1
|
Wang X, Zhao Y, Gu Y, Bai L, Chen L, Guan S. Chondroitin sulfate and Cys-Ala-Gly peptides coated ZE21B magnesium alloy for enhanced corrosion resistance and vascular compatibility. Int J Biol Macromol 2025; 311:143895. [PMID: 40319985 DOI: 10.1016/j.ijbiomac.2025.143895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Coronary stents are widely used in the interventional treatment of cardiovascular disease. Biodegradable magnesium alloy stents are ideal candidates to replace traditional non-biodegradable stents due to their excellent mechanical properties and biodegradation. However, too fast degradation and poor biocompatibility limit the further clinical application of magnesium alloy stents. Herein, a composite coating consisting of an MgF2 layer, PDA layer, ChS, and CAG peptide was constructed on the Mg-Zn-Y-Nd (ZE21B) alloy to enhance its corrosion resistance, hemocompatibility, and cytocompatibility. The MgF2 and PDA layers in the composite coating could collectively enhance the corrosion resistance of ZE21B alloy, and the ChS and CAG peptides in the composite coating could improve the anticoagulant and pro-endothelialization capacity of ZE21B alloy. The corrosion current density of the modified ZE21B alloy was much lower than that of bare ZE21B alloy, proving the better corrosion resistance. Moreover, the excellent hemocompatibility of modified ZE21B alloy was verified by the lower levels of hemolysis rate, fibrinogen adsorption and denaturation, and platelet adhesion and activation. Furthermore, the composite coating could selectively promote the adhesion, proliferation, migration, and competitive growth of endothelial cells rather than smooth muscle cells on the ZE21B alloy owing to the synergistic biological effects of ChS and CAG peptides. The ChS/CAG modified samples also exhibited excellent biosafety and histocompatibility in vivo implantation experiments. The composite coating significantly improved the corrosion resistance and biocompatibility of ZE21B alloy, and provided a simple and effective strategy for developing degradable vascular stents.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, 100 Science Road, PR China; Henan Key Laboratory of Advanced Light Alloy, Zhengzhou 450001, 100 Science Road, PR China
| | - Yuan Zhao
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, 100 Science Road, PR China; Henan Key Laboratory of Advanced Light Alloy, Zhengzhou 450001, 100 Science Road, PR China
| | - Yunwei Gu
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, 100 Science Road, PR China; Henan Key Laboratory of Advanced Light Alloy, Zhengzhou 450001, 100 Science Road, PR China
| | - Lingchuang Bai
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, 100 Science Road, PR China; Henan Key Laboratory of Advanced Light Alloy, Zhengzhou 450001, 100 Science Road, PR China.
| | - Lan Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, 100 Science Road, PR China; Henan Key Laboratory of Advanced Light Alloy, Zhengzhou 450001, 100 Science Road, PR China.
| | - Shaokang Guan
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, 100 Science Road, PR China; Henan Key Laboratory of Advanced Light Alloy, Zhengzhou 450001, 100 Science Road, PR China; Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou 450001, 100 Science Road, PR China
| |
Collapse
|
2
|
Bai C, Feng X, Lan L, Zhou C, Zhang H. Recent advances and perspectives in bioresorbable metal coronary drug-eluting stents. Biomed Mater 2025; 20:032001. [PMID: 40081005 DOI: 10.1088/1748-605x/adc058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Intervention without implantation has become a requirement for developing percutaneous coronary intervention for coronary heart disease. In this paper, the recent advances of three representative types of bioresorbable metal coronary drug-eluting stents (DESs) are reviewed, and the material composition, structural design, mechanical properties and degradability of iron-based, magnesium-based and zinc-based bioresorbable metal coronary DES are analyzed. The methods of regulating the radial strength and degradation rate of the coronary stents are summarized, and thein vivo/in vitroperformance evaluation methods and ideal testing systems of the bioresorbable metal coronary DES are analyzed. Advances made in bioresorbable metal coronary DES, the existing shortcomings and optimization methods are proposed, and the future development direction is prospected.
Collapse
Affiliation(s)
- Chengyan Bai
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, People's Republic of China
| | - Xiangyi Feng
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, People's Republic of China
| | - Liang Lan
- Research Center of High-temperature Alloy Precision Forming, School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Chao Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, People's Republic of China
- Department of Interventional and Vascular Surgery, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai 200072, People's Republic of China
| |
Collapse
|
3
|
Qian Y, Chen Y, Jiang J, Pei J, Li J, Niu J, Zhu J, Yuan G. Biosafety and efficacy evaluation of a biodegradable Zn-Cu-Mn stent: A long-term study in porcine coronary artery. Bioact Mater 2025; 45:231-245. [PMID: 39654873 PMCID: PMC11626648 DOI: 10.1016/j.bioactmat.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024] Open
Abstract
In this study, biodegradable Zn-Cu-Mn alloy stents were implanted into porcine coronary artery for 18 months, and the in vivo biosafety and efficacy as well as the degradation behavior were systematically studied. Results showed a rapid endothelialization of the target vessel was achieved at 1 month post-implantation. Although the lumen diameter loss and local inflammation were observed at the early stage, the stented blood vessel could gradually recover with time. The lumen diameter was already close to normal range at 12 months, indicating good bioefficacy of the stent. No adverse effect on blood indexes or local accumulation of Zn, Cu or Mn elements were found after implantation, neither the malapposition and thrombosis were observed, which exhibited good biosafety of the stents. The stent could maintain the basic structure and mechanical integrity at 6 months, and remained only approximately 26 % of the stent volume at 18 months, suggesting a desirable degradation rate. In general, the Zn-Cu-Mn alloy stent showed great advantages and prospects in clinical application.
Collapse
Affiliation(s)
- Yi Qian
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jimiao Jiang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Pei
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junfei Li
- Shanghai MicroPort Medical (Group) Co., Ltd, Shanghai, 201203, China
| | - Jialin Niu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinzhou Zhu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guangyin Yuan
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Morath L, Rahim SA, Baker C, Anderson DEJ, Hinds MT, Sikora-Jasinska M, Oujiri L, Leyssens L, Kerckhofs G, Pyka G, Oliver AA, Drelich JW, Goldman J. The biological effects of copper alloying in Zn-based biodegradable arterial implants. BIOMATERIALS ADVANCES 2025; 167:214112. [PMID: 39561579 PMCID: PMC11634653 DOI: 10.1016/j.bioadv.2024.214112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Biodegradable metals based on zinc are being developed to serve as temporary arterial scaffolding. Although the inclusion of copper is becoming more prevalent for grain refinement in zinc alloys, the biological activity of the copper component has not been well investigated. Here, two ZnCu alloys (0.8 and 1.5 wt% Cu) with and without thermal treatment were investigated for their hemocompatibility and biocompatibility. The microstructure was examined using scanning electron microscopy and X-ray diffraction. Zn-1.5Cu was found to contain nearly double the amount of second phase (CuZn5) precipitates as compared to Zn-0.8Cu. Thermal treatment dissolved a portion of the precipitates into the matrix. Since copper is a well-known catalyst for NO generation, the metals were tested both for their ability to generate NO release and for their thrombogenicity. Cellular responses and in vivo corrosion were characterized by a 6 months in vivo implantation of metal wires into rat arteries. The as-received Zn-1.5Cu displayed the least neointimal growth and smooth muscle cell presence, although inflammation was slightly increased. Thermal treatment was found to worsen the biological response, as determined by an increased neointimal size, increased smooth muscle cell presence and small regions of necrotic tissue. There were no trends in NO release between the alloys and thermal treatments. Corrosion progressed predominately through a pitting mechanism in vivo, which was more pronounced for the thermally treated alloys, with a more uniform corrosion seen for as-received Zn-1.5Cu. Differences in biological response are speculated to be due to changes in microstructure and pitting corrosion behavior.
Collapse
Affiliation(s)
- Lea Morath
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Shebeer A Rahim
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Cole Baker
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Malgorzata Sikora-Jasinska
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Lindy Oujiri
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Lisa Leyssens
- Biomechanics lab (MEED), Institute of Mechanics, Materials and Civil Engineering (iMMC), UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology (MORF), Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Department of Materials Engineering, KU Leuven, Heverlee, Belgium; Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Biomechanics lab (MEED), Institute of Mechanics, Materials and Civil Engineering (iMMC), UCLouvain, Louvain-la-Neuve, Belgium; Pole Materials and Processes Engineering (IMAP), iMMC, UCLouvain, Louvain-la-Neuve, Belgium
| | - Grzegorz Pyka
- Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven, Belgium
| | - Alexander A Oliver
- Department of Biomedical Engineering and Physiology, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Jaroslaw W Drelich
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
5
|
Leyssens L, El Aazmani W, Balcaen T, Jacques PJ, Horman S, Goldman J, Kerckhofs G. MicroCT and contrast-enhanced microCT to study the in vivo degradation behavior and biocompatibility of candidate metallic intravascular stent materials. Acta Biomater 2025; 191:53-65. [PMID: 39561850 DOI: 10.1016/j.actbio.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Biodegradable intravascular stents offer a promising alternative to permanent stents for treating atherosclerosis-related artery narrowing by potentially avoiding long-term complications. Identifying materials that degrade harmlessly and uniformly at a suitable rate is crucial. This study evaluated an advanced zinc alloy (Zn-Ag-Cu-Mn-Zr) alongside pure iron and pure zinc, using a simplified stent model of metallic wires implanted in the rat aorta. Assessments were made at 7, 24, and 84 days post-implantation using X-ray microfocus computed tomography (microCT) and contrast-enhanced microCT (CECT). For CECT, a contrast agent was chosen to provide optimal soft tissue contrast and minimal interaction with the wires. This combination of imaging techniques allowed us to evaluate degradation behavior, compare volume loss in various locations (outside the arterial lumen, inside the lumen, and encapsulated by neointima), compute degradation rates, and evaluate neointima tissue formation. Results showed that zinc and its alloy degrade less uniformly than iron, which demonstrates uniform surface degradation. The zinc alloy had a higher initial volume loss than the other materials but showed little increase over time. Neointima formation was similar for zinc and the zinc alloy, while iron provoked less tissue formation than both zinc and the reference cobalt-chromium alloy. Additionally, unlike cobalt-chromium and zinc, iron wires did not achieve consistent tissue encapsulation along their entire length, which may impair their performance. Mild inflammation was noted around zinc-based implants. Combining microCT and CECT provided 3D information on degradation uniformity, degradation products, and neointima morphometrics, highlighting the power of these imaging techniques to evaluate implant materials in a highly accurate way compared to previous 2D methods. STATEMENT OF SIGNIFICANCE: Biodegradable intravascular stents offer a promising solution to long-term complications associated with permanent stents by gradually dissolving in the body. To evaluate a novel zinc alloy (Zn-Ag-Cu-Mn-Zr) with improved mechanical properties, microstructure, and biocompatibility, we compared it to pure iron and zinc. We used advanced 3D imaging techniques, i.e., microCT and contrast-enhanced microCT, to assess the degradation behavior and the tissue response in a rat aorta model. The zinc alloy demonstrated promising properties despite less uniform degradation and mild inflammation compared to iron. Our findings highlight the superiority of 3D imaging over previously used 2D techniques in evaluating stent materials, offering critical insights into degradation processes and biocompatibility. These highly accurate measurements provide crucial information for developing improved biodegradable implants.
Collapse
Affiliation(s)
- Lisa Leyssens
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium.
| | - Walid El Aazmani
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium.
| | - Tim Balcaen
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium; MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium.
| | - Pascal J Jacques
- Materials and Process Engineering, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium.
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Greet Kerckhofs
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium; Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
6
|
Limón I, Bedmar J, Fernández-Hernán JP, Multigner M, Torres B, Rams J, Cifuentes SC. A Review of Additive Manufacturing of Biodegradable Fe and Zn Alloys for Medical Implants Using Laser Powder Bed Fusion (LPBF). MATERIALS (BASEL, SWITZERLAND) 2024; 17:6220. [PMID: 39769819 PMCID: PMC11677746 DOI: 10.3390/ma17246220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
This review explores the advancements in additive manufacturing (AM) of biodegradable iron (Fe) and zinc (Zn) alloys, focusing on their potential for medical implants, particularly in vascular and bone applications. Fe alloys are noted for their superior mechanical properties and biocompatibility but exhibit a slow corrosion rate, limiting their biodegradability. Strategies such as alloying with manganese (Mn) and optimizing microstructure via laser powder bed fusion (LPBF) have been employed to increase Fe's corrosion rate and mechanical performance. Zn alloys, characterized by moderate biodegradation rates and biocompatible corrosion products, address the limitations of Fe, though their mechanical properties require improvement through alloying and microstructural refinement. LPBF has enabled the fabrication of dense and porous structures for both materials, with energy density optimization playing a critical role in achieving defect-free parts. Fe alloys exhibit higher strength and hardness, while Zn alloys offer better corrosion control and biocompatibility. In vitro and in vivo studies demonstrate promising outcomes for both materials, with Fe alloys excelling in load-bearing applications and Zn alloys in controlled degradation and vascular applications. Despite these advancements, challenges such as localized corrosion, cytotoxicity, and long-term performance require further investigation to fully harness the potential of AM-fabricated Fe and Zn biodegradable implants.
Collapse
Affiliation(s)
- Irene Limón
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (I.L.); (J.B.); (J.P.F.-H.); (M.M.); (B.T.); (J.R.)
| | - Javier Bedmar
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (I.L.); (J.B.); (J.P.F.-H.); (M.M.); (B.T.); (J.R.)
| | - Juan Pablo Fernández-Hernán
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (I.L.); (J.B.); (J.P.F.-H.); (M.M.); (B.T.); (J.R.)
| | - Marta Multigner
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (I.L.); (J.B.); (J.P.F.-H.); (M.M.); (B.T.); (J.R.)
| | - Belén Torres
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (I.L.); (J.B.); (J.P.F.-H.); (M.M.); (B.T.); (J.R.)
- Institute of Research on Technologies for Sustainability (ITPS), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Joaquín Rams
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (I.L.); (J.B.); (J.P.F.-H.); (M.M.); (B.T.); (J.R.)
- Institute of Research on Technologies for Sustainability (ITPS), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Sandra C. Cifuentes
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (I.L.); (J.B.); (J.P.F.-H.); (M.M.); (B.T.); (J.R.)
| |
Collapse
|
7
|
Yan J, Ye Z, Wang X, Zhong D, Wang Z, Yan T, Li T, Yuan Y, Liu Y, Wang Y, Cai X. Recent research progresses of bioengineered biliary stents. Mater Today Bio 2024; 29:101290. [PMID: 39444940 PMCID: PMC11497374 DOI: 10.1016/j.mtbio.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Bile duct lesion, including benign (eg. occlusion, cholelithiasis, dilatation, malformation) and malignant (cholangiocarcinoma) diseases, is a frequently encountered challenge in hepatobiliary diseases, which can be repaired by interventional or surgical procedures. A viable cure for bile duct lesions is implantation with biliary stents. Despite the placement achieved by current clinical biliary stents, the creation of functional and readily transplantable biliary stents remains a formidable obstacle. Excellent biocompatibility, stable mechanics, and absorbability are just a few benefits of using bioengineered biliary stents, which can also support and repair damaged bile ducts that drain bile. Additionally, cell sources & organoids derived from the biliary system that are loaded onto scaffolds can encourage bile duct regeneration. Therefore, the implantation of bioengineered biliary stent is considered as an ideal treatment for bile duct lesion, holding a broad potential for clinical applications in future. In this review, we look back on the development of conventional biliary stents, biodegradable biliary stents, and bioengineered biliary stents, highlighting the crucial elements of bioengineered biliary stents in promoting bile duct regeneration. After providing an overview of the various types of cell sources & organoids and fabrication methods utilized for the bioengineering process, we present the in vitro and in vivo applications of bioengineered biliary ducts, along with the latest advances in this exciting field. Finally, we also emphasize the ongoing challenges and future development of bioengineered biliary stents.
Collapse
Affiliation(s)
- Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiaofeng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tianyu Li
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yuyang Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yu Liu
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| |
Collapse
|
8
|
Li Y, Yuan K, Deng C, Tang H, Wang J, Dai X, Zhang B, Sun Z, Ren G, Zhang H, Wang G. Biliary stents for active materials and surface modification: Recent advances and future perspectives. Bioact Mater 2024; 42:587-612. [PMID: 39314863 PMCID: PMC11417150 DOI: 10.1016/j.bioactmat.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Demand for biliary stents has expanded with the increasing incidence of biliary disease. The implantation of plastic or self-expandable metal stents can be an effective treatment for biliary strictures. However, these stents are nondegradable and prone to restenosis. Surgical removal or replacement of the nondegradable stents is necessary in cases of disease resolution or restenosis. To overcome these shortcomings, improvements were made to the materials and surfaces used for the stents. First, this paper reviews the advantages and limitations of nondegradable stents. Second, emphasis is placed on biodegradable polymer and biodegradable metal stents, along with functional coatings. This also encompasses tissue engineering & 3D-printed stents were highlighted. Finally, the future perspectives of biliary stents, including pro-epithelialization coatings, multifunctional coated stents, biodegradable shape memory stents, and 4D bioprinting, were discussed.
Collapse
Affiliation(s)
- Yuechuan Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Kunshan Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Chengchen Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Hui Tang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Jinxuan Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Bing Zhang
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (CVIHEM), Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ziru Sun
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- College of materials science and engineering, Shandong University of Technology, Zibo, 25500, Shandong, China
| | - Guiying Ren
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- College of materials science and engineering, Shandong University of Technology, Zibo, 25500, Shandong, China
| | - Haijun Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (CVIHEM), Drum Tower Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Liu A, Qin Y, Dai J, Song F, Tian Y, Zheng Y, Wen P. Fabrication and performance of Zinc-based biodegradable metals: From conventional processes to laser powder bed fusion. Bioact Mater 2024; 41:312-335. [PMID: 39161793 PMCID: PMC11331728 DOI: 10.1016/j.bioactmat.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/25/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Zinc (Zn)-based biodegradable metals (BMs) fabricated through conventional manufacturing methods exhibit adequate mechanical strength, moderate degradation behavior, acceptable biocompatibility, and bioactive functions. Consequently, they are recognized as a new generation of bioactive metals and show promise in several applications. However, conventional manufacturing processes face formidable limitations for the fabrication of customized implants, such as porous scaffolds for tissue engineering, which are future direction towards precise medicine. As a metal additive manufacturing technology, laser powder bed fusion (L-PBF) has the advantages of design freedom and formation precision by using fine powder particles to reliably fabricate metallic implants with customized structures according to patient-specific needs. The combination of Zn-based BMs and L-PBF has become a prominent research focus in the fields of biomaterials as well as biofabrication. Substantial progresses have been made in this interdisciplinary field recently. This work reviewed the current research status of Zn-based BMs manufactured by L-PBF, covering critical issues including powder particles, structure design, processing optimization, chemical compositions, surface modification, microstructure, mechanical properties, degradation behaviors, biocompatibility, and bioactive functions, and meanwhile clarified the influence mechanism of powder particle composition, structure design, and surface modification on the biodegradable performance of L-PBF Zn-based BM implants. Eventually, it was closed with the future perspectives of L-PBF of Zn-based BMs, putting forward based on state-of-the-art development and practical clinical needs.
Collapse
Affiliation(s)
- Aobo Liu
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yu Qin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jiabao Dai
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fei Song
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Peng Wen
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Luo K, Liu Z, Yu R, Xu T, Legut D, Yin X, Zhang R. Electrochemical stability of biodegradable Zn-Cu alloys through machine-learning accelerated high-throughput discovery. Phys Chem Chem Phys 2024; 26:23010-23022. [PMID: 39171693 DOI: 10.1039/d4cp02307b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Zn-Cu alloys have attracted great attention as biodegradable alloys owing to their excellent mechanical properties and biocompatibility, with corrosion characteristics being crucial for their suitability for biomedical applications. However, the unresolved identification of intermetallic compounds in Zn-Cu alloys affecting corrosion and the complexity of the application environment hamper the understanding of their electrochemical behavior. Utilizing high-throughput first-principles calculations and machine-learning accelerated evolutionary algorithms for screening the most stable compounds in Zn-Cu systems, a dataset encompassing the formation energy of 2033 compounds is generated. It reveals that most of the experimentally reported Zn-Cu compounds can be replicated, especially the structure of R32 CuZn5 is first discovered which possesses the lowest formation energy of -0.050 eV per atom. Furthermore, the simulated X-ray diffraction pattern matches perfectly with the experimental ones. By formulating 342 potential electrochemical reactions based on the binary compounds, the Pourbaix diagrams for Zn-Cu alloys are constructed to clarify the fundamental competition between different phases and ions. The calculated equilibrium potential of CuZn5 is higher than that of Zn through the forward reaction Zn + CuZn5 ⇌ CuZn5 + Zn2+ + 2e-, resulting in microcell formation owing to the stronger charge density localization in Zn compared to CuZn5. The presence of chlorine accelerates the corrosion of Zn through the reaction Zn + CuZn5 + 6Cl- + 6H2O ⇌ Cu + 6ZnOHCl + 6H+ + 12e-, where the formation of ZnOHCl disrupts the ZnO passive film and expands the corrosion pH range from 9.2 to 8.8. Our findings reveal an accurate quantitative corrosion mechanism for Zn-Cu alloys, providing an effective pathway to investigate the corrosion resistance of biodegradable alloys.
Collapse
Affiliation(s)
- Kun Luo
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Zhaorui Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Rui Yu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Tengfei Xu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Dominik Legut
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, CZ-70800 Ostrava, Czech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Xing Yin
- National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610041, China.
| | - Ruifeng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
11
|
Rao J, Gao H, Sun J, Yu R, Zhao D, Ding Y. A Critical Review of Biodegradable Zinc Alloys toward Clinical Applications. ACS Biomater Sci Eng 2024; 10:5454-5473. [PMID: 39082869 DOI: 10.1021/acsbiomaterials.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Biodegradable zinc (Zn) alloys stand out as promising contenders for biomedical applications due to their favorable mechanical properties and appropriate degradation rates, offering the potential to mitigate the risks and expenses associated with secondary surgeries. While current research predominantly centers on the in vitro examination of Zn alloys, notable disparities often emerge between in vivo and in vitro findings. Consequently, conducting in vivo investigations on Zn alloys holds paramount significance in advancing their clinical application. Different element compositions and processing methods decide the mechanical properties and biological performance of Zn alloys, thus affecting their suitability for specific medical applications. This paper presents a comprehensive overview of recent strides in the development of biodegradable Zn alloys, with a focus on key aspects such as mechanical properties, toxicity, animal experiments, biological properties, and molecular mechanisms. By summarizing these advancements, the paper aims to broaden the scope of research directions and enhance the understanding of the clinical applications of biodegradable Zn alloys.
Collapse
Affiliation(s)
- Jiahui Rao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hairui Gao
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Danlei Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
12
|
Gao YN, Yang HT, Qiu ZF, Qi F, Lu QH, Zheng JF, Xi ZW, Wang X, Li L, Zhang G, Zhang DY, Lu YD, Qi HP, Qiu H, Gao RL, Zheng YF. Long-term efficacy, safety and biocompatibility of a novel sirolimus eluting iron bioresorbable scaffold in a porcine model. Bioact Mater 2024; 39:135-146. [PMID: 38783928 PMCID: PMC11112549 DOI: 10.1016/j.bioactmat.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Iron is considered as an attractive alternative material for bioresorbable scaffolds (BRS). The sirolimus eluting iron bioresorbable scaffold (IBS), developed by Biotyx Medical (Shenzhen, China), is the only iron-based BRS with an ultrathin-wall design. The study aims to investigate the long-term efficacy, safety, biocompatibility, and lumen changes during the biodegradation process of the IBS in a porcine model. A total of 90 IBSs and 70 cobalt-chromium everolimus eluting stents (EES) were randomly implanted into nonatherosclerotic coronary artery of healthy mini swine. The multimodality assessments including coronary angiography, optical coherence tomography, micro-computed tomography, magnetic resonance imaging, real-time polymerase chain reaction (PCR), and histopathological evaluations, were performed at different time points. There was no statistical difference in area stenosis between IBS group and EES group at 6 months, 1year, 2 years and 5 years. Although the scaffolded vessels narrowed at 9 months, expansive remodeling with increased mean lumen area was found at 3 and 5 years. The IBS struts remained intact at 6 months, and the corrosion was detectable at 9 months. At 5 years, the iron struts were completely degraded and absorbed in situ, without in-scaffold restenosis or thrombosis, lumen collapse, aneurysm formation, and chronic inflammation. No local or systemic toxicity and abnormal histopathologic manifestation were found in all experiments. Results from real-time PCR indicated that no sign of iron overload was reported in scaffolded segments. Therefore, the IBS shows comparable efficacy, safety, and biocompatibility with EES, and late lumen enlargement is considered as a unique feature in the IBS-implanted vessels.
Collapse
Affiliation(s)
- Ya-Nan Gao
- Department of Cardio-Metabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Tao Yang
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Zi-Feng Qiu
- Peking University Health Science Center, Beijing, China
| | - Feng Qi
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Qian-Hong Lu
- Department of Cardiology, Coronary Artery Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Feng Zheng
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Zi-Wei Xi
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xin Wang
- Beijing Key Laboratory of Pre-clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- Department of Pathology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gui Zhang
- R&D Center, Biotyx Medical (Shenzhen) Co. Ltd., Shenzhen, China
| | - De-Yuan Zhang
- R&D Center, Biotyx Medical (Shenzhen) Co. Ltd., Shenzhen, China
| | - Yu-Die Lu
- R&D Center, Biotyx Medical (Shenzhen) Co. Ltd., Shenzhen, China
| | - Hai-Ping Qi
- R&D Center, Biotyx Medical (Shenzhen) Co. Ltd., Shenzhen, China
| | - Hong Qiu
- Department of Cardio-Metabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Run-Lin Gao
- Department of Cardiology, Coronary Artery Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Feng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China
| |
Collapse
|
13
|
Cesarz-Andraczke K, Staszuk M, Tunçay T, Woźniak A, Smok W, Tunçay B. Influence of casein on the degradation process of polylactide-casein coatings for resorbable alloys. Sci Rep 2024; 14:18946. [PMID: 39147799 PMCID: PMC11327277 DOI: 10.1038/s41598-024-69956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
This study used the dip-coating method to develop a new biocompatible coating composed of polylactide (PLA) and casein for ZnMg1.2 wt% alloy implants. It evaluated its impact on the alloy's degradation in a simulated body fluid. After 168 h of immersion in Ringer's solution, surface morphology analysis showed that the PLA-casein coatings demonstrated uniform degradation, with the corrosion current density measured at 48 µA/cm2. Contact angle measurements indicated that the average contact angles for the PLA-casein-coated samples were below 80°, signifying a hydrophilic nature that promotes cell adhesion. Fourier-transform infrared spectroscopy (FTIR) revealed no presence of lactic acid on PLA-casein coatings after immersion, in contrast to pure PLA coatings. Pull-off adhesion tests showed tensile strength values of 7.6 MPa for pure PLA coatings and 5 MPa for PLA-casein coatings. Electrochemical tests further supported the favorable corrosion resistance of the PLA-casein coatings, highlighting their potential to reduce tissue inflammation and improve the biocompatibility of ZnMg1.2 wt% alloy implants.
Collapse
Affiliation(s)
- Katarzyna Cesarz-Andraczke
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland.
| | - Marcin Staszuk
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
| | - Tansel Tunçay
- Manufacturing Engineering Department, Technology Faculty, Karabuk University, Karabuk, Turkey
| | - Anna Woźniak
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
| | - Weronika Smok
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
| | - Badegül Tunçay
- Mechanical Engineering Department, Engineering Faculty, Karabuk University, Karabuk, Turkey
| |
Collapse
|
14
|
Leyssens L, Lapraille N, Pyka G, Jacques PJ, Horman S, Goldman J, Kerckhofs G. Exploring the biodegradability of candidate metallic intravascular stent materials using X-ray microfocus computed tomography: An in vitro study. J Biomed Mater Res B Appl Biomater 2024; 112:e35452. [PMID: 39042645 DOI: 10.1002/jbm.b.35452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/07/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
In vitro testing for evaluating degradation mode and rate of candidate biodegradable metals to be used as intravascular stents is crucial before going to in vivo animal models. In this study, we show that X-ray microfocus computed tomography (microCT) presents a key added value to visualize degradation mode and to evaluate degradation rate and material surface properties in 3D and at high resolution of large regions of interest. The in vitro degradation behavior of three candidate biodegradable stent materials was evaluated: pure iron (Fe), pure zinc (Zn), and a quinary Zn alloy (ZnAgCuMnZr). These metals were compared to a reference biostable cobaltchromium (CoCr) alloy. To compare the degradation mode and degradation rate evaluated with microCT, scanning electron microscopy (SEM) and inductively-coupled plasma (ICP) were included. We confirmed that Fe degrades very slowly but with desirable uniform surface corrosion. Zn degrades faster but exhibits localized deep pitting corrosion. The Zn alloy degrades at a similar rate as the pure Zn, but more homogeneously. However, the formation of deep internal dendrites was observed. Our study provides a detailed microCT-based comparison of essential surface and corrosion properties, with a structural characterization of the corrosion behavior, of different candidate stent materials in 3D in a non-destructive way.
Collapse
Affiliation(s)
- Lisa Leyssens
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Woluwe-Saint-Lambert, Belgium
| | - Noémie Lapraille
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Grzegorz Pyka
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Woluwe-Saint-Lambert, Belgium
| | - Pascal J Jacques
- Materials and Process Engineering, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, Woluwe-Saint-Lambert, Belgium
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Greet Kerckhofs
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Woluwe-Saint-Lambert, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Bian D, Tong Z, Gong G, Huang H, Fang L, Yang H, Gu W, Yu H, Zheng Y. Additive Manufacturing of Biodegradable Molybdenum - From Powder to Vascular Stent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401614. [PMID: 38837830 DOI: 10.1002/adma.202401614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Magnesium, iron, and zinc-based biodegradable metals are widely recognized as promising candidate materials for the next generation of bioresorbable stent (BVS). However, none of those metal BVSs are perfect at this stage. Here, a brand-new BVS based on a novel biodegradable metal (Molybdenum, Mo) through additive manufacturing is developed. Nearly full-dense and crack-free thin-wall Mo is directly manufactured through selective laser melting (SLM) with fine Mo powder. Systemic analyses considering the forming quality, wall-thickness, microstructure, mechanical properties, and in vitro degradation behaviors are performed. Then, Mo-based thin-strut (≤ 100 µm) stents are successfully obtained through an optimized single-track laser melting route. The SLMed thin-wall Mo owns comparable strength to its Mg and Zn based counterparts (as-drawn), while, it exhibits remarkable biocompatibility in vitro. Vessel related cells are well adhered and spread on SLMed Mo, and it exhibits a low risk of hemolysis and thrombus. The SLMed stent is compatible to vessel tissues in rat abdominal aorta, and it can provide sufficient support in an animal model as an extravascular stent. This work possibly opens a new era of manufacturing Mo-based stents through additive manufacturing.
Collapse
Affiliation(s)
- Dong Bian
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhipei Tong
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Gencheng Gong
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - He Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China
| | - Liudang Fang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Wenda Gu
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Hui Yu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510515, China
| | - Yufeng Zheng
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
16
|
Morath LM, Oujiri L, Hemmer M, Goldman J. The influence of age on the biological response to biodegradable zinc arterial implants. MATERIALIA 2024; 36:102174. [PMID: 40027396 PMCID: PMC11867610 DOI: 10.1016/j.mtla.2024.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Medical devices to treat arterial diseases of older humans are routinely designed and developed using young animals. This is the case despite the significant declines of tissue regeneration, cell proliferation, and inflammation in aged humans that are not reflected in young animals. The widespread use of age-mismatched animals is particularly a concern for the testing of interactive materials, such as biodegradable metals whose dynamic interfaces continuously impact local cell and tissue regenerative processes. In order to determine the importance and impact of age differences in biodegradable stent material biocompatibility, we implanted both inert (platinum) and biodegradable (zinc) metal wires into the arteries of 1 year old and 3-month-old rats for a period of 6 months and compared the biological responses. It was found that the older animals developed a significantly larger neointimal encapsulating tissue for zinc implants vs. a smaller tissue response for the platinum implants relative to the younger rats. The neointimas of older rats contained dramatically fewer macrophages for both implant metals. The presence of neointimal smooth muscle cells was also decreased in the older rats. Endothelial cell regeneration in the old arteries was not impacted by the different metal implants. These findings demonstrate that neointimal responses to metal implants in arterial tissue are strongly impacted by age-related changes. The findings also suggest that the reliance on young animal models to evaluate metal implants intended for the arteries of considerably older individuals may substantially over predict the biocompatibility.
Collapse
Affiliation(s)
- Lea M. Morath
- Department of Biomedical Engineering, Michigan Technological University, Michigan, United States
| | - Lindy Oujiri
- Department of Biomedical Engineering, Michigan Technological University, Michigan, United States
| | - Meghan Hemmer
- Department of Biomedical Engineering, Michigan Technological University, Michigan, United States
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Michigan, United States
| |
Collapse
|
17
|
Zhang X, Niu J, Yeung KWK, Huang H, Gao Z, Chen C, Guan Q, Zhang G, Zhang L, Xue G, Yuan G. Developing Zn-2Cu-xLi (x < 0.1 wt %) alloys with suitable mechanical properties, degradation behaviors and cytocompatibility for vascular stents. Acta Biomater 2024:S1742-7061(24)00313-1. [PMID: 38876454 DOI: 10.1016/j.actbio.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Biodegradable Zn alloys show great potential for vascular stents due to their moderate degradation rates and acceptable biocompatibility. However, the poor mechanical properties limit their applications. In this study, low alloyed Zn-2Cu-xLi (x = 0.004, 0.01, 0.07 wt %) alloys with favorable mechanical properties were developed. The microstructure consists of fine equiaxed η-Zn grains, micron, submicron-sized and coherent nano ε-CuZn4 phases. The introduced Li exists as a solute in the η-Zn matrix and ε-CuZn4 phase, and results in the increase of ε-CuZn4 volume fraction, the refinement of grains and more uniform distribution of grain sizes. As Li content increases, the strength of alloys is dramatically improved by grain boundary strengthening, precipitate strengthening of ε-CuZn4 and solid solution strengthening of Li. Zn-2Cu-0.07Li alloy has the optimal mechanical properties with a tensile yield strength of 321.8 MPa, ultimate tensile strength of 362.3 MPa and fracture elongation of 28.0 %, exceeding the benchmark of stents. It also has favorable mechanical property stability, weak tension compression yield asymmetry and strain rate sensitivity. It exhibits uniform degradation and a little improved degradation rate of 89.5 μm∙year-1, due to the improved electrochemical activity by increased ε-CuZn4 volume fraction, and generates Li2CO3 and LiOH. It shows favorable cytocompatibility without adverse influence on endothelial cell viability by trace Li+. The fabricated microtubes show favorable mechanical properties, and stents exhibit an average radial strength of 118 kPa. The present study indicates that Zn-2Cu-0.07Li alloy is a potential and promising candidate for vascular stent applications. STATEMENT OF SIGNIFICANCE: Zn alloys are promising candidates for biodegradable vascular stents. However, improving their mechanical properties is challenging. Combining the advantages of Cu and trace Li, Zn-2Cu-xLi (x < 0.1 wt %) alloys were developed for stents. As Li increases, the strength of alloys is dramatically improved by refined grains, increased volume fraction of ε-CuZn4 and solid solution of Li. Zn-2Cu-0.07Li alloy exhibits a TYS exceeding 320 MPa, UTS exceeding 360 MPa and fracture EL of nearly 30 %. It shows favorable mechanical stability, degradation behaviors and cytocompatibility. The alloy was fabricated into microtubes and stents for mechanical property tests to verify application feasibility for the first time. This indicates that Zn-2Cu-0.07Li alloy has great potential for vascular stent applications.
Collapse
Affiliation(s)
- Xiyuan Zhang
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Kelvin Wai-Kwok Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Hua Huang
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiqiang Gao
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chun Chen
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingqing Guan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangjian Zhang
- Shanghai MicroPort Endovascular MedTech (Group) Co., Ltd., Shanghai 200120, China
| | - Linlin Zhang
- Shanghai MicroPort Endovascular MedTech (Group) Co., Ltd., Shanghai 200120, China
| | - Guanhua Xue
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
18
|
Zeng Y, Murali N, See CW, Liu J, Chi Y, Zhu D, Linsley CS, Wu BM, Li X. Effect of TiC Nanoparticles on a Zn-Al-Cu System for Biodegradable Cardiovascular Stent Applications. ACS Biomater Sci Eng 2024; 10:3438-3453. [PMID: 38564666 DOI: 10.1021/acsbiomaterials.3c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite being a weaker metal, zinc has become an increasingly popular candidate for biodegradable implant applications due to its suitable corrosion rate and biocompatibility. Previous studies have experimented with various alloy elements to improve the overall mechanical performance of pure Zn without compromising the corrosion performance and biocompatibility; however, the thermal stability of biodegradable Zn alloys has not been widely studied. In this study, TiC nanoparticles were introduced for the first time to a Zn-Al-Cu system. After hot rolling, TiC nanoparticles were uniformly distributed in the Zn matrix and effectively enabled phase control during solidification. The Zn-Cu phase, which was elongated and sharp in the reference alloy, became globular in the nanocomposite. The strength of the alloy, after introducing TiC nanoparticles, increased by 31% from 259.7 to 340.3 MPa, while its ductility remained high at 49.2% elongation to failure. Fatigue performance also improved greatly by adding TiC nanoparticles, increasing the fatigue limit by 47.6% from 44.7 to 66 MPa. Furthermore, TiC nanoparticles displayed excellent phase control capability during body-temperature aging. Without TiC restriction, Zn-Cu phases evolved into dendritic morphologies, and the Al-rich eutectic grew thicker at grain boundaries. However, both Zn-Cu and Al-rich eutectic phases remained relatively unchanged in shape and size in the nanocomposite. A combination of exceptional tensile properties, improved fatigue performance, better long-term stability with a suitable corrosion rate, and excellent biocompatibility makes this new Zn-Al-Cu-TiC material a promising candidate for biodegradable stents and other biodegradable applications.
Collapse
Affiliation(s)
- Yuxin Zeng
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Narayanan Murali
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Carmine Wang See
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jingke Liu
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Yitian Chi
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Chase S Linsley
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Benjamin M Wu
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- The ADA Forsyth Institute, Cambridge, Massachusetts 02140, United States
| | - Xiaochun Li
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
19
|
Yuan K, Deng C, Tan L, Wang X, Yan W, Dai X, Du R, Zheng Y, Zhang H, Wang G. Structural and temporal dynamics analysis of zinc-based biomaterials: History, research hotspots and emerging trends. Bioact Mater 2024; 35:306-329. [PMID: 38362138 PMCID: PMC10867564 DOI: 10.1016/j.bioactmat.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Objectives To examine the 16-year developmental history, research hotspots, and emerging trends of zinc-based biodegradable metallic materials from the perspective of structural and temporal dynamics. Methods The literature on zinc-based biodegradable metallic materials in WoSCC was searched. Historical characteristics, the evolution of active topics and development trends in the field of zinc-based biodegradable metallic materials were analyzed using the bibliometric tools CiteSpace and HistCite. Results Over the past 16 years, the field of zinc-based biodegradable metal materials has remained in a hotspot stage, with extensive scientific collaboration. In addition, there are 45 subject categories and 51 keywords in different research periods, and 80 papers experience citation bursts. Keyword clustering anchored 3 emerging research subfields, namely, #1 plastic deformation #4 additive manufacturing #5 surface modification. The keyword alluvial map shows that the longest-lasting research concepts in the field are mechanical property, microstructure, corrosion behavior, etc., and emerging keywords are additive manufacturing, surface modification, dynamic recrystallization, etc. The most recent research on reference clustering has six subfields. Namely, #0 microstructure, #2 sem, #3 additive manufacturing, #4 laser powder bed fusion, #5 implant, and #7 Zn-1Mg. Conclusion The results of the bibliometric study provide the current status and trends of research on zinc-based biodegradable metallic materials, which can help researchers identify hot spots and explore new research directions in the field.
Collapse
Affiliation(s)
- Kunshan Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Chengchen Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Lili Tan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenhua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Ruolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
20
|
Li P, Dai J, Li Y, Alexander D, Čapek J, Geis-Gerstorfer J, Wan G, Han J, Yu Z, Li A. Zinc based biodegradable metals for bone repair and regeneration: Bioactivity and molecular mechanisms. Mater Today Bio 2024; 25:100932. [PMID: 38298560 PMCID: PMC10826336 DOI: 10.1016/j.mtbio.2023.100932] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024] Open
Abstract
Bone fractures and critical-size bone defects are significant public health issues, and clinical treatment outcomes are closely related to the intrinsic properties of the utilized implant materials. Zinc (Zn)-based biodegradable metals (BMs) have emerged as promising bioactive materials because of their exceptional biocompatibility, appropriate mechanical properties, and controllable biodegradation. This review summarizes the state of the art in terms of Zn-based metals for bone repair and regeneration, focusing on bridging the gap between biological mechanism and required bioactivity. The molecular mechanism underlying the release of Zn ions from Zn-based BMs in the improvement of bone repair and regeneration is elucidated. By integrating clinical considerations and the specific bioactivity required for implant materials, this review summarizes the current research status of Zn-based internal fixation materials for promoting fracture healing, Zn-based scaffolds for regenerating critical-size bone defects, and Zn-based barrier membranes for reconstituting alveolar bone defects. Considering the significant progress made in the research on Zn-based BMs for potential clinical applications, the challenges and promising research directions are proposed and discussed.
Collapse
Affiliation(s)
- Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Jaroslav Čapek
- FZU – the Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 18200, Czech Republic
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianmin Han
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zhentao Yu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road 366, Guangzhou 510280, China
| |
Collapse
|
21
|
Chen S, Du T, Zhang H, Qi J, Zhang Y, Mu Y, Qiao A. Methods for improving the properties of zinc for the application of biodegradable vascular stents. BIOMATERIALS ADVANCES 2024; 156:213693. [PMID: 37992478 DOI: 10.1016/j.bioadv.2023.213693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Biodegradable stents can support vessels for an extended period, maintain vascular patency, and progressively degrade once vascular remodeling is completed, thereby reducing the constraints of traditional metal stents. An ideal degradable stent must have good mechanical properties, degradation behavior, and biocompatibility. Zinc has become a new type of biodegradable metal after magnesium and iron, owing to its suitable degradation rate and good biocompatibility. However, zinc's poor strength and ductility make it unsuitable as a vascular stent material. Therefore, this paper reviewed the primary methods for improving the overall properties of zinc. By discussing the mechanical properties, degradation behavior, and biocompatibility of various improvement strategies, we found that alloying is the most common, simple, and effective method to improve mechanical properties. Deformation processing can further improve the mechanical properties by changing the microstructures of zinc alloys. Surface modification is an important means to improve the biological activity, blood compatibility and corrosion resistance of zinc alloys. Meanwhile, structural design can not only improve the mechanical properties of the vascular stents, but also endow the stents with special properties such as negative Poisson 's ratio. Manufacturing zinc alloys with excellent degradation properties, improved mechanical properties and strong biocompatibility and exploring their mechanism of interaction with the human body remain areas for future research.
Collapse
Affiliation(s)
- Shiliang Chen
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| | - Hanbing Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jing Qi
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yanping Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yongliang Mu
- School of Metallurgy, Northeastern University, Shenyang, China
| | - Aike Qiao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| |
Collapse
|
22
|
Graczyk S, Pasławski R, Grzeczka A, Pasławska U, Świeczko-Żurek B, Malisz K, Popat K, Sionkowska A, Golińska P, Rai M. Antimicrobial and Antiproliferative Coatings for Stents in Veterinary Medicine-State of the Art and Perspectives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6834. [PMID: 37959431 PMCID: PMC10649059 DOI: 10.3390/ma16216834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Microbial colonization in veterinary stents poses a significant and concerning issue in veterinary medicine. Over time, these pathogens, particularly bacteria, can colonize the stent surfaces, leading to various complications. Two weeks following the stent insertion procedure, the colonization becomes observable, with the aggressiveness of bacterial growth directly correlating with the duration of stent placement. Such microbial colonization can result in infections and inflammations, compromising the stent's efficacy and, subsequently, the animal patient's overall well-being. Managing and mitigating the impact of these pathogens on veterinary stents is a crucial challenge that veterinarians and researchers are actively addressing to ensure the successful treatment and recovery of their animal patients. In addition, irritation of the tissue in the form of an inserted stent can lead to overgrowth of granulation tissue, leading to the closure of the stent lumen, as is most often the case in the trachea. Such serious complications after stent placement require improvements in the procedures used to date. In this review, antibacterial or antibiofilm strategies for several stents used in veterinary medicine have been discussed based on the current literature and the perspectives have been drawn. Various coating strategies such as coating with hydrogel, antibiotic, or other antimicrobial agents have been reviewed.
Collapse
Affiliation(s)
- Szymon Graczyk
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Robert Pasławski
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Arkadiusz Grzeczka
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Urszula Pasławska
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Beata Świeczko-Żurek
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland; (B.Ś.-Ż.); (K.M.)
| | - Klaudia Malisz
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland; (B.Ś.-Ż.); (K.M.)
| | - Ketul Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| | - Mahendra Rai
- Department of Chemistry, Federal University of Piaui (UFPI), Teresina 64049-550, Brazil;
| |
Collapse
|
23
|
Wu M, Xun M, Chen Y. Adaptation of Vascular Smooth Muscle Cell to Degradable Metal Stent Implantation. ACS Biomater Sci Eng 2023. [PMID: 37364226 DOI: 10.1021/acsbiomaterials.3c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Iron-, magnesium-, or zinc-based metal vessel stents support vessel expansion at the period early after implantation and degrade away after vascular reconstruction, eliminating the side effects due to the long stay of stent implants in the body and the risks of restenosis and neoatherosclerosis. However, emerging evidence has indicated that their degradation alters the vascular microenvironment and induces adaptive responses of surrounding vessel cells, especially vascular smooth muscle cells (VSMCs). VSMCs are highly flexible cells that actively alter their phenotype in response to the stenting, similarly to what they do during all stages of atherosclerosis pathology, which significantly influences stent performance. This Review discusses how biodegradable metal stents modify vascular conditions and how VSMCs respond to various chemical, biological, and physical signals attributable to stent implantation. The focus is placed on the phenotypic adaptation of VSMCs and the clinical complications, which highlight the importance of VSMC transformation in future stent design.
Collapse
Affiliation(s)
- Meichun Wu
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
- School of Nursing, University of South China, Hengyang, Hunan 410001, China
| | - Min Xun
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 410001, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 410001, China
| |
Collapse
|
24
|
Li Y, Shi Y, Lu Y, Li X, Zhou J, Zadpoor AA, Wang L. Additive manufacturing of vascular stents. Acta Biomater 2023:S1742-7061(23)00338-0. [PMID: 37331614 DOI: 10.1016/j.actbio.2023.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
With the advancement of additive manufacturing (AM), customized vascular stents can now be fabricated to fit the curvatures and sizes of a narrowed or blocked blood vessel, thereby reducing the possibility of thrombosis and restenosis. More importantly, AM enables the design and fabrication of complex and functional stent unit cells that would otherwise be impossible to realize with conventional manufacturing techniques. Additionally, AM makes fast design iterations possible while also shortening the development time of vascular stents. This has led to the emergence of a new treatment paradigm in which custom and on-demand-fabricated stents will be used for just-in-time treatments. This review is focused on the recent advances in AM vascular stents aimed at meeting the mechanical and biological requirements. First, the biomaterials suitable for AM vascular stents are listed and briefly described. Second, we review the AM technologies that have been so far used to fabricate vascular stents as well as the performances they have achieved. Subsequently, the design criteria for the clinical application of AM vascular stents are discussed considering the currently encountered limitations in materials and AM techniques. Finally, the remaining challenges are highlighted and some future research directions are proposed to realize clinically-viable AM vascular stents. STATEMENT OF SIGNIFICANCE: Vascular stents have been widely used for the treatment of vascular disease. The recent progress in additive manufacturing (AM) has provided unprecedented opportunities for revolutionizing traditional vascular stents. In this manuscript, we review the applications of AM to the design and fabrication of vascular stents. This is an interdisciplinary subject area that has not been previously covered in the published review articles. Our objective is to not only present the state-of-the-art of AM biomaterials and technologies but to also critically assess the limitations and challenges that need to be overcome to speed up the clinical adoption of AM vascular stents with both anatomical superiority and mechanical and biological functionalities that exceed those of the currently available mass-produced devices.
Collapse
Affiliation(s)
- Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yixuan Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Lu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuan Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - Luning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
25
|
Yang H, Jin D, Rao J, Shi J, Li G, Wang C, Yan K, Bai J, Bao G, Yin M, Zheng Y. Lithium-Induced Optimization Mechanism for an Ultrathin-Strut Biodegradable Zn-Based Vascular Scaffold. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301074. [PMID: 36920258 DOI: 10.1002/adma.202301074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Indexed: 05/12/2023]
Abstract
To reduce incidences of in-stent restenosis and thrombosis, the use of a thinner-strut stent has been clinically proven to be effective. Therefore, the contemporary trend is toward the use of ultrathin-strut (≤70 µm) designs for durable stents. However, stents made from biodegradable platforms have failed to achieve intergenerational breakthroughs due to their excessively thick struts. Here, microalloying is used to create an ultrathin-strut (65 µm) zinc (Zn) scaffold with modified biodegradation behavior and improved biofunction, by adding lithium (Li). The scaffold backbone consists of an ultrafine-grained Zn matrix (average grain diameter 2.28 µm) with uniformly distributed nanoscale Li-containing phases. Grain refinement and precipitation strengthening enable it to achieve twice the radial strength with only 40% of the strut thickness of the pure Zn scaffold. Adding Li alters the thermodynamic formation pathways of products during scaffold biodegradation, creating an alkaline microenvironment. Li2 CO3 may actively stabilize this microenvironment due to its higher solubility and better buffering capability than Zn products. The co-release of ionic zinc and lithium enhances the beneficial differential effects on activities of endothelial cells and smooth muscle cells, resulting in good endothelialization and limited intimal hyperplasia in porcine coronary arteries. The findings here may break the predicament of the next-generation biodegradable scaffolds.
Collapse
Affiliation(s)
- Hongtao Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering & School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- School of Engineering Medicine, Beihang University, Beijing, 100191, P. R. China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, P. R. China
| | - Jiancun Rao
- AIM Lab, Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| | - Jiahui Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering & School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Guannan Li
- Beijing Advanced Innovation Center for Materials Genome Engineering & School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Cheng Wang
- Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Kai Yan
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, P. R. China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Guo Bao
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, P. R. China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, P. R. China
| | - Yufeng Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering & School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
26
|
Panaghie C, Zegan G, Sodor A, Cimpoeșu N, Lohan NM, Istrate B, Roman AM, Ioanid N. Analysis of Degradation Products of Biodegradable ZnMgY Alloy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3092. [PMID: 37109928 PMCID: PMC10146815 DOI: 10.3390/ma16083092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Biodegradable metallic materials are increasingly gaining ground in medical applications. Zn-based alloys show a degradation rate between those recorded for Mg-based materials with the fastest degradation rate and Fe-based materials with the slowest degradation rate. From the perspective of medical complications, it is essential to understand the size and nature of the degradation products developed from biodegradable materials, as well as the stage at which these residues are eliminated from the body. This paper presents investigations conducted on the corrosion/degradation products of an experimental material (ZnMgY alloy in cast and homogenized state) after immersion tests in three physiological solutions (Dulbecco's, Ringer's and simulated body fluid (SBF)). Scanning electron microscopy (SEM) was used to highlight the macroscopic and microscopic aspects of corrosion products and their effects on the surface. An X-ray energy dispersive detector (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) provided general information about the compounds based on their non-metallic character. The pH of the electrolyte solution was recorded for 72 h during immersion. The pH variation of the solution confirmed the main reactions proposed for the corrosion of ZnMg. The agglomerations of corrosion products were on the micrometer scale, mainly oxides, hydroxides and carbonates or phosphates. The corrosion effects on the surface were homogeneously spread, with a tendency to connect and form cracks or larger corrosion zones, transforming the pitting corrosion pattern into a generalized one. It was noticed that the alloy's microstructure strongly influences the corrosion characteristics.
Collapse
Affiliation(s)
- Cătălin Panaghie
- Faculty of Materials Science and Engineering, “Gh. Asachi” Technical University from Iasi, 700050 Iasi, Romania
| | - Georgeta Zegan
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alina Sodor
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nicanor Cimpoeșu
- Faculty of Materials Science and Engineering, “Gh. Asachi” Technical University from Iasi, 700050 Iasi, Romania
| | - Nicoleta-Monica Lohan
- Faculty of Materials Science and Engineering, “Gh. Asachi” Technical University from Iasi, 700050 Iasi, Romania
| | - Bogdan Istrate
- Faculty of Mechanics, “Gh. Asachi” Technical University from Iasi, 700050 Iasi, Romania
| | - Ana-Maria Roman
- Faculty of Materials Science and Engineering, “Gh. Asachi” Technical University from Iasi, 700050 Iasi, Romania
| | - Nicoleta Ioanid
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
27
|
Ding F, Zhang Y, Zhu X, Guo P, Yang L, Zhang Q, Xu C, Sun W, Song Z. Strengthening Mechanism of Rotary-Forged Deformable Biodegradable Zn-0.45Li Alloys. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3003. [PMID: 37109837 PMCID: PMC10143320 DOI: 10.3390/ma16083003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
The use of zinc (Zn) alloys as a biodegradable metal for medical purposes has been a popular research topic. This study investigated the strengthening mechanism of Zn alloys to enhance their mechanical properties. Three Zn-0.45Li (wt.%) alloys with different deformation amounts were prepared by rotary forging deformation. Their mechanical properties and microstructures were tested. A simultaneous increase in strength and ductility was observed in the Zn-0.45Li alloys. Grain refinement occurred when the rotary forging deformation reached 75.7%. The surface average grain size reached 1.19 ± 0.31 μm, and the grain size was uniformly distributed. Meanwhile, the maximum elongation of the deformed Zn-0.45Li was 139.2 ± 18.6%, and the ultimate tensile strength reached 426.1 ± 4.7 MPa. In situ tensile tests showed that the reinforced alloys still broke from the grain boundary. Continuous and discontinuous dynamic recrystallization during severe plastic deformation produced many recrystallized grains. During deformation, the dislocation density of the alloy first increased and then decreased, and the texture strength of the (0001) direction increased with deformation. Analysis of the mechanism of alloy strengthening showed that the strength and plasticity enhancement of Zn-Li alloys after macro deformation was a combination of dislocation strengthening, weave strengthening, and grain refinement rather than only fine-grain strengthening as observed in conventional macro-deformed Zn alloys.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
| | - Yi Zhang
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
| | - Xinglong Zhu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Pushan Guo
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
| | - Lijing Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qingke Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Cheng Xu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wensheng Sun
- Ningbo Power Way Alloy Material Co., Ltd., Ningbo 315145, China
| | - Zhenlun Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
28
|
Yang K, Wang L, Zhang D, Yan Y, Ji XJ, Cao M, Shi ZZ, Wang LN. Nanomechanical probing of bacterial adhesion to biodegradable Zn alloys. BIOMATERIALS ADVANCES 2023; 145:213243. [PMID: 36566645 DOI: 10.1016/j.bioadv.2022.213243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/13/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Bacterial infections on implants cause an inflammatory response and even implant failure. Bacterial adhesion is an initial and critical step during implant infection. The prevention of bacterial adhesion to implant materials has attracted much attention, especially for biodegradable metals. A deep understanding of the mechanisms of bacterial adhesion to biodegradable metals is urgently needed. In this work, a bacterial probe based on atomic force spectroscopy was employed to determine the bacterial adhesion to Zn alloy, which depended on surface charge, roughness, and wettability. Negative surface charges of Zn, Zn-0.5Li, and 316L generated electrostatic repulsion force towards bacteria. The surface roughness of Zn-0.5Li was significantly increased by localized corrosion. Bacterial adhesion forces on Zn, Zn-0.5Li, and 316L were 325.2 pN, 519.1 pN, and 727.7 pN, respectively. The density of attached bacteria (early-stage bacterial adhesion) on these samples exhibited a positive correlation with the bacterial adhesion force. The bacterial adhesion force and adhesion work provide a quantitative determination of the interactions between bacteria and biodegradable alloys. These results provide a deeper understanding of early bacterial adhesion on Zn alloys, which can further guide the antibacterial surface design of biodegradable materials for clinical application.
Collapse
Affiliation(s)
- Kun Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lei Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Dawei Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute for Advanced Materials and Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Yu Yan
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute for Advanced Materials and Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Xiao-Jing Ji
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Meng Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zhang-Zhi Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lu-Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
29
|
Chen X, Chang R, Liu H, Zhang L, Zheng Y. Moving research direction in the field of metallic bioresorbable stents-A mini-review. Bioact Mater 2022; 24:20-25. [PMID: 36582349 PMCID: PMC9763675 DOI: 10.1016/j.bioactmat.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
In contrast to polymer bioresorbable stents (BRS) that exhibited suboptimal performance in clinical trials due to their deficient mechanical properties, metallic BRS with improved mechanical strength have made their way into the clinic and have demonstrated more promising results. In the roadmap of research and development of metallic BRS, magnesium and iron based biodegradable metal stents had been clinically used, and the zinc based biodegradable metal stents had been trailed in Mini-Pigs. In this mini-review paper, we demonstrate the current technology levels and point out the future R&D direction of metallic BRS. Magnesium based BRS should target for decreasing struct thickness meanwhile balancing with enough supporting strength. Iron based BRS should move towards high efficient absorption, conversion, metabolism, elimination of its degradation products. Zn based BRS should strive to improve mechanical stability, creep resistance and biocompatibility. Future R&D directions of metallic BRS should move towards new materials such as Molybdenum, intelligent stent integrated with degradable biosensors, and new stent with multiple biofunctions, such as NO release.
Collapse
Affiliation(s)
- Xiehui Chen
- Shenzhen Longhua District Central Hospital & The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China,Corresponding author.
| | - Rong Chang
- Shenzhen Longhua District Central Hospital & The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China,Corresponding author.
| | - Hongtao Liu
- Shenzhen Longhua District Central Hospital & The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China
| | - Le Zhang
- Shenzhen Longhua District Central Hospital & The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China,International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-2, Kumamoto, 860-8555, Japan,Corresponding author. School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Shi ZZ, Li M, Li XM, Wang LN. Surface-Roughness-Induced Plasticity in a Biodegradable Zn Alloy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2207570. [PMID: 36314421 DOI: 10.1002/adma.202207570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Improving plasticity has been an eternal theme of developing metallic materials. It is difficult to increase room-temperature elongation of metallic materials over 100% without sacrificing strength using existing methods. Herein, surface-roughness-induced plasticity (SRIP) is discovered in biodegradable Zn-0.4Mn alloy. Surprisingly, in the good surface range that meets the international standard ISO 6892, reducing surface roughness results in significant increase in plasticity without loss of strength. From unground to 5000# sandpaper ground states, the surface roughness Ra of the alloy decreases from 0.63 to 0.05 µm, while its room temperature elongation increases from 74% to 143%. SRIP is the synergistic result of increased microstructure damage tolerance and decreased surface roughness. It provides a new method for improving plasticity.
Collapse
Affiliation(s)
- Zhang-Zhi Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, P. R. China
| | - Meng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, P. R. China
| | - Xiang-Min Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, P. R. China
| | - Lu-Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, P. R. China
| |
Collapse
|
31
|
Xing Y, Liang G, Zhu T. Current status and outlook of potential applications of biodegradable materials in cerebral vascular stents. Neurosurg Rev 2022; 45:3565-3571. [PMID: 36214907 DOI: 10.1007/s10143-022-01876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/02/2022] [Accepted: 09/24/2022] [Indexed: 10/17/2022]
Abstract
The treatment of intracranial aneurysms (IAs) has undergone a very significant transformation in recent decades, and endovascular interventions have gradually become one of the most common treatments. As permanent metal stents can cause some degree of long-term damage to patients, biodegradable stent materials are emerging as attractive potential alternatives. By reviewing the current research status and the advantages and disadvantages of existing biodegradable biomaterials, this review expects to provide a valuable reference for subsequent research on biodegradable biomaterials.
Collapse
Affiliation(s)
- Yiqi Xing
- Dalian Medical University, Graduate School, 9 West section of Lushun South Road, Dalian, 116044, China
- General Hospital of Northern Theater Command, Institute of Neuroscience, Shenyang, Liaoning, China
| | - Guobiao Liang
- General Hospital of Northern Theater Command, Institute of Neuroscience, Shenyang, Liaoning, China
| | - Tingzhun Zhu
- General Hospital of Northern Theater Command, Institute of Neuroscience, Shenyang, Liaoning, China.
| |
Collapse
|
32
|
Cheng Z, Xu Y, Wang X, Xie Q, Liu H, Shao Y, Xia D, Chu C, Feng F, Bai J. Effect of Cu and Mg addition on the mechanical and degradation properties of Zn alloy wires. J Biomater Appl 2022; 37:891-902. [DOI: 10.1177/08853282221123934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, Zn-xCu (-0.1 Mg) wires with a diameter of 0.3 mm were obtained by hot extrusion and cold drawing. The microstructures, mechanical properties, and degradation behaviour were investigated to evaluate their feasibility as biodegradable metals. During the drawing process of the Zn-xCu alloys, many granular CuZn5 phases were dynamically precipitated, and the grains were significantly refined, along with a significant work softening with the tensile strength decreasing and the elongation increasing (from 161 MPa to 92 MPa and 22%–103% for Zn-0.2Cu). With the increase of Cu additions, the phenomenon of work softening was more intense and there was an opposite trend in the strength changes between the as-extruded rods (increase) and as-drawn wires (decrease). With 0.1 wt.% Mg added, the stable rod-like Mg2Zn11 phase was formed in as-extruded Zn-xCu-0.1 Mg rods, which obviously improved the strength, and inhibited the dynamic precipitation of granular CuZn5 phase and work softening phenomenon in the drawing process (from 332 MPa to 313 MPa and 11%–46% for Zn-0.2Cu-0.1 Mg). In addition, due to the micro-galvanic effect induced by the precipitates, alloying accelerated the degradation of Zn alloy wires, especially Zn-1Cu-0.1 Mg, which was related to the shape, distribution, and potential of the phases.
Collapse
Affiliation(s)
- Zhaojun Cheng
- Southeast University, Nanjing, China
- Institute of Biomedical Devices (Suzhou), Suzhou, China
| | - Yan Xu
- Southeast University, Nanjing, China
| | | | | | - Huan Liu
- Hohai University, Nanjing, China
| | - Yi Shao
- Southeast University, Nanjing, China
- Institute of Biomedical Devices (Suzhou), Suzhou, China
| | - Dandan Xia
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | | | - Feng Feng
- Southeast University, Nanjing, China
| | - Jing Bai
- Southeast University, Nanjing, China
- Institute of Biomedical Devices (Suzhou), Suzhou, China
- Jiangsu Key Laboratory for Light Metal Alloys, Nanjing, China
| |
Collapse
|
33
|
The Effect of Mn on the Mechanical Properties and In Vitro Behavior of Biodegradable Zn-2%Fe Alloy. METALS 2022. [DOI: 10.3390/met12081291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The attractiveness of Zn-based alloys as structural materials for biodegradable implants mainly relates to their excellent biocompatibility, critical physiological roles in the human body and excellent antibacterial properties. Furthermore, in in vivo conditions, they do not tend to produce hydrogen gas (as occurs in the case of Mg-based alloys) or voluminous oxide (as occurs in Fe-based alloys). However, the main disadvantages of Zn-based alloys are their reduced mechanical properties and their tendency to provoke undesirable fibrous encapsulation due to their relatively high standard reduction potential. The issue of fibrous encapsulation was previously addressed by the authors via the development of the Zn-2%Fe alloy that was selected as the base alloy for this study. This development assumed that the addition of Fe to pure Zn can create a microgalvanic effect between the Delta phase (Zn11Fe) and the Zn-matrix that significantly increases the biodegradation rate of the alloy. The aim of the present study is to examine the effect of up to 0.8% Mn on the mechanical properties of biodegradable Zn-2%Fe alloy and to evaluate the corrosion behavior and cytotoxicity performance in in vitro conditions. The selection of Mn as an alloying element is related to its vital role in the synthesis of proteins and the activation of enzyme systems, as well as the fact that Mn is not considered to be a toxic element. Microstructure characterization was carried out by optical microscopy and scanning electron microscopy (SEM), while phase analysis was obtained by X-ray diffraction (XRD). Mechanical properties were examined in terms of hardness and tensile strength, while corrosion performance and electrochemical behavior were assessed by immersion tests, open circuit potential examination, potentiodynamic polarization analysis and impedance spectroscopy. All the in vitro corrosion testing was performed in a simulated physiological environment in the form of a phosphate-buffered saline (PBS) solution. The cytotoxicity performance was evaluated by indirect cell viability analysis, carried out according to the ISO 10993-5/12 standard using Mus musculus 4T1 cells. The obtained results clearly demonstrate the strengthening effect of the biodegradable Zn-2%Fe alloy due to Mn addition. The effect of Mn on in vitro corrosion degradation was insignificant, while in parallel Mn had a favorable effect on indirect cell viability.
Collapse
|
34
|
Pan K, Zhang W, Shi H, Dai M, Wei W, Liu X, Li X. Zinc Ion-crosslinked polycarbonate/heparin composite coatings for biodegradable Zn-alloy stent applications. Colloids Surf B Biointerfaces 2022; 218:112725. [PMID: 35914466 DOI: 10.1016/j.colsurfb.2022.112725] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/12/2022] [Accepted: 07/24/2022] [Indexed: 12/19/2022]
Abstract
Zinc and its alloys are the best candidates for biodegradable cardiovascular stents due to their good corrosion rate and biocompatibility in vasculature. However, the cytotoxicity caused by the rapid release of zinc ions during the initial degradation stage and the lack of an anticoagulant function are huge challenges for their practical clinical applications. In this work, we developed a zinc ion-crosslinked polycarbonate/heparin composite coating via electrophoretic deposition (EPD) to improve the biocompatibility and provide anticoagulant functions for Zn-alloy stents. Both electrochemical tests and in vitro immersion tests demonstrated an enhanced corrosion resistance and lower Zn ion release rate of the coated Zn alloys. Enhanced adhesion and proliferation of endothelial cells on coated Zn alloys were also observed, indicating faster reendothelialization than that on bare Zn alloys. Moreover, the surface erosion of the composite coating led to the uniform and long-term release of heparin, which remarkably inhibited the adhesion and activation of platelets, and may have endowed the coated Zn-alloy stents with long-term anticoagulant functions.
Collapse
Affiliation(s)
- Kai Pan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Hui Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Miao Dai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wei Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
35
|
Shang T, Wang K, Tang S, Shen Y, Zhou L, Zhang L, Zhao Y, Li X, Cai L, Wang J. The Flow-Induced Degradation and Vascular Cellular Response Study of Magnesium-Based Materials. Front Bioeng Biotechnol 2022; 10:940172. [PMID: 35875490 PMCID: PMC9301134 DOI: 10.3389/fbioe.2022.940172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Magnesium (Mg)-based materials are considered as potential materials for biodegradable vascular stents, and some Mg-based stents have obtained regulatory approval. However, the development and application of Mg-based stents are still restricted by the rapid degradation rate of Mg and its alloys. In order to screen out the desirable Mg-based materials for stents, the degradation behavior still needs further systematic study, especially the degradation behavior under the action of near-physiological fluid. Currently, the commonly used Mg-based vascular stent materials include pure Mg, AZ31, and WE43. In this study, we systematically evaluated their corrosion behaviors in a dynamic environment and studied the effect of their degradation products on the behavior of vascular cells. The results revealed that the corrosion rate of different Mg-based materials was related to the composition of the elements. The dynamic environment accelerated the corrosion of Mg-based materials. All the same, AZ31 still shows good corrosion resistance. The effect of corrosive products on vascular cells was beneficial to re-endothelialization and inhibition of smooth muscle cell proliferation at the implantation site of vascular stent materials.
Collapse
|
36
|
Fabrication and characterization of biodegradable Zn-Cu-Mn alloy micro-tubes and vascular stents: microstructure, texture, mechanical properties and corrosion behavior. Acta Biomater 2022; 151:647-660. [DOI: 10.1016/j.actbio.2022.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
|
37
|
Hong Q, Zhou H, Cheng Y, Yang M, Zhang Q, Liu S, Xiong Q, Pan C. Synthesis of Star 6-Arm Polyethylene Glycol-Heparin Copolymer to Construct Anticorrosive and Biocompatible Coating on Magnesium Alloy Surface. Front Bioeng Biotechnol 2022; 10:853487. [PMID: 35223805 PMCID: PMC8865805 DOI: 10.3389/fbioe.2022.853487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/01/2022] Open
Abstract
Magnesium alloy has become a research hotspot of the degradable vascular stent materials due to its biodegradability and excellent mechanical properties. However, its rapid degradation rate after implantation and the limited biocompatibility restrict its application in clinic. Constructing a multifunctional bioactive polymer coating on the magnesium alloys represents one of the popular and effective approaches to simultaneously improve the corrosion resistance and biocompatibility. In the present study, the copolymer of 6-arm polyethylene glycol and heparin (PEG-Hep) was successfully synthesized and then immobilized on the surface of chitosan (Chi)-modified magnesium alloy surface through electrostatic interaction to improve the corrosion resistance and biocompatibility. The results of attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy showed that a dense and compact coating was created on the magnesium alloy surface. The coating displayed excellent hydrophilicity. At the same time, the as-prepared coating can significantly not only improve the corrosion potential, reduce the corrosion current and the pH changes of the immersion solution, but also keep a relatively intact surface morphology after immersing in simulated body fluid solution for 14 days, demonstrating that the coating can significantly improve the corrosion resistance of the magnesium alloy. Moreover, the magnesium alloy with PEG-Hep coating exhibited excellent hemocompatibility according to the results of the hemolysis rate and platelet adhesion and activation. In addition, the modified magnesium alloy had a good ability to promote the endothelial cell adhesion and proliferation. Therefore, the PEG-Hep multifunctional coating can be applied in the surface modification of the biodegradable magnesium alloy stent to simultaneously improve the corrosion resistance and biocompatibility.
Collapse
Affiliation(s)
- Qingxiang Hong
- Faculty of Mechanical and Materials Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Hualan Zhou
- The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Yuxin Cheng
- Faculty of Mechanical and Materials Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Minhui Yang
- Faculty of Mechanical and Materials Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Materials Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Sen Liu
- Faculty of Mechanical and Materials Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Qingping Xiong
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Changjiang Pan
- Faculty of Mechanical and Materials Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an, China
- *Correspondence: Changjiang Pan,
| |
Collapse
|
38
|
Sun X, Yu X, Li W, Chen M, Liu D. Mechanical properties, degradation behavior and cytocompatibility of biodegradable 3vol%X (X = MgO, ZnO and CuO)/Zn matrix composites with excellent dispersion property fabricated by graphene oxide-assisted hetero-aggregation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112722. [DOI: 10.1016/j.msec.2022.112722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 01/10/2023]
|
39
|
Jiang J, Qian Y, Huang H, Niu J, Yuan G. Biodegradable Zn-Cu-Mn alloy with suitable mechanical performance and in vitro degradation behavior as a promising candidate for vascular stents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112652. [PMID: 35034818 DOI: 10.1016/j.msec.2022.112652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Recently, zinc (Zn) alloy has been considered as a promising biodegradable material due to its excellent physiological degradable behavior and acceptable biocompatibility. However, poor mechanical performance limits its application as vascular stents. In this study, novel biodegradable Zn-2.2Cu-xMn (x = 0.4, 0.7, and 1.0 wt%) alloys with suitable mechanical performance were investigated. The effects of Mn addition on microstructure, mechanical properties, and in vitro degradation of Zn-2.2Cu-xMn alloys were systematically investigated. After adding Mn, dynamic recrystallization (DRX) during hot extrusion was promoted, resulting in slightly finer grain size, higher DRXed regions ratio, and weaker texture. And volume fraction and number density of second phase precipitates (micron, submicron, and nano-sized ε and MnZn13 phase) and the concentration of (Cu, Mn) in the matrix were increased. Therefore, Zn-2.2Cu-xMn alloys exhibited suitable mechanical performances (strength >310 MPa, elongation >30%) mainly due to the combination effects of grain refinement, solid solution strengthening, second phase precipitation hardening, and texture weakening. Moreover, the alloys maintained good stability of mechanical properties within 18 months and good elongation over 15% even at a high strain rate of 0.1 s-1. In addition, the alloys presented appropriate in vitro degradation rates in a basically uniform degradation mode and acceptable in vitro cytocompatibility. The above results indicated that the newly designed biodegradable Zn-2.2Cu-0.4Mn alloy with suitable comprehensive mechanical properties, appropriate degradation behavior, and acceptable cytocompatibility is a promising candidate for vascular stents.
Collapse
Affiliation(s)
- Jimiao Jiang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Qian
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Hua Huang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
40
|
Yuan W, Xia D, Wu S, Zheng Y, Guan Z, Rau JV. A review on current research status of the surface modification of Zn-based biodegradable metals. Bioact Mater 2022; 7:192-216. [PMID: 34466727 PMCID: PMC8379348 DOI: 10.1016/j.bioactmat.2021.05.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, zinc and its alloys have been proposed as promising candidates for biodegradable metals (BMs), owning to their preferable corrosion behavior and acceptable biocompatibility in cardiovascular, bone and gastrointestinal environments, together with Mg-based and Fe-based BMs. However, there is the desire for surface treatment for Zn-based BMs to better control their biodegradation behavior. Firstly, the implantation of some Zn-based BMs in cardiovascular environment exhibited intimal activation with mild inflammation. Secondly, for orthopedic applications, the biodegradation rates of Zn-based BMs are relatively slow, resulting in a long-term retention after fulfilling their mission. Meanwhile, excessive Zn2+ release during degradation will cause in vitro cytotoxicity and in vivo delayed osseointegration. In this review, we firstly summarized the current surface modification methods of Zn-based alloys for the industrial applications. Then we comprehensively summarized the recent progress of biomedical bulk Zn-based BMs as well as the corresponding surface modification strategies. Last but not least, the future perspectives towards the design of surface bio-functionalized coatings on Zn-based BMs for orthopedic and cardiovascular applications were also briefly proposed.
Collapse
Affiliation(s)
- Wei Yuan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Dandan Xia
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, 100081, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, 100081, China
| | - Zhenpeng Guan
- Orthopedics Department, Peking University Shougang Hospital, No. 9 Jinyuanzhuang Rd, Shijingshan District, Beijing, 100144, China
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133, Rome, Italy
- Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991, Moscow, Russia
| |
Collapse
|
41
|
Current status and outlook of biodegradable metals in neuroscience and their potential applications as cerebral vascular stent materials. Bioact Mater 2021; 11:140-153. [PMID: 34938919 PMCID: PMC8665265 DOI: 10.1016/j.bioactmat.2021.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/01/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past two decades, biodegradable metals (BMs) have emerged as promising materials to fabricate temporary biomedical devices, with the purpose of avoiding potential side effects of permanent implants. In this review, we first surveyed the current status of BMs in neuroscience, and briefly summarized the representative stents for treating vascular stenosis. Then, inspired by the convincing clinical evidence on the in vivo safety of Mg alloys as cardiovascular stents, we analyzed the possibility of producing biodegradable cerebrovascular Mg alloy stents for treating ischemic stroke. For these novel applications, some key factors should also be considered in designing BM brain stents, including the anatomic features of the cerebral vasculature, hemodynamic influences, neuro-cytocompatibility and selection of alloying elements. This work may provide insights into the future design and fabrication of BM neurological devices, especially for brain stents. The current status of the application of biodegradable metals (BM) in neuroscience was presented. We analyzed the possibility of producing biodegradable cerebrovascular Mg alloy stents for ischemic stroke treatment. Key factors in designing BM brain stents were discussed. This work may provide insights into the future design and fabrication of BM neurological devices, especially for brain stents.
Collapse
|
42
|
Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects. Biomaterials 2021; 280:121301. [PMID: 34922270 DOI: 10.1016/j.biomaterials.2021.121301] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023]
Abstract
The need for the development of load-bearing, absorbable wound closure devices is driving the research for novel materials that possess both good biodegradability and superior mechanical characteristics. Biodegradable metals (BMs), namely: magnesium (Mg), zinc (Zn) and iron (Fe), which are currently being investigated for absorbable vascular stent and orthopaedic implant applications, are slowly gaining research interest for the fabrication of wound closure devices. The current review presents an overview of the traditional and novel BM-based intracutaneous and transcutaneous wound closure devices, and identifies Zn as a promising substitute for the traditional materials used in the fabrication of absorbable load-bearing sutures, internal staples, and subcuticular staples. In order to further strengthen Zn to be used in highly stressed situations, nutrient elements (NEs), including calcium (Ca), Mg, Fe, and copper (Cu), are identified as promising alloying elements for the strengthening of Zn-based wound closure device material that simultaneously provide potential therapeutic benefit to the wound healing process during implant biodegradation process. The influence of NEs on the fundamental characteristics of biodegradable Zn are reviewed and critically assessed with regard to the mechanical properties and biodegradability requirements of different wound closure devices. The opportunities and challenges in the development of Zn-based wound closure device materials are presented to inspire future research on this rapidly growing field.
Collapse
|
43
|
Zhang ZQ, Yang YX, Li JA, Zeng RC, Guan SK. Advances in coatings on magnesium alloys for cardiovascular stents - A review. Bioact Mater 2021; 6:4729-4757. [PMID: 34136723 PMCID: PMC8166647 DOI: 10.1016/j.bioactmat.2021.04.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Magnesium (Mg) and its alloys, as potential biodegradable materials, have drawn wide attention in the cardiovascular stent field because of their appropriate mechanical properties and biocompatibility. Nevertheless, the occurrence of thrombosis, inflammation, and restenosis of implanted Mg alloy stents caused by their poor corrosion resistance and insufficient endothelialization restrains their anticipated clinical applications. Numerous surface treatment tactics have mainly striven to modify the Mg alloy for inhibiting its degradation rate and enduing it with biological functionality. This review focuses on highlighting and summarizing the latest research progress in functionalized coatings on Mg alloys for cardiovascular stents over the last decade, regarding preparation strategies for metal oxide, metal hydroxide, inorganic nonmetallic, polymer, and their composite coatings; and the performance of these strategies in regulating degradation behavior and biofunction. Potential research direction is also concisely discussed to help guide biological functionalized strategies and inspire further innovations. It is hoped that this review can give assistance to the surface modification of cardiovascular Mg-based stents and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Zhao-Qi Zhang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Yong-Xin Yang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jing-An Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Rong-Chang Zeng
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shao-Kang Guan
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| |
Collapse
|
44
|
Li P, Zhang W, Spintzyk S, Schweizer E, Krajewski S, Alexander D, Dai J, Xu S, Wan G, Rupp F. Impact of sterilization treatments on biodegradability and cytocompatibility of zinc-based implant materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112430. [PMID: 34702515 DOI: 10.1016/j.msec.2021.112430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/29/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022]
Abstract
Biodegradable zinc (Zn) and Zn-based alloys have been recognized as promising biomaterials for biomedical implants. Sterilization is an essential step in handling Zn-based implants before their use in clinical practice and there are various sterilization methods are available. However, how these treatments influence the Zn-based biomaterials remains unknown and is of critical relevance. In this study, three commonly-applied standard sterilization methods, namely gamma irradiation, hydrogen peroxide gas plasma and steam autoclave, were used on pure Zn and Zn3Cu (wt%) alloy. The treated Zn and ZnCu alloy were investigated to compare the different influences of sterilizations on surface characteristics, transient and long-term degradation behavior and cytotoxicity of Zn and Zn alloy. Our results indicate that autoclaving brought about apparently a formation of inhomogeneous zinc oxide film whereas the other two methods produced no apparent alterations on the material surfaces. Consequently, the samples after autoclaving showed significantly faster degradation rates and more severe localized corrosion, especially for the ZnCu alloy, owing to the incomplete covering and unstable zinc oxide layer. Moreover, the autoclave-treated Zn and ZnCu alloy exhibited apparent cytotoxic effects towards fibroblasts, which may be due to the excessive Zn ion releasing and its local concentration exceeds the cellular tolerance capacity. In contrast, gamma irradiation and hydrogen peroxide gas plasma had no apparent adverse effects on the biodegradability and cytocompatibility of Zn and ZnCu alloy. Our findings may have significant implications regarding the selection of suitable sterilization methods for Zn-based implant materials among others.
Collapse
Affiliation(s)
- Ping Li
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Sebastian Spintzyk
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Ernst Schweizer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Stefanie Krajewski
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Jingtao Dai
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany.
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Frank Rupp
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| |
Collapse
|
45
|
Liu L, Lu L, Zhang HJ, Wang LN. Influence of bovine serum albumin on corrosion behaviour of pure Zn in phosphate buffered saline. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:95. [PMID: 34406479 PMCID: PMC8373726 DOI: 10.1007/s10856-021-06567-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 07/21/2021] [Indexed: 05/31/2023]
Abstract
Zinc (Zn) and its alloys have received increasing attention as new alternative biodegradable metals. However, consensus has not been reached on the corrosion behaviour of Zn. As cardiovascular artery stent material, Zn is supposed to contact with plasma that contains inorganic salts and organic components. Protein is one of the most important constitute in the plasma and could adsorb on the material surface. In this paper, bovine serum albumin (BSA) was used as a typical protein. Influences of BSA on pure Zn corrosion in phosphate buffered saline is investigated as a function of BSA concentrations and immersion durations by electrochemical techniques and surface analysis. Results showed that pure Zn corrosion was progressively accelerated with BSA concentrations (ranging from 0.05 to 5 g L-1) at 0.5 h. With time evolves, formation of phosphates as corrosion product was delayed by BSA adsorption, especially at concentration of 2 g L-1. Within 48 h, the corrosion of pure Zn was alleviated by BSA at concentration of 0.1 g L-1, whereas the corrosion was enhanced after 168 h. Addition of 2 g L-1 BSA has opposite influence on the pure Zn corrosion. Furthermore, schematic corrosion behaviour at protein/Zn interfaces was proposed. This work encourages us to think more about the influence of protein on the material corrosion and helps us to better understand the corrosion behaviour of pure Zn.
Collapse
Affiliation(s)
- Lijun Liu
- Beijing Advanced Innovation Centre for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lili Lu
- Beijing Advanced Innovation Centre for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai-Jun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Qihe, Shandong, 251100, China
| | - Lu-Ning Wang
- Beijing Advanced Innovation Centre for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- State Key Laboratory of Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
46
|
Jarzębska A, Maj Ł, Bieda M, Chulist R, Wojtas D, Wątroba M, Janus K, Rogal Ł, Sztwiertnia K. Dynamic Recrystallization and Its Effect on Superior Plasticity of Cold-Rolled Bioabsorbable Zinc-Copper Alloys. MATERIALS 2021; 14:ma14133483. [PMID: 34201474 PMCID: PMC8269478 DOI: 10.3390/ma14133483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 11/26/2022]
Abstract
High plasticity of bioabsorbable stents, either cardiac or ureteral, is of great importance in terms of implants’ fabrication and positioning. Zn-Cu constitutes a promising group of materials in terms of feasible deformation since the superplastic effect has been observed in them, yet its origin remains poorly understood. Therefore, it is crucial to inspect the microstructural evolution of processed material to gain an insight into the mechanisms leading to such an extraordinary property. Within the present study, cold-rolled Zn-Cu alloys, i.e., Zn with addition of 1 wt.% and 5 wt.% of Cu, have been extensively investigated using scanning electron microscopy as well as transmission electron microscopy, so as to find out the possible explanation of superior plasticity of the Zn-Cu alloys. It has been stated that the continuous dynamic recrystallization has a tremendous impact on superior plasticity reported for Zn-1Cu alloy processed by rolling to 90% of reduction rate. The effect might be supported by static recrystallization, provoking grain growth and thereby yielding non-homogeneous microstructures. Such heterogeneous microstructure enables better formability since it increases the mean free path for dislocation movement.
Collapse
Affiliation(s)
- Anna Jarzębska
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Krakow, Poland; (Ł.M.); (M.B.); (R.C.); (D.W.); (K.J.); (Ł.R.); (K.S.)
- Correspondence:
| | - Łukasz Maj
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Krakow, Poland; (Ł.M.); (M.B.); (R.C.); (D.W.); (K.J.); (Ł.R.); (K.S.)
| | - Magdalena Bieda
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Krakow, Poland; (Ł.M.); (M.B.); (R.C.); (D.W.); (K.J.); (Ł.R.); (K.S.)
| | - Robert Chulist
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Krakow, Poland; (Ł.M.); (M.B.); (R.C.); (D.W.); (K.J.); (Ł.R.); (K.S.)
| | - Daniel Wojtas
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Krakow, Poland; (Ł.M.); (M.B.); (R.C.); (D.W.); (K.J.); (Ł.R.); (K.S.)
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Maria Wątroba
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland;
| | - Karol Janus
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Krakow, Poland; (Ł.M.); (M.B.); (R.C.); (D.W.); (K.J.); (Ł.R.); (K.S.)
| | - Łukasz Rogal
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Krakow, Poland; (Ł.M.); (M.B.); (R.C.); (D.W.); (K.J.); (Ł.R.); (K.S.)
| | - Krzysztof Sztwiertnia
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Krakow, Poland; (Ł.M.); (M.B.); (R.C.); (D.W.); (K.J.); (Ł.R.); (K.S.)
| |
Collapse
|
47
|
Recent advances and directions in the development of bioresorbable metallic cardiovascular stents: Insights from recent human and in vivo studies. Acta Biomater 2021; 127:1-23. [PMID: 33823325 DOI: 10.1016/j.actbio.2021.03.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Over the past two decades, significant advancements have been made regarding the material formulation, iterative design, and clinical translation of metallic bioresorbable stents. Currently, magnesium-based (Mg) stent devices have remained at the forefront of bioresorbable stent material development and use. Despite substantial advances, the process of developing novel absorbable stents and their clinical translation is time-consuming, expensive, and challenging. These challenges, coupled with the continuous refinement of alternative bioresorbable metallic bulk materials such as iron (Fe) and zinc (Zn), have intensified the search for an ideal absorbable metallic stent material. Here, we discuss the most recent pre-clinical and clinical evidence for the efficacy of bioresorbable metallic stents and material candidates. From this perspective, strategies to improve the clinical performance of bioresorbable metallic stents are considered and critically discussed, spanning material alloy development, surface manipulations, material processing techniques, and preclinical/biological testing considerations. STATEMENT OF SIGNIFICANCE: Recent efforts in using Mg, Fe, and Zn based materials for bioresorbable stents include elemental profile changes as well as surface modifications to improve each of the three classes of materials. Although a variety of alloys for absorbable metallic stents have been developed, the ideal absorbable stent material has not yet been discovered. This review focuses on the state of the art for bioresorbable metallic stent development. It covers the three bulk materials used for degradable stents (Mg, Fe, and Zn), and discusses their advances from a translational perspective. Strategies to improve the clinical performance of bioresorbable metallic stents are considered and critically discussed, spanning material alloy development, surface manipulations, material processing techniques, and preclinical/biological testing considerations.
Collapse
|
48
|
Early electrochemical characteristics and corrosion behaviors of pure zinc in simulated body fluid. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Wątroba M, Bednarczyk W, Kawałko J, Bała P. Fine-tuning of mechanical properties in a Zn-Ag-Mg alloy via cold plastic deformation process and post-deformation annealing. Bioact Mater 2021; 6:3424-3436. [PMID: 33817418 PMCID: PMC7988494 DOI: 10.1016/j.bioactmat.2021.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 11/29/2022] Open
Abstract
In recent years, Zn-based materials have been extensively investigated as potential candidates for biodegradable implant applications. The introduction of alloying elements providing solid-solution strengthening and second phase strengthening seems crucial to provide a suitable platform for the thermo-mechanical strengthening of Zn alloys. In this study, a systematic investigation of the microstructure, crystallographic texture, phase composition, and mechanical properties of a Zn-3Ag-0.5Mg (wt%) alloy processed through combined hot extrusion (HE) and cold rolling (CR), followed by short-time heat treatment (CR + HT) at 200 °C was conducted. Besides, the influence of different annealing temperatures on the microstructure and mechanical properties was studied. An adequate combination of processing conditions during CR and HT successfully addressed brittleness obtained in the high-strength HE Zn-3Ag-0.5Mg alloy. By controlling the microstructure, the most promising results were obtained in the sample subjected to 50% CR reduction and 5-min annealing, which were: ultimate tensile strength of 432 MPa, yield strength of 385 MPa, total elongation to failure of 34%, and Vickers microhardness of 125 HV0.3. The obtained properties clearly exceed the mechanical benchmarks for biodegradable implant materials. Based on the conducted investigation, brittle multi-phase Zn alloys' mechanical performance can be substantially enhanced to provide sufficient plasticity by grain refinement through cold deformation process, followed by short-time annealing to restore proper strength.
Collapse
Affiliation(s)
- Maria Wątroba
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Wiktor Bednarczyk
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jakub Kawałko
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Piotr Bała
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland.,AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
50
|
Kabir H, Munir K, Wen C, Li Y. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioact Mater 2021; 6:836-879. [PMID: 33024903 PMCID: PMC7530311 DOI: 10.1016/j.bioactmat.2020.09.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Biodegradable metals (BMs) gradually degrade in vivo by releasing corrosion products once exposed to the physiological environment in the body. Complete dissolution of biodegradable implants assists tissue healing, with no implant residues in the surrounding tissues. In recent years, three classes of BMs have been extensively investigated, including magnesium (Mg)-based, iron (Fe)-based, and zinc (Zn)-based BMs. Among these three BMs, Mg-based materials have undergone the most clinical trials. However, Mg-based BMs generally exhibit faster degradation rates, which may not match the healing periods for bone tissue, whereas Fe-based BMs exhibit slower and less complete in vivo degradation. Zn-based BMs are now considered a new class of BMs due to their intermediate degradation rates, which fall between those of Mg-based BMs and Fe-based BMs, thus requiring extensive research to validate their suitability for biomedical applications. In the present study, recent research and development on Zn-based BMs are reviewed in conjunction with discussion of their advantages and limitations in relation to existing BMs. The underlying roles of alloy composition, microstructure, and processing technique on the mechanical and corrosion properties of Zn-based BMs are also discussed.
Collapse
Affiliation(s)
- Humayun Kabir
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Khurram Munir
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|