Jinan University; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
21
|
Mahdavi SS, Abdekhodaie MJ, Mashayekhan S, Baradaran-Rafii A, Djalilian AR. Bioengineering Approaches for Corneal Regenerative Medicine. Tissue Eng Regen Med 2020; 17:567-593. [PMID: 32696417 PMCID: PMC7373337 DOI: 10.1007/s13770-020-00262-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Since the cornea is responsible for transmitting and focusing light into the eye, injury or pathology affecting any layer of the cornea can cause a detrimental effect on visual acuity. Aging is also a reason for corneal degeneration. Depending on the level of the injury, conservative therapies and donor tissue transplantation are the most common treatments for corneal diseases. Not only is there a lack of donor tissue and risk of infection/rejection, but the inherent ability of corneal cells and layers to regenerate has led to research in regenerative approaches and treatments. METHODS In this review, we first discussed the anatomy of the cornea and the required properties for reconstructing layers of the cornea. Regenerative approaches are divided into two main categories; using direct cell/growth factor delivery or using scaffold-based cell delivery. It is expected delivered cells migrate and integrate into the host tissue and restore its structure and function to restore vision. Growth factor delivery also has shown promising results for corneal surface regeneration. Scaffold-based approaches are categorized based on the type of scaffold, since it has a significant impact on the efficiency of regeneration, into the hydrogel and non-hydrogel based scaffolds. Various types of cells, biomaterials, and techniques are well covered. RESULTS The most important characteristics to be considered for biomaterials in corneal regeneration are suitable mechanical properties, biocompatibility, biodegradability, and transparency. Moreover, a curved shape structure and spatial arrangement of the fibrils have been shown to mimic the corneal extracellular matrix for cells and enhance cell differentiation. CONCLUSION Tissue engineering and regenerative medicine approaches showed to have promising outcomes for corneal regeneration. However, besides proper mechanical and optical properties, other factors such as appropriate sterilization method, storage, shelf life and etc. should be taken into account in order to develop an engineered cornea for clinical trials.
Collapse
Affiliation(s)
- S Sharareh Mahdavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran.
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, SBUMS, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1200 W Harrison St, Chicago, IL, 60607, USA
| |
Collapse
|
22
|
Biomimetic corneal stroma using electro-compacted collagen. Acta Biomater 2020; 113:360-371. [PMID: 32652228 DOI: 10.1016/j.actbio.2020.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
Engineering substantia propria (or stroma of cornea) that mimics the function and anatomy of natural tissue is vital for in vitro modelling and in vivo regeneration. There are, however, few examples of bioengineered biomimetic corneal stroma. Here we describe the construction of an orthogonally oriented 3D corneal stroma model (3D-CSM) using pure electro-compacted collagen (EC). EC films comprise aligned collagen fibrils and support primary human corneal stromal cells (hCSCs). Cell-laden constructs are analogous to the anatomical structure of native human cornea. The hCSCs are guided by the topographical cues provided by the aligned collagen fibrils of the EC films. Importantly, the 3D-CSM are biodegradable, highly transparent, glucose-permeable and comprise quiescent hCSCs. Gene expression analysis indicated the presence of aligned collagen fibrils is strongly coupled to downregulation of active fibroblast/myofibroblast markers α-SMA and Thy-1, with a concomitant upregulation of the dormant keratocyte marker ALDH3. The 3D-CSM represents the first example of an optimally robust biomimetic engineered corneal stroma that is constructed from pure electro-compacted collagen for cell and tissue support. The 3D-CSM is a significant advance for synthetic corneal stroma engineering, with the potential to be used for full-thickness and functional cornea replacement, as well as informing in vivo tissue regeneration. STATEMENT OF SIGNIFICANCE: This manuscript represents the first example of a robust, transparent, glucose permeable and pure collagen-based biomimetic 3D corneal stromal model (3D-CSM) constructed from pure electro-compacted collagen. The collagen fibrils of 3D-CSM are aligned and orthogonally arranged, mimicking native human corneal stroma. The alignment of collagen fibrils correlates with the direction of current applied for electro-compaction and influences human corneal stromal cell (hCSC) orientation. Moreover, 3D-CSM constructs support a corneal keratocyte phenotype; an essential requirement for modelling healthy corneal stroma. As-prepared 3D-CSM hold great promise as corneal stromal substitutes for research and translation, with the potential to be used for full-thickness cornea replacement.
Collapse
|
23
|
Decellularized porcine cornea-derived hydrogels for the regeneration of epithelium and stroma in focal corneal defects. Ocul Surf 2020; 18:748-760. [PMID: 32841745 DOI: 10.1016/j.jtos.2020.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 01/15/2023]
Abstract
PURPOSE Hydrogels derived from decellularized tissues provide superior biocompatibility, tenability and tissue-specific extracellular matrix (ECM) components. Based on the preparation of decellularized porcine cornea (DPC), here we developed an injectable and transparent hydrogel for the regeneration of epithelium and stroma in focal corneal defects. METHODS The DPC-derived hydrogel was prepared with N-cyclohexyl-N'-(2-morpholinethyl) carbodiimide metho-p-toluenesulfonate/N-hydroxysuccinimide (CMC/NHS) as cross-linkers. The characteristics of the hydrogel were analyzed and its cytocompatibility was assessed by Live/Dead and Cell Counting Kit (CCK)-8 assays. Immunofluorescence staining, quantitative PCR and Western blot analyses were performed to assess the relative protein and gene expression in corneal fibroblasts on hydrogel. The safety and efficiency of the hydrogel for repairing focal corneal defects in rabbit were measured by slit-lamp, anterior segment optical coherence tomography (AS-OCT), confocal microscopy and histological analyses. RESULTS The DPC-derived hydrogel cross-linked with CMC/NHS assumed favorable transparency, exhibited distinct mechanical properties and preserved the ECM components of native porcine cornea (NPC). In vitro experiments showed that the hydrogel maintained the phenotype, supported the proliferation and promoted the ECM synthesis of corneal fibroblasts. When injected onto rabbit corneas, the hydrogel rapidly covered, solidified and formed a smooth surface on the focal defect. Corneal epithelium was fully regenerated within 3 days. The thickness of the corneal epithelium and stroma was restored at 12 weeks after surgery without significant inflammation or scar formation. Notably, the hydrogel showed no harmful effects on the resident stroma and endothelium. CONCLUSIONS The DPC-derived hydrogel may represent a promising biomaterial for corneal epithelial and stromal regeneration.
Collapse
|
24
|
Wang F, Zhao L, Li H, Li D, Zhou M, Zhou Q, Xie L. Scleral defect repair using decellularized porcine sclera in a rabbit model. Xenotransplantation 2020; 27:e12633. [DOI: 10.1111/xen.12633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/20/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Fuyan Wang
- Department of Ophthalmology Clinical Medical College of Shandong University Jinan China
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
| | - Long Zhao
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- School of Medicine and Life Sciences University of Jinan‐Shandong Academy of Medical Sciences Jinan China
| | - Hua Li
- Department of Ophthalmology Clinical Medical College of Shandong University Jinan China
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
| | - Dongfang Li
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| | - Mingming Zhou
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| | - Lixin Xie
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| |
Collapse
|
25
|
Qin L, Gao H, Xiong S, Jia Y, Ren L. Preparation of collagen/cellulose nanocrystals composite films and their potential applications in corneal repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:55. [PMID: 32504216 DOI: 10.1007/s10856-020-06386-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
As the main component of the natural cornea, collagen (COL) has been widely applied to the construction of corneal repair materials. However, the applications of collagen are limited due to its poor mechanical properties. Cellulose nanocrystals (CNCs) possess excellent mechanical properties, optical transparency and good biocompatibility. Therefore, in this study, we attempted to introduce cellulose nanocrystals into collagen-based films to obtain corneal repair materials with a high strength. CNCs were incorporated at 1, 3, 5, 7 and 10 wt%. The physical properties of these composite films were characterized, and in vitro cell-based analyses were also performed. The COL/CNC films possessed better mechanic properties, and the introduction of CNCs did not affect the water content and light transmittance. The COL/CNC films demonstrated good biocompatibility toward rabbit corneal epithelial cells and keratocytes in vitro. Moreover, the collagen films with appropriate ration of CNCs effectively induced the migration of corneal epithelial cells and inhibited the myofibroblast differentiation of keratocytes. A collagen film with 7 wt% CNCs displayed the best combination of physical properties and biological performance in vitro among all the films. This study describes a nonchemical cross-linking method to enhance the mechanical properties of collagen for use in corneal repair materials and highlights potential application in corneal tissue engineering.
Collapse
Affiliation(s)
- Lanfeng Qin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Huichang Gao
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Sijia Xiong
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yongguang Jia
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Li Ren
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China.
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China.
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
- Sino-Singapore International Joint Research Institute, Guangzhou, 510555, China.
| |
Collapse
|
26
|
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020; 8:83. [PMID: 32266221 PMCID: PMC7105900 DOI: 10.3389/fbioe.2020.00083] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Exploring innovative solutions to improve the healthcare of the aging and diseased population continues to be a global challenge. Among a number of strategies toward this goal, tissue engineering and regenerative medicine (TERM) has gradually evolved into a promising approach to meet future needs of patients. TERM has recently received increasing attention in Asia, as evidenced by the markedly increased number of researchers, publications, clinical trials, and translational products. This review aims to give a brief overview of TERM development in Asia over the last decade by highlighting some of the important advances in this field and featuring major achievements of representative research groups. The development of novel biomaterials and enabling technologies, identification of new cell sources, and applications of TERM in various tissues are briefly introduced. Finally, the achievement of TERM in Asia, including important publications, representative discoveries, clinical trials, and examples of commercial products will be introduced. Discussion on current limitations and future directions in this hot topic will also be provided.
Collapse
Affiliation(s)
- Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiayuan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luguang Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yuanbin Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenquan Li
- Department of Otolaryngology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Li Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Zhongliang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yingkang Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
27
|
Li Q, Xie C, Wang H, Zhang F, Mu L. A novel serum: Electrophoresis method to prepare acellular corneal matrix as an artificial corneal scaffold. Int J Artif Organs 2020; 43:127-136. [PMID: 32000591 DOI: 10.1177/0391398819869941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The aim of this study was to develop a novel decellularization method in order to obtain an ideal scaffold with good biocompatibility. METHODS The porcine corneas were treated with human serum for 5 days or serum-electrophoresis respectively. The electrophoresis (100 V/cm) was performed in sterilized buffer containing 40-mM tris base, 18-mM glacial acetic acid, and antibiotics for 1 h at 4°C. The properties of artificial corneal scaffolds were characterized by morphological and histological examinations. The biocompatibility and biological safety were examined by subcutaneous implant test and lamellar keratoplasty. RESULTS AND CONCLUSIONS The transparency and appearance of serum-electrophoresis acellular porcine corneal matrix were better than serum acellular porcine corneal matrix. DNA and α-gal in serum-electrophoresis acellular porcine corneal matrix were more efficiently removed than those in serum acellular porcine corneal matrix (p < 0.05). The subcutaneous and corneal implantation experiments showed serum-electrophoresis acellular porcine corneal matrix had better biocompatibility compared to serum acellular porcine corneal matrix (p < 0.01). This novel serum-electrophoresis decellularization method may be valuable for preparation of xenogenic corneal tissue for clinical application.
Collapse
Affiliation(s)
- Qing Li
- Qingdao Chunghao Tissue Engineering Co., Ltd., Qingdao, China
| | - Cuicui Xie
- Qingdao Chunghao Tissue Engineering Co., Ltd., Qingdao, China
| | - Hongmei Wang
- Qingdao Chunghao Tissue Engineering Co., Ltd., Qingdao, China
| | - Fenghua Zhang
- Qingdao Chunghao Tissue Engineering Co., Ltd., Qingdao, China
| | - Lanlan Mu
- Qingdao Chunghao Tissue Engineering Co., Ltd., Qingdao, China
| |
Collapse
|
28
|
Wang Q, Zhou H, Sun Y, Cao C, Pang K. Modified acellular porcine corneal matrix in deep lamellar transplantation of rabbit cornea. J Biomater Appl 2020; 34:1092-1104. [PMID: 31896290 DOI: 10.1177/0885328219898372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study presents to develop a modified acellular porcine corneal matrix (MAPCM) to maintain high transparency, stability and biocompatibility as a rabbit deep cornea replacement using 1-ethyl-3–(3-dimethylaminopropyl)-carbodiimide crosslinking and a mild decellularization technique. Scaffolds are translucent and remain higher amount of glycosaminoglycans after decellularization than acellular porcine corneal matrix (APCM). Enzymatic degradation kinetics and mechanical properties of scaffolds are regulated by 1-ethyl-3–(3-dimethylaminopropyl)-carbodiimide -crosslinking density. The porous structure and ultrastructure of collagenous lamellae are maintained, and the pore size of MAPCM crosslinked with 0.5% (w/v) 1-ethyl-3–(3-dimethylaminopropyl)-carbodiimide is 13.26 ± 1.65 µm, similar to that of normal porcine cornea. The transmittance of MAPCM gets 79.1 ± 0.45 to 92.7 ± 1.4% in the visible light range. Results from a CCK-8 assay indicate that MAPCM gets higher cell proliferation rate of rabbit corneal stroma cells than APCM. Since collagen fibres structural integrity and regularity of MAPCM are retained after crosslinking, the opacity and stability of MAPCM are better than those of APCM within 4 weeks of animal implantation. In addition, there is no indication of an immune response or neovascularization in or around the transplanted disc. These results reveal that MAPCM may be a more suitable scaffold for corneal substitute construction.
Collapse
Affiliation(s)
- Qian Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Hang Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Yongqiang Sun
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Chengbo Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.,School of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Kunpeng Pang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
29
|
Kilic Bektas C, Burcu A, Gedikoglu G, Telek HH, Ornek F, Hasirci V. Methacrylated gelatin hydrogels as corneal stroma substitutes: in vivo study. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1803-1821. [DOI: 10.1080/09205063.2019.1666236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cemile Kilic Bektas
- Departments of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Ayse Burcu
- Eye Clinic, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| | - Gokhan Gedikoglu
- Department of Medical Pathology, Hacettepe University, Ankara, Turkey
| | - Hande H. Telek
- Eye Clinic, Beytepe Murat Erdi Eker State Hospital, Ankara, Turkey
| | - Firdevs Ornek
- Eye Clinic, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| | - Vasif Hasirci
- Departments of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Department of Medical Engineering, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| |
Collapse
|
30
|
Yang Q, Liu S, Liu X, Liu Z, Xue W, Zhang Y. Role of charge-reversal in the hemo/immuno-compatibility of polycationic gene delivery systems. Acta Biomater 2019; 96:436-455. [PMID: 31254682 DOI: 10.1016/j.actbio.2019.06.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023]
Abstract
As an effective and well-recognized strategy used in many delivery systems, such as polycation gene vectors, charge reversal refers to the alternation of vector surface charge from negative (in blood circulation) to positive (in the targeted tissue) in response to specific stimuli to simultaneously satisfy the requirements of biocompatibility and targeting. Although charge reversal vectors are intended to avoid interactions with blood in their application, no overall or systematic investigation has been carried out to verify the role of charge reversal in the blood compatibility. Herein, we comprehensively mapped the effects of a typical charge-reversible polycation gene vector based on pH-responsive 2,3-dimethylmaleic anhydride (DMMA)-modified polyethylenimine (PEI)/pDNA complex in terms of blood components, coagulation function, and immune response as compared to conventional PEGylated modification. The in vitro and in vivo results displayed that charge-reversal modification significantly improves the PEI/pDNA-induced abnormal effect on vascular endothelial cells, platelet activation, clotting factor activity, fibrinogen polymerization, blood coagulation process, and pro-inflammatory cytokine expression. Unexpectedly, (PEI/pDNA)-DMMA induced the cytoskeleton impairment-mediated erythrocyte morphological alternation and complement activation even more than PEI/pDNA. Further, transcriptome sequencing demonstrated that the overexpression of pro-inflammatory cytokines was correlated with vector-induced differentially expressed gene number and mediated by inflammation-related signaling pathways (MAPK, NF-κB, Toll-like receptor, and JAK-STAT) activation. By comparison, charge-reversal modification improved the hemocompatibility to a greater extent than dose PEGylation except for erythrocyte rupture. Nevertheless, it is inferior to mPEG modification in terms of immunocompatibility. These findings provide comprehensive insights to understand the molecular mechanisms of the effects of charge reversal on blood components and their function and to provide valuable information for its potential applications from laboratory to clinic. STATEMENT OF SIGNIFICANCE: The seemingly revolutionary charge reversal strategy has been believed to possess stealth character with negative charge eluding interaction with blood components during circulation. However to date, no overall or systematic investigation has been carried out to verify the role of charge-reversal on the blood/immune compatibility, which impede their development from laboratory to bedside. Therefore, we comprehensively mapped the effects of a typical charge-reversible polycationic gene vector on blood components (vascular endothelial cell, platelet, clotting factors, fibrinogen, RBCs and coagulation function) and immune response (complement and pro-inflammatory cytokines) at cellular and molecular level in comparison to PEGylation modification. These findings help to elucidate the molecular mechanisms for the effects of charge-reversal on blood components and functions, and provide valuable information for the possible application in clinical settings.
Collapse
Affiliation(s)
- Qi Yang
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Shuo Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xin Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zonghua Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Wei Xue
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Yi Zhang
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
31
|
Guo Y, Wang P, Ma JH, Cui Z, Yu Q, Liu S, Xue Y, Zhu D, Cao J, Li Z, Tang S, Chen J. Modeling Retinitis Pigmentosa: Retinal Organoids Generated From the iPSCs of a Patient With the USH2A Mutation Show Early Developmental Abnormalities. Front Cell Neurosci 2019; 13:361. [PMID: 31481876 PMCID: PMC6709881 DOI: 10.3389/fncel.2019.00361] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/23/2019] [Indexed: 11/21/2022] Open
Abstract
Retinitis pigmentosa (RP) represents a group of inherited retinopathies with early-onset nyctalopia followed by progressive photoreceptor degeneration causing irreversible vision loss. Mutations in USH2A are the most common cause of non-syndromic RP. Here, we reprogrammed induced pluripotent stem cells (iPSCs) from a RP patient with a mutation in USH2A (c.8559-2A > G/c.9127_9129delTCC). Then, multilayer retinal organoids including neural retina (NR) and retinal pigment epithelium (RPE) were generated by three-step “induction-reversal culture.” The early retinal organoids derived from the RP patient with the USH2A mutation exhibited significant defects in terms of morphology, immunofluorescence staining and transcriptional profiling. To the best of our knowledge, the pathogenic mutation (c.9127_9129delTCC) in USH2A has not been reported previously among RP patients. Notably, the expression of laminin in the USH2A mutation organoids was significantly lower than in the iPSCs derived from healthy, age- and sex-matched controls during the retinal organogenesis. We also observed that abnormal retinal neuroepithelium differentiation and polarization caused defective retinal progenitor cell development and retinal layer formation, disordered organization of NRs in the presence of the USH2A mutation. Furthermore, the USH2A mutation bearing RPE cells presented abnormal morphology, lacking pigmented foci and showing an apoptotic trend and reduced expression of specific makers, such as MITF, PEDF, and RPE65. In addition, the USH2A mutation organoids had lower expression of cilium-associated (especially CFAP43, PIFO) and dopaminergic synapse-related genes (including DLGAP1, GRIK1, SLC17A7, and SLC17A8), while there was higher expression of neuron apoptotic process-related genes (especially HIF1A, ADARB1, and CASP3). This study may provide essential assistance in the molecular diagnosis and screening of RP. This work recapitulates the pathogenesis of USH2A using patient-specific organoids and demonstrated that alterations in USH2A function due to mutations may lead to cellular and molecular abnormalities.
Collapse
Affiliation(s)
- Yonglong Guo
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Peiyuan Wang
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jacey Hongjie Ma
- Aier School of Ophthalmology, Central South University, Changsha, China.,Shenzhen Aier Eye Hospital, Shenzhen, China
| | - Zekai Cui
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | - Quan Yu
- Centric Laboratory, Medical College, Jinan University, Guangzhou, China
| | - Shiwei Liu
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Deliang Zhu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jixing Cao
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhijie Li
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | - Jiansu Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China.,Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|