1
|
Dujardin C, Habeler W, Aprile P, Dellaquila A, Monville C, Letourneur D, Simon-Yarza T. Engineered micro-structured biomimetic material for modelling the outer blood-retinal barrier. Biomaterials 2025; 322:123357. [PMID: 40311520 DOI: 10.1016/j.biomaterials.2025.123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
The outer blood-retinal barrier (oBRB) is compromised in several retinal pathologies, such as age-related macular degeneration affecting over 200 million people worldwide. This 200-350 μm thick tissue includes the retinal pigment epithelium (RPE), the Bruch's membrane, and the vascularized choroid supplying the outer retina. Degeneration of the RPE and/or choroid leads to photoreceptor loss and, ultimately, blindness. Current in vitro co-culture oBRB models developed to better understand the diseases and to propose therapeutic alternatives are often simplistic, focusing on 2D cultures, or face limitations including non-physiological dimensions or low throughput. This study presents an innovative scaffold-driven approach to model the oBRB using a polysaccharide membrane engineered by freeze-drying. Our specific protocol allowed to mimic the oBRB structure, within physiological dimensions, generating a non-porous surface to culture the hiPSC-derived RPE monolayer, and an internal 3D porous structure for the choroidal network. Results showed that the inner porous structure promoted physiological self-organization of endothelial cells and pericytes. Our single-piece functional material allowed the cultivation of both RPE and choroidal compartments in close proximity, favoring cellular interactions, while maintaining them in their designated locations. This cyto-compatible, easy-to-use, and off-the-shelf membrane, produced at large amounts and low costs, provides a physiologically relevant biomaterial for oBRB tissue modelling.
Collapse
Affiliation(s)
- Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France.
| | - Walter Habeler
- Université Paris-Saclay, Univ Evry, INSERM, I-Stem, UMR861, Corbeil-Essonnes, 91100, France; I-Stem, CECS, Corbeil-Essonnes, 91100, France
| | - Paola Aprile
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France
| | - Alessandra Dellaquila
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France
| | - Christelle Monville
- Université Paris-Saclay, Univ Evry, INSERM, I-Stem, UMR861, Corbeil-Essonnes, 91100, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France.
| |
Collapse
|
2
|
Li F, Wang B, Fu X, Liang J, Xiao X, Wei X. Protective effects of Scutellaria barbata against hepatocyte apoptosis during hepatic fibrosis progression. Cytotechnology 2025; 77:78. [PMID: 40083900 PMCID: PMC11896960 DOI: 10.1007/s10616-025-00738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Scutellaria barbata is a medicinal plant with anti-inflammatory, antioxidant, and antitumor properties. Limited studies exist on the link between S. barbata and liver fibrosis. The focus of this study is to examine the impact of S. barbata-containing serum on rat hepatocytes undergoing hepatic fibrosis. Molecular mechanisms underlying the observed effects are sought to be predicted. Transforming growth factor β1 (TGF-β1)-treated hepatic stellate cells (HSCs) supernatant was utilized to produce hepatic fibrosis-like conditions in hepatocytes BRL-3A cultured in vitro. S. barbata-containing serum was used as an intervention, with various dosage groups and a positive drug group (N-acetylcysteine). Cell proliferation, mitochondrial membrane potential (MMP), apoptosis, and expression of apoptosis-related proteins and genes were assessed through various assays and techniques. Bioinformatics analysis was employed to predict target genes and signaling pathways affected by S. barbata. Chemical components of S. barbata in the serum were detected by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-QE-MS) was used to identify. Cellular experiments demonstrated that S. barbata-containing serum restored cell proliferation and reduced apoptotic activity induced by the fibrosis model, with a significant downregulation of apoptosis-related proteins (cleaved-Caspase-3, Bax), a substantial upregulation of the anti-apoptotic protein BCL-2, and a substantial elevation in the level of cellular MMP. Bioinformatics analysis highlighted the involvement of S. barbata in hepatocyte apoptosis during liver fibrosis, possibly through pathways like PI3K-Akt. UHPLC-QE-MS identified 29 chemical components of S. barbata in the bloodstream, suggesting their role in anti-hepatic fibrosis effects. S. barbata was found to effectively inhibit hepatocyte apoptosis during hepatic fibrosis.
Collapse
Affiliation(s)
- Feng Li
- Department of Clinical Laboratory, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Avenue, Meilan District, Haikou, 570208 Hainan China
- Department of Clinical Laboratory, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311 Hainan China
| | - Bi Wang
- Department of Clinical Laboratory, Hainan Fifth People’s Hospital (Hainan Skin Disease and Plastic Surgery Hospital), Haikou, 570206 Hainan China
| | - Xianxian Fu
- Department of Clinical Laboratory, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Avenue, Meilan District, Haikou, 570208 Hainan China
| | - Jinqiang Liang
- School of Pharmacy, Hainan University, Haikou, 570228 Hainan China
| | - Xi Xiao
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410000 Hunan China
| | - Xiaobin Wei
- Department of Clinical Laboratory, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Avenue, Meilan District, Haikou, 570208 Hainan China
| |
Collapse
|
3
|
Chen Y, Jin E, Abdouh M, Bonneil É, Jimenez Cruz DA, Tsering T, Zhou Q, Fuentes-Rodriguez A, Bartolomucci A, Goyeneche A, Landreville S, Burnier MN, Burnier JV. Co-isolation of human donor eye cells and development of oncogene-mutated melanocytes to study uveal melanoma. BMC Biol 2025; 23:16. [PMID: 39838458 PMCID: PMC11752652 DOI: 10.1186/s12915-025-02118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Uveal melanoma (UM) is the most common intraocular tumor in adults, arises either de novo from normal choroidal melanocytes (NCMs) or from pre-existing nevi that stem from NCMs and are thought to harbor UM-initiating mutations, most commonly in GNAQ or GNA11. However, there are no commercially available NCM cell lines, nor is there a detailed protocol for developing an oncogene-mutated CM line (MutCM) to study UM development. This study aimed to establish and characterize premalignant CM models from human donor eyes to recapitulate the cell populations at the origin of UM. RESULTS Given the precious value of human donor eyes for studying multiple ocular cell types, we validated a co-isolation protocol of both human NCMs and retinal pigment epithelial (RPE) cells from a single eye. To this end, NCMs and RPE cells were sequentially isolated from 20 donors, with success rates of 95% and 75%, respectively. MutCMs were generated from 10 donors using GNAQQ209L-carried lentivirus with high mutant copies (up to 98.8% of total GNAQ copies being mutant). NCM growth and behavior were characterized under different culture conditions (i.e., supplementation with serum and 12-O-tetradecanoylphorbol-13-acetate) to determine optimized protocols. Particularly, Matrigel™ coating induced spheroid growth under certain coating thickness and cell seeding density but did not improve NCM metabolic activity. Current methodologies in NCM isolation, culture, and research applications were summarized. Proteomic profiling of 4 NCMs, 1 MutCM, and 3 UMs allowed to discover significant differences in UMs including a downregulation of proteins linked to melanocyte differentiation and an upregulation of proteins involved in RNA metabolism. RNA sequencing revealed enriched pathways related to cancer, notably PI3K-Akt and MAPK signaling pathways, in MutCMs and UM cells compared to NCMs, providing insights into molecular changes in GNAQQ209L-mutated pre-cancer cell models and UM cells. CONCLUSIONS We successfully isolated and established NCM, RPE, and MutCM cell lines. We describe efficient methods for the isolation and growth of NCMs and report their phenotypic, proteomic, and transcriptomic characteristics, which will facilitate the investigation of UM development and progression. The co-isolated RPE cells could benefit research on other ocular pathologies, such as age-related macular degeneration.
Collapse
Affiliation(s)
- Yunxi Chen
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Eva Jin
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Mohamed Abdouh
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | | | - Thupten Tsering
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Qianqian Zhou
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Alexandra Bartolomucci
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Alicia Goyeneche
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Miguel N Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
- The Henry C. Witelson Ocular Pathology and Translation Research Laboratory, McGill University, Montreal, QC, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Karami S, Landreville S, Proulx S. Choroidal melanocyte secretome from cultured cells and tissue-engineered choroid models exposed to acute or chronic oxidative stress. Exp Eye Res 2024; 249:110125. [PMID: 39406316 DOI: 10.1016/j.exer.2024.110125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The choroid, located between the retina and the sclera, is a vascularized and pigmented connective tissue, playing a crucial role in providing oxygen and nutrients to the outer layers of the retina, and in absorbing excessive light. How choroidal melanocytes (CMs) participate in tissue homeostasis through paracrine signaling with neighboring cells is poorly understood. In this study, using two-dimensional and three-dimensional models, we aimed to identify proteins secreted by CMs under different oxidative stress conditions. To do so, CMs, choroidal fibroblasts (CFs), and retinal pigment epithelial (RPE) cells were isolated from native human RPE/choroidal tissues and expanded. RNA was isolated and processed for gene profiling analysis. The self-assembly approach of tissue engineering was used to form 3D stromal substitutes, and RPE cells and/or CMs were added to produce 3D models with different cell combinations. The medium conditioned by cells in 2D and 3D cultures was collected in a non-stressed condition and following acute or chronic oxidative stress exposures, then proteome and ELISA analyses were performed to identify cytokines secreted majorly by CMs. RNA analysis revealed 15 secretome-related transcripts that were more abundantly expressed in CMs compared to the other 2 cell types, including serpin family F member 1 (SERPINF1) (coding for pigment epithelium-derived factor; PEDF) and secreted phosphoprotein 1 (SPP1) (coding for osteopontin). At the protein level, the expression of osteopontin and PEDF was higher in CMs of different age groups compared to CFs and RPE cells. In the 3D models containing CMs, cytokine arrays also identified macrophage inflammatory protein (MIP)-1α/MIP-1β in non-stressed, MIP-1α/MIP-1β, interleukin (IL)-24, and angiogenin following an acute oxidative stress, and macrophage migration inhibitory factor (MIF), granulocyte-colony stimulating factor (G-CSF), intercellular adhesion molecule-1 (ICAM-1), and IL-1α following a chronic oxidative stress. This study identifies for the first time trophic factors secreted by CMs that could influence neighboring cells through paracrine signaling. Of those, PEDF and osteopontin are antioxidative proteins that are known to attenuate oxidative stress damage. Identifying factors that can help manage oxidative stress in the posterior segment of the eye may lead to promising treatments for retinal diseases.
Collapse
Affiliation(s)
- Samira Karami
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, Canada; Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Canada; Département d'Ophtalmologie et d'oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, Canada
| | - Solange Landreville
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, Canada; Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Canada; Département d'Ophtalmologie et d'oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, Canada; Centre de recherche sur le Cancer, Université Laval, Québec, Canada
| | - Stéphanie Proulx
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, Canada; Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Canada; Département d'Ophtalmologie et d'oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, Canada.
| |
Collapse
|
5
|
Molins B, Rodríguez A, Llorenç V, Adán A. Biomaterial engineering strategies for modeling the Bruch's membrane in age-related macular degeneration. Neural Regen Res 2024; 19:2626-2636. [PMID: 38595281 PMCID: PMC11168499 DOI: 10.4103/nrr.nrr-d-23-01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 04/11/2024] Open
Abstract
Age-related macular degeneration, a multifactorial inflammatory degenerative retinal disease, ranks as the leading cause of blindness in the elderly. Strikingly, there is a scarcity of curative therapies, especially for the atrophic advanced form of age-related macular degeneration, likely due to the lack of models able to fully recapitulate the native structure of the outer blood retinal barrier, the prime target tissue of age-related macular degeneration. Standard in vitro systems rely on 2D monocultures unable to adequately reproduce the structure and function of the outer blood retinal barrier, integrated by the dynamic interaction of the retinal pigment epithelium, the Bruch's membrane, and the underlying choriocapillaris. The Bruch's membrane provides structural and mechanical support and regulates the molecular trafficking in the outer blood retinal barrier, and therefore adequate Bruch's membrane-mimics are key for the development of physiologically relevant models of the outer blood retinal barrier. In the last years, advances in the field of biomaterial engineering have provided novel approaches to mimic the Bruch's membrane from a variety of materials. This review provides a discussion of the integrated properties and function of outer blood retinal barrier components in healthy and age-related macular degeneration status to understand the requirements to adequately fabricate Bruch's membrane biomimetic systems. Then, we discuss novel materials and techniques to fabricate Bruch's membrane-like scaffolds for age-related macular degeneration in vitro modeling, discussing their advantages and challenges with a special focus on the potential of Bruch's membrane-like mimics based on decellularized tissue.
Collapse
Affiliation(s)
- Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Andrea Rodríguez
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Víctor Llorenç
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic Barcelona, Spain
| | - Alfredo Adán
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic Barcelona, Spain
| |
Collapse
|
6
|
Jeong H, Lee D, Negishi K, Tsubota K, Kurihara T. Establishment of an in vitro choroid complex system for vascular response screening. Sci Rep 2024; 14:16129. [PMID: 38997397 PMCID: PMC11245503 DOI: 10.1038/s41598-024-67069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
The choroid, a vascularized tissue situated between the retina and the sclera, plays a crucial role in maintaining ocular homeostasis. Despite its significance, research on choroidal abnormalities and the establishment of effective in vitro models have been limited. In this study, we developed an in vitro choroid model through the co-culture of human induced pluripotent stem cells (hiPSC)-derived endothelial cells (ECs) and mouse choroidal fibroblasts (msCFs) with hiPSC-derived retinal pigment epithelial (RPE) cells via a permeable membrane. This model, inclusive of ECs, CFs, and RPE cells, exhibited similarities with in vivo choroidal vessels, as confirmed through immunohistochemistry of extracellular matrix markers and vascular-related markers, as well as choroid angiogenesis sprouting assay analysis. The effectiveness of our in vitro model was demonstrated in assessing vascular changes induced by drugs targeting vasoregulation. Our model offers a valuable tool for gaining insights into the pathological mechanisms underlying choroid development and the progression of choroidal vascular diseases.
Collapse
Affiliation(s)
- Heonuk Jeong
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Deokho Lee
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
- Tsubota Laboratory, Inc, 304 Toshin Shinanomachi-Ekimae Bldg., 34 Shinanomachi, Shinjuku-Ku, Tokyo, 160-0016, Japan.
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
7
|
Coutant K, Magne B, Ferland K, Fuentes-Rodriguez A, Chancy O, Mitchell A, Germain L, Landreville S. Melanocytes in regenerative medicine applications and disease modeling. J Transl Med 2024; 22:336. [PMID: 38589876 PMCID: PMC11003097 DOI: 10.1186/s12967-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Melanocytes are dendritic cells localized in skin, eyes, hair follicles, ears, heart and central nervous system. They are characterized by the presence of melanosomes enriched in melanin which are responsible for skin, eye and hair pigmentation. They also have different functions in photoprotection, immunity and sound perception. Melanocyte dysfunction can cause pigmentary disorders, hearing and vision impairments or increased cancer susceptibility. This review focuses on the role of melanocytes in homeostasis and disease, before discussing their potential in regenerative medicine applications, such as for disease modeling, drug testing or therapy development using stem cell technologies, tissue engineering and extracellular vesicles.
Collapse
Affiliation(s)
- Kelly Coutant
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Brice Magne
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Karel Ferland
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Olivier Chancy
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Lucie Germain
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Université Laval Cancer Research Center, Quebec City, QC, Canada.
| |
Collapse
|
8
|
Sasseville S, Karami S, Tchatchouang A, Charpentier P, Anney P, Gobert D, Proulx S. Biomaterials used for tissue engineering of barrier-forming cell monolayers in the eye. Front Bioeng Biotechnol 2023; 11:1269385. [PMID: 37840667 PMCID: PMC10569698 DOI: 10.3389/fbioe.2023.1269385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell monolayers that form a barrier between two structures play an important role for the maintenance of tissue functionality. In the anterior portion of the eye, the corneal endothelium forms a barrier that controls fluid exchange between the aqueous humor of the anterior chamber and the corneal stroma. This monolayer is central in the pathogenesis of Fuchs endothelial corneal dystrophy (FECD). FECD is a common corneal disease, in which corneal endothelial cells deposit extracellular matrix that increases the thickness of its basal membrane (Descemet's membrane), and forms excrescences (guttae). With time, there is a decrease in endothelial cell density that generates vision loss. Transplantation of a monolayer of healthy corneal endothelial cells on a Descemet membrane substitute could become an interesting alternative for the treatment of this pathology. In the back of the eye, the retinal pigment epithelium (RPE) forms the blood-retinal barrier, controlling fluid exchange between the choriocapillaris and the photoreceptors of the outer retina. In the retinal disease dry age-related macular degeneration (dry AMD), deposits (drusen) form between the RPE and its basal membrane (Bruch's membrane). These deposits hinder fluid exchange, resulting in progressive RPE cell death, which in turn generates photoreceptor cell death, and vision loss. Transplantation of a RPE monolayer on a Bruch's membrane/choroidal stromal substitute to replace the RPE before photoreceptor cell death could become a treatment alternative for this eye disease. This review will present the different biomaterials that are proposed for the engineering of a monolayer of corneal endothelium for the treatment of FECD, and a RPE monolayer for the treatment of dry AMD.
Collapse
Affiliation(s)
- Samantha Sasseville
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Samira Karami
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Ange Tchatchouang
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Pascale Charpentier
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Princia Anney
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Delphine Gobert
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre universitaire d’ophtalmologie (CUO), Hôpital du Saint-Sacrement, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Stéphanie Proulx
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Han A, Mukha D, Chua V, Purwin TJ, Tiago M, Modasia B, Baqai U, Aumiller JL, Bechtel N, Hunter E, Danielson M, Terai M, Wedegaertner PB, Sato T, Landreville S, Davies MA, Kurtenbach S, Harbour JW, Schug ZT, Aplin AE. Co-Targeting FASN and mTOR Suppresses Uveal Melanoma Growth. Cancers (Basel) 2023; 15:3451. [PMID: 37444561 PMCID: PMC10341317 DOI: 10.3390/cancers15133451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Uveal melanoma (UM) displays a high frequency of metastasis; however, effective therapies for metastatic UM are limited. Identifying unique metabolic features of UM may provide a potential targeting strategy. A lipid metabolism protein expression signature was induced in a normal choroidal melanocyte (NCM) line transduced with GNAQ (Q209L), a driver in UM growth and development. Consistently, UM cells expressed elevated levels of fatty acid synthase (FASN) compared to NCMs. FASN upregulation was associated with increased mammalian target of rapamycin (mTOR) activation and sterol regulatory element-binding protein 1 (SREBP1) levels. FASN and mTOR inhibitors alone significantly reduced UM cell growth. Concurrent inhibition of FASN and mTOR further reduced UM cell growth by promoting cell cycle arrest and inhibiting glucose utilization, TCA cycle metabolism, and de novo fatty acid biosynthesis. Our findings indicate that FASN is important for UM cell growth and co-inhibition of FASN and mTOR signaling may be considered for treatment of UM.
Collapse
Affiliation(s)
- Anna Han
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Republic of Korea
| | - Dzmitry Mukha
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; (D.M.); (Z.T.S.)
| | - Vivian Chua
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Timothy J. Purwin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Manoela Tiago
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Bhavik Modasia
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Usman Baqai
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Jenna L. Aumiller
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (J.L.A.); (P.B.W.)
| | - Nelisa Bechtel
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Emily Hunter
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Meggie Danielson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Mizue Terai
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Philip B. Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (J.L.A.); (P.B.W.)
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervical-Facial Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA; (S.K.); (J.W.H.)
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - J. William Harbour
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA; (S.K.); (J.W.H.)
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Department of Ophthalmology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zachary T. Schug
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; (D.M.); (Z.T.S.)
| | - Andrew E. Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Gugleva V, Andonova V. Recent Progress of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Ocular Drug Delivery Platforms. Pharmaceuticals (Basel) 2023; 16:ph16030474. [PMID: 36986574 PMCID: PMC10058782 DOI: 10.3390/ph16030474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sufficient ocular bioavailability is often considered a challenge by the researchers, due to the complex structure of the eye and its protective physiological mechanisms. In addition, the low viscosity of the eye drops and the resulting short ocular residence time further contribute to the observed low drug concentration at the target site. Therefore, various drug delivery platforms are being developed to enhance ocular bioavailability, provide controlled and sustained drug release, reduce the number of applications, and maximize therapy outcomes. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) exhibit all these benefits, in addition to being biocompatible, biodegradable, and susceptible to sterilization and scale-up. Furthermore, their successive surface modification contributes to prolonged ocular residence time (by adding cationic compounds), enhanced penetration, and improved performance. The review highlights the salient characteristics of SLNs and NLCs concerning ocular drug delivery, and updates the research progress in this area.
Collapse
Affiliation(s)
- Viliana Gugleva
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria
| |
Collapse
|
11
|
Li G, Liu S, Chen W, Jiang Z, Luo Y, Wang D, Zheng Y, Liu Y. Acellularized Uvea Hydrogel as Novel Injectable Platform for Cell-Based Delivering Treatment of Retinal Degeneration and Optimizing Retinal Organoids Inducible System. Adv Healthc Mater 2022; 11:e2202114. [PMID: 36189847 DOI: 10.1002/adhm.202202114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 01/28/2023]
Abstract
Replenishing the retina with retinal pigment epithelial (RPE) cells derived from pluripotent stem cells (PSCs) has great promise for treating retinal degenerative diseases, but it is limited by poor cell survival and integration in vivo. Herein, porcine acellular sclera and uvea extracellular matrix (ECM) and their counterpart hydrogels are developed, and their effects on the biological behavior of human induced pluripotent stem cell (hiPSC)-derived RPE cells (hiPSC-RPE) and embryoid body (hiPSC-EB) differentiation are investigated. Both acellular ECM hydrogels have excellent biocompatibility and suitable biodegradability without evoking an obvious immune response. Most importantly, the decellularized uvea hydrogel-delivered cells' injection remarkably promotes the hiPSC-RPE cells' survival and integration in the subretinal space, rescues the photoreceptor cells' death and retinal gliosis, and restores vision in rats with retinal degeneration for a long duration. In addition, medium supplementation with decellularized uvea peptides promotes hiPSC-EBs onset morphogenesis and neural/retinal differentiation, forming layered retinal organoids. This study demonstrates that ECM hydrogel-delivered hiPSC-RPE cells' injection may be a useful approach for treating retinal degeneration disease, combined with an optimized retinal seeding cells' induction program, which has potential for clinical application.
Collapse
Affiliation(s)
- Guilan Li
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Sheng Liu
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Wenfei Chen
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Zhijian Jiang
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Yuanting Luo
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Dongliang Wang
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Yingfeng Zheng
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yizhi Liu
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
12
|
Yin G, Liang H, Sun W, Zhang S, Feng Y, Liang P, Chen S, Liu X, Pan W, Zhang F. Shuangyu Tiaozhi decoction alleviates non-alcoholic fatty liver disease by improving lipid deposition, insulin resistance, and inflammation in vitro and in vivo. Front Pharmacol 2022; 13:1016745. [PMID: 36506575 PMCID: PMC9727266 DOI: 10.3389/fphar.2022.1016745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. Our previous studies have found that Shuangyu Tiaozhi Decoction (SYTZD) could produce an improvement in NAFLD-related indicators, but the underlying mechanism associated with this improvement remains unclear. The study aimed to investigate the potential mechanism of SYTZD against NAFLD through network pharmacology and experimental verification. The components of SYTZD and SYTZD drug containing serum were analyzed using ultra-performance liquid chromatography to quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS). Active components and targets of SYTZD were screened by the traditional Chinese medical systems pharmacology (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM) databases. NAFLD-related targets were collected from the GeneCards and DisGeNET databases. The component-disease targets were mapped to identify the common targets of SYTZD against NAFLD. Protein-protein interaction (PPI) network of the common targets was constructed for selecting the core targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the core targets was performed using the database for annotation, visualization, and integrated discovery (DAVID) database. Furthermore, animal and cell models were constructed for validating the predictions of network pharmacology. Lipid accumulation, liver histopathology, insulin resistance, and core gene expression were measured by oil red O staining, hematoxylin and eosin staining, insulin tolerance test, real-time quantitative polymerase chain reaction, and Western blotting, respectively. Two components and 22 targets of SYTZD against NAFLD were identified by UPLC-Q/TOF-MS and relevant databases. PPI analysis found that ESR1, FASN, mTOR, HIF-1α, VEGFA, and GSK-3β might be the core targets of SYTZD against NAFLD, which were mainly enriched in the thyroid hormone pathway, insulin resistance pathway, HIF-1 pathway, mTOR pathway, and AMPK pathway. Experimental results revealed that SYTZD might exert multiple anti-NAFLD mechanisms, including improvements in lipid deposition, inflammation, and insulin resistance. SYTZD treatment led to decreases in the lipid profiles, hepatic enzyme levels, inflammatory cytokines, and homeostatic model assessment for insulin resistance (HOMA-IR). SYTZD treatment affected relative mRNA and protein levels associated with various pathways. Our findings reveal that SYTZD could alleviate NAFLD through a multi-component, multi-target, and multi-pathway mechanism of action.
Collapse
Affiliation(s)
- Guoliang Yin
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongyi Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenxiu Sun
- Department of Nursing, Taishan Vocational College of Nursing, Taian, China
| | - Shizhao Zhang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Feng
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pengpeng Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Suwen Chen
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyi Liu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenchao Pan
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Fengxia Zhang,
| |
Collapse
|
13
|
Mulfaul K, Russell JF, Voigt AP, Stone EM, Tucker BA, Mullins RF. The Essential Role of the Choriocapillaris in Vision: Novel Insights from Imaging and Molecular Biology. Annu Rev Vis Sci 2022; 8:33-52. [PMID: 36108103 PMCID: PMC9668353 DOI: 10.1146/annurev-vision-100820-085958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The choriocapillaris, a dense capillary network located at the posterior pole of the eye, is essential for supporting normal vision, supplying nutrients, and removing waste products from photoreceptor cells and the retinal pigment epithelium. The anatomical location, heterogeneity, and homeostatic interactions with surrounding cell types make the choroid complex to study both in vivo and in vitro. Recent advances in single-cell RNA sequencing, in vivo imaging, and in vitro cell modeling are vastly improving our knowledge of the choroid and its role in normal health and in age-related macular degeneration (AMD). Histologically, loss of endothelial cells (ECs) of the choriocapillaris occurs early in AMD concomitant with elevated formation of the membrane attack complex of complement. Advanced imaging has allowed us to visualize early choroidal blood flow changes in AMD in living patients, supporting histological findings of loss of choroidal ECs. Single-cell RNA sequencing is being used to characterize choroidal cell types transcriptionally and discover their altered patterns of gene expression in aging and disease. Advances in induced pluripotent stem cell protocols and 3D cultures will allow us to closely mimic the in vivo microenvironment of the choroid in vitro to better understand the mechanism leading to choriocapillaris loss in AMD.
Collapse
Affiliation(s)
- Kelly Mulfaul
- Department of Ophthalmology and Visual Sciences and the Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA;
| | - Jonathan F Russell
- Department of Ophthalmology and Visual Sciences and the Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA;
| | - Andrew P Voigt
- Department of Ophthalmology and Visual Sciences and the Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA;
| | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences and the Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA;
| | - Budd A Tucker
- Department of Ophthalmology and Visual Sciences and the Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA;
| | - Robert F Mullins
- Department of Ophthalmology and Visual Sciences and the Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA;
| |
Collapse
|
14
|
Lam MR, Dong P, Shokrollahi Y, Gu L, Suh DW. Finite Element Analysis of Soccer Ball-Related Ocular and Retinal Trauma and Comparison with Abusive Head Trauma. OPHTHALMOLOGY SCIENCE 2022; 2:100129. [PMID: 36249696 PMCID: PMC9560646 DOI: 10.1016/j.xops.2022.100129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
Abstract
Purpose Design Participants Methods Main Outcome Measures Results Conclusions
Collapse
Affiliation(s)
- Matthew R. Lam
- Creighton University School of Medicine, Omaha, Nebraska
- Correspondence: Matthew R. Lam, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178.
| | - Pengfei Dong
- Florida Institute of Technology, Department of Biomedical and Chemical Engineering & Department of Mechanical Engineering, Melbourne, Florida
| | - Yasin Shokrollahi
- Florida Institute of Technology, Department of Biomedical and Chemical Engineering & Department of Mechanical Engineering, Melbourne, Florida
| | - Linxia Gu
- Florida Institute of Technology, Department of Biomedical and Chemical Engineering & Department of Mechanical Engineering, Melbourne, Florida
| | - Donny W. Suh
- Gavin Herbert Eye Institute, University of California at Irvine, Department of Ophthalmology and Visual Sciences, Irvine, California
| |
Collapse
|
15
|
Alfonsetti M, Castelli V, d’Angelo M, Benedetti E, Allegretti M, Barboni B, Cimini A. Looking for In Vitro Models for Retinal Diseases. Int J Mol Sci 2021; 22:10334. [PMID: 34638674 PMCID: PMC8508697 DOI: 10.3390/ijms221910334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Retina is a layered structure of the eye, composed of different cellular components working together to produce a complex visual output. Because of its important role in visual function, retinal pathologies commonly represent the main causes of visual injury and blindness in the industrialized world. It is important to develop in vitro models of retinal diseases to use them in first screenings before translating in in vivo experiments and clinics. For this reason, it is important to develop bidimensional (2D) models that are more suitable for drug screening and toxicological studies and tridimensional (3D) models, which can replicate physiological conditions, for investigating pathological mechanisms leading to visual loss. This review provides an overview of the most common retinal diseases, relating to in vivo models, with a specific focus on alternative 2D and 3D in vitro models that can replicate the different cellular and matrix components of retinal layers, as well as injury insults that induce retinal disease and loss of the visual function.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | | | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
16
|
Aksoy M, Toptan M, An I. Retinal nerve fibre layer thickness and choroidal thickness: An evaluation in psoriasis patients. Int J Clin Pract 2021; 75:e13904. [PMID: 33290620 DOI: 10.1111/ijcp.13904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND/OBJECTIVES To conduct a comparative study of retinal nerve fibre layer (RNFL) thickness and choroidal thickness of psoriasis patients and healthy volunteers. METHODS This study included 35 severe psoriasis patients, 35 mild psoriasis patients and 35 healthy individuals. RNFL and choroidal thickness analysis were performed by spectral field optical coherence tomography (SD-OCT). Only patients with psoriasis vulgaris who have not used systemic therapy for the last 3 months were included in the study. RESULTS In the severe psoriasis group, the RSLT thickness was found to be statistically significantly thinner and the choroid thickness was thicker than the mild psoriasis and control group (P < .001). There was no significant difference in terms of RNLF and choroid thickness compared to mild psoriasis and the control group (P > .05). The correlation between length of the disease duration, RNFL and choroidal thickness was not significant (P > 0,05). CONCLUSION The increase in choroidal thickness was found to be significant, while with respect to RNFL thickness, a decrease was evident, a possible indicator of damage to microvascular structures in the choroid and ganglion cells, especially in patients with severe psoriasis. Therefore, choroidal and RSLT thickness measurement with OCT device can assist in the detection of damage to psoriasis.
Collapse
Affiliation(s)
- Mustafa Aksoy
- Department of Dermatolog, Harran University Medical Faculty, Sanlıurfa, Turkey
| | - Muslum Toptan
- Department of Ophthalmotology, Harran University Medical Faculty, Sanlıurfa, Turkey
| | - Isa An
- Department of Dermatolog, Sanlıurfa Training and Research Hospital, Sanlıurfa, Turkey
| |
Collapse
|
17
|
Ferrara M, Lugano G, Sandinha MT, Kearns VR, Geraghty B, Steel DHW. Biomechanical properties of retina and choroid: a comprehensive review of techniques and translational relevance. Eye (Lond) 2021; 35:1818-1832. [PMID: 33649576 PMCID: PMC8225810 DOI: 10.1038/s41433-021-01437-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/06/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Studying the biomechanical properties of biological tissue is crucial to improve our understanding of disease pathogenesis. The biomechanical characteristics of the cornea, sclera and the optic nerve head have been well addressed with an extensive literature and an in-depth understanding of their significance whilst, in comparison, knowledge of the retina and choroid is relatively limited. Knowledge of these tissues is important not only to clarify the underlying pathogenesis of a wide variety of retinal and vitreoretinal diseases, including age-related macular degeneration, hereditary retinal dystrophies and vitreoretinal interface diseases but also to optimise the surgical handling of retinal tissues and, potentially, the design and properties of implantable retinal prostheses and subretinal therapies. Our aim with this article is to comprehensively review existing knowledge of the biomechanical properties of retina, internal limiting membrane (ILM) and the Bruch’s membrane–choroidal complex (BMCC), highlighting the potential implications for clinical and surgical practice. Prior to this we review the testing methodologies that have been used both in vitro, and those starting to be used in vivo to aid understanding of their results and significance.
Collapse
Affiliation(s)
| | - Gaia Lugano
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | | - Victoria R Kearns
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Brendan Geraghty
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
| | - David H W Steel
- Sunderland Eye Infirmary, Sunderland, UK. .,Bioscience Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
18
|
Pomerleau J, Weidmann C, Coutant K, Lowry CM, Veilleux MP, Bérubé J, Wagner JR, Landreville S. Experimental eye research / short communication format characterization of DNA hydroxymethylation in the ocular choroid. Exp Eye Res 2021; 205:108473. [PMID: 33524365 DOI: 10.1016/j.exer.2021.108473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
DNA methylation and hydroxymethylation represent important epigenetic modifications involved in cell differentiation. DNA hydroxymethylation can be used to classify independent biological samples by tissue type. Relatively little is known regarding the genomic abundance and function of 5-hydroxymethylcytosine (5-hmC) in ocular tissues. The choroid supplies oxygen and nutrients to the outer retina through its dense network of blood vessels. This connective tissue is mainly composed of pigmented melanocytes, and stromal fibroblasts. Since DNA hydroxymethylation level is relatively high in cutaneous melanocytes, we investigated the presence of 5-hmC in choroidal melanocytes, as well as the expression of ten-eleven translocation methylcytosine dioxygenases (TETs) and isocitrate dehydrogenases (IDHs) implicated in this DNA demethylation pathway. Immunofluorescence, DNA slot blots and liquid chromatography coupled to tandem mass spectrometry performed with choroidal tissues and melanocytes within these tissues revealed that they have a relatively high level of 5-hmC. We also examined the expression of TET1/2 and IDH1/2 in choroidal melanocytes by gene expression profiling, qPCR and Western blotting. In addition, we detected decreased levels of 5-hmC when choroidal melanocytes were exposed to a lower concentration of oxygen. Our study therefore demonstrates that DNA hydroxymethylation is present in choroidal melanocytes, and that the abundance of this epigenetic mark is impacted by hypoxia.
Collapse
Affiliation(s)
- Jade Pomerleau
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
| | - Cindy Weidmann
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada
| | - Kelly Coutant
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada
| | - Carolyne-Mary Lowry
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Pier Veilleux
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada
| | - Julie Bérubé
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Solange Landreville
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
19
|
Nguyen T, Urrutia-Cabrera D, Liou RHC, Luu CD, Guymer R, Wong RCB. New Technologies to Study Functional Genomics of Age-Related Macular Degeneration. Front Cell Dev Biol 2021; 8:604220. [PMID: 33505962 PMCID: PMC7829507 DOI: 10.3389/fcell.2020.604220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in people over 50 years old in developed countries. Currently, we still lack a comprehensive understanding of the genetic factors contributing to AMD, which is critical to identify effective therapeutic targets to improve treatment outcomes for AMD patients. Here we discuss the latest technologies that can facilitate the identification and functional study of putative genes in AMD pathology. We review improved genomic methods to identify novel AMD genes, advances in single cell transcriptomics to profile gene expression in specific retinal cell types, and summarize recent development of in vitro models for studying AMD using induced pluripotent stem cells, organoids and biomaterials, as well as new molecular technologies using CRISPR/Cas that could facilitate functional studies of AMD-associated genes.
Collapse
Affiliation(s)
- Tu Nguyen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel Urrutia-Cabrera
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Roxanne Hsiang-Chi Liou
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Stromal cells cultivated from the choroid of human eyes display a mesenchymal stromal cell (MSC) phenotype and inhibit the proliferation of choroidal vascular endothelial cells in vitro. Exp Eye Res 2020; 200:108201. [PMID: 32888962 DOI: 10.1016/j.exer.2020.108201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/25/2023]
Abstract
Mesenchymal stromal cells (MSC), with progenitor cell and immunological properties, have been cultivated from numerous vascularized tissues including bone marrow, adipose tissue and the corneal-limbus of the eye. After observing mesenchymal cells as contaminants in primary cultures of vascular endothelial cells derived from the choroidal tunic of the human eye, we investigated whether the choroid might also provide a source of cultured MSC. Moreover, we examined the effect of the choroidal stromal cells (Ch-SC) on the proliferation of freshly isolated choroidal vascular endothelial cells (ChVEC) in vitro. The phenotype of cultures established from five choroidal tissue donors was examined by flow cytometry and immunocytochemistry. The potential for mesenchymal cell differentiation was examined in parallel with MSC established from human bone marrow. Additional cultures were growth-arrested by treatment with mitomycin-C, before being tested as a potential feeder layer for ChVEC. The five unique cultures established from choroidal stroma displayed a phenotype consistent with the accepted definition for MSC (CD34-, CD45-, HLA-DR-, CD73+, CD90+, and CD105+), including the capacity for mesenchymal differentiation when cultivated under osteogenic, adipogenic and chondrogenic conditions. Growth-arrested Ch-SC inhibited the proliferation of ChVEC derived from five separate donors. Cultures of Ch-SC secreted approximately 40-fold higher concentrations of the anti-angiogenic factor pigment epithelium derived factor (PEDF/serpin F1) compared to the pro-angiogenic factor, vascular endothelial growth factor (VEGF), regardless of normal or growth-arrested state. Our results provide first evidence of a resident MSC cell type within the choroid and encourage investigation of new mechanisms for altering the growth of ChVEC.
Collapse
|
21
|
Rastoin O, Pagès G, Dufies M. Experimental Models in Neovascular Age Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21134627. [PMID: 32610682 PMCID: PMC7370120 DOI: 10.3390/ijms21134627] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Neovascular age-related macular degeneration (vAMD), characterized by the neo-vascularization of the retro-foveolar choroid, leads to blindness within few years. This disease depends on angiogenesis mediated by the vascular endothelial growth factor A (VEGF) and to inflammation. The only available treatments consist of monthly intravitreal injections of antibodies directed against VEGF or VEGF/VEGFB/PlGF decoy receptors. Despite their relative efficacy, these drugs only delay progression to blindness and 30% of the patients are insensitive to these treatments. Hence, new therapeutic strategies are urgently needed. Experimental models of vAMD are essential to screen different innovative therapeutics. The currently used in vitro and in vivo models in ophthalmic translational research and their relevance are discussed in this review.
Collapse
Affiliation(s)
- Olivia Rastoin
- Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, University Cote d’Azur (UCA), 06000 Nice, France; (O.R.); (G.P.)
| | - Gilles Pagès
- Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, University Cote d’Azur (UCA), 06000 Nice, France; (O.R.); (G.P.)
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Maeva Dufies
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco
- Correspondence:
| |
Collapse
|
22
|
Bustamante P, Piquet L, Landreville S, Burnier JV. Uveal melanoma pathobiology: Metastasis to the liver. Semin Cancer Biol 2020; 71:65-85. [PMID: 32450140 DOI: 10.1016/j.semcancer.2020.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Uveal melanoma (UM) is a type of intraocular tumor with a propensity to disseminate to the liver. Despite the identification of the early driver mutations during the development of the pathology, the process of UM metastasis is still not fully comprehended. A better understanding of the genetic, molecular, and environmental factors participating to its spread and metastatic outgrowth could provide additional approaches for UM treatment. In this review, we will discuss the advances made towards the understanding of the pathogenesis of metastatic UM, summarize the current and prospective treatments, and introduce some of the ongoing research in this field.
Collapse
Affiliation(s)
- Prisca Bustamante
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Canada; Experimental Pathology Unit, Department of Pathology, McGill University, Montréal, Canada
| | - Léo Piquet
- Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Quebec City, Canada; CUO-Recherche and Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Quebec City, Canada; Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, Canada
| | - Solange Landreville
- Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Quebec City, Canada; CUO-Recherche and Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Quebec City, Canada; Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Canada; Experimental Pathology Unit, Department of Pathology, McGill University, Montréal, Canada; Gerald Bronfman Department Of Oncology, McGill University, Montréal, Canada.
| |
Collapse
|
23
|
Roy V, Magne B, Vaillancourt-Audet M, Blais M, Chabaud S, Grammond E, Piquet L, Fradette J, Laverdière I, Moulin VJ, Landreville S, Germain L, Auger FA, Gros-Louis F, Bolduc S. Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6051210. [PMID: 32352002 PMCID: PMC7178531 DOI: 10.1155/2020/6051210] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Cancer research has considerably progressed with the improvement of in vitro study models, helping to understand the key role of the tumor microenvironment in cancer development and progression. Over the last few years, complex 3D human cell culture systems have gained much popularity over in vivo models, as they accurately mimic the tumor microenvironment and allow high-throughput drug screening. Of particular interest, in vitrohuman 3D tissue constructs, produced by the self-assembly method of tissue engineering, have been successfully used to model the tumor microenvironment and now represent a very promising approach to further develop diverse cancer models. In this review, we describe the importance of the tumor microenvironment and present the existing in vitro cancer models generated through the self-assembly method of tissue engineering. Lastly, we highlight the relevance of this approach to mimic various and complex tumors, including basal cell carcinoma, cutaneous neurofibroma, skin melanoma, bladder cancer, and uveal melanoma.
Collapse
Affiliation(s)
- Vincent Roy
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Brice Magne
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Maude Vaillancourt-Audet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Mathieu Blais
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Stéphane Chabaud
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Emil Grammond
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Léo Piquet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Isabelle Laverdière
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval and CHU de Québec-Université Laval Research Center, Oncology Division, Québec, QC, Canada
| | - Véronique J. Moulin
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Solange Landreville
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Lucie Germain
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François A. Auger
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François Gros-Louis
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Stéphane Bolduc
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|