1
|
Huang C, Wang Y, Yang F, Shi Y, Zhao S, Li X, Lu Y, Wu Y, Zhou J, Zadpoor AA, Xu W, Li Y, Wang L. Additively manufactured biodegradable Zn-Mn-based implants with an unprecedented balance of strength and ductility. Acta Biomater 2025; 196:506-522. [PMID: 39993520 DOI: 10.1016/j.actbio.2025.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Additively manufactured (AM) biodegradable zinc alloys hold huge potential as promising candidates for bone defect and fracture repair, thanks to their suitable biodegradation rates and acceptable biocompatibility. However, the mechanical properties of AM zinc alloys developed so far, ductility in particular, fall short of the requirements for bone substitution. Here, we present Zn-1Mn and Zn-1Mn-0.4Mg alloy implants with unique microstructures, fabricated using laser powder bed fusion (LPBF). Notably, the LPBF Zn-Mn-Mg alloy exhibited an extraordinary balance of strength and ductility, with an ultimate tensile strength of 289 MPa, yield strength of 213.5 MPa, and elongation over 20 %, outperforming all previously reported AM zinc alloys. The simultaneously enhanced strength and ductility of the ternary alloy were attributed to the strong grain-refining effect of the Mg2Zn11 second phase and the synthetic strengthening caused by the dispersion of the MnZn13 and Mg2Zn11 second phases inside the grains and at the grain boundaries. In addition, both alloys had similar rates of in vitro biodegradation (∼0.15 mm/year), properly aligned with the bone remodeling process, while also demonstrating favorable biocompatibility and upregulating multiple osteogenic markers. The Zn-Mn-Mg alloy showed even better osteogenic potential than the Zn-Mn alloy, owing to the addition of Mg. The combined attributes of the LPBF Zn-Mn-Mg ternary alloy indicated huge potential for its use as a bone repair material, especially for load-bearing bone fixation. STATEMENT OF SIGNIFICANCE: The mechanical properties of previously developed additively manufactured biodegradable zinc alloys, especially ductility, have not met the requirements for bone repair. Using laser powder bed fusion (LPBF), we fabricated Zn-1Mn and Zn-1Mn-0.4Mg alloy implants with unique microstructures. The LPBF Zn-Mn-Mg alloy demonstrated an exceptional balance of strength and ductility, achieving a tensile strength of 289 MPa, yield strength of 213.5 MPa, and elongation over 20 %, surpassing all reported AM zinc alloys. This study is the first to produce a directly printed biodegradable alloy meeting the mechanical requirements for bone fixation devices without post-processing. Additionally, the alloy exhibited moderate a biodegradation rate and excellent biocompatibility, underscoring its potential for load-bearing bone repair applications.
Collapse
Affiliation(s)
- Chengcong Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China
| | - Yizhu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Fan Yang
- Department of Orthopaedics, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Yixuan Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China
| | - Shangyan Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China
| | - Xuan Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China
| | - Yuchen Lu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China
| | - Yuzhi Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Wei Xu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China.
| | - Luning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China.
| |
Collapse
|
2
|
Li XM, Shi ZZ, Zhang JY, Zhou C, Wang LN. 380 MPa-30% grade biodegradable Zn-Mn-Mg-Ca alloy: Bimodal grain structure, large work-hardening strain, and enhanced biocompatibility. Acta Biomater 2025; 193:584-603. [PMID: 39710221 DOI: 10.1016/j.actbio.2024.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Strain softening is a common issue for high-strength biodegradable Zn alloys. We developed Zn-0.6Mn-0.05Mg-0.05Ca alloy with a bimodal grain structure by extrusion and caliber rolling, refer to as ZMMC063 (CRD). The alloy exhibits the best strength-ductility synergy among Zn-Mn based alloys, which shows a yield strength of 386 MPa, an ultimate tensile strength of 443 MPa, and an elongation rate of 31%. This is the first 380 MPa-30% grade Zn-Mn based alloy, surpassing the previous reported Zn alloy with 320 MPa-20% grade. Its work-hardening strain reaches as high as 11.6%, which is 4 times greater than that of other 300 MPa Zn-Mn based alloys. This is owing to hetero-deformation induced strengthening effect of the bimodal grain. Additionally, it demonstrates for the first time that micro-galvanic corrosion happens between coarse and fine Zn grains, thereby accelerating degradation of the alloy. This provides a feasible protocol for controlling degradation of Zn alloys. Compared with the extruded Zn-0.6Mn-0.05Mg-0.05Ca alloy, refer to as ZMMC063 (HE), the increased release of Mg2+ and Ca2+ ions in ZMMC063 (CRD) improves tolerance of MC3T3-E1 cells to Zn2+. Consequently, ZMMC063 (CRD) shows higher antibacterial abilities against E. coli and S. aureus, meanwhile much less toxicity to MC3T3-E1 cells. Synergistic effect of Zn2+, Mg2+ and Ca2+ ions promote expression of ALP, COl-1, OCN and Runx-2, so that ZMMC063 (CRD) exhibits better ability to induce osteogenic differentiation. This paper suggests that ZMMC063 (CRD) is a promising candidate for orthopedic implants. STATEMENT OF SIGNIFICANCE: Previously the highest yield strength-elongation level of Zn-Mn based alloys is 320 MPa-20% grade. At such a high strength, the alloys' work-hardening strain (Ewh) values are below 4%. To further improve comprehensive properties of Zn-Mn based alloys, 380 MPa-30% grade Zn-0.6Mn-0.05Mg-0.05Ca alloy with bimodal grain structure is developed by extrusion and caliber rolling. The alloy's Ewh reaches as high as 11.6%, due to the hetero-deformation induced effect of bimodal grain structure. Additionally, micro-galvanic corrosion happens between bimodal grains, which accelerates the alloy's degradation. In vitro studies show that the alloy exhibits enhanced antibacterial activity, good cytocompatibility, and promising osteogenic effect, indicating that it is a promising candidate for orthopedic implants.
Collapse
Affiliation(s)
- Xiang-Min Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zhang-Zhi Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China.
| | - Jia-You Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Chao Zhou
- Institute for Cultural Heritage and History of Science and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lu-Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China.
| |
Collapse
|
3
|
Lu C, Song C, Yu Y, Yang L, Zheng W, Luo F, Xiao Y, Luo J, Xu J. Biodegradable zinc alloys with high strength and suitable mechanical integrity as bone repair metals. Sci Rep 2024; 14:30558. [PMID: 39702751 DOI: 10.1038/s41598-024-78842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
Mechanical properties and integrity of biodegradable Zn alloys during degradation holds significant importance. In this study, a Zn-Mg-Mn alloy with tensile strength of 414 MPa and an elongation of 26% was developed. The strength contributions of as-extruded Zn alloy from grain boundary strengthening, precipitation strengthening, and second phase strengthening. Degradation of the Zn alloy in Hank's solution exhibited a decreasing trend with prolonged immersion, eventually stabilizing at 16 μm/year. Corrosion morphology analysis revealed that the corrosion modes transformed from pitting corrosion to severely localized corrosion with prolonged immersion time, eventually lead to formation of large holes. Although the tensile strength of the Zn alloys remained relatively unchanged following varied immersion time, a substantial decrease in elongation was observed. The decreased elongation primarily attributed to the formation of surface corrosion pits or holes, exacerbating crack propagation during tension. Biocompatibility assessments of Zn alloys demonstrated that a 50% concentration of Zn alloy leach solution cultured with C3H10 and RMSC cells yielded cellular activity exceeding 80%, indicating excellent cytocompatibility. Alkaline phosphatase (ALP) and alizarin red staining results further underscored the remarkable early and late osteogenic properties exhibited by Zn-Mg-Mn alloy.
Collapse
Affiliation(s)
- Chengwu Lu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China
- Nanping First Hospital Affiliated to Fujian Medical University, Nanping, 353000, China
| | - Chao Song
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, China
| | - Yunlong Yu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, China
| | - Linhai Yang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Wu Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, China
| | - Fenqi Luo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, China
| | - Yuhua Xiao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, China
| | - Jun Luo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China.
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China.
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, China.
| | - Jie Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China.
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China.
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, China.
| |
Collapse
|
4
|
Palai D, Roy T, De A, Mukherjee S, Bandyopadhyay S, Dhara S, Das S, Das K. Study on the Bioactivity Response of the Newly Developed Zn-Cu-Mn/Mg Alloys for Biodegradable Implant Application. ACS Biomater Sci Eng 2024; 10:6167-6190. [PMID: 39230934 DOI: 10.1021/acsbiomaterials.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Scaffolds play a crucial role in bone tissue engineering to support the defect area through bone regeneration and defect reconstruction. Promising tissue regeneration without negative repercussions and avoidance of the lifelong presence inside the body make bioresorbable metals prosper in the field of regenerative medicine. Recently, Zn and its alloys have emerged as promising biodegradable materials for their moderate degradation rate and satisfactory biocompatibility. Nevertheless, it is very challenging for cells to adhere and grow over the Zn surface alone, which influences the tissue-implant integration. In this study, an attempt has been made to systematically investigate the bioactivity responses in terms of in vitro hemocompatibility, cytotoxicity, antibacterial activity, and in vivo biocompatibility of newly developed Zn-2Cu-0.5Mn/Mg alloy scaffolds with different surface roughness. The rough surface of Zn-2Cu-0.5Mg shows the highest degradation rate of 0.16 mm/yr. The rough surface exhibits a prominent role in the adsorption of protein, further enhancing cell adhesion. Concentration-dependent alloy extract shows the highest cell proliferation for 12.5% of the extract with a maximum cell viability of 101% in Zn-2Cu-0.5Mn and 108% in Zn-2Cu-0.5Mg after 3 d. Acceptable hemolysis percentages (less than 5%) with promising anticoagulation properties are observed for all of the conditions. Enhanced antibacterial (Staphylococcus aureus and Escherichia coli) activity due to a significant effect of ions illustrates the maximum killing effect on the bacterial colony for the rough Zn-2Cu-0.5Mg alloy. In addition, it is observed that for rough Zn-2Cu-0.5Mn/Mg alloys, the inflammatory response is minimal after subcutaneous implantation, and neo-bone tissue forms in the defect areas of the rat femur with satisfactory biosafety response. The osseointegration property of the Zn-2Cu-0.5Mg alloy is comparable to that of the Zn-2Cu-0.5Mn alloy. Therefore, the rough surface of the Zn-2Cu-0.5Mg alloy has the potential to enhance biocompatibility and promote better osseointegration activity with host tissues for various biomedical applications.
Collapse
Affiliation(s)
- Debajyoti Palai
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Trina Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amiyangshu De
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayan Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sharba Bandyopadhyay
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Siddhartha Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Karabi Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Shen S, Lin Y, Sun J, Liu Y, Chen Y, Lu J. A New Tissue Engineering Strategy to Promote Tendon-bone Healing: Regulation of Osteogenic and Chondrogenic Differentiation of Tendon-derived Stem Cells. Orthop Surg 2024; 16:2311-2325. [PMID: 39043618 PMCID: PMC11456719 DOI: 10.1111/os.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
In the field of sports medicine, repair surgery for anterior cruciate ligament (ACL) and rotator cuff (RC) injuries are remarkably common. Despite the availability of relatively effective treatment modalities, outcomes often fall short of expectations. This comprehensive review aims to thoroughly examine current strategies employed to promote tendon-bone healing and analyze pertinent preclinical and clinical research. Amidst ongoing investigations, tendon-derived stem cells (TDSCs), which have comparatively limited prior exploration, have garnered increasing attention in the context of tendon-bone healing, emerging as a promising cell type for regenerative therapies. This review article delves into the potential of combining TDSCs with tissue engineering methods, with ACL reconstruction as the main focus. It comprehensively reviews relevant research on ACL and RC healing to address the issues of graft healing and bone tunnel integration. To optimize tendon-bone healing outcomes, our emphasis lies in not only reconstructing the original microstructure of the tendon-bone interface but also achieving proper bone tunnel integration, encompassing both cartilage and bone formation. In this endeavor, we thoroughly analyze the transcriptional and molecular regulatory variables governing TDSCs differentiation, incorporating a retrospective analysis utilizing single-cell sequencing, with the aim of unearthing relevant signaling pathways and processes. By presenting a novel strategy rooted in TDSCs-driven osteogenic and chondrogenic differentiation for tendon-bone healing, this study paves the way for potential future research avenues and promising therapeutic applications. It is anticipated that the findings herein will contribute to advancing the field of tendon-bone healing and foster the exploration of TDSCs as a viable option for regenerative therapies in the future.
Collapse
Affiliation(s)
- Sinuo Shen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yucheng Lin
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jiachen Sun
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuanhao Liu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuzhi Chen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jun Lu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
6
|
Wang T, Zhao AQ, Yan Y, Wang LN. Crevice corrosion behavior of a biodegradable Zn-Mn-Mg alloy in simulated body fluid. Biomater Sci 2024; 12:4957-4966. [PMID: 39158571 DOI: 10.1039/d4bm00965g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Crevice corrosion at the implantation sites cannot be neglected in clinical applications of biodegradable zinc alloys as implants. In this study, a crevice corrosion protocol was designed to investigate the crevice corrosion behavior of the Zn-0.45Mn-0.2Mg (ZMM42) alloy for the first time, by varying crevice thicknesses in simulated body fluid (SBF) through immersion and electrochemical analysis. The results indicated that the ZMM42 alloy was susceptible to crevice corrosion in the range from 0.03 mm to 0.2 mm. When the crevice thickness was 0.05 mm, the crevice corrosion of the specimen became more severe compared to other thicknesses.
Collapse
Affiliation(s)
- Ting Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - An-Qi Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Yu Yan
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, PR China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lu-Ning Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, PR China
| |
Collapse
|
7
|
Meng F, Du Y. Research Progress on Laser Powder Bed Fusion Additive Manufacturing of Zinc Alloys. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4309. [PMID: 39274701 PMCID: PMC11395926 DOI: 10.3390/ma17174309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
Zinc, along with magnesium and iron, is considered one of the most promising biodegradable metals. Compared with magnesium and iron, pure Zn exhibits poor mechanical properties, despite its mild biological corrosion behavior and beneficial biocompatibility. Laser powder bed fusion (LPBF), unlike traditional manufacturing techniques, has the capability to rapidly manufacture near-net-shape components. At present, although the combination of LPBF and Zn has made great progress, it is still in its infancy. Element loss and porosity are common processing problems for LPBF Zn, mainly due to evaporation during melting under a high-energy beam. The formation quality and properties of the final material are closely related to the alloy composition, design and processing. This work reviews the state of research and future perspective on LPBF zinc from comprehensive assessments such as powder characteristics, alloy composition, processing, formation quality, microstructure, and properties. The effects of powder characteristics, process parameters and evaporation on formation quality are introduced. The mechanical, corrosion, and biocompatibility properties of LPBF Zn and their test methodologies are introduced. The effects of microstructure on mechanical properties and corrosion properties are analyzed in detail. The practical medical application of Zn is introduced. Finally, current research status is summarized together with suggested directions for advancing knowledge about LPBF Zn.
Collapse
Affiliation(s)
- Fuxiang Meng
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yulei Du
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
8
|
Yuan K, Deng C, Tan L, Wang X, Yan W, Dai X, Du R, Zheng Y, Zhang H, Wang G. Structural and temporal dynamics analysis of zinc-based biomaterials: History, research hotspots and emerging trends. Bioact Mater 2024; 35:306-329. [PMID: 38362138 PMCID: PMC10867564 DOI: 10.1016/j.bioactmat.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Objectives To examine the 16-year developmental history, research hotspots, and emerging trends of zinc-based biodegradable metallic materials from the perspective of structural and temporal dynamics. Methods The literature on zinc-based biodegradable metallic materials in WoSCC was searched. Historical characteristics, the evolution of active topics and development trends in the field of zinc-based biodegradable metallic materials were analyzed using the bibliometric tools CiteSpace and HistCite. Results Over the past 16 years, the field of zinc-based biodegradable metal materials has remained in a hotspot stage, with extensive scientific collaboration. In addition, there are 45 subject categories and 51 keywords in different research periods, and 80 papers experience citation bursts. Keyword clustering anchored 3 emerging research subfields, namely, #1 plastic deformation #4 additive manufacturing #5 surface modification. The keyword alluvial map shows that the longest-lasting research concepts in the field are mechanical property, microstructure, corrosion behavior, etc., and emerging keywords are additive manufacturing, surface modification, dynamic recrystallization, etc. The most recent research on reference clustering has six subfields. Namely, #0 microstructure, #2 sem, #3 additive manufacturing, #4 laser powder bed fusion, #5 implant, and #7 Zn-1Mg. Conclusion The results of the bibliometric study provide the current status and trends of research on zinc-based biodegradable metallic materials, which can help researchers identify hot spots and explore new research directions in the field.
Collapse
Affiliation(s)
- Kunshan Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Chengchen Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Lili Tan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenhua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Ruolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
9
|
Yang F, Li Y, Wang L, Che H, Zhang X, Jahr H, Wang L, Jiang D, Huang H, Wang J. Full-thickness osteochondral defect repair using a biodegradable bilayered scaffold of porous zinc and chondroitin sulfate hydrogel. Bioact Mater 2024; 32:400-414. [PMID: 37885916 PMCID: PMC10598503 DOI: 10.1016/j.bioactmat.2023.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/26/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
The regeneration of osteochondral tissue necessitates the re-establishment of a gradient owing to the unique characteristics and healing potential of the chondral and osseous phases. As the self-healing capacity of hyaline cartilage is limited, timely mechanical support during neo-cartilage formation is crucial to achieving optimal repair efficacy. In this study, we devised a biodegradable bilayered scaffold, comprising chondroitin sulfate (CS) hydrogel to regenerate chondral tissue and a porous pure zinc (Zn) scaffold for regeneration of the underlying bone as mechanical support for the cartilage layer. The photocured CS hydrogel possessed a compressive strength of 82 kPa, while the porous pure Zn scaffold exhibited a yield strength of 11 MPa and a stiffness of 0.8 GPa. Such mechanical properties are similar to values reported for cancellous bone. In vitro biological experiments demonstrated that the bilayered scaffold displayed favorable cytocompatibility and promoted chondrogenic and osteogenic differentiation of bone marrow stem cells. Upon implantation, the scaffold facilitated the simultaneous regeneration of bone and cartilage tissue in a porcine model, resulting in (i) a smoother cartilage surface, (ii) more hyaline-like cartilage, and (iii) a superior integration into the adjacent host tissue. Our bilayered scaffold exhibits significant potential for clinical application in osteochondral regeneration.
Collapse
Affiliation(s)
- Fan Yang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Lei Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Haodong Che
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xin Zhang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Holger Jahr
- Institute of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen, 52074, Germany
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062, Aachen, Germany
| | - Luning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Dong Jiang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Hongjie Huang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jianquan Wang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| |
Collapse
|
10
|
Wang X, Huang S, Peng Q. Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration. Bioengineering (Basel) 2023; 10:1367. [PMID: 38135958 PMCID: PMC10741145 DOI: 10.3390/bioengineering10121367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Hydroxyapatite (HA)-based materials are widely used in the bone defect restoration field due to their stable physical properties, good biocompatibility, and bone induction potential. To further improve their performance with extra functions such as antibacterial activity, various kinds of metal ion-doped HA-based materials have been proposed and synthesized. This paper offered a comprehensive review of metal ion-doped HA-based materials for bone defect restoration based on the introduction of the physicochemical characteristics of HA followed by the synthesis methods, properties, and applications of different kinds of metal ion (Ag+, Zn2+, Mg2+, Sr2+, Sm3+, and Ce3+)-doped HA-based materials. In addition, the underlying challenges for bone defect restoration using these materials and potential solutions were discussed.
Collapse
Affiliation(s)
- Xuan Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Shan Huang
- Changsha Health Vocational College, Changsha 410100, China;
| | - Qian Peng
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| |
Collapse
|
11
|
Palai D, Siva Prasad P, Satpathy B, Das S, Das K. Development of Zn-2Cu- xMn/Mg Alloys for Orthopedic Applications: Mechanical Performance to In Vitro Degradation under Different Physiological Environments. ACS Biomater Sci Eng 2023; 9:6058-6083. [PMID: 37774322 DOI: 10.1021/acsbiomaterials.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Zinc (Zn) and its alloys are considered futuristic biodegradable materials for their acceptable mechanical properties, suitable corrosion rate, and good biocompatibility. In this study, we report newly developed biodegradable Zn-2Cu-xMn/Mg (x = 0, 0.1, and 0.5) alloys, aiming to achieve good mechanical strength with excellent elongation, desirable wear resistance, and suitable corrosion rate. The effect of Mn/Mg addition on the structural, mechanical, wear, and degradation behaviors of the Zn-2Cu-xMn/Mg alloys was thoroughly investigated. Degradation and tribological behaviors of the alloys were explored in the presence of simulated body fluid (SBF), Dulbecco's modified Eagle medium (DMEM), and DMEM with a 10% fetal bovine serum (FBS) solution. Alloy elements and hot rolling improve their mechanical properties significantly due to precipitation hardening, grain refinement, and solid solution strengthening owing to the formation of MnZn13 and Mg2Zn11 phases. Among all the alloys, the Zn-2Cu-0.5Mn alloy achieved the highest ultimate tensile strength (UTS) of ∼405 MPa and yield strength (YS) of ∼293 MPa with an excellent elongation of ∼51%. The corrosion behavior of the alloys as determined by a potentiodynamic polarization study under different solutions follows the sequence Zn-2Cu < Zn-2Cu-0.5Mn < Zn-2Cu-0.1Mn < Zn-2Cu-0.1Mg < Zn-2Cu-0.5Mg. The corrosion rate by immersion testing for 30 and 90 days also follows the same sequence. The corrosion rate in different solutions follows the order SBF > DMEM + 10%FBS > DMEM. The addition of Mn/Mg also improves the wear resistance and slows the wear rate under wet conditions. The bending test results also indicate the highest bending strength of ∼375 MPa for the Zn-2Cu-0.5Mn alloy, among all the alloys. The bending and tensile strengths deteriorate continuously after the immersion for 30 and 90 days in the solution of SBF, DMEM, and DMEM + 10%FBS. Therefore, the Zn-2Cu-xMn/Mg (x = 0.1 and 0.5) alloys can be considered potential biodegradable implant materials.
Collapse
Affiliation(s)
- Debajyoti Palai
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - P Siva Prasad
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Bangmaya Satpathy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Siddhartha Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Karabi Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
12
|
Zhang M, Wang X, Zhang S, Wang T, Wang X, Liu S, Zhao L, Cui C. Fabrication and Properties of a Biodegradable Zn-Ca Composite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6432. [PMID: 37834567 PMCID: PMC10573115 DOI: 10.3390/ma16196432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In recent years, Zn and its alloys have become some of the most promising degradable metals as in vivo implants due to their acceptable biocompatibility and more suitable degradation rate compared with Mg-based and Fe-based alloys. However, the degradation rate of Zn-based materials after implantation in the body for orthopedic applications is relatively slow, leading to long-term retention of the implants after fulfilling their missions. Moreover, the excessive release of Zn2+ during the degradation process of Zn-based implants usually leads to high cytotoxicity and delayed osseointegration. To provide a feasible solution to the problem faced by Zn-based implants, a Zn-Ca composite was fabricated by an air pressure infiltration method in this work. The XRD pattern of the composite suggests that the composite is fully composed of Zn-Ca intermetallic compounds. The degradation tests in vitro show that the composite has a much higher degradation rate than pure Zn, and the high Ca content regions in the composite can preferentially degrade as sacrificial anodes. In addition, the composite can efficiently induce Ca-P deposition during immersion tests in Hank's solution. Cytotoxicity tests indicate that L-929 cells exhibit around 82% cell viability (Grade 1) even after being cultured in the 100% extract prepared from the Zn-Ca composite for 1 day and show excellent cell viability.
Collapse
Affiliation(s)
- Mengsi Zhang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xinyuan Wang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Zhang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Tiebao Wang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xin Wang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shuiqing Liu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lichen Zhao
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chunxiang Cui
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
13
|
Liang W, Zhou C, Zhang H, Bai J, Jiang B, Jiang C, Ming W, Zhang H, Long H, Huang X, Zhao J. Recent advances in 3D printing of biodegradable metals for orthopaedic applications. J Biol Eng 2023; 17:56. [PMID: 37644461 PMCID: PMC10466721 DOI: 10.1186/s13036-023-00371-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
The use of biodegradable polymers for treating bone-related diseases has become a focal point in the field of biomedicine. Recent advancements in material technology have expanded the range of materials suitable for orthopaedic implants. Three-dimensional (3D) printing technology has become prevalent in healthcare, and while organ printing is still in its early stages and faces ethical and technical hurdles, 3D printing is capable of creating 3D structures that are supportive and controllable. The technique has shown promise in fields such as tissue engineering and regenerative medicine, and new innovations in cell and bio-printing and printing materials have expanded its possibilities. In clinical settings, 3D printing of biodegradable metals is mainly used in orthopedics and stomatology. 3D-printed patient-specific osteotomy instruments, orthopedic implants, and dental implants have been approved by the US FDA for clinical use. Metals are often used to provide support for hard tissue and prevent complications. Currently, 70-80% of clinically used implants are made from niobium, tantalum, nitinol, titanium alloys, cobalt-chromium alloys, and stainless steels. However, there has been increasing interest in biodegradable metals such as magnesium, calcium, zinc, and iron, with numerous recent findings. The advantages of 3D printing, such as low manufacturing costs, complex geometry capabilities, and short fabrication periods, have led to widespread adoption in academia and industry. 3D printing of metals with controllable structures represents a cutting-edge technology for developing metallic implants for biomedical applications. This review explores existing biomaterials used in 3D printing-based orthopedics as well as biodegradable metals and their applications in developing metallic medical implants and devices. The challenges and future directions of this technology are also discussed.
Collapse
Grants
- (LGF22H060023 to WQL) Public Technology Applied Research Projects of Zhejiang Province
- (2022KY433 to WQL, 2023KY1303 to HGL) Medical and Health Research Project of Zhejiang Province
- (2022KY433 to WQL, 2023KY1303 to HGL) Medical and Health Research Project of Zhejiang Province
- (2021FSYYZY45 to WQL) Research Fund Projects of The Affiliated Hospital of Zhejiang Chinese Medicine University
- (2022C31034 to CZ, 2023C31019 to HJZ) Science and Technology Project of Zhoushan
- (2022C31034 to CZ, 2023C31019 to HJZ) Science and Technology Project of Zhoushan
- (2022ZB380 to JYZ, 2023016295 to WYM, 2023007231 to CYJ ) Traditional Chinese Medicine Science and Technology Projects of Zhejiang Province
- (2022ZB380 to JYZ, 2023016295 to WYM, 2023007231 to CYJ ) Traditional Chinese Medicine Science and Technology Projects of Zhejiang Province
- (2022ZB380 to JYZ, 2023016295 to WYM, 2023007231 to CYJ ) Traditional Chinese Medicine Science and Technology Projects of Zhejiang Province
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000 China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Zhoushan, 316000 China
| | - Chanyi Jiang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Zhoushan, 316000 Zhejiang Province P.R. China
| | - Wenyi Ming
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Xiaogang Huang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| |
Collapse
|
14
|
Singh Raman RK, Wen C, Löffler JF. Human Body-Fluid-Assisted Fracture of Zinc Alloys as Biodegradable Temporary Implants: Challenges, Research Needs and Way Forward. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4984. [PMID: 37512259 PMCID: PMC10383560 DOI: 10.3390/ma16144984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Alloys of magnesium, zinc or iron that do not contain toxic elements are attractive as construction material for biodegradable implants, i.e., the type of implants that harmlessly dissolve away within the human body after they have completed their intended task. The synergistic influence of mechanical stress and corrosive human body fluid can cause sudden and catastrophic fracture of bioimplants due to phenomena such as stress corrosion cracking (SCC) and corrosion fatigue (CF). To date, SCC and CF of implants based on Zn have scarcely been investigated. This article is an overview of the challenges, research needs and way forward in understanding human body-fluid-assisted fractures (i.e., SCC and CF) of Zn alloys in human body fluid.
Collapse
Affiliation(s)
- R K Singh Raman
- Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne VIC 3001, Australia
| | - Jörg F Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
15
|
Xie G, Kuang Z, Li J, Zhang Y, Han S, Li C, Zhu D, Liu Y. Thermal Deformation Behavior and Dynamic Softening Mechanisms of Zn-2.0Cu-0.15Ti Alloy: An Investigation of Hot Processing Conditions and Flow Stress Behavior. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4431. [PMID: 37374614 DOI: 10.3390/ma16124431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Through isothermal hot compression experiments at various strain rates and temperatures, the thermal deformation behavior of Zn-2.0Cu-0.15Ti alloy is investigated. The Arrhenius-type model is utilized to forecast flow stress behavior. Results show that the Arrhenius-type model accurately reflects the flow behavior in the entire processing region. The dynamic material model (DMM) reveals that the optimal processing region for the hot processing of Zn-2.0Cu-0.15Ti alloy has a maximum efficiency of about 35%, in the temperatures range (493-543 K) and a strain rate range (0.01-0.1 s-1). Microstructure analysis demonstrates that the primary dynamic softening mechanism of Zn-2.0Cu-0.15Ti alloy after hot compression is significantly influenced by temperature and strain rate. At low temperature (423 K) and low strain rate (0.1 s-1), the interaction of dislocations is the primary mechanism for the softening Zn-2.0Cu-0.15Ti alloys. At a strain rate of 1 s-1, the primary mechanism changes to continuous dynamic recrystallization (CDRX). Discontinuous dynamic recrystallization (DDRX) occurs when Zn-2.0Cu-0.15Ti alloy is deformed under the conditions of 523 K/0.1 s-1, while twinning dynamic recrystallization (TDRX) and CDRX are observed when the strain rate is 10 s-1.
Collapse
Affiliation(s)
- Guilan Xie
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China
| | - Zhihao Kuang
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China
| | - Jingxin Li
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China
| | - Yating Zhang
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China
| | - Shilei Han
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China
| | - Chengbo Li
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China
| | - Daibo Zhu
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China
| | - Yang Liu
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Zhuzhou Smelter Group Co., Ltd., Zhuzhou 412005, China
| |
Collapse
|
16
|
Qiang H, Hou C, Zhang Y, Luo X, Li J, Meng C, Liu K, Lv Z, Chen X, Liu F. CaP-coated Zn-Mn-Li alloys regulate osseointegration via influencing macrophage polarization in the osteogenic environment. Regen Biomater 2023; 10:rbad051. [PMID: 37324238 PMCID: PMC10267298 DOI: 10.1093/rb/rbad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/17/2023] Open
Abstract
Immune response is an important factor in determining the fate of bone replacement materials, in which macrophages play an important role. It is a new idea to design biomaterials with immunomodulatory function to reduce inflammation and promote bone integration by regulating macrophages polarization. In this work, the immunomodulatory properties of CaP Zn-Mn-Li alloys and the specific mechanism of action were investigated. We found that the CaP Zn0.8Mn0.1Li alloy promoted the polarization of macrophages toward M2 and reduced inflammation, which could effectively upregulate osteogenesis-related factors and promote new bone formation, indicating the important role of macrophages polarization in biomaterial induction of osteogenesis. In vivo studies further demonstrated that CaP Zn0.8Mn0.1Li alloy could stimulate osteogenesis better than other Zn-Mn-Li alloys implantations by regulating macrophages polarization and reducing inflammation. In addition, transcriptome results showed that CaP Zn0.8Mn0.1Li played an important regulatory role in the life process of macrophages, activating Toll-like receptor signaling pathway, which participated in the activation and attenuation of inflammation, and accelerated bone integration. Thus, by preparing CaP coatings on the surface of Zn-Mn-Li alloys and combining the bioactive ingredient with controlled release, the biomaterial will be imbibed with beneficial immunomodulatory properties that promote bone integration.
Collapse
Affiliation(s)
| | | | - Yujue Zhang
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Xin Luo
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
| | - Jun Li
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
| | - Chunxiu Meng
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
| | - Kun Liu
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
| | - Zhaoyong Lv
- Correspondence address. E-mail: (Z.L.); (X.C.); (F.L.)
| | - Ximeng Chen
- Correspondence address. E-mail: (Z.L.); (X.C.); (F.L.)
| | - Fengzhen Liu
- Correspondence address. E-mail: (Z.L.); (X.C.); (F.L.)
| |
Collapse
|
17
|
Kabir H, Munir K, Wen C, Li Y. Microstructures, mechanical and corrosion properties of graphene nanoplatelet-reinforced zinc matrix composites for implant applications. Acta Biomater 2023; 157:701-719. [PMID: 36476647 DOI: 10.1016/j.actbio.2022.11.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Zinc (Zn)-based alloys and composites are gaining increasing interest as promising biodegradable implant materials due to their appropriate biodegradation rates and biological functionalities. However, the inadequate mechanical strength and ductility of pure Zn have restricted its application. In this study, Zn matrix composites (ZMCs) reinforced with 0.1-0.4 wt.% graphene nanoplatelets (GNP) fabricated via powder metallurgy were investigated as potential biodegradable implant materials. The microstructures, mechanical properties, and corrosion behaviors of the GNP-reinforced ZMCs were characterized using optical microscopy, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, Raman spectroscopy, compression testing, and electrochemical and immersion testing in Hanks' balanced salt solution (HBSS). The microstructural study revealed that the GNP was uniformly dispersed in the ZMCs after ball milling and sintering at 420°C for 6 h. The microhardness, compressive yield strength, ultimate compressive strength, and compressive strain of the ZMC-0.2GNP were 69 HV, 123 MPa, 247 MPa, and 23 %, respectively, improvements of ∼ 18 %, 50%, ∼ 28%, and ∼ 15% compared to pure Zn. The corrosion rate of the ZMCs were lower than that of the pure Zn in HBSS, and the ZMC-0.2GNP composite exhibited the lowest corrosion rate of 0.09 mm/y as measured by electrochemical testing. Biocompatibility assessment indicated that the diluted extracts of pure Zn and GNP-reinforced ZMCs with concentrations of 12.5% and 6.25% exhibited no cytotoxicity after cell culturing for up to 5 days, and the diluted extracts of ZMC-0.2 GNP composite revealed more than 90% cell viability after cell culturing of 3 days, showing the satisfying cytocompatibility. STATEMENT OF SIGNIFICANCE: Biodegradable Zn is a promising candidate material for orthopedic implant applications. Nonetheless, the inadequate mechanical strength and ductility of pure Zn limited its clinical application. In this study, Zn matrix composites (ZMCs) reinforced with 0.1-0.4 wt.% graphene nanoplatelets (GNP) were developed via powder metallurgy, and the reinforcing efficacy of GNP on their mechanical properties was investigated. The addition of GNP significantly improved the compressive properties of ZMCs, with the Zn-0.2GNP composite exhibiting the best compressive properties, including 123 MPa compressive yield strength, 247 MPa ultimate compressive strength, and 22.9% compressive strain. Further, the 12.5% concentration extract of the ZMCs exhibited no cytotoxicity after cell culturing for 5 d toward SaOS2 cells.
Collapse
Affiliation(s)
- Humayun Kabir
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Khurram Munir
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
18
|
Saab M, Hildebrand F, Martel B, Blanchemain N. Osteoinductive Bone Morphogenic Protein, Collagen Scaffold, Calcium Phosphate Cement, and Magnesium-Based Fixation Enhance Anterior Cruciate Ligament Tendon Graft to Bone Healing In Animal Models: A Systematic Review. Arthroscopy 2023; 39:529-548.e9. [PMID: 35714968 DOI: 10.1016/j.arthro.2022.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/04/2022] [Accepted: 05/27/2022] [Indexed: 02/09/2023]
Abstract
PURPOSE To perform a systematic literature review to analyze the results of the in vivo animal models and strategies that use osteoinductive materials to enhance the tendon graft-bone interface for anterior cruciate ligament reconstruction (ACLR). METHODS Following the Preferred Reporting Items for Systemic Reviews and Meta-Analysis guidelines, the PubMed, Embase, and Web of Science databases were searched. The inclusion criteria were studies of in vivo animal models of ACLR using a material to enhance tendon graft-bone interface healing and reporting at least the histologic results at the interface, along with radiologic and biomechanical data. Studies without control group or with another tendon-bone healing model were excluded. Methodologic quality was assessed with the Animal Research: Reporting In Vivo Experiments 1guidelines. RESULTS Twenty-seven studies met the inclusion criteria. Rabbit was the main animal model of ACLR, along with sheep and dog models. ACLR procedures varied widely between studies.. The main promising strategies and materials were wrapping the material around the graft, with a collagen scaffold loaded with an osteoinductive molecule (mostly bone morphogenetic proteins). The second strategy consisted of injecting the material at the tendon-bone interface; calcium phosphate cement or a derivative were the most used materials. Finally, using osteoinductive fixation devices was the third strategy; magnesium-based interference screws seemed to show most favorable results. CONCLUSIONS The studies retained had major methodologic flaws that limit the scope of these conclusions. However, based on histologic, biomechanical, and radiologic analyses, the most promising materials were a collagen scaffold loaded with an osteoinductive molecule and wrapped around the graft, calcium phosphate cement injected in the bone tunnel, and a magnesium-based fixation device. CLINICAL RELEVANCE In vivo animal models have identified several promising strategies and materials to optimize the tendon-bone interface after ACLR, but standardized and reproducible assessments are needed before these strategies can be adopted clinically.
Collapse
Affiliation(s)
- Marc Saab
- CHU Lille, Orthopaedic and Traumatology Department, Hôpital Roger Salengro, Lille, France.
| | - Feng Hildebrand
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille, University of Lille, Lille, France
| | - Bernard Martel
- UMR 8207, UMET-Unité Matériaux et Transformations, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Ecole Nationale Supérieure de Chimie de Lille (ENSCL), University of Lille, Lille, France
| | - Nicolas Blanchemain
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille, University of Lille, Lille, France
| |
Collapse
|
19
|
Qiang HF, Lv ZY, Hou CY, Luo X, Li J, Liu K, Meng CX, Du WQ, Zhang YJ, Chen XM, Liu FZ. Development of biodegradable Zn-Mn-Li and CaP coatings on Zn-Mn-Li alloys and cytocompatibility evaluation for bone graft. Front Bioeng Biotechnol 2022; 10:1013097. [PMID: 36185442 PMCID: PMC9515419 DOI: 10.3389/fbioe.2022.1013097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Zn-based alloys are considered as new kind of potential biodegradable implanted biomaterials recently. The difficulty of metal implanted biomaterials and bone tissue integration seriously affects the applications of metal implanted scaffolds in bone tissue-related fields. Herein, we self-designed Zn0.8Mn and Zn0.8Mn0.1Li alloys and CaP coated Zn0.8Mn and Zn0.8Mn0.1Li alloys, then evaluated the degradation property and cytocompatibility. The results demonstrated that the Zn0.8Mn0.1Li alloys had profoundly modified the degradation property and cytocompatibility, but Zn0.8Mn0.1Li alloys had particularly adverse effects on the surface morphology of osteoblasts. The results furtherly showed that the CaP-coated Zn0.8Mn and Zn0.8Mn0.1Li alloys scaffold had better biocompatibility, which would further guarantee the biosafety of this new kind of biodegradable Zn-based alloys implants for future clinical applications.
Collapse
Affiliation(s)
- Hui-Fen Qiang
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng, China
| | - Zhao-Yong Lv
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
| | - Cai-Yao Hou
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng, China
| | - Xin Luo
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
| | - Jun Li
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
| | - Kun Liu
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
| | - Chun-Xiu Meng
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
| | - Wan-Qing Du
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
| | - Yu-Jue Zhang
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
- *Correspondence: Feng-Zhen Liu, ; Xi-Meng Chen, ; Yu-Jue Zhang,
| | - Xi-Meng Chen
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
- *Correspondence: Feng-Zhen Liu, ; Xi-Meng Chen, ; Yu-Jue Zhang,
| | - Feng-Zhen Liu
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng, China
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
- *Correspondence: Feng-Zhen Liu, ; Xi-Meng Chen, ; Yu-Jue Zhang,
| |
Collapse
|
20
|
Huang H, Li G, Jia Q, Bian D, Guan S, Kulyasova O, Valiev RZ, Rau JV, Zheng Y. Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon. Acta Biomater 2022; 152:1-18. [PMID: 36028200 DOI: 10.1016/j.actbio.2022.08.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 01/09/2023]
Abstract
Zinc based biodegradable metals (BMs) show great potential to be used in various biomedical applications, owing to their superior biodegradability and biocompatibility. Some high-strength (ultimate tensile strength > 600 MPa) Zn based BMs have already been developed through alloying and plastic working, making their use in load-bearing environments becomes a reality. However, different from Mg and Fe based BMs, Zn based BMs exhibit significant "strain-softening" effect that leads to limited uniform deformation. Non-uniform deformation is detrimental to Zn based devices or implants, which will possibly lead to unexpected failure. People might be misled by the considerable fracture elongation of Zn based BMs. Thus, it is important to specify uniform elongation as a term of mechanical requirements for Zn based BMs. In this review, recent advances on the mechanical properties of Zn based BMs have been comprehensively summarized, especially focusing on the strain softening phenomenon. At first, the origin and evaluation criteria of strain softening were introduced. Secondly, the effects of alloying elements (including element type, single or multiple addition, and alloying content) and microstructural characteristics (grain size, constituent phase, phase distribution, etc.) on mechanical properties (especially for uniform elongation) of Zn based BMs were summarized. Finally, how to get a good balance between strength and uniform elongation was generally discussed based on the service environment. In addition, possible ways to minimize or eliminate the strain softening effect were also proposed, such as controlling of twins, solute clusters, and grain boundary characteristics. All these items above would be helpful to understand the mechanical instability of Zn based BMs, and to make the full usage of them in the future medical device design. STATEMENT OF SIGNIFICANCE: Biodegradable metals (BMs) is a hotspot in the field of metallic biomaterials. Fracture elongation is normally adopted to quantify the deformability of Mg and Fe based BMs owing to their negligible necking strain, yet the strain softening would occur in Zn based BMs, which is extremely detrimental to performance of their medical device. In this review paper, a better understanding the mechanical performance of Zn-based BMs with the term "uniform elongation" instead of "fracture elongation" was depicted, and possible ways to minimize or eliminate the strain softening effect were also proposed, such as twins, solute clusters, self-stable dislocation network, and grain boundary characteristics. It would be helpful to understand the mechanical instability of Zn based BMs and making full usage of it in the future medical device design.
Collapse
Affiliation(s)
- He Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China
| | - Guannan Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Qinggong Jia
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China
| | - Dong Bian
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China
| | - Olga Kulyasova
- Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx St., Ufa, 450008, Russia
| | - R Z Valiev
- Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx St., Ufa, 450008, Russia
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133, Rome, Italy; Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991 Moscow, Russia
| | - Yufeng Zheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China; School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Xiang E, Gómez-Cerezo MN, Ali Y, Ramachandra SS, Yang N, Dargusch M, Moran CS, Ivanovski S, Abdal-Hay A. Surface Modification of Pure Zinc by Acid Etching: Accelerating the Corrosion Rate and Enhancing Biocompatibility and Antibacterial Characteristics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22554-22569. [PMID: 35533291 DOI: 10.1021/acsami.2c00918] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zinc (Zn) has recently been identified as an auspicious biodegradable metal for medical implants and devices due to its tunable mechanical properties and good biocompatibility. However, the slow corrosion rate of Zn in a physiological environment does not meet the requirements for biodegradable implants, hindering its clinical translation. The present study aimed to accelerate the corrosion rate of pure Zn by utilizing acid etching to roughen the surface and increase the substrate surface area. The effects of acid etching on surface morphology, surface roughness, tensile properties, hardness, electrochemical corrosion and degradation behavior, cytocompatibility, direct cell attachment, and biofilm formation were investigated. Interestingly, acid-treated Zn showed an exceptionally high rate of corrosion (∼226-125 μm/year) compared to untreated Zn (∼62 μm/year), attributed to the increased surface roughness (Ra ∼ 1.12 μm) of acid-etched samples. Immersion tests in Hank's solution revealed that acid etching accelerated the degradation rate of Zn samples. In vitro, MC3T3-E1 cell lines in 50 and 25% conditioned media extracts of treated samples showed good cytocompatibility. Reduced bacterial adhesion, biofilm formation, and dispersion were observed for Staphylococci aureus biofilms cultured on acid-etched pure Zn substrates. These results suggest that the surface modification of biodegradable pure Zn metals by acid etching markedly increases the translation potential of zinc for various biomedical applications.
Collapse
Affiliation(s)
- Enmao Xiang
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
| | | | - Yahia Ali
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Nan Yang
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew Dargusch
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Corey S Moran
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
| | - Abdalla Abdal-Hay
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 85325, Egypt
| |
Collapse
|
22
|
Ribeiro VP, Costa JB, Carneiro SM, Pina S, Veloso ACA, Reis RL, Oliveira JM. Bioinspired Silk Fibroin-Based Composite Grafts as Bone Tunnel Fillers for Anterior Cruciate Ligament Reconstruction. Pharmaceutics 2022; 14:pharmaceutics14040697. [PMID: 35456531 PMCID: PMC9029049 DOI: 10.3390/pharmaceutics14040697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Anterior cruciate ligament (ACL) replacement is still a big challenge in orthopedics due to the need to develop bioinspired implants that can mimic the complexity of bone-ligament interface. In this study, we propose biomimetic composite tubular grafts (CTGs) made of horseradish peroxidase (HRP)-cross-linked silk fibroin (SF) hydrogels containing ZnSr-doped β-tricalcium phosphate (ZnSr-β-TCP) particles, as promising bone tunnel fillers to be used in ACL grafts (ACLGs) implantation. For comparative purposes, plain HRP-cross-linked SF hydrogels (PTGs) were fabricated. Sonication and freeze-drying methodologies capable of inducing crystalline β-sheet conformation were carried out to produce both the CTGs and PTGs. A homogeneous microstructure was achieved from microporous to nanoporous scales. The mechanical properties were dependent on the inorganic powder’s incorporation, with a superior tensile modulus observed on the CTGs (12.05 ± 1.03 MPa) as compared to the PTGs (5.30 ± 0.93 MPa). The CTGs presented adequate swelling properties to fill the space in the bone structure after bone tunnel enlargement and provide a stable degradation profile under low concentration of protease XIV. The in vitro studies revealed that SaOs-2 cells adhered, proliferated and remained viable when cultured into the CTGs. In addition, the bioactive CTGs supported the osteogenic activity of cells in terms of alkaline phosphatase (ALP) production, activity, and relative gene expression of osteogenic-related markers. Therefore, this study is the first evidence that the developed CTGs hold adequate structural, chemical, and biological properties to be used as bone tunnel fillers capable of connecting to the ACL tissue while stimulating bone tissue regeneration for a faster osteointegration.
Collapse
Affiliation(s)
- Viviana P. Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (V.P.R.); (J.B.C.)
| | - João B. Costa
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (V.P.R.); (J.B.C.)
| | - Sofia M. Carneiro
- Instituto Politécnico de Coimbra (ISEC), Departamento de Engenharia Química e Biológica (DEQB), Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal; (S.M.C.); (A.C.A.V.)
| | - Sandra Pina
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana C. A. Veloso
- Instituto Politécnico de Coimbra (ISEC), Departamento de Engenharia Química e Biológica (DEQB), Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal; (S.M.C.); (A.C.A.V.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
23
|
Shang Z, Li D, Chen J, Wang M, Zhang B, Wang X, Ma B. The Role of Biodegradable Magnesium and Its Alloys in Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis Based on Animal Studies. Front Bioeng Biotechnol 2021; 9:789498. [PMID: 34869297 PMCID: PMC8636800 DOI: 10.3389/fbioe.2021.789498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/09/2022] Open
Abstract
Objective: The actual efficacy of magnesium and its alloy in anterior cruciate ligament reconstruction (ACLR) was systematically evaluated to reduce the risk of translation from animal experiments to the clinic. Methods: Databases of PubMed, Ovid-Embase, Web of Science, CNKI, Wanfang, VIP, and CBM were searched for literature in July 2021. Screening of search results, data extraction, and literature quality evaluation were undertaken independently by two reviewers. Results and discussion: Seven articles were selected for the meta-analysis. The results showed that the mechanical properties of the femoral-tendon graft–tibia complex fixed with magnesium and its alloys were comparable to those fixed with titanium and its alloys, and magnesium and its alloys were superior to titanium and its alloys in promoting new bone formation. In addition, the unique biodegradability made magnesium and its alloys an orthopedic implant with significant therapeutic potential. However, whether the degradation rate of magnesium and its alloy can match the rate of bone-tendon integration, and whether the bioconjugation of bone-tendon after degradation can meet the exercise load still needs to be explored in further detail. Simultaneously, it is necessary for future research to improve and standardize experimental design, result measurement, etc., so as to minimize the risk of transforming animal experimental results into clinical practice.
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Dongliang Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Jinlei Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Mingchuan Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Xin Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China.,Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bin Ma
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Sun S, Ye G, Lu Z, Weng Y, Ma G, Liu J. Surface Treatment of Zn-Mn-Mg Alloys by Micro-Arc Oxidation in Silicate-Based Solutions with Different NaF Concentrations. MATERIALS 2021; 14:ma14154289. [PMID: 34361481 PMCID: PMC8348314 DOI: 10.3390/ma14154289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022]
Abstract
Newly developed Zn-Mn-Mg alloys can be invoked as biomedical materials because of their excellent mechanical properties. However, the corrosion behavior of Zn-Mn-Mg alloys was still lacking in research. It had grown to be a hot research topic to improve the corrosion behavior of Zn alloys by surface treatment to meet the application of degradable Zn alloys in biomedical applications. Micro arc oxidation (MAO) is a simple and effective method to improve the corrosion behavior of the alloy. MAO coatings were successfully prepared on the surface of Zn-Mn-Mg alloys by MAO in silicate-based solutions with different NaF concentrations. The microstructure and phase composition of MAO coatings prepared on Zn-Mn-Mg alloys with different NaF concentrations in the electrolyte was examined by a scanning electron microscope and X-ray diffraction. The results showed that the MAO coatings are porous and mainly composed of ZnO. With the increasing NaF concentration in the electrolyte, the average thickness increases. The distribution of the micro/nanopores was uniform, and the pore size ranged from the submicron scale to several micrometers after MAO treatment in the electrolyte containing different concentrations of NaF. Potential dynamic polarization curves and electrochemical impedance spectroscopy were employed to assess the corrosion behavior of MAO coatings in Hank’s solution. The highest corrosion rate can be achieved after MAO treatment, with an electrolyte concentration of 1.5 g/L NaF in Hank’s solution. These results indicated that MAO coating can accelerate the corrosion resistance of a Zn-Mn-Mg alloy.
Collapse
Affiliation(s)
- Shineng Sun
- Institute of Innovative Science and Technology, Shenyang University, Shenyang 110044, China; (G.Y.); (Z.L.); (Y.W.); (G.M.)
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Correspondence:
| | - Guo Ye
- Institute of Innovative Science and Technology, Shenyang University, Shenyang 110044, China; (G.Y.); (Z.L.); (Y.W.); (G.M.)
| | - Ziting Lu
- Institute of Innovative Science and Technology, Shenyang University, Shenyang 110044, China; (G.Y.); (Z.L.); (Y.W.); (G.M.)
| | - Yuming Weng
- Institute of Innovative Science and Technology, Shenyang University, Shenyang 110044, China; (G.Y.); (Z.L.); (Y.W.); (G.M.)
| | - Guofeng Ma
- Institute of Innovative Science and Technology, Shenyang University, Shenyang 110044, China; (G.Y.); (Z.L.); (Y.W.); (G.M.)
| | - Jiatao Liu
- Chinalco Shenyang Non-Ferrous Metals Processing Co., Ltd., Shenyang 110108, China;
| |
Collapse
|
25
|
He X, Huang Z, Liu W, Liu Y, Qian H, Lei T, Hua L, Hu Y, Zhang Y, Lei P. Electrospun polycaprolactone/hydroxyapatite/ZnO films as potential biomaterials for application in bone-tendon interface repair. Colloids Surf B Biointerfaces 2021; 204:111825. [PMID: 33984615 DOI: 10.1016/j.colsurfb.2021.111825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/07/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
The bone-tendon interface (BTI) is a graded structure consisting of bone, mineralized and nonmineralized fibrocartilage, and tendons. Due to the complexity of the BTI structure, BTI healing is particularly challenging. To achieve a better material for BTI healing, polycaprolactone (PCL)/hydroxyapatite (HA)/ZnO films were constructed by the electrospinning method; in addition, the relevant material characteristics were tested. After culturing MC3T-E1 cells, ATDC5 cells, mouse primary fibrochondrocytes, and mouse primary tenocytes on films, PCL-5%HA-1%ZnO films (HA and ZnO weight ratios of 5% and 1%, respectively) displayed superior cell compatibility and cell adhesion. PCL-5%HA-1%ZnO films also promoted osteogenesis, chondrogenesis, fibrocartilage formation, and tendon healing. The antibacterial characteristics of PCL-5%HA-1%ZnO films were also identified in this study. The PCL-5%HA-1%ZnO films have great application potential in the field of BTI repair.
Collapse
Affiliation(s)
- Xi He
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zongwang Huang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Wenbin Liu
- Department of Orthopaedical Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yanling Liu
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Department of Urology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Hu Qian
- Department of Orthopaedical Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Ting Lei
- Department of Orthopaedical Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Long Hua
- Department of Orthopaedical Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yihe Hu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China; Department of Orthopaedical Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410078, China.
| | - Yi Zhang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Pengfei Lei
- Department of Orthopaedical Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|