1
|
He W, MacRenaris KW, Griebel A, Kwesiga MP, Freitas E, Gillette A, Schaffer J, O'Halloran TV, Guillory II RJ. Semi-quantitative elemental imaging of corrosion products from bioabsorbable Mg vascular implants in vivo. Bioact Mater 2025; 43:225-239. [PMID: 39386222 PMCID: PMC11462046 DOI: 10.1016/j.bioactmat.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 10/12/2024] Open
Abstract
While metal materials historically have served as permanent implants and were designed to avoid degradation, next generation bioabsorbable metals for medical devices such as vascular stents are under development, which would elute metal ions and corrosion byproducts into tissues. The fate of these eluted products and their local distribution in vascular tissue largely under studied. In this study, we employ a high spatial resolution spectrometric imaging modality, laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS) to map the metal distribution, (herein refered to as laser ablation mapping, or LAM) from Mg alloys within the mouse vascular system and approximate their local concentrations. We used a novel rare earth element bearing Mg alloy (WE22) wire implanted within the abdominal aorta of transgenic hypercholesterolemic mice (APOE-/-) to simulate a bioabsorbable vascular prosthesis for up to 30 days. We describe qualitatively and semi-quantitatively implant-derived corrosion product presence throughout the tissue cross sections, and their approximate concentrations within the various vessel structures. Additionally, we report the spatial changes of corrosion products, which we postulate are mediated by phagocytic inflammatory cells such as macrophages (MΦ's).
Collapse
Affiliation(s)
- Weilue He
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Keith W. MacRenaris
- Department of Microbiology, Genetics and Immunology (MGI) and Chemistry, Michigan State University, USA
- Elemental Health Institute (EHI), Michigan State University, USA
- Quantitative Bio-Element Analysis and Mapping (QBEAM) Center, Michigan State University, USA
| | | | - Maria P. Kwesiga
- Department of Biomedical Sciences, Grand Valley State University, USA
| | - Erico Freitas
- Department of Materials Science and Engineering, Michigan Technological University, USA
| | - Amani Gillette
- Department of Biomedical Engineering, Morgridge Institute for Research, USA
| | | | - Thomas V. O'Halloran
- Department of Microbiology, Genetics and Immunology (MGI) and Chemistry, Michigan State University, USA
- Elemental Health Institute (EHI), Michigan State University, USA
- Quantitative Bio-Element Analysis and Mapping (QBEAM) Center, Michigan State University, USA
| | - Roger J. Guillory II
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, USA
| |
Collapse
|
2
|
Tölken LA, Wassilew GI, Grolimund D, Weitkamp T, Hesse B, Rakow A, Siemens N, Schoon J. Cobalt and Chromium Ions Impair Macrophage Response to Staphylococcus aureus Infection. ACS Biomater Sci Eng 2024; 10:563-574. [PMID: 38108141 DOI: 10.1021/acsbiomaterials.3c01031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cobalt-chromium-molybdenum (CoCrMo) alloys are routinely used in arthroplasty. CoCrMo wear particles and ions derived from arthroplasty implants lead to macrophage-driven adverse local tissue reactions, which have been linked to an increased risk of periprosthetic joint infection after revision arthroplasty. While metal-induced cytotoxicity is well characterized in human macrophages, direct effects on their functionality have remained elusive. Synchrotron radiation X-ray microtomography and X-ray fluorescence mapping indicated that peri-implant tissues harvested during aseptic revision of different arthroplasty implants are exposed to Co and Cr in situ. Confocal laser scanning microscopy revealed that macrophage influx is predominant in patient tissue. While in vitro exposure to Cr3+ had only minor effects on monocytes/macrophage phenotype, pathologic concentrations of Co2+ significantly impaired both, monocyte/macrophage phenotype and functionality. High concentrations of Co2+ led to a shift in macrophage subsets and loss of surface markers, including CD14 and CD16. Both Co2+ and Cr3+ impaired macrophage responses to Staphylococcus aureus infection, and particularly, Co2+-exposed macrophages showed decreased phagocytic activity. These findings demonstrate the immunosuppressive effects of locally elevated metal ions on the innate immune response and support further investigations, including studies exploring whether Co2+ and Cr3+ or CoCrMo alloys per se expose the patients to a higher risk of infections post-revision arthroplasty.
Collapse
Affiliation(s)
- Lea A Tölken
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald 17489,Germany
| | - Georgi I Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Daniel Grolimund
- Swiss Light Source, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland
| | | | - Bernhard Hesse
- Xploraytion GmbH, Berlin 10625, Germany
- ESRF-The European Synchrotron, Grenoble 38000, France
| | - Anastasia Rakow
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald 17489,Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| |
Collapse
|
3
|
Li M, Wu J, Geng W, Yang Y, Li X, Xu K, Li K, Li Y, Duan Q, Gao P, Cai K. Regulation of localized corrosion of 316L stainless steel on osteogenic differentiation of bone morrow derived mesenchymal stem cells. Biomaterials 2023; 301:122262. [PMID: 37542857 DOI: 10.1016/j.biomaterials.2023.122262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Localized corrosion has become a concerning issue in orthopedic implants as it is associated with peri-implant adverse tissue reactions and implant failure. Here, the pitting corrosion of 316 L stainless steels (316 L SSs) was initiated by electrochemical polarization to simulate the in vivo localized corrosion of orthopedic implants. The effect of localized corrosion on osteogenic differentiation of bone marrow derived mesenchymal stem cells (BMSCs) was systematically studied. The results suggest that pitting corrosion of 316 L SS reduced the viability, adhesion, proliferation, and osteogenic differentiation abilities of BMSCs, especially for the cells around the corrosion pits. The relatively high concentrations of metallic ions such as Cr3+ and Ni2+ released by pitting corrosion could cause cytotoxicity to the BMSCs. The inhomogeneous electrochemical environment resulted from localized corrosion could promote reactive oxygen species (ROS) generation around the corrosion pits and cause oxidative stress of BMSCs. In addition, localized corrosion could also electrochemically interact with the cells and lead to cell membrane depolarization. The depolarized cell membranes and relatively high levels of ROS mediated the degradation of the osteogenic capacity of BMSCs. This work provides new insights into corrosion-mediated cell function degeneration as well as the material-cell interactions.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Jing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Wenbo Geng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Qiaojian Duan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
4
|
Tschiche HR, Bierkandt FS, Creutzenberg O, Fessard V, Franz R, Greiner R, Gruber-Traub C, Haas KH, Haase A, Hartwig A, Hesse B, Hund-Rinke K, Iden P, Kromer C, Loeschner K, Mutz D, Rakow A, Rasmussen K, Rauscher H, Richter H, Schoon J, Schmid O, Som C, Spindler LM, Tovar GEM, Westerhoff P, Wohlleben W, Luch A, Laux P. Analytical and toxicological aspects of nanomaterials in different product groups: Challenges and opportunities. NANOIMPACT 2022; 28:100416. [PMID: 35995388 DOI: 10.1016/j.impact.2022.100416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/15/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The widespread integration of engineered nanomaterials into consumer and industrial products creates new challenges and requires innovative approaches in terms of design, testing, reliability, and safety of nanotechnology. The aim of this review article is to give an overview of different product groups in which nanomaterials are present and outline their safety aspects for consumers. Here, release of nanomaterials and related analytical challenges and solutions as well as toxicological considerations, such as dose-metrics, are discussed. Additionally, the utilization of engineered nanomaterials as pharmaceuticals or nutraceuticals to deliver and release cargo molecules is covered. Furthermore, critical pathways for human exposure to nanomaterials, namely inhalation and ingestion, are discussed in the context of risk assessment. Analysis of NMs in food, innovative medicine or food contact materials is discussed. Specific focus is on the presence and release of nanomaterials, including whether nanomaterials can migrate from polymer nanocomposites used in food contact materials. With regard to the toxicology and toxicokinetics of nanomaterials, aspects of dose metrics of inhalation toxicity as well as ingestion toxicology and comparison between in vitro and in vivo conclusions are considered. The definition of dose descriptors to be applied in toxicological testing is emphasized. In relation to potential exposure from different products, opportunities arising from the use of advanced analytical techniques in more unique scenarios such as release of nanomaterials from medical devices such as orthopedic implants are addressed. Alongside higher product performance and complexity, further challenges regarding material characterization and safety, as well as acceptance by the general public are expected.
Collapse
Affiliation(s)
- Harald R Tschiche
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany.
| | - Frank S Bierkandt
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Valerie Fessard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of contaminants Unit, Fougères, France
| | - Roland Franz
- Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising, Germany
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Karlsruhe, Germany
| | - Carmen Gruber-Traub
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Karl-Heinz Haas
- Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Andrea Hartwig
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences (IAB), Food Chemistry and Toxicology, Germany
| | - Bernhard Hesse
- European Synchrotron Radiation Facility, Grenoble, France
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg, Germany
| | | | - Charlotte Kromer
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Diana Mutz
- German Federal Institute for Risk Assessment (BfR), Research Strategy and Coordination, Berlin, Germany
| | - Anastasia Rakow
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Hannes Richter
- Fraunhofer IKTS - Institute for Ceramic Technologies and Systems, Hermsdorf, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Som
- Technology and Society Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Lena M Spindler
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany; University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology (IGVP), Stuttgart, Germany
| | - Günter E M Tovar
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany; University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology (IGVP), Stuttgart, Germany
| | - Paul Westerhoff
- Arizona State University, Tempe, AZ, United States of America
| | | | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| |
Collapse
|
5
|
Maret W. The quintessence of metallomics: a harbinger of a different life science based on the periodic table of the bioelements. Metallomics 2022; 14:mfac051. [PMID: 35820043 PMCID: PMC9406523 DOI: 10.1093/mtomcs/mfac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022]
Abstract
This year marks the 20th anniversary of the field of metallomics. As a landmark in time, it is an occasion to reflect on the past, present, and future of this integrated field of biometal sciences. A fundamental bias is one reason for having metallomics as a scientific discipline. The focus of biochemistry on the six non-metal chemical elements, collectively known with the acronym SPONCH (sulphur, phosphorus, oxygen, nitrogen, carbon, hydrogen), glosses over the fact that the lower quantities of many other elements have qualities that made them instrumental in the evolution of life and pivotal in numerous life processes. The metallome, alongside the genome, proteome, lipidome, and glycome, should be regarded as a fifth pillar of elemental-vis-à-vis molecular-building blocks in biochemistry. Metallomics as 'global approaches to metals in the biosciences' considers the biological significance of most chemical elements in the periodic table, not only the ones essential for life, but also the non-essential ones that are present in living matter-some at higher concentrations than the essential ones. The non-essential elements are bioactive with either positive or negative effects. Integrating the significance of many more chemical elements into the life sciences requires a transformation in learning and teaching with a focus on elemental biology in addition to molecular biology. It should include the dynamic interactions between the biosphere and the geosphere and how the human footprint is changing the ecology globally and exposing us to many additional chemical elements that become new bioelements.
Collapse
Affiliation(s)
- Wolfgang Maret
- Metal Metabolism Group, Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, UK
| |
Collapse
|
6
|
Li Q, Yang Q, Liu X, Liang W, Zhang X, Wang Y. Effect and mechanism of a novel Mg-Nd-Gd-Sr alloy on osteogenic differentiation of bone marrow mesenchymal stem cells. J Biomater Appl 2022; 37:829-837. [PMID: 35977627 DOI: 10.1177/08853282221121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the effect and mechanism of a novel Mg-3Nd-1Gd-0.3Sr-0.2Zn-0.4Zr (abbreviated to Mg-Nd-Gd-Sr) alloy on the osteogenic differentiation of bone marrow mesenchymal stem cells extracted from Sprague-Dawley rats. Cultured cells were divided into five groups: a control group cultured in osteogenic induction medium alone without Mg-Nd-Gd-Sr alloy extract, and four experimental groups cultured in the same medium with 25%, 50%, 75%, and 100% Mg-Nd-Gd-Sr alloy extracts, respectively. After 14 days of culture, ALP activity was determined and expressions of osteogenesis-related factors Runx2, OCN, and OPN at the mRNA level and Runx2, OCN, and OPN at the protein level were detected by RT-PCR and western blot, respectively. After 21 days of culture, mineralized nodules were detected by alizarin red staining. The results showed that bone marrow mesenchymal stem cells from Sprague-Dawley rats were successfully isolated in vitro using the whole bone marrow adherence method. Flow cytometry revealed that the cells expressed high levels of CD44 and CD90, but low levels of CD31 and CD45. Alizarin red staining indicated the formation of mineralized nodules in all five groups. Compared with the control group, the number of mineralized nodules was increased significantly in the four experimental groups (p < 0.05). The ALP activity in each group was significantly higher on day 14 than on day 7, and was significantly higher in the four experimental groups compared with the control group (p < 0.05). Moreover, the ALP activity was highest when the concentration of Mg-Nd-Gd-Sr alloy extract was 75% (p < 0.05). RT-PCR results showed that, compared with the control group, the mRNA expression of Runx2, OPN, and OCN was significantly higher in the four experimental groups (p < 0.05), and the highest mRNA expression of Runx2, OPN, and OCN was observed in the 75% experimental group (p < 0.05). Western blotting showed that Mg-Nd-Gd-Sr alloy extract significantly increased the protein expression of Runx2, OCN, and OPN compared with the control group (p < 0.05). Our data indicate that the novel Mg-Nd-Gd-Sr alloy can promotes the osteogenic differentiation of bone marrow mesenchymal stem cells isolated from Sprague-Dawley rats. During this process, there is an increase in the expressions of Runx2, OPN, and OCN mRNAs and Runx2, OCN, and OPN proteins.
Collapse
Affiliation(s)
- Qiangqiang Li
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| | - Qinglin Yang
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaorong Liu
- College of Clinical Medicine, 12426Northwest University for Nationalities, Lanzhou, China.,Department of Laboratory, the Second People's Hospital of Gansu Province, Lanzhou, China
| | - Wenqiang Liang
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaobo Zhang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, China
| | - Yongping Wang
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Schoon J, Hesse B, Tucoulou R, Geissler S, Ort M, Duda GN, Perka C, Wassilew GI, Perino G, Rakow A. Synchrotron-based characterization of arthroprosthetic CoCrMo particles in human bone marrow. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:54. [PMID: 35691951 PMCID: PMC9189090 DOI: 10.1007/s10856-022-06675-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Particles released from cobalt-chromium-molybdenum (CoCrMo) alloys are considered common elicitors of chronic inflammatory adverse effects. There is a lack of data demonstrating particle numbers, size distribution and elemental composition of bone marrow resident particles which would allow for implementation of clinically relevant test strategies in bone marrow models at different degrees of exposure. The aim of this study was to investigate metal particle exposure in human periprosthetic bone marrow of three types of arthroplasty implants. Periprosthetic bone marrow sections from eight patients exposed to CoCrMo particles were analyzed via spatially resolved and synchrotron-based nanoscopic X-ray fluorescence imaging. These analyses revealed lognormal particle size distribution patterns predominantly towards the nanoscale. Analyses of particle numbers and normalization to bone marrow volume and bone marrow cell number indicated particle concentrations of up to 1 × 1011 particles/ml bone marrow or 2 × 104 particles/bone marrow cell, respectively. Analyses of elemental ratios of CoCrMo particles showed that particularly the particles' Co content depends on particle size. The obtained data point towards Co release from arthroprosthetic particles in the course of dealloying and degradation processes of larger particles within periprosthetic bone marrow. This is the first study providing data based on metal particle analyses to be used for future in vitro and in vivo studies of possible toxic effects in human bone marrow following exposure to arthroprosthetic CoCrMo particles of different concentration, size, and elemental composition. Graphical abstract.
Collapse
Affiliation(s)
- Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475, Greifswald, Germany.
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Bernhard Hesse
- Xploraytion GmbH, 10625, Berlin, Germany.
- ESRF-The European Synchrotron, 38000, Grenoble, France.
| | - Remi Tucoulou
- ESRF-The European Synchrotron, 38000, Grenoble, France
| | - Sven Geissler
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Melanie Ort
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Georgi I Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Giorgio Perino
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Anastasia Rakow
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
8
|
Complex Material and Surface Analysis of Anterolateral Distal Tibial Plate of 1.4441 Steel. METALS 2021. [DOI: 10.3390/met12010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nickel-based austenitic stainless steels are still common for manufacture of implants intended for acute hard tissue reinforcement or stabilization, but the risk of negative reactions due to soluble nickel-rich corrosion products must be considered seriously. Corrosion processes may even be accelerated by the evolution of microstructure caused by excessive heat during machining, etc. Therefore, this study also deals with the investigation of microstructure and microhardness changes near the threaded holes of the anterolateral distal tibial plate containing approx. 14wt.% Ni by composition. There were only insignificant changes of microhardness, grain size, or microstructure orientation found close to the area of machining. In addition, wettability measurements of surface energy demonstrated only minor differences for bulk material and areas close to machining. The cyclic potentiodynamic polarization tests were performed in isotonic physiological solution. The first cycle was used for the determination of corrosion characteristics of the implant after chemical passivation, the second cycle was used to simulate real material behavior under the condition of previous surface damage by excessive pitting corrosion occurring during previous polarization. It was found that the damaged and spontaneously repassived surface showed a three-time higher standard corrosion rate than the “as received” chemically passivated surface. One may conclude that previous surface damage may decrease the lifetime of the implant significantly and increase the amount of nickel-based corrosion products distributed into surrounding tissues.
Collapse
|
9
|
Perino G, De Martino I, Zhang L, Xia Z, Gallo J, Natu S, Langton D, Huber M, Rakow A, Schoon J, Gomez-Barrena E, Krenn V. The contribution of the histopathological examination to the diagnosis of adverse local tissue reactions in arthroplasty. EFORT Open Rev 2021; 6:399-419. [PMID: 34267931 PMCID: PMC8246109 DOI: 10.1302/2058-5241.6.210013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The histopathological examination of the periprosthetic soft tissue and bone has contributed to the identification and description of the morphological features of adverse local tissue reactions (ALTR)/adverse reactions to metallic debris (ARMD). The need of a uniform vocabulary for all disciplines involved in the diagnosis and management of ALTR/ARMD and of clarification of the parameters used in the semi-quantitative scoring systems for their classification has been considered a pre-requisite for a meaningful interdisciplinary evaluation.This review of key terms used for ALTR/ARMD has resulted in the following outcomes: (a) pseudotumor is a descriptive term for ALTR/ARMD, classifiable in two main types according to its cellular composition defining its clinical course; (b) the substitution of the term metallosis with presence of metallic wear debris, since it cannot be used as a category of implant failure or histological diagnosis; (c) the term aseptic lymphocytic-dominated vasculitis- associated lesion (ALVAL) should be replaced due to the absence of a vasculitis with ALLTR/ALRMD for lymphocytic-predominant and AMLTR/AMRMD for macrophage-predominant reaction.This review of the histopathological classifications of ALTR/ARMD has resulted in the following outcomes: (a) distinction between cell death and tissue necrosis; (b) the association of corrosion metallic debris with adverse local lymphocytic reaction and tissue necrosis; (c) the importance of cell and particle debris for the viscosity and density of the lubricating synovial fluid; (d) a consensus classification of lymphocytic infiltrate in soft tissue and bone marrow; (e) evaluation of the macrophage infiltrate in soft tissues and bone marrow; (f) classification of macrophage induced osteolysis/aseptic loosening as a delayed type of ALTR/ARMD; (g) macrophage motility and migration as possible driving factor for osteolysis; (h) usefulness of the histopathological examination for the natural history of the adverse reactions, radiological correlation, post-marketing surveillance, and implant registries.The review of key terms used for the description and histopathological classification of ALTR/ARMD has resulted in a comprehensive, new standard for all disciplines involved in their diagnosis, clinical management, and long-term clinical follow-up. Cite this article: EFORT Open Rev 2021;6:399-419. DOI: 10.1302/2058-5241.6.210013.
Collapse
Affiliation(s)
- Giorgio Perino
- Department of Orthopedics and Orthopedic Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Ivan De Martino
- Division of Orthopaedics and Traumatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Lingxin Zhang
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, Canada
| | - Zhidao Xia
- Centre for Nanohealth, Swansea University Medical School, Singleton Park, Swansea, UK
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, University Hospital, Palacky University Olomouc, Czech Republic
| | - Shonali Natu
- Department of Pathology, University Hospital of North Tees and Hartlepool NHS Foundation Trust, Stockton-on-Tees, UK
| | - David Langton
- Orthopaedic Department, Freeman Hospital, Newcastle upon Tyne, UK
| | - Monika Huber
- Pathologisch-bakteriologisches Institut, Otto Wagner Spital, Wien, Austria
| | - Anastasia Rakow
- Department of Orthopedics and Orthopedic Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Janosch Schoon
- Department of Orthopedics and Orthopedic Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Enrique Gomez-Barrena
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitario La Paz-IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
| | - Veit Krenn
- MVZ-Zentrum für Histologie, Zytologie und Molekulare Diagnostik-GmbH, Trier, Germany
| |
Collapse
|
10
|
Quinn PD, Alianelli L, Gomez-Gonzalez M, Mahoney D, Cacho-Nerin F, Peach A, Parker JE. The Hard X-ray Nanoprobe beamline at Diamond Light Source. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1006-1013. [PMID: 33950009 PMCID: PMC8127369 DOI: 10.1107/s1600577521002502] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/06/2021] [Indexed: 05/31/2023]
Abstract
The Hard X-ray Nanoprobe beamline, I14, at Diamond Light Source is a new facility for nanoscale microscopy. The beamline was designed with an emphasis on multi-modal analysis, providing elemental mapping, speciation mapping by XANES, structural phase mapping using nano-XRD and imaging through differential phase contrast and ptychography. The 185 m-long beamline operates over a 5 keV to 23 keV energy range providing a ≤50 nm beam size for routine user experiments and a flexible scanning system allowing fast acquisition. The beamline achieves robust and stable operation by imaging the source in the vertical direction and implementing horizontally deflecting primary optics and an overfilled secondary source in the horizontal direction. This paper describes the design considerations, optical layout, aspects of the hardware engineering and scanning system in operation as well as some examples illustrating the beamline performance.
Collapse
Affiliation(s)
- Paul D. Quinn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Lucia Alianelli
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Miguel Gomez-Gonzalez
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - David Mahoney
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Fernando Cacho-Nerin
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Andrew Peach
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Julia E. Parker
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
11
|
Nelson K, Hesse B, Addison O, Morrell AP, Gross C, Lagrange A, Suárez VI, Kohal R, Fretwurst T. Distribution and Chemical Speciation of Exogenous Micro- and Nanoparticles in Inflamed Soft Tissue Adjacent to Titanium and Ceramic Dental Implants. Anal Chem 2020; 92:14432-14443. [PMID: 32970419 DOI: 10.1021/acs.analchem.0c02416] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Degradation of the implant surface and particle release/formation as an inflammation catalyst mechanism is an emerging concept in dental medicine that may help explain the pathogenesis of peri-implantitis. The aim of the present study was a synchrotron-based characterization of micro- and nanosized implant-related particles in inflamed human tissues around titanium and ceramic dental implants that exhibited signs of peri-implantitis. Size, distribution, and chemical speciation of the exogenous micro- and nanosized particle content were evaluated using synchrotron μ-X-ray fluorescence spectroscopy (XRF), nano-XRF, and μ-X-ray absorption near-edge structure (XANES). Titanium particles, with variable speciation, were detected in all tissue sections associated with titanium implants. Ceramic particles were found in five out of eight tissue samples associated with ceramic implants. Particles ranged in size from micro- to nanoscale. The local density of both titanium and ceramic particles was calculated to be as high as ∼40 million particles/mm3. μ-XANES identified titanium in predominantly two different chemistries, including metallic and titanium dioxide (TiO2). The findings highlight the propensity for particle accumulation in the inflamed tissues around dental implants and will help in guiding toxicological studies to determine the biological significance of such exposures.
Collapse
Affiliation(s)
- Katja Nelson
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Bernhard Hesse
- Xploraytion GmbH, Bismarckstrasse 10-12, 10625 Berlin, Germany.,European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043 Grenoble, France
| | - Owen Addison
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, Great Maze Pond, SE1 9RT London, U.K
| | - Alexander P Morrell
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, Great Maze Pond, SE1 9RT London, U.K
| | - Christian Gross
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Adrien Lagrange
- Xploraytion GmbH, Bismarckstrasse 10-12, 10625 Berlin, Germany
| | - Vanessa I Suárez
- European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043 Grenoble, France
| | - Ralf Kohal
- Department of Prosthetic Dentistry, Faculty of Medicine, Medical Center-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Tobias Fretwurst
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| |
Collapse
|
12
|
Schoon J, Hesse B, Rakow A, Ort MJ, Lagrange A, Jacobi D, Winter A, Huesker K, Reinke S, Cotte M, Tucoulou R, Marx U, Perka C, Duda GN, Geissler S. Metal-Specific Biomaterial Accumulation in Human Peri-Implant Bone and Bone Marrow. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000412. [PMID: 33101844 PMCID: PMC7578891 DOI: 10.1002/advs.202000412] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/09/2020] [Indexed: 05/13/2023]
Abstract
Metallic implants are frequently used in medicine to support and replace degenerated tissues. Implant loosening due to particle exposure remains a major cause for revision arthroplasty. The exact role of metal debris in sterile peri-implant inflammation is controversial, as it remains unclear whether and how metals chemically alter and potentially accumulate behind an insulating peri-implant membrane, in the adjacent bone and bone marrow (BM). An intensively focused and bright synchrotron X-ray beam allows for spatially resolving the multi-elemental composition of peri-implant tissues from patients undergoing revision surgery. In peri-implant BM, particulate cobalt (Co) is exclusively co-localized with chromium (Cr), non-particulate Cr accumulates in the BM matrix. Particles consisting of Co and Cr contain less Co than bulk alloy, which indicates a pronounced dissolution capacity. Particulate titanium (Ti) is abundant in the BM and analyzed Ti nanoparticles predominantly consist of titanium dioxide in the anatase crystal phase. Co and Cr but not Ti integrate into peri-implant bone trabeculae. The characteristic of Cr to accumulate in the intertrabecular matrix and trabecular bone is reproducible in a human 3D in vitro model. This study illustrates the importance of updating the view on long-term consequences of biomaterial usage and reveals toxicokinetics within highly sensitive organs.
Collapse
Affiliation(s)
- Janosch Schoon
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| | - Bernhard Hesse
- Xploraytion GmbHBerlin10625Germany
- European Synchrotron Radiation FacilityGrenoble38000France
| | - Anastasia Rakow
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Center for Musculoskeletal SurgeryCharité – Universitätsmedizin BerlinBerlin10117Germany
| | - Melanie J. Ort
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| | - Adrien Lagrange
- Xploraytion GmbHBerlin10625Germany
- Department of Materials Science and EngineeringInstitute of Materials Science and TechnologiesTechnische Universität BerlinBerlin10623Germany
| | - Dorit Jacobi
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
| | | | - Katrin Huesker
- Endocrinology and Immunology DepartmentInstitute for Medical DiagnosticsBerlin12247Germany
| | - Simon Reinke
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
| | - Marine Cotte
- European Synchrotron Radiation FacilityGrenoble38000France
- CNRSLaboratoire d'archéologie moléculaire et structuraleLAMSSorbonne UniversitéParis75005France
| | - Remi Tucoulou
- European Synchrotron Radiation FacilityGrenoble38000France
| | | | - Carsten Perka
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
- Center for Musculoskeletal SurgeryCharité – Universitätsmedizin BerlinBerlin10117Germany
| | - Georg N. Duda
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| | - Sven Geissler
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| |
Collapse
|
13
|
Rakow A, Schoon J. Systemic Effects of Metals Released from Arthroplasty Implants – a Brief Summary. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2020; 158:501-507. [DOI: 10.1055/a-1187-1751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractIn recent years, increasing concern has been raised regarding potential systemic toxicity of metals released from arthroplasty implants. A lack of valid metal thresholds for human (organ) toxicity and the prospect of multi-decade survival of modern hip and knee replacements pose special challenges. Indeed, evidence of systemic effects of metals released from such implants is largely missing. Systemic cobalt exposure has repeatedly been associated with cardiotoxic and neurotoxic effects, and also with thyroid dysfunction. The toxic potential of chromium is considered less pronounced. Yet, in arthroplasty there is usually a co-exposure to chromium and cobalt which complicates evaluation of element-specific effects. Toxicity of titanium dioxide nanoparticles has been subject to debate among international regulatory authorities. Their wide use in a variety of products in everyday life, such as toothpaste, cosmetics and food colorants, hampers the assessment of an
arthroplasty-induced systemic titanium exposure. To date there is no clear evidence for systemic complications due to titanium dioxide released from arthroplasty implants. Release of further metals such as tantalum, niobium, nickel, vanadium and zirconium from hip and knee replacement implants has been described occasionally, but systemic effects of respective long-term exposure scenarios are unknown. Generally, the characterization of all released metals regarding their chemical and physical specifications is critical for the evaluation of potential systemic risks. Systematic studies investigating the accumulation of metals relevant in arthroplasty in different organs/organ systems and the biological consequences of such accumulations are urgently needed.
Collapse
Affiliation(s)
- Anastasia Rakow
- Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Janosch Schoon
- Klinik und Poliklinik für Orthopädie und Orthopädische Chirurgie, Universitätsmedizin Greifswald, Germany
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
14
|
Timoshenko J, Frenkel AI. “Inverting” X-ray Absorption Spectra of Catalysts by Machine Learning in Search for Activity Descriptors. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03599] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Janis Timoshenko
- Department of Interface Science, Fritz-Haber-Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|