1
|
Xue L, An R, Zhao J, Qiu M, Wang Z, Ren H, Yu D, Zhu X. Self-Healing Hydrogels: Mechanisms and Biomedical Applications. MedComm (Beijing) 2025; 6:e70181. [PMID: 40276645 PMCID: PMC12018771 DOI: 10.1002/mco2.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Hydrogels have emerged as dependable candidates for tissue repair because of their exceptional biocompatibility and tunable mechanical properties. However, conventional hydrogels are vulnerable to damage owing to mechanical stress and environmental factors that compromise their structural integrity and reduce their lifespan. In contrast, self-healing hydrogels with their inherent ability to restore structure and function autonomously offer prolonged efficacy and enhanced appeal. These hydrogels can be engineered into innovative forms including stimulus-responsive, self-degradable, injectable, and drug-loaded variants, thereby enhancing their applicability in wound healing, drug delivery, and tissue engineering. This review summarizes the categories and mechanisms of self-healing hydrogels, along with their biomedical applications, including tissue repair, drug delivery, and biosensing. Tissue repair includes wound healing, bone-related repair, nerve repair, and cardiac repair. Additionally, we explored the challenges that self-healing hydrogels continue to face in tissue repair and presented a forward-looking perspective on their development. Consequently, it is anticipated that self-healing hydrogels will be progressively designed and developed for applications that extend beyond tissue repair to a broader range of biomedical applications.
Collapse
Affiliation(s)
- Lingling Xue
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Ran An
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Junqi Zhao
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Mengdi Qiu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Zhongxia Wang
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Haozhen Ren
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Decai Yu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Xinhua Zhu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
2
|
Li H, Wang Y, Kang Y, He Y, Nie J, Ma C, Yang X, Chen Z, Lu C. Novel injectable self-healing bifunctionalized chitosan hydrogel with cell proliferation and antibacterial activity for promoting wound healing. Int J Biol Macromol 2025; 306:141259. [PMID: 39978512 DOI: 10.1016/j.ijbiomac.2025.141259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Wound healing is a complex and continuous process and there is an urgent need to develop effective, functional wound dressings to accelerate wound healing. In this study, we developed an injectable self-healing dual-modified chitosan composite hydrogel, referred to as CSTA@Gel. This hydrogel exhibits good properties, including effective tissue adhesion, rapid hemostatic ability, and good cytocompatibility and hemocompatibility. Additionally, the incorporation of modified adenine and thymine enhances its cell proliferation-promoting and antimicrobial properties, demonstrating significant antibacterial activity against Staphylococcus aureus and Escherichia coli. Histological and immunohistochemical analyses reveal that treatment with CSTA@Gel significantly promotes wound healing, increases collagen deposition, and accelerates angiogenesis. These findings indicate that this hydrogel design presents a promising strategy for developing of novel wound dressings.
Collapse
Affiliation(s)
- Hua Li
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Yufeng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingjie He
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Junqi Nie
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Chao Ma
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Cuifen Lu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China.
| |
Collapse
|
3
|
Hu X, Zhang H, Cheng H, Hu HJ, Tang S, Zhong BH, Li YC, Lan LM, Chen Y, Song K, Jiang GB. Iron-based driven chitosan quaternary ammonium salt self-gelling powder: Sealing uncontrollable bleeding and promoting wound healing. Int J Biol Macromol 2025; 300:140330. [PMID: 39870283 DOI: 10.1016/j.ijbiomac.2025.140330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Uncontrollable bleeding poses a significant risk of death and cost in wars, vehicle accidents, and first aid. Hence, in order to seal uncontrollable bleeding and promote wound healing, the Fe3+-driven chitosan quaternary ammonium salt self-gelling powder (QPF) was prepared using 5%QCS/AA/Fe3+ with the 52.72 % ± 0.30 % yield. As demonstrated by the results, the QPF had a high liquid absorption rate, mechanical properties, reactive oxygen species scavenging capacity, and bacteriostatic ability. Furthermore, QPF has excellent self-healing characteristics and underwater adherence, making it appropriate for a wide range of wound types. Importantly, this property is influenced by variations in Fe3+ concentration. In the in vitro coagulation experiment, QPF can rapidly capture blood cells, resulting in coagulation within 30s. After applying the QPF to different bleeding models, it immediately formed the self-gel (<2 s) that adheres securely to the hemorrhage site. Subsequently, the bleeding site could be promptly closed within 30s, and no blood leaking occurred within 10 min. Compared to CS, QPF (200 mg) improves wound healing by closing the wound gap, activating M2-type macrophage polarization, increasing neovascularization, and hastening granulation tissue proliferation (1046.0 μm ± 41.9 μm). In conclusion, iron-based driven self-gelling powders offer significant promise for limiting uncontrolled bleeding and promoting wound healing.
Collapse
Affiliation(s)
- Xiaolong Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongyan Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal, Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hao Cheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Han-Jian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shipeng Tang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Bi-Huan Zhong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yi-Cheng Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ling-Min Lan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yu Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Kui Song
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, China.
| | - Gang-Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Zhao J, Chen Y, Qin Y, Li Y, Lu X, Xie C. Adhesive and Conductive Hydrogels for the Treatment of Myocardial Infarction. Macromol Rapid Commun 2025; 46:e2400835. [PMID: 39803789 DOI: 10.1002/marc.202400835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/27/2024] [Indexed: 05/02/2025]
Abstract
Myocardial infarction (MI) is a leading cause of mortality among cardiovascular diseases. Following MI, the damaged myocardium is progressively being replaced by fibrous scar tissue, which exhibits poor electrical conductivity, ultimately resulting in arrhythmias and adverse cardiac remodeling. Due to their extracellular matrix-like structure and excellent biocompatibility, hydrogels are emerging as a focal point in cardiac tissue engineering. However, traditional hydrogels lack the necessary conductivity to restore electrical signal transmission in the infarcted regions. Imparting conductivity to hydrogels while also enhancing their adhesive properties enables them to adhere closely to myocardial tissue, establish stable electrical connections, and facilitate synchronized contraction and myocardial tissue repair within the infarcted area. This paper reviews the strategies for constructing conductive and adhesive hydrogels, focusing on their application in MI repair. Furthermore, the challenges and future directions in developing adhesive and conductive hydrogels for MI repair are discussed.
Collapse
Affiliation(s)
- Jialiang Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ying Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuanyuan Qin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yongqi Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
5
|
Zhou Y, Chen K, Cheng H, Zhang S. Recent Advances in Polysaccharide-Based Hydrogels for Tumor Immunotherapy. Gels 2025; 11:152. [PMID: 40136857 PMCID: PMC11941962 DOI: 10.3390/gels11030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Immunotherapy has revolutionized cancer treatment and led to a significant increase in patient survival rates and quality of life. However, the effectiveness of current immunotherapies is limited by various factors, including immune evasion mechanisms and serious side effects. Hydrogels are a type of medical material with an ideal biocompatibility, variable structure, flexible synthesis method, and physical properties. Hydrogels have long been recognized and used as a superior choice for various biomedical applications. The fascinating results were derived from both in vitro and in vivo models. The rapid expansion of this area suggests that the principles and uses of functionalized polysaccharides are transformative, motivating researchers to investigate novel polysaccharide-based hydrogels for wider applications. Polysaccharide hydrogels have proven to be a practicable delivery strategy for tumor immunotherapy due to their biocompatibility, biodegradability, and pronounced bioactive characteristics. This study aims to examine in detail the latest developments of polysaccharide hydrogels in tumor immunotherapy, focusing on their design, mechanism of action, and potential therapeutic applications.
Collapse
Affiliation(s)
- Youxi Zhou
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China; (Y.Z.); (K.C.)
| | - Kaizhao Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China; (Y.Z.); (K.C.)
| | - Hongwei Cheng
- Zhuhai UM Science & Technology Research Institute, University of Macau, Macau 999078, China
| | - Shuaishuai Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China; (Y.Z.); (K.C.)
| |
Collapse
|
6
|
Sun F, Yang L, Zuo Y. Development of electrospun electroactive polyurethane membranes for bone repairing. J Biomater Appl 2025; 39:620-631. [PMID: 39223505 DOI: 10.1177/08853282241280771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
To fabricate electroactive fibrous membranes and provide simulated bioelectric micro-environment for bone regeneration mimicking nature periosteum, a series of electroactive polyurethanes (PUAT) were synthesized using amino-capped aniline trimers (AT) and lysine derivatives as chain extenders. These PUAT were fabricated into fibrous membranes as guided bone tissue regeneration membranes (GBRMs) via electrospinning. The ultraviolet-visible (UV-vis) absorption spectroscopy and cyclic voltammetry (CV) of PUAT copolymers showed that the electroactive PUAT fibrous membranes had good electroactivity. Besides, the introduction of AT significantly improved the hydrophobicity and thermal stability of PUAT fibrous membranes and decreased the degradation rate of PUAT fibers in vitro. With the increasing content of AT incorporated into copolymers, the tensile strength and Young's modulus of PUAT fibrous membranes increased from 4 MPa (PUAT0) to 15 MPa (PUAT10) and from 2.1 MPa (PUAT0) to 18 MPa (PUAT10), respectively. The cell morphology and proliferation of rat mesenchymal stem cells (rMSCs) on PUAT fibers indicated that the incorporation of AT enhanced the cell attachment and proliferation. Moreover, the expression levels of OCN, CD31, and VEGF secreted by rMSCs on PUAT fibers increased with the increasing content of AT. In conclusion, an electroactive polyurethane fibrous membrane mimicking natural periosteum was prepared via electrospinning and showed good potential application in guiding bone tissue regeneration.
Collapse
Affiliation(s)
- Fuhua Sun
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, P. R. China
| | - Lishi Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China
| | - Yi Zuo
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
7
|
Li B, Li C, Yan Z, Yang X, Xiao W, Zhang D, Liu Z, Liao X. A review of self-healing hydrogels for bone repair and regeneration: Materials, mechanisms, and applications. Int J Biol Macromol 2025; 287:138323. [PMID: 39645113 DOI: 10.1016/j.ijbiomac.2024.138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application.
Collapse
Affiliation(s)
- Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chenchen Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ziyi Yan
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Yang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Dawei Zhang
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan 250031, China.
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
8
|
Beilharz S, Debnath MK, Vinella D, Shoffstall AJ, Karayilan M. Advances in Injectable Polymeric Biomaterials and Their Contemporary Medical Practices. ACS APPLIED BIO MATERIALS 2024; 7:8076-8101. [PMID: 39471414 DOI: 10.1021/acsabm.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Injectable biomaterials have been engineered to operate within the human body, offering versatile solutions for minimally invasive therapies and meeting several stringent requirements such as biocompatibility, biodegradability, low viscosity for ease of injection, mechanical strength, rapid gelation postinjection, controlled release of therapeutic agents, hydrophobicity/hydrophilicity balance, stability under physiological conditions, and the ability to be sterilized. Their adaptability and performance in diverse clinical settings make them invaluable for modern medical treatments. This article reviews recent advancements in the design, synthesis, and characterization of injectable polymeric biomaterials, providing insights into their emerging applications. We discuss a broad spectrum of these materials, including natural, synthetic, hybrid, and composite types, that are being applied in targeted drug delivery, cell and protein transport, regenerative medicine, tissue adhesives, injectable implants, bioimaging, diagnostics, and 3D bioprinting. Ultimately, the review highlights the critical role of injectable polymeric biomaterials in shaping the future of medical treatments and improving patient outcomes across a wide range of therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Sophia Beilharz
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Mithun Kumar Debnath
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Daniele Vinella
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Metin Karayilan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
9
|
Peñas-Núñez S, Mecerreyes D, Criado-Gonzalez M. Recent Advances and Developments in Injectable Conductive Polymer Gels for Bioelectronics. ACS APPLIED BIO MATERIALS 2024; 7:7944-7964. [PMID: 38364213 PMCID: PMC11653406 DOI: 10.1021/acsabm.3c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Soft matter bioelectronics represents an emerging and interdisciplinary research frontier aiming to harness the synergy between biology and electronics for advanced diagnostic and healthcare applications. In this context, a whole family of soft gels have been recently developed with self-healing ability and tunable biological mimetic features to act as a tissue-like space bridging the interface between the electronic device and dynamic biological fluids and body tissues. This review article provides a comprehensive overview of electroactive polymer gels, formed by noncovalent intermolecular interactions and dynamic covalent bonds, as injectable electroactive gels, covering their synthesis, characterization, and applications. First, hydrogels crafted from conducting polymers (poly(3,4-ethylene-dioxythiophene) (PEDOT), polyaniline (PANi), and polypyrrole (PPy))-based networks which are connected through physical interactions (e.g., hydrogen bonding, π-π stacking, hydrophobic interactions) or dynamic covalent bonds (e.g., imine bonds, Schiff-base, borate ester bonds) are addressed. Injectable hydrogels involving hybrid networks of polymers with conductive nanomaterials (i.e., graphene oxide, carbon nanotubes, metallic nanoparticles, etc.) are also discussed. Besides, it also delves into recent advancements in injectable ionic liquid-integrated gels (iongels) and deep eutectic solvent-integrated gels (eutectogels), which present promising avenues for future research. Finally, the current applications and future prospects of injectable electroactive polymer gels in cutting-edge bioelectronic applications ranging from tissue engineering to biosensing are outlined.
Collapse
Affiliation(s)
- Sergio
J. Peñas-Núñez
- POLYMAT,
University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - David Mecerreyes
- POLYMAT,
University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - Miryam Criado-Gonzalez
- POLYMAT,
University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
10
|
Rafiq M, Ahmed J, Alturaifi HA, Awwad NS, Ibrahium HA, Mir S, Maalik A, Sabahat S, Hassan S, Khan ZUH. Recent developments in the biomedical and anticancer applications of chitosan derivatives. Int J Biol Macromol 2024; 283:137601. [PMID: 39549805 DOI: 10.1016/j.ijbiomac.2024.137601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Chitosan is a natural polymer derived from chitin. It has significant applications in various fields due to its unique physicochemical properties, biocompatibility, and biodegradability. These important properties of chitosan make it an attractive candidate for various anti-cancer activities and biomedical applications, including tissue engineering. This review emphasizes the latest literature on anticancer applications of chitosan derivatives and in-depth study of biomedical applications. This review highlights the importance of biomedical applications and anti-cancer activities like breast, liver, colon, gastric, melanoma, colorectal, cervical, oral, and lymphoma cancer. Currently, there is a notable absence of recent reviews that comprehensively address these aspects such as Alejandro Elizalde-Cárdenas, et al. 2024, focuses only on Biomedical applications of Cs and its derivatives (Elizalde-Cárdenas et al., 2024). Jingxian Ding, et al. 2022 discussed the applications of Cs in some Cancer treatments (Mabrouk et al., 2024). However, our article aims to provide a comprehensive overview of the latest advancements in Cs derivatives in both fields. This manuscript is designed with proper diagrams, flow sheets and summarized tables to enhance the understanding of the reader. It also highlights recent advancements in the development of various chitosan derivatives, offering a comprehensive perspective for researchers and practitioners to further progress in biomedical and anticancer technologies.
Collapse
Affiliation(s)
- Muqadas Rafiq
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Jalal Ahmed
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Huriyyah A Alturaifi
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Zia Ul Haq Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| |
Collapse
|
11
|
Casella A, Lowen J, Griffin KH, Shimamoto N, Ramos-Rodriguez DH, Panitch A, Leach JK. Conductive Microgel Annealed Scaffolds Enhance Myogenic Potential of Myoblastic Cells. Adv Healthc Mater 2024; 13:e2302500. [PMID: 38069833 PMCID: PMC11759339 DOI: 10.1002/adhm.202302500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Conductive biomaterials may capture native or exogenous bioelectric signaling, but incorporation of conductive moieties is limited by cytotoxicity, poor injectability, or insufficient stimulation. Microgel annealed scaffolds are promising as hydrogel-based materials due to their inherent void space that facilitates cell migration and proliferation better than nanoporous bulk hydrogels. Conductive microgels are generated from poly(ethylene) glycol (PEG and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) to explore the interplay of void volume and conductivity on myogenic differentiation. PEDOT: PSS increases microgel conductivity two-fold while maintaining stiffness, annealing strength, and viability of associated myoblastic cells. C2C12 myoblasts exhibit increases in the late-stage differentiation marker myosin heavy chain as a function of both porosity and conductivity. Myogenin, an earlier marker, is influenced only by porosity. Human skeletal muscle-derived cells exhibit increased Myod1, insulin like growth factor-1, and insulin-like growth factor binding protein 2 at earlier time points on conductive microgel scaffolds compared to non-conductive scaffolds. They also secrete more vascular endothelial growth factor at early time points and express factors that led to macrophage polarization patterns observe during muscle repair. These data indicate that conductivity aids myogenic differentiation of myogenic cell lines and primary cells, motivating the need for future translational studies to promote muscle repair.
Collapse
Affiliation(s)
- Alena Casella
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| | - Jeremy Lowen
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| | - Katherine H. Griffin
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
- School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
| | - Nathan Shimamoto
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| | | | - Alyssa Panitch
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
12
|
Vahidi M, Rizkalla AS, Mequanint K. Extracellular Matrix-Surrogate Advanced Functional Composite Biomaterials for Tissue Repair and Regeneration. Adv Healthc Mater 2024; 13:e2401218. [PMID: 39036851 DOI: 10.1002/adhm.202401218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Native tissues, comprising multiple cell types and extracellular matrix components, are inherently composites. Mimicking the intricate structure, functionality, and dynamic properties of native composite tissues represents a significant frontier in biomaterials science and tissue engineering research. Biomimetic composite biomaterials combine the benefits of different components, such as polymers, ceramics, metals, and biomolecules, to create tissue-template materials that closely simulate the structure and functionality of native tissues. While the design of composite biomaterials and their in vitro testing are frequently reviewed, there is a considerable gap in whole animal studies that provides insight into the progress toward clinical translation. Herein, we provide an insightful critical review of advanced composite biomaterials applicable in several tissues. The incorporation of bioactive cues and signaling molecules into composite biomaterials to mimic the native microenvironment is discussed. Strategies for the spatiotemporal release of growth factors, cytokines, and extracellular matrix proteins are elucidated, highlighting their role in guiding cellular behavior, promoting tissue regeneration, and modulating immune responses. Advanced composite biomaterials design challenges, such as achieving optimal mechanical properties, improving long-term stability, and integrating multifunctionality into composite biomaterials and future directions, are discussed. We believe that this manuscript provides the reader with a timely perspective on composite biomaterials.
Collapse
Affiliation(s)
- Milad Vahidi
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| | - Amin S Rizkalla
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| |
Collapse
|
13
|
Sun L, Yang B, Lin Y, Gao M, Yang Y, Cui X, Hao Q, Liu Y, Wang C. Dynamic bond crosslinked maca polysaccharide hydrogels with reactive oxygen species scavenging and antibacterial effects on infected wound healing. Int J Biol Macromol 2024; 276:133471. [PMID: 38942406 DOI: 10.1016/j.ijbiomac.2024.133471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
In this study, a polysaccharide fragment with antioxidant and reactive oxygen species (ROS) scavenging activities was extracted from Maca (Lepidium meyenii Walp.) and subjected to structural analyses. The fragment, characterized by the α-D-Glcp-(1 → terminal group of the main chain linked to the →4)-Glcp-(1 → end unit through an O-6 bond and the O-3 bond of 1-3-4Glcp, was modified by introducing dialdehyde structures on its glucose units. It was then crosslinked with N-carboxymethyl chitosan via the Schiff base reaction to create a multifunctional hydrogel with antibacterial and ROS scavenging properties. Polyvinyl alcohol was incorporated to form a double crosslinked gel network, and the addition of silver nanoparticles enhanced its antibacterial efficacy. This gel system can scavenge excess ROS, mitigate wound inflammation, eradicate harmful bacteria, and aid in the restoration of skin microecology. The multifunctional maca polysaccharide hydrogel shows significant potential as a medical dressing for the treatment of infected wounds.
Collapse
Affiliation(s)
- Liangliang Sun
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Boyuan Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yameng Lin
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Mingju Gao
- Wenshan University, Wenshan 663099, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qian Hao
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yuan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
14
|
Horrocks MS, Zhurenkov KE, Malmström J. Conducting polymer hydrogels for biomedical application: Current status and outstanding challenges. APL Bioeng 2024; 8:031503. [PMID: 39323539 PMCID: PMC11424142 DOI: 10.1063/5.0218251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Conducting polymer hydrogels (CPHs) are composite polymeric materials with unique properties that combine the electrical capabilities of conducting polymers (CPs) with the excellent mechanical properties and biocompatibility of traditional hydrogels. This review aims to highlight how the unique properties CPHs have from combining their two constituent materials are utilized within the biomedical field. First, the synthesis approaches and applications of non-CPH conductive hydrogels are discussed briefly, contrasting CPH-based systems. The synthesis routes of hydrogels, CPs, and CPHs are then discussed. This review also provides a comprehensive overview of the recent advancements and applications of CPHs in the biomedical field, encompassing their applications as biosensors, drug delivery scaffolds (DDSs), and tissue engineering platforms. Regarding their applications within tissue engineering, a comprehensive discussion of the usage of CPHs for skeletal muscle prosthetics and regeneration, cardiac regeneration, epithelial regeneration and wound healing, bone and cartilage regeneration, and neural prosthetics and regeneration is provided. Finally, critical challenges and future perspectives are also addressed, emphasizing the need for continued research; however, this fascinating class of materials holds promise within the vastly evolving field of biomedicine.
Collapse
|
15
|
Maeso L, Eufrásio-da-Silva T, Deveci E, Dolatshahi-Pirouz A, Orive G. Latest progress of self-healing hydrogels in cardiac tissue engineering. Biomed Microdevices 2024; 26:36. [PMID: 39150571 DOI: 10.1007/s10544-024-00716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Cardiovascular diseases represent a significant public health challenge and are responsible for more than 4 million deaths annually in Europe alone (45% of all deaths). Among these, coronary-related heart diseases are a leading cause of mortality, accounting for 20% of all deaths. Cardiac tissue engineering has emerged as a promising strategy to address the limitations encountered after myocardial infarction. This approach aims to improve regulation of the inflammatory and cell proliferation phases, thereby reducing scar tissue formation and restoring cardiac function. In cardiac tissue engineering, biomaterials serve as hosts for cells and therapeutics, supporting cardiac restoration by mimicking the native cardiac environment. Various bioengineered systems, such as 3D scaffolds, injectable hydrogels, and patches play crucial roles in cardiac tissue repair. In this context, self-healing hydrogels are particularly suitable substitutes, as they can restore structural integrity when damaged. This structural healing represents a paradigm shift in therapeutic interventions, offering a more native-like environment compared to static, non-healable hydrogels. Herein, we sharply review the most recent advances in self-healing hydrogels in cardiac tissue engineering and their potential to transform cardiovascular healthcare.
Collapse
Affiliation(s)
- Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | | | - Enes Deveci
- Faculty of Pharmacy, Lokman Hekim University, Ankara, Turkey
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, 01007, Spain.
| |
Collapse
|
16
|
Niknezhad SV, Mehrali M, Khorasgani FR, Heidari R, Kadumudi FB, Golafshan N, Castilho M, Pennisi CP, Hasany M, Jahanshahi M, Mehrali M, Ghasemi Y, Azarpira N, Andresen TL, Dolatshahi-Pirouz A. Enhancing volumetric muscle loss (VML) recovery in a rat model using super durable hydrogels derived from bacteria. Bioact Mater 2024; 38:540-558. [PMID: 38872731 PMCID: PMC11170101 DOI: 10.1016/j.bioactmat.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 06/15/2024] Open
Abstract
Bacteria can be programmed to deliver natural materials with defined biological and mechanical properties for controlling cell growth and differentiation. Here, we present an elastic, resilient and bioactive polysaccharide derived from the extracellular matrix of Pantoea sp. BCCS 001. Specifically, it was methacrylated to generate a new photo crosslinkable hydrogel that we coined Pantoan Methacrylate or put simply PAMA. We have used it for the first time as a tissue engineering hydrogel to treat VML injuries in rats. The crosslinked PAMA hydrogel was super elastic with a recovery nearing 100 %, while mimicking the mechanical stiffness of native muscle. After inclusion of thiolated gelatin via a Michaelis reaction with acrylate groups on PAMA we could also guide muscle progenitor cells into fused and aligned tubes - something reminiscent of mature muscle cells. These results were complemented by sarcomeric alpha-actinin immunostaining studies. Importantly, the implanted hydrogels exhibited almost 2-fold more muscle formation and 50 % less fibrous tissue formation compared to untreated rat groups. In vivo inflammation and toxicity assays likewise gave rise to positive results confirming the biocompatibility of this new biomaterial system. Overall, our results demonstrate that programmable polysaccharides derived from bacteria can be used to further advance the field of tissue engineering. In greater detail, they could in the foreseeable future be used in practical therapies against VML.
Collapse
Affiliation(s)
- Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71987-54361, Iran
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Nasim Golafshan
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 3584 CX, the Netherlands
| | - Miguel Castilho
- Department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9260, Gistrup, Denmark
| | - Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | | | - Mohammad Mehrali
- Faculty of Engineering Technology, Department of Thermal and Fluid Engineering (TFE), University of Twente, 7500 AE, Enschede, the Netherlands
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Thomas L. Andresen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | |
Collapse
|
17
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
18
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
19
|
Tian Y, Jiang F, Xie H, Chi Z, Liu C. Conductive Hyaluronic Acid/Deep Eutectic Solvent Composite Hydrogel as a Wound Dressing for Promoting Skin Burn Healing Under Electrical Stimulation. Adv Healthc Mater 2024; 13:e2304117. [PMID: 38567543 DOI: 10.1002/adhm.202304117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Burns can cause severe damage to the skin due to bacterial infection and severe inflammation. Although conductive hydrogels as electroactive burn-wound dressings achieve remarkable effects on accelerating wound healing, issues such as imbalance between their high conductivity and mechanical properties, easy dehydration, and low transparency must be addressed. Herein, a double-network conductive eutectogel is fabricated by integrating polymerizable deep eutectic solvents (PDESs)including acrylamide/choline chloride/glycerol (acrylamide-polymerization crosslink) and thiolated hyaluronic acid (disulfide-bonding crosslink). The introduction of PDESs provides the eutectogel with a conductivity (up to 0.25 S·m-1) and mechanical strength (tensile strain of 59-77%) simulating those of natural human skin, as well as satisfactory tissue adhesiveness, self-healing ability, and antibacterial properties. When combined with exogenous electrical stimulation, the conductive eutectogel exhibits the ability to reduce inflammation, stimulate cell proliferation and migration, promote collagen deposition and angiogenesis, and facilitate skin tissue remodeling. This conductive eutectogel shows great potential as a dressing for healing major burn wounds.
Collapse
Affiliation(s)
- Yu Tian
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Fei Jiang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
20
|
Wang Y, Wang J, Du H, Zhao Q, Wang S, Liu T, Bi S, Zhang Q, An M, Wen S. A dynamically cross-linked catechol-grafted chitosan/gelatin hydrogel dressing synergised with photothermal therapy and baicalin reduces wound infection and accelerates wound healing. Int J Biol Macromol 2024; 273:132802. [PMID: 38852721 DOI: 10.1016/j.ijbiomac.2024.132802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Superior multifunctional hydrogel dressings are of considerable interest in wound healing. In clinical practice, it is useful to investigate hydrogel dressings that offer multifunctional benefits to expedite the process of wound healing. In this study, Catechol-grafted Chitosan, Gelatin, and Fe3+ as substrates to construct a hydrogel network. The network was dynamically cross-linked to form Ccg@Fe hydrogel substrate. Fe3O4 nanoparticles and baicalin, which possess antimicrobial and anti-inflammatory properties, were loaded onto the substrate to form a photothermal antibacterial composite hydrogel dressing (Ccg@Fe/Bai@Fe3O4 NPs). The Ccg@Fe hydrogel was characterised using Fourier transform infrared spectroscopy (FTIR) and Ultraviolet-visible spectrophotometry (UV-Vis). The morphological, mechanical, and adhesion properties of the hydrogel were determined using scanning electron microscopy (SEM) and a universal testing machine. The hydrogel's swelling, hemostasis, and self-healing properties were also evaluated. Additionally, the study determined the release rate of hydrogel-loaded antimicrobial and anti-inflammatory Baicalin (Ccg@Fe/Bai) and evaluated the photothermal antimicrobial properties of hydrogel-loaded Fe3O4 nanoparticles (Ccg@Fe/Bai@Fe3O4 NPs) through synergistic photothermal therapy (PTT). Histological staining of mice skin wound tissues using Masson and H&E revealed that the Ccg@Fe/Bai@Fe3O4 NPs hydrogel dressing demonstrated potential healing ability with the aid of PTT. The study suggests that this multifunctional hydrogel dressing has great potential for wound healing.
Collapse
Affiliation(s)
- Ying Wang
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jiang Wang
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huiying Du
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Qianye Zhao
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shilei Wang
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Tianyu Liu
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shizhao Bi
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Qingtao Zhang
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Meiwen An
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Shuxin Wen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
21
|
Eufrásio-da-Silva T, Erezuma I, Dolatshahi-Pirouz A, Orive G. Enhancing regenerative medicine with self-healing hydrogels: A solution for tissue repair and advanced cyborganic healthcare devices. BIOMATERIALS ADVANCES 2024; 161:213869. [PMID: 38718714 DOI: 10.1016/j.bioadv.2024.213869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024]
Abstract
Considering the global burden related to tissue and organ injuries or failures, self-healing hydrogels may be an attractive therapeutic alternative for the future. Self-healing hydrogels are highly hydrated 3D structures with the ability to self-heal after breaking, this property is attributable to a variety of dynamic non-covalent and covalent bonds that are able to re-linking within the matrix. Self-healing ability specially benefits minimal invasive medical treatments with cell-delivery support. Moreover, those tissue-engineered self-healing hydrogels network have demonstrated effectiveness for myriad purposes; for instance, they could act as delivery-platforms for different cargos (drugs, growth factors, cells, among others) in tissues such as bone, cartilage, nerve or skin. Besides, self-healing hydrogels have currently found their way into new and novel applications; for example, with the development of the self-healing adhesive hydrogels, by merely aiding surgical closing processes and by providing biomaterial-tissue adhesion. Furthermore, conductive hydrogels permit the stimuli and monitoring of natural electrical signals, which facilitated a better fitting of hydrogels in native tissue or the diagnosis of various health diseases. Lastly, self-healing hydrogels could be part of cyborganics - a merge between biology and machinery - which can pave the way to a finer healthcare devices for diagnostics and precision therapies.
Collapse
Affiliation(s)
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
22
|
Luo S, Zhang C, Xiong W, Song Y, Wang Q, Zhang H, Guo S, Yang S, Liu H. Advances in electroactive biomaterials: Through the lens of electrical stimulation promoting bone regeneration strategy. J Orthop Translat 2024; 47:191-206. [PMID: 39040489 PMCID: PMC11261049 DOI: 10.1016/j.jot.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
The regenerative capacity of bone is indispensable for growth, given that accidental injury is almost inevitable. Bone regenerative capacity is relevant for the aging population globally and for the repair of large bone defects after osteotomy (e.g., following removal of malignant bone tumours). Among the many therapeutic modalities proposed to bone regeneration, electrical stimulation has attracted significant attention owing to its economic convenience and exceptional curative effects, and various electroactive biomaterials have emerged. This review summarizes the current knowledge and progress regarding electrical stimulation strategies for improving bone repair. Such strategies range from traditional methods of delivering electrical stimulation via electroconductive materials using external power sources to self-powered biomaterials, such as piezoelectric materials and nanogenerators. Electrical stimulation and osteogenesis are related via bone piezoelectricity. This review examines cell behaviour and the potential mechanisms of electrostimulation via electroactive biomaterials in bone healing, aiming to provide new insights regarding the mechanisms of bone regeneration using electroactive biomaterials. The translational potential of this article This review examines the roles of electroactive biomaterials in rehabilitating the electrical microenvironment to facilitate bone regeneration, addressing current progress in electrical biomaterials and the mechanisms whereby electrical cues mediate bone regeneration. Interactions between osteogenesis-related cells and electroactive biomaterials are summarized, leading to proposals regarding the use of electrical stimulation-based therapies to accelerate bone healing.
Collapse
Affiliation(s)
- Songyang Luo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Chengshuo Zhang
- Hepatobiliary Surgery Department, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi Medical University, Shihezi, 832000, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Hangzhou Zhang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang Sports Medicine Clinical Medical Research Center, Shenyang, 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Huanye Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| |
Collapse
|
23
|
Pan Z, Dorogin J, Lofts A, Randhawa G, Xu F, Slick R, Abraha M, Tran C, Lawlor M, Hoare T. Injectable and Dynamically Crosslinked Zwitterionic Hydrogels for Anti-Fouling and Tissue Regeneration Applications. Adv Healthc Mater 2024; 13:e2304397. [PMID: 38684223 DOI: 10.1002/adhm.202304397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/29/2024] [Indexed: 05/02/2024]
Abstract
A zwitterionic injectable and degradable hydrogel based on hydrazide and aldehyde-functionalized [2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl)ammonium hydroxide (DMAPS) precursor polymers that can address practical in vivo needs is reported. Zwitterion fusion interactions between the zwitterionic precursor polymers create a secondary physically crosslinked network to enable much more rapid gelation than previously reported with other synthetic polymers, facilitating rapid gelation at much lower polymer concentrations or degrees of functionalization than previously accessible in addition to promoting zero swelling and long-term degradation responses and significantly stiffer mechanics than are typically accessed with previously reported low-viscosity precursor gelation systems. The hydrogels maintain the highly anti-fouling properties of conventional zwitterionic hydrogels against proteins, mammalian cells, and bacteria while also promoting anti-fibrotic tissue responses in vivo. Furthermore, the use of the hydrogels for effective delivery and subsequent controlled release of viable cells with tunable profiles both in vitro and in vivo is demonstrated, including the delivery of myoblasts in a mouse skeletal muscle defect model for reducing the time between injury and functional mobility recovery. The combination of the injectability, degradability, and tissue compatibility achieved offers the potential to expand the utility of zwitterionic hydrogels in minimally invasive therapeutic applications.
Collapse
Affiliation(s)
- Zhicheng Pan
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Jonathan Dorogin
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Andrew Lofts
- Department of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Gurpreet Randhawa
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
- Department of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Fei Xu
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Rebecca Slick
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Mosana Abraha
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Cecilia Tran
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Michael Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| |
Collapse
|
24
|
Dutta T, Chaturvedi P, Llamas-Garro I, Velázquez-González JS, Dubey R, Mishra SK. Smart materials for flexible electronics and devices: hydrogel. RSC Adv 2024; 14:12984-13004. [PMID: 38655485 PMCID: PMC11033831 DOI: 10.1039/d4ra01168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, flexible conductive materials have attracted considerable attention for their potential use in flexible energy storage devices, touch panels, sensors, memristors, and other applications. The outstanding flexibility, electricity, and tunable mechanical properties of hydrogels make them ideal conductive materials for flexible electronic devices. Various synthetic strategies have been developed to produce conductive and environmentally friendly hydrogels for high-performance flexible electronics. In this review, we discuss the state-of-the-art applications of hydrogels in flexible electronics, such as energy storage, touch panels, memristor devices, and sensors like temperature, gas, humidity, chemical, strain, and textile sensors, and the latest synthesis methods of hydrogels. Describe the process of fabricating sensors as well. Finally, we discussed the challenges and future research avenues for flexible and portable electronic devices based on hydrogels.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah W.B. - 711103 India
| | - Pavan Chaturvedi
- Department of Physics, Vanderbilt University 3414 Murphy Rd, Apt#4 Nashville TN-37203 USA +575-650-4595
| | - Ignacio Llamas-Garro
- Navigation and Positioning Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels Spain
| | | | - Rakesh Dubey
- Instiute of Physics, University of Szczecin Poland
| | - Satyendra Kumar Mishra
- Space and Reslinent Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels Spain
| |
Collapse
|
25
|
Vaidya G, Pramanik S, Kadi A, Rayshan AR, Abualsoud BM, Ansari MJ, Masood R, Michaelson J. Injecting hope: chitosan hydrogels as bone regeneration innovators. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:756-797. [PMID: 38300215 DOI: 10.1080/09205063.2024.2304952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Spontaneous bone regeneration encounters substantial restrictions in cases of bone defects, demanding external intervention to improve the repair and regeneration procedure. The field of bone tissue engineering (BTE), which embraces a range of disciplines, offers compelling replacements for conventional strategies like autografts, allografts, and xenografts. Among the diverse scaffolding materials utilized in BTE applications, hydrogels have demonstrated great promise as templates for the regeneration of bone owing to their resemblance to the innate extracellular matrix. In spite of the advancement of several biomaterials, chitosan (CS), a natural biopolymer, has garnered significant attention in recent years as a beneficial graft material for producing injectable hydrogels. Injectable hydrogels based on CS formulations provide numerous advantages, including their capacity to absorb and preserve a significant amount of water, their minimally invasive character, the existence of porous structures, and their capability to adapt accurately to irregular defects. Moreover, combining CS with other naturally derived or synthetic polymers and bioactive materials has displayed its effectiveness as a feasible substitute for traditional grafts. We aim to spotlight the composition, production, and physicochemical characteristics and practical utilization of CS-based injectable hydrogels, explicitly focusing on their potential implementations in bone regeneration. We consider this review a fundamental resource and a source of inspiration for future research attempts to pioneer the next era of tissue-engineering scaffold materials.
Collapse
Affiliation(s)
- Gayatri Vaidya
- Department of Studies and Research in Food Technology, Davangere University, Davangere, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk, Russia
| | - Ahmed Raheem Rayshan
- Department of Physiology, Pharmacology, and Biochemistry, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Jacob Michaelson
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
26
|
Slezak A, Chang K, Hossainy S, Mansurov A, Rowan SJ, Hubbell JA, Guler MO. Therapeutic synthetic and natural materials for immunoengineering. Chem Soc Rev 2024; 53:1789-1822. [PMID: 38170619 PMCID: PMC11557218 DOI: 10.1039/d3cs00805c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Immunoengineering is a rapidly evolving field that has been driving innovations in manipulating immune system for new treatment tools and methods. The need for materials for immunoengineering applications has gained significant attention in recent years due to the growing demand for effective therapies that can target and regulate the immune system. Biologics and biomaterials are emerging as promising tools for controlling immune responses, and a wide variety of materials, including proteins, polymers, nanoparticles, and hydrogels, are being developed for this purpose. In this review article, we explore the different types of materials used in immunoengineering applications, their properties and design principles, and highlight the latest therapeutic materials advancements. Recent works in adjuvants, vaccines, immune tolerance, immunotherapy, and tissue models for immunoengineering studies are discussed.
Collapse
Affiliation(s)
- Anna Slezak
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Kevin Chang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Samir Hossainy
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Aslan Mansurov
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Stuart J Rowan
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jeffrey A Hubbell
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
27
|
Chen D, Ma X, Zhu J, Wang Y, Guo S, Qin J. Pectin based hydrogel with covalent coupled doxorubicin and limonin loading for lung tumor therapy. Colloids Surf B Biointerfaces 2024; 234:113670. [PMID: 38042108 DOI: 10.1016/j.colsurfb.2023.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Self-healing hydrogels have shown great application potential in drug delivery for anti-tumor therapy and tissue engineering. In this research, Doxorubicin (DOX) was coupled onto the oxidized pectin (pec-Ald) to prepare DOX grafted pec-AD and used to fabricate self-healing hydrogel for lung cancer therapy combined with novel herbal medicine extract limonin targeting lung cancer cells. The hydrogel was prepared with P(NIPAM195-co-AH54) cross-linking and the hydrazone bond cross-linked hydrogel showed good mechanical property and self-healing behavior. With pectin composition, the hydrogel was still biodegradable catalyzed by enzyme and in vivo. The hydrogel formed fast fit for injectable application and the hydrogel itself showed moderate lung cancer inhibition activity. With limonin loading, the hydrogel showed synergistic lung cancer therapy with the tumor growth greatly inhibited. The covalent coupling of DOX and loaded limonin in the hydrogel decreased in vivo toxicity and the hydrogel degraded on time. With biodegradability and improved lung cancer therapy efficiency, this DOX grafted self-healing hydrogel could find great potential application in cancer therapy in near future.
Collapse
Affiliation(s)
- Danyang Chen
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Xiangbo Ma
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jingjing Zhu
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding City, Hebei Province 071002, China; Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China.
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
28
|
Zhao Z, Pei X, Li Q, Zhang H, Wang Y, Qin J, He Y. Pectin-based double network hydrogels as local depots of celastrol for enhanced antitumor therapy. Int J Biol Macromol 2024; 256:128442. [PMID: 38035968 DOI: 10.1016/j.ijbiomac.2023.128442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
In this study, A double-network (DN) hydrogel composed of a physical glycyrrhizic acid (GA) network and a chemically crosslinked pectin-based network was fabricated as a local depot of celastrol (CEL) for cancer treatment. The obtained DN hydrogel possessed excellent mechanical performance, flexibility, biocompatibility, biodegradability and self-healing property. Furthermore, the release profile of CEL loaded DN hydrogel maintained a controlled and sustained release of CEL for a prolonged period. Finally, in vivo animal experiments demonstrated that the DN hydrogel could significantly enhance the therapeutic efficiency of CEL in CT-26 tumor-bearing mice upon intratumoral injection while effectively alleviate the toxicity of the CEL. In summary, this injectable pectin-based double network hydrogels are ideal delivery vehicle for tumor therapy.
Collapse
Affiliation(s)
- Zihao Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China
| | - Xiaocui Pei
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China
| | - Qiushuai Li
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Yong Wang
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China.
| | - Yingna He
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei Province 050200, China.
| |
Collapse
|
29
|
Zuo J, Lv S, Liang S, Zhang S, Wang J, Wei D, Liu L. Fabrication of 1,8-naphthalimide modified cellulose derivative composite fluorescent hydrogel probes and their application in the detection of Cr(VI). Int J Biol Macromol 2023; 253:127082. [PMID: 37769762 DOI: 10.1016/j.ijbiomac.2023.127082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
The design and development of a rapid and quantitative method for the detection of heavy metal ions is of great importance for environmental protection. We have prepared a 1,8-Naphthalimide modified cellulose composite fluorescent hydrogel (CENAEA/PAA) with a stereo double network structure. Characterized by excellent hydrogel functional structure and fluorescence detection performance, it can efficiently and selectively identify and detect Cr(VI) with linear quenching in the range of 0-400 μmol/L and detection limit of 0.58 μmol/L for Cr(VI). The results show that the CENAEA/PAA can effectively adsorb Cr(VI) with a maximum adsorption capacity of 189.04 mg/g. Finally, the morphological characteristics, chemical structure, fluorescence properties and adsorption behavior of CENAEA/PAA were analyzed and fitted well with the pseudo-second-order model and Freundlich model. Thus, the present work provides a green and sustainable approach for the synthesis of a functional material that can be used for the detection and adsorption of heavy metal ions.
Collapse
Affiliation(s)
- Jingjing Zuo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shan Liang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shanshan Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jialin Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
30
|
Almajidi YQ, Gupta J, Sheri FS, Zabibah RS, Faisal A, Ruzibayev A, Adil M, Saadh MJ, Jawad MJ, Alsaikhan F, Narmani A, Farhood B. Advances in chitosan-based hydrogels for pharmaceutical and biomedical applications: A comprehensive review. Int J Biol Macromol 2023; 253:127278. [PMID: 37806412 DOI: 10.1016/j.ijbiomac.2023.127278] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The treatment of diseases, such as cancer, is one of the most significant issues correlated with human beings health. Hydrogels (HGs) prepared from biocompatible and biodegradable materials, especially biopolymers, have been effectively employed for the sort of pharmaceutical and biomedical applications, including drug delivery systems, biosensors, and tissue engineering. Chitosan (CS), one of the most abundant bio-polysaccharide derived from chitin, is an efficient biomaterial in the prognosis, diagnosis, and treatment of diseases. CS-based HGs possess some potential advantages, like high values of bioactive encapsulation, efficient drug delivery to a target site, sustained drug release, good biocompatibility and biodegradability, high serum stability, non-immunogenicity, etc., which made them practical and useful for pharmaceutical and biomedical applications. In this review, we summarize recent achievements and advances associated with CS-based HGs for drug delivery, regenerative medicine, disease detection and therapy.
Collapse
Affiliation(s)
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura Pin Code 281406, U.P., India
| | - Fatime Satar Sheri
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Akbarali Ruzibayev
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Navoi street 32, 100011 Tashkent City, Uzbekistan
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
31
|
Zhao N, Yuan W. Antibacterial, conductive nanocomposite hydrogel based on dextran, carboxymethyl chitosan and chitosan oligosaccharide for diabetic wound therapy and health monitoring. Int J Biol Macromol 2023; 253:126625. [PMID: 37657577 DOI: 10.1016/j.ijbiomac.2023.126625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Diabetic severe wound healing is challenging and also carries a high risk of bacterial infection and may be accompanied by serious complications. Electrical stimulation (ES) can effectively promote wound healing, but its effectiveness is often limited by incomplete contact between the electrodes and the wound site. In order to improve the efficiency of electrical stimulation utilization and to avoid wound infection, a multi-dynamically crosslinked nanocomposite hydrogel was prepared from dextran modified with aldehyde groups and phenylboronic acid esters (Dex-FA-BA), carboxymethyl chitosan (CMCS), polyaniline grafted chitosan oligosaccharide (CP), and Epigallocatechin Gallate/Ca2+ modified melanin-like nanoparticles (CEMNPs), based on dynamic Schiff base bonds, phenylboronic acid/diol interactions, and hydrogen bonding. The CEMNPs have good photothermal conversion properties and antioxidant activity and can also enhance the mechanical properties of the hydrogel system. The CP endows the hydrogel with good electrical conductivity and sensing properties and can record the respiratory and heart rate of rats in real time. Based on the convolutional neural networks (CNN) algorithm constructed by ResNet9, the respiratory and heart rate signals can be distinguished with 93.9 % accuracy. This multifunctional nanocomposite hydrogel can provide a new strategy to promote chronic wound healing and achieve health monitoring effectively.
Collapse
Affiliation(s)
- Nuoya Zhao
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
32
|
Selvam A, Majood M, Chaurasia R, Rupesh, Singh A, Dey T, Agrawal O, Verma YK, Mukherjee M. Injectable organo-hydrogels influenced by click chemistry as a paramount stratagem in the conveyor belt of pharmaceutical revolution. J Mater Chem B 2023; 11:10761-10777. [PMID: 37807713 DOI: 10.1039/d3tb01674a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The field of injectable hydrogels has demonstrated a paramount headway in the myriad of biomedical applications and paved a path toward clinical advancements. The innate superiority of hydrogels emerging from organic constitution has exhibited dominance in overcoming the bottlenecks associated with inorganic-based hydrogels in the biological milieu. Inorganic hydrogels demonstrate various disadvantages, including limited biocompatibility, degradability, a cumbersome synthesis process, high cost, and ecotoxicity. The excellent biocompatibility, eco-friendliness, and manufacturing convenience of organo-hydrogels have demonstrated to be promising in therapizing biomedical complexities with low toxicity and augmented bioavailability. This report manifests the realization of biomimetic organo-hydrogels with the development of bioresponsive and self-healing injectable organo-hydrogels in the emerging pharmaceutical revolution. Furthermore, the influence of click chemistry in this regime as a backbone in the pharmaceutical conveyor belt has been suggested to scale up production. Moreover, we propose an avant-garde design stratagem of developing a hyaluronic acid (HA)-based injectable organo-hydrogel via click chemistry to be realized for its pharmaceutical edge. Ultimately, injectable organo-hydrogels that materialize from academia or industry are required to follow the standard set of rules established by global governing bodies, which has been delineated to comprehend their marketability. Thence, this perspective narrates the development of injectable organo-hydrogels via click chemistry as a prospective elixir to have in the arsenal of pharmaceuticals.
Collapse
Affiliation(s)
- Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Rupesh
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Akanksha Singh
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Tapan Dey
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Yogesh Kumar Verma
- Stem Cell & Tissue Engineering Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, New Delhi, 110054, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
33
|
Abdelbasset WK, Jasim SA, Bokov DO, Shalaby MN, Opulencia MJC, Thangavelu L, Alkadir OKA, Ansari MJ, Kzar HH, Al-Gazally ME. Polysaccharides, as biological macromolecule-based platforms in skeletal muscle tissue engineering: a systematic review. INT J POLYM MATER PO 2023; 72:1229-1252. [DOI: 10.1080/00914037.2022.2090940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Research Center of Nutrition, Biotechnology and Food Safety, Laboratory of Food Chemistry, Moscow, Russia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Sheikh Zayed City, Egypt
| | | | - Lakshmi Thangavelu
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | | | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hamzah H. Kzar
- College of Veterinary Medicine, Al Qasim Green University, Iraq
| | | |
Collapse
|
34
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
35
|
Shokrollahi P, Omidi Y, Cubeddu LX, Omidian H. Conductive polymers for cardiac tissue engineering and regeneration. J Biomed Mater Res B Appl Biomater 2023; 111:1979-1995. [PMID: 37306139 DOI: 10.1002/jbm.b.35293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Cardiovascular diseases, such as myocardial infarction, are considered a significant global burden and the leading cause of death. Given the inability of damaged cardiac tissue to self-repair, cell-based tissue engineering and regeneration may be the only viable option for restoring normal heart function. To maintain the normal excitation-contraction coupling function of cardiac tissue, uniform electronic and ionic conductance properties are required. To transport cells to damaged cardiac tissues, several techniques, including the incorporation of cells into conductive polymers (CPs) and biomaterials, have been utilized. Due to the complexity of cardiac tissues, the success of tissue engineering for the damaged heart is highly dependent on several variables, such as the cell source, growth factors, and scaffolds. In this review, we sought to provide a comprehensive overview of the electro CPs and biomaterials used in the engineering and regeneration of heart tissue.
Collapse
Affiliation(s)
- Parvin Shokrollahi
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Luigi X Cubeddu
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
36
|
Khan A, Rehman W, Alanazi MM, Khan Y, Rasheed L, Saboor A, Iqbal S. Development of Novel Multifunctional Electroactive, Self-Healing, and Tissue Adhesive Scaffold To Accelerate Cutaneous Wound Healing and Hemostatic Materials. ACS OMEGA 2023; 8:39110-39134. [PMID: 37901557 PMCID: PMC10600885 DOI: 10.1021/acsomega.3c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
Designing a multifunctional conducting hydrogel wound dressing of suitable mechanical properties, adhesiveness, self-healing, autolytic debridement, antibacterial properties, and radical scavenging ability, as well as retaining an appropriate level of moisture around the wound is highly desirable in clinical application for treating cutaneous wounds healing. Here, we designed a novel class of electroactive hydrogel based on thiol-functionalized silver-graphene oxide nanoparticles (GO/Ag/TGA) core polyaniline (PANI) shell GO/Ag/TGA/PANI nanocomposites. Thus, a series of physically cross-linked hydrogel based on GO/Ag/TGA/PANI and poly(vinyl alcohol) (PVA) was prepared by freeze-thawing method. The hydrogel was characterized by XRD, UV, FTIR, TGA, TEM, SEM, Raman spectroscopy, cyclic voltammetry (CV), and four probes test. The hydrogel showed favorable properties such as excellent tensile strength, suitable gelation time (30-56 s), tunable rheological properties (G' ∼ 1 kPa), adhesiveness, and interconnected porous structure (freeze-dried). Besides this, the hydrogel also exhibits excellent exudate uptake capacity (10.4-0.2 g/g), high swelling ratio (72.4 to 93.5%), long-term antibacterial activity against multidrug-resistant (MDR) bacterial isolates, promising antioxidant (radical scavenging) efficiency, keeping the wound moisturized, prominent hemostatic efficiency, and fast self-healing ability to bear deformation. Interestingly, in vivo experiments indicated that electroactive hydrogels can significantly promote the healing rate of artificial wounds in rats, and histological analysis by H&E reveals higher granulation tissue thickness, collagen deposition, hair follicles, dermal papillary, keratinocytes, and marked increase (P < 0.05) in hydroxyproline at the wound site during 15 days of healing of impaired wounds. On the basis of vivo and vitro assay results, it is concluded that electroactive-hydrogel-attributed multifunctional properties may serve as suitable scaffold for treating chronic wound healing and skin regeneration.
Collapse
Affiliation(s)
- Asghar Khan
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Wajid Rehman
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Mohammed M. Alanazi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yaqoob Khan
- Nano
Science and Technology Department, National Centre for Physics, Quaid-I-Azam University, Islamabad44000,Pakistan
| | - Liaqat Rasheed
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Abdul Saboor
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Shahid Iqbal
- School
of Chemical and Environmental Engineering, College of Chemistry, Chemical
Engineering and Materials Science, Soochow
University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
37
|
Clark A, Kulwatno J, Kanovka SS, McKinley TO, Potter BK, Goldman SM, Dearth CL. In situ forming biomaterials as muscle void fillers for the provisional treatment of volumetric muscle loss injuries. Mater Today Bio 2023; 22:100781. [PMID: 37736246 PMCID: PMC10509707 DOI: 10.1016/j.mtbio.2023.100781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Volumetric muscle loss (VML) represents a devastating extremity injury which leads to chronic functional deficits and disability and is unrecoverable through normal healing pathways. When left untreated, the VML pathophysiology creates many challenges towards successful treatment, such as altered residual muscle architecture, excessive fibrosis, and contracture(s). As such, innovative approaches and technologies are needed to prevent or reverse these adverse sequelae. Development of a rationally designed biomaterial technology which is intended to be acutely placed within a VML defect - i.e., to serve as a muscle void filler (MVF) by maintaining the VML defect - could address this clinical unmet need by preventing these adverse sequelae as well as enabling multi-staged treatment approaches. To that end, three biomaterials were evaluated for their ability to serve as a provisional MVF treatment intended to stabilize a VML defect in a rat model for an extended period (28 days): polyvinyl alcohol (PVA), hyaluronic acid and polyethylene glycol combination (HA + PEG), and silicone, a clinically used soft tissue void filler. HA + PEG biomaterial showed signs of deformation, while both PVA and silicone did not. There were no differences between treatment groups for their effects on adjacent muscle fiber count and size distribution. Not surprisingly, silicone elicited robust fibrotic response resulting in a fibrotic barrier with a large infiltration of macrophages, a response not seen with either the PVA or HA + PEG. Taken together, PVA was found to be the best material to be used as a provisional MVF for maintaining VML defect volume while minimizing adverse effects on the surrounding muscle.
Collapse
Affiliation(s)
- Andrew Clark
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Jonathan Kulwatno
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sergey S. Kanovka
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Todd O. McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Benjamin K. Potter
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Stephen M. Goldman
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christopher L. Dearth
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
38
|
Patel DK, Patil TV, Ganguly K, Dutta SD, Lim KT. Nanocellulose-assisted 3D-printable, transparent, bio-adhesive, conductive, and biocompatible hydrogels as sensors and moist electric generators. Carbohydr Polym 2023; 315:120963. [PMID: 37230632 DOI: 10.1016/j.carbpol.2023.120963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Transparent hydrogels have found increasing applications in wearable electronics, printable devices, and tissue engineering. Integrating desired properties, such as conductivity, mechanical strength, biocompatibility, and sensitivity, in one hydrogel remains challenging. To address these challenges, multifunctional hydrogels of methacrylate chitosan, spherical nanocellulose, and β-glucan with distinct physicochemical characteristics were combined to develop multifunctional composite hydrogels. The nanocellulose facilitated the self-assembly of the hydrogel. The hydrogels exhibited good printability and adhesiveness. Compared with the pure methacrylated chitosan hydrogel, the composite hydrogels exhibited improved viscoelasticity, shape memory, and conductivity. The biocompatibility of the composite hydrogels was monitored using human bone marrow-derived stem cells. Their motion-sensing potential was analyzed on different parts of the human body. The composite hydrogels also possessed temperature-responsiveness and moisture-sensing abilities. These results suggest that the developed composite hydrogels demonstrate excellent potential to fabricate 3D-printable devices for sensing and moist electric generator applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tejal V Patil
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
39
|
Zheng H, Cheng F, Guo D, He X, Zhou L, Zhang Q. Nanoenzyme-Reinforced Multifunctional Scaffold Based on Ti 3C 2Tx MXene Nanosheets for Promoting Structure-Functional Skeletal Muscle Regeneration via Electroactivity and Microenvironment Management. NANO LETTERS 2023; 23:7379-7388. [PMID: 37578316 DOI: 10.1021/acs.nanolett.3c01784] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The completed volumetric muscle loss (VML) regeneration remains a challenge due to the limited myogenic differentiation as well as the oxidative, inflammatory, and hypoxic microenvironment. Herein, a 2D Ti3C2Tx MXene@MnO2 nanocomposite with conductivity and microenvironment remodeling was fabricated and applied in developing a multifunctional hydrogel (FME) scaffold to simultaneously conquer these hurdles. Among them, Ti3C2Tx MXene with electroconductive ability remarkably promotes myogenic differentiation via enhancing the myotube formation and upregulating the relative expression of the myosin heavy chain (MHC) protein and myogenic genes (MyoD and MyoG) in myogenesis. The MnO2 nanoenzyme-reinforced Ti3C2Tx MXene significantly reshapes the hostile microenvironment by eliminating reactive oxygen species (ROS), regulating macrophage polarization from M1 to M2 and continuously supplying O2. Together, the FME hydrogel as a bioactive multifunctional scaffold significantly accelerates structure-functional VML regeneration in vivo and represents a multipronged strategy for the VML regeneration via electroactivity and microenvironment management.
Collapse
Affiliation(s)
- Hua Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Fang Cheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Dong Guo
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Li Zhou
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
40
|
Casella A, Lowen J, Shimamoto N, Griffin KH, Filler AC, Panitch A, Leach JK. Conductive microgel annealed scaffolds enhance myogenic potential of myoblastic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551533. [PMID: 37577583 PMCID: PMC10418230 DOI: 10.1101/2023.08.01.551533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Bioelectricity is an understudied phenomenon to guide tissue homeostasis and regeneration. Conductive biomaterials may capture native or exogenous bioelectric signaling, but incorporation of conductive moieties is limited by cytotoxicity, poor injectability, or insufficient stimulation. Microgel annealed scaffolds are promising as hydrogel-based materials due to their inherent void space that facilitates cell migration and proliferation better than nanoporous bulk hydrogels. We generated conductive microgels from poly(ethylene) glycol and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) to explore the interplay of void volume and conductivity on myogenic differentiation. PEDOT:PSS increased microgel conductivity over 2-fold while maintaining stiffness, annealing strength, and viability of associated myoblastic cells. C2C12 myoblasts exhibited increases in the late-stage differentiation marker myosin heavy chain as a function of both porosity and conductivity. Myogenin, an earlier marker, was influenced only by porosity. Human skeletal muscle derived cells exhibited increased Myod1 , IGF-1, and IGFBP-2 at earlier timepoints on conductive microgel scaffolds compared to non-conductive scaffolds. They also secreted higher levels of VEGF at early timepoints and expressed factors that led to macrophage polarization patterns observed during muscle repair. These data indicate that conductivity aids myogenic differentiation of myogenic cell lines and primary cells, motivating the need for future translational studies to promote muscle repair.
Collapse
|
41
|
Zhang Y, Li M, Wang Y, Han F, Shen K, Luo L, Li Y, Jia Y, Zhang J, Cai W, Wang K, Zhao M, Wang J, Gao X, Tian C, Guo B, Hu D. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioact Mater 2023; 26:323-336. [PMID: 36950152 PMCID: PMC10027478 DOI: 10.1016/j.bioactmat.2023.01.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 03/17/2023] Open
Abstract
Chronic diabetic wounds remain a globally recognized clinical challenge. They occur due to high concentrations of reactive oxygen species and vascular function disorders. A promising strategy for diabetic wound healing is the delivery of exosomes, comprising bioactive dressings. Metformin activates the vascular endothelial growth factor pathway, thereby improving angiogenesis in hyperglycemic states. However, multifunctional hydrogels loaded with drugs and bioactive substances synergistically promote wound repair has been rarely reported, and the mechanism of their combinatorial effect of exosome and metformin in wound healing remains unclear. Here, we engineered dual-loaded hydrogels possessing tissue adhesive, antioxidant, self-healing and electrical conductivity properties, wherein 4-armed SH-PEG cross-links with Ag+, which minimizes damage to the loaded goods and investigated their mechanism of promotion effect for wound repair. Multiwalled carbon nanotubes exhibiting good conductivity were also incorporated into the hydrogels to generate hydrogen bonds with the thiol group, creating a stable three-dimensional structure for exosome and metformin loading. The diabetic wound model of the present study suggests that the PEG/Ag/CNT-M + E hydrogel promotes wound healing by triggering cell proliferation and angiogenesis and relieving peritraumatic inflammation and vascular injury. The mechanism of the dual-loaded hydrogel involves reducing the level of reactive oxygen species by interfering with mitochondrial fission, thereby protecting F-actin homeostasis and alleviating microvascular dysfunction. Hence, we propose a drug-bioactive substance combination therapy and provide a potential mechanism for developing vascular function-associated strategies for treating chronic diabetic wounds.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Meng Li
- State Key Laboratory for Mechanical Behavior of Materials, And Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Fei Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Jing Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Xiaowen Gao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Chenyang Tian
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, And Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Corresponding author. State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| |
Collapse
|
42
|
Sun Z, Zhu D, Zhao H, Liu J, He P, Luan X, Hu H, Zhang X, Wei G, Xi Y. Recent advance in bioactive hydrogels for repairing spinal cord injury: material design, biofunctional regulation, and applications. J Nanobiotechnology 2023; 21:238. [PMID: 37488557 PMCID: PMC10364437 DOI: 10.1186/s12951-023-01996-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Functional hydrogels show potential application in repairing spinal cord injury (SCI) due to their unique chemical, physical, and biological properties and functions. In this comprehensive review, we present recent advance in the material design, functional regulation, and SCI repair applications of bioactive hydrogels. Different from previously released reviews on hydrogels and three-dimensional scaffolds for the SCI repair, this work focuses on the strategies for material design and biologically functional regulation of hydrogels, specifically aiming to show how these significant efforts can promoting the repairing performance of SCI. We demonstrate various methods and techniques for the fabrication of bioactive hydrogels with the biological components such as DNA, proteins, peptides, biomass polysaccharides, and biopolymers to obtain unique biological properties of hydrogels, including the cell biocompatibility, self-healing, anti-bacterial activity, injectability, bio-adhesion, bio-degradation, and other multi-functions for repairing SCI. The functional regulation of bioactive hydrogels with drugs/growth factors, polymers, nanoparticles, one-dimensional materials, and two-dimensional materials for highly effective treating SCI are introduced and discussed in detail. This work shows new viewpoints and ideas on the design and synthesis of bioactive hydrogels with the state-of-the-art knowledges of materials science and nanotechnology, and will bridge the connection of materials science and biomedicine, and further inspire clinical potential of bioactive hydrogels in biomedical fields.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Zhao
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Jia Liu
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Huiqiang Hu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
43
|
Carvalho DN, Gelinsky M, Williams DS, Mearns-Spragg A, Reis RL, Silva TH. Marine collagen-chitosan-fucoidan/chondroitin sulfate cryo-biomaterials loaded with primary human cells envisaging cartilage tissue engineering. Int J Biol Macromol 2023; 241:124510. [PMID: 37080412 DOI: 10.1016/j.ijbiomac.2023.124510] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Cartilage repair after a trauma or a degenerative disease like osteoarthritis (OA) continues to be a big challenge in current medicine due to the limited self-regenerative capacity of the articular cartilage tissues. To overcome the current limitations, tissue engineering and regenerative medicine (TERM) and adjacent areas have focused their efforts on new therapeutical procedures and materials capable of restoring normal tissue functionalities through polymeric scaffolding and stem cell engineering approaches. For this, the sustainable exploration of marine origin materials has emerged in the last years as a natural alternative to mammal sources, benefiting from their biological properties (e.g., biocompatibility, biodegradability, no toxicity, among others) for the development of several types of scaffolds. In this study, marine collagen(jCOL)-chitosan(sCHT)-fucoidan(aFUC)/chondroitin sulfate(aCS) were cryo-processed (-20 °C, -80 °C, and -196 °C) and a chemical-free crosslinking approach was explored to establish cohesive and stable cryogel materials. The cryogels were intensively characterized to assess their oscillatory behavior, thermal structural stability, thixotropic properties (around 45 % for the best formulations), injectability, and surface structural organization. Additionally, the cryogels demonstrate an interesting microenvironment in in vitro studies using human adipose-derived stem cells (hASCs), supporting their viability and proliferation. In both physic-chemical and in vitro studies, the systems that contain fucoidan in their formulations, i.e., C1 (jCOL, sCHT, aFUC) and C3 (jCOL, sCHT, aFUC, aCS), submitted at -80 °C, are those that demonstrated most promising results for future application in articular cartilage tissues.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Michael Gelinsky
- Centre for Translational Bone, Joint- and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - David S Williams
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, United Kingdom
| | - Andrew Mearns-Spragg
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, United Kingdom
| | - Rui L Reis
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
44
|
Berradi A, Aziz F, Achaby ME, Ouazzani N, Mandi L. A Comprehensive Review of Polysaccharide-Based Hydrogels as Promising Biomaterials. Polymers (Basel) 2023; 15:2908. [PMID: 37447553 DOI: 10.3390/polym15132908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Polysaccharides have emerged as a promising material for hydrogel preparation due to their biocompatibility, biodegradability, and low cost. This review focuses on polysaccharide-based hydrogels' synthesis, characterization, and applications. The various synthetic methods used to prepare polysaccharide-based hydrogels are discussed. The characterization techniques are also highlighted to evaluate the physical and chemical properties of polysaccharide-based hydrogels. Finally, the applications of SAPs in various fields are discussed, along with their potential benefits and limitations. Due to environmental concerns, this review shows a growing interest in developing bio-sourced hydrogels made from natural materials such as polysaccharides. SAPs have many beneficial properties, including good mechanical and morphological properties, thermal stability, biocompatibility, biodegradability, non-toxicity, abundance, economic viability, and good swelling ability. However, some challenges remain to be overcome, such as limiting the formulation complexity of some SAPs and establishing a general protocol for calculating their water absorption and retention capacity. Furthermore, the development of SAPs requires a multidisciplinary approach and research should focus on improving their synthesis, modification, and characterization as well as exploring their potential applications. Biocompatibility, biodegradation, and the regulatory approval pathway of SAPs should be carefully evaluated to ensure their safety and efficacy.
Collapse
Affiliation(s)
- Achraf Berradi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Mounir El Achaby
- Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Naaila Ouazzani
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Laila Mandi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| |
Collapse
|
45
|
Shahemi NH, Mahat MM, Asri NAN, Amir MA, Ab Rahim S, Kasri MA. Application of Conductive Hydrogels on Spinal Cord Injury Repair: A Review. ACS Biomater Sci Eng 2023. [PMID: 37364251 DOI: 10.1021/acsbiomaterials.3c00194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Spinal cord injury (SCI) causes severe motor or sensory damage that leads to long-term disabilities due to disruption of electrical conduction in neuronal pathways. Despite current clinical therapies being used to limit the propagation of cell or tissue damage, the need for neuroregenerative therapies remains. Conductive hydrogels have been considered a promising neuroregenerative therapy due to their ability to provide a pro-regenerative microenvironment and flexible structure, which conforms to a complex SCI lesion. Furthermore, their conductivity can be utilized for noninvasive electrical signaling in dictating neuronal cell behavior. However, the ability of hydrogels to guide directional axon growth to reach the distal end for complete nerve reconnection remains a critical challenge. In this Review, we highlight recent advances in conductive hydrogels, including the incorporation of conductive materials, fabrication techniques, and cross-linking interactions. We also discuss important characteristics for designing conductive hydrogels for directional growth and regenerative therapy. We propose insights into electrical conductivity properties in a hydrogel that could be implemented as guidance for directional cell growth for SCI applications. Specifically, we highlight the practical implications of recent findings in the field, including the potential for conductive hydrogels to be used in clinical applications. We conclude that conductive hydrogels are a promising neuroregenerative therapy for SCI and that further research is needed to optimize their design and application.
Collapse
Affiliation(s)
- Nur Hidayah Shahemi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Nurul Ain Najihah Asri
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Muhammad Abid Amir
- Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Mohamad Arif Kasri
- Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
46
|
Yin L, Duan W, Chen Y, Chen D, Wang Y, Guo S, Qin J. Biodegradable hydrogel from pectin and carboxymethyl cellulose with Silibinin loading for lung tumor therapy. Int J Biol Macromol 2023:125128. [PMID: 37268066 DOI: 10.1016/j.ijbiomac.2023.125128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Serious side effects of chemotherapy drugs greatly limited the anticancer performance, while targeted drug delivery could improve the therapeutic effect and reduce side effects. In this work, biodegradable hydrogel was fabricated from pectin hydrazide (pec-H) and oxidized carboxymethyl cellulose (DCMC) for localized Silibinin delivery in lung adenocarcinoma treatment. The self-healing pec-H/DCMC hydrogel showed blood compatibility and cell compatibility both in vitro and in vivo, and could be degraded by enzymes. The hydrogel also formed fast fit for injectable applications and showed sustained drug release characteristic sensitive to pH based on acylhydrzone bond cross-linked networks. The Silibinin, as a specific lung cancer inhibiting drug targets TMEM16A ion channel, was loaded into the pec-H/DCMC hydrogel to treat the lung cancer in mice model. The results showed that the hydrogel loaded Silibinin significantly enhanced the anti-tumor efficiency in vivo and greatly reduced the toxicity of the Silibinin. Based on the dual effect of improving efficacy and reducing side effects, the pec-H/DCMC hydrogel with Silibinin loading have broad application prospects to inhibit lung tumor growth in clinic.
Collapse
Affiliation(s)
- Liping Yin
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Wenhao Duan
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yanai Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Danyang Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding City, Hebei Province 071002, China; Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China.
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
47
|
Yang S, Kim M, Hong SK, Kim S, Chung WK, Lim G, Jeon H. Design of 3D Controller Using Nanocracking Structure-Based Stretchable Strain Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:4941. [PMID: 37430855 DOI: 10.3390/s23104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
In this study, we introduce a novel design for a three-dimensional (3D) controller, which incorporates the omni-purpose stretchable strain sensor (OPSS sensor). This sensor exhibits both remarkable sensitivity, with a gauge factor of approximately 30, and an extensive working range, accommodating strain up to 150%, thereby enabling accurate 3D motion sensing. The 3D controller is structured such that its triaxial motion can be discerned independently along the X, Y, and Z axes by quantifying the deformation of the controller through multiple OPSS sensors affixed to its surface. To ensure precise and real-time 3D motion sensing, a machine learning-based data analysis technique was implemented for the effective interpretation of the multiple sensor signals. The outcomes reveal that the resistance-based sensors successfully and accurately track the 3D controller's motion. We believe that this innovative design holds the potential to augment the performance of 3D motion sensing devices across a diverse range of applications, encompassing gaming, virtual reality, and robotics.
Collapse
Affiliation(s)
- Seongjin Yang
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Minjae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
- Department of Physical Medicine & Rehabilitation, Northwestern University, 710 N. Lake Shore Dr., Chicago, IL 60611, USA
| | - Seong Kyung Hong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Suhyeon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Wan Kyun Chung
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Geunbae Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Hyungkook Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
- Department of Manufacturing Systems and Design Engineering (MSDE), Seoul National University of Science and Technology (SEOULTECH), 232 Gongneung-Ro, Nowon-Gu, Seoul 01811, Republic of Korea
| |
Collapse
|
48
|
Tavares-Negrete JA, Pedroza-González SC, Frías-Sánchez AI, Salas-Ramírez ML, de Santiago-Miramontes MDLÁ, Luna-Aguirre CM, Alvarez MM, Trujillo-de Santiago G. Supplementation of GelMA with Minimally Processed Tissue Promotes the Formation of Densely Packed Skeletal-Muscle-Like Tissues. ACS Biomater Sci Eng 2023. [PMID: 37126642 DOI: 10.1021/acsbiomaterials.2c01521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a simple and cost-effective strategy for developing gelatin methacryloyl (GelMA) hydrogels supplemented with minimally processed tissue (MPT) to fabricate densely packed skeletal-muscle-like tissues. MPT powder was prepared from skeletal muscle by freeze-drying, grinding, and sieving. Cell-culture experiments showed that the incorporation of 0.5-2.0% (w/v) MPT into GelMA hydrogels enhances the proliferation of murine myoblasts (C2C12 cells) compared to proliferation in pristine GelMA hydrogels and GelMA supplemented with decellularized skeletal-muscle tissues (DCTs). MPT-supplemented constructs also preserved their three-dimensional (3D) integrity for 28 days. By contrast, analogous pristine GelMA constructs only maintained their structure for 14 days or less. C2C12 cells embedded in MPT-supplemented constructs exhibited a higher degree of cell alignment and reached a significantly higher density than cells loaded in pristine GelMA constructs. Our results suggest that the addition of MPT incorporates a rich source of biochemical and topological cues, such as growth factors, glycosaminoglycans (GAGs), and structurally preserved proteins (e.g., collagen). In addition, GelMA supplemented with MPT showed suitable rheological properties for use as bioinks for extrusion bioprinting. We envision that this simple and cost-effective strategy of hydrogel supplementation will evolve into an exciting spectrum of applications for tissue engineers, primarily in the biofabrication of relevant microtissues for in vitro models and cultured meat and ultimately for the biofabrication of transplant materials using autologous MPT.
Collapse
Affiliation(s)
- Jorge A Tavares-Negrete
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Sara Cristina Pedroza-González
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Ada I Frías-Sánchez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Miriam L Salas-Ramírez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | | | - Claudia Maribel Luna-Aguirre
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Mario M Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| |
Collapse
|
49
|
Namjoo AR, Abrbekoh FN, Saghati S, Amini H, Saadatlou MAE, Rahbarghazi R. Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties. Stem Cell Res Ther 2023; 14:90. [PMID: 37061717 PMCID: PMC10105969 DOI: 10.1186/s13287-023-03310-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydrogels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system response at the site of injury.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- General and Vascular Surgery Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
50
|
Carpa R, Farkas A, Dobrota C, Butiuc-Keul A. Double-Network Chitosan-Based Hydrogels with Improved Mechanical, Conductive, Antimicrobial, and Antibiofouling Properties. Gels 2023; 9:gels9040278. [PMID: 37102890 PMCID: PMC10137542 DOI: 10.3390/gels9040278] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, the antimicrobial activity of chitosan-based hydrogels has been at the forefront of research in wound healing and the prevention of medical device contamination. Anti-infective therapy is a serious challenge given the increasing prevalence of bacterial resistance to antibiotics as well as their ability to form biofilms. Unfortunately, hydrogel resistance and biocompatibility do not always meet the demands of biomedical applications. As a result, the development of double-network hydrogels could be a solution to these issues. This review discusses the most recent techniques for creating double-network chitosan-based hydrogels with improved structural and functional properties. The applications of these hydrogels are also discussed in terms of tissue recovery after injuries, wound infection prevention, and biofouling of medical devices and surfaces for pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Centre for Systems Biology, Biodiversity and Bioresource, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Cristina Dobrota
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Centre for Systems Biology, Biodiversity and Bioresource, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|