1
|
Zhang T, Liu S, He S, Shi L, Ma R. Strategies to Enhance the Therapeutic Efficacy of GLP-1 Receptor Agonists through Structural Modification and Carrier Delivery. Chembiochem 2025; 26:e202400962. [PMID: 39744852 DOI: 10.1002/cbic.202400962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Diabetes is a metabolic disorder characterized by insufficient endogenous insulin production or impaired sensitivity to insulin. In recent years, a class of incretin-based hypoglycemic drugs, glucagon-like peptide-1 receptor agonists (GLP-1RAs), have attracted great attention in the management of type 2 diabetes mellitus (T2DM) due to their benefits, including stable glycemic control ability, a low risk of hypoglycemia, and weight reduction for patients. However, like other peptide drugs, GLP-1RAs face challenges such as instability, susceptibility to enzymatic degradation, and immunogenicity, which severely limit their clinical application. In recent years, various strategies have been developed to improve the bioavailability and therapeutic efficacy of GLP-1RAs, including structural modification and carrier-mediated delivery. This article briefly introduces the research and application status of several common GLP-1RAs and their limitations. Taking exendin-4 as an example, we focus on the research progress of improving bioavailability and therapeutic efficacy based on structural modification and carrier delivery strategies, aiming to provide reference for the development of new GLP-1RAs treatment systems.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Sainan Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Suning He
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
2
|
Shergujri DA, Khanday MA, Noor A, Adnan M, Arif I, Raza SN, Mir RH, Khan NA. Next-generation biopolymer gels: innovations in drug delivery and theranostics. J Mater Chem B 2025; 13:3222-3244. [PMID: 39903271 DOI: 10.1039/d4tb02068e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Biopolymers or natural polymers like chitosan, cellulose, alginate, collagen, etc. have gained significant interest recently due to their remarkable tunable properties that make them appropriate for a variety of applications & play a crucial role in everyday life. The features of biopolymers which include biodegradability, biocompatibility, sustainability, affordability, & availability are vital for creating products for use in biomedical fields. Apart from these characteristics, smart or stimuli-responsive biopolymers also show a distinctive property of being susceptible to various factors like pH, temperature, light intensity, & electrical or magnetic fields. The current review would present a brief idea about smart biopolymer gels along with their biomedical applications. The use of smart biopolymers gels as theranostic agents are also discussed in the present review. This review also focuses on the application of biopolymers in the fields of drug delivery, cancer treatment, tissue engineering & wound healing. These areas demonstrate the development and utilization of different types of biopolymers in current biomedical applications.
Collapse
Affiliation(s)
- Danish Ahmad Shergujri
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Murtaza Ahmad Khanday
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Aisha Noor
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Iqra Arif
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Syed Naiem Raza
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Nisar Ahmad Khan
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| |
Collapse
|
3
|
Liu W, Lei L, Ma F, Zhan M, Zhu J, Khan MZH, Liu X. A Dioscorea opposita Polysaccharide-Calcium Carbonate Microsphere-Doped Hydrogel for Accelerated Diabetic Wound Healing via Synergistic Glucose-Responsive Hypoglycemic and Anti-Inflammatory Effects. ACS Biomater Sci Eng 2025; 11:415-428. [PMID: 39743314 DOI: 10.1021/acsbiomaterials.4c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
As common complications of diabetes, long-term hyperglycemia and inflammatory infiltration often lead to prolonged unhealing of chronic diabetic wounds. The natural hydrogel-containing plant polysaccharides were recorded to have effective hypoglycemic and anti-inflammatory effects. This study focused on the accelerating effect of diabetic wound healing of hydrogels doped with Dioscorea opposita polysaccharide (DOP)─calcium carbonate (CaCO3) microspheres, which have glucose-responsive insulin release and anti-inflammatory effects. The hydrogel defined as PL-PVA/DOP-CaCO3 was designed via the borate ester bonds between polylysine-phenylboronic acids (PL-PBA) and dihydroxyl groups of poly(vinyl alcohol) (PVA). DOP modified on the surface of CaCO3 microspheres can simultaneously act with PBA to dope into the PL-PVA hydrogel and maintain glucose sensitivity. The mechanical and swelling properties of the hybrid hydrogels were reinforced by the incorporated microspheres. Meanwhile, the hyperglycemia was also regulated by the released insulin and DOP. The in vitro results indicated that the PL-PVA/DOP-CaCO3 hydrogel had good biocompatibility and inflammatory activity and could promote fibroblast proliferation and migration. In vivo experiments demonstrated that the INS@PL-PVA/DOP-CaCO3 hydrogel can significantly promote wound healing in diabetic rats by glucose-responsive regulation of hyperglycemia, inhibiting inflammation, improving angiogenesis, and accelerating the secretion of endothelial cells and proliferation of fibroblasts on wound tissues. The results bring new insights into the field of glucose-responsive hydrogels, showing their potential as drug delivery systems of macromolecular therapeutics to treat diabetic skin wounds.
Collapse
Affiliation(s)
- Wei Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Lijing Lei
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Fanyi Ma
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Mengke Zhan
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Md Zaved H Khan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Xu S, Zhang H, Qian Z, Yuan W. pH-Responsive injectable self-healing hydrogels loading Au nanoparticles-decorated bimetallic organic frameworks for synergistic sonodynamic-chemodynamic-starvation-chemo therapy of cancer. J Colloid Interface Sci 2024; 675:746-760. [PMID: 38996704 DOI: 10.1016/j.jcis.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
A novel and efficient cancer therapy was developed using a smart hydrogel containing multifunctional bimetallic organic frameworks and anticancer drugs. The injectable self-healing hydrogel with pH-responsiveness was constructed through borate ester and imine bonds among dopamine-grafted sodium alginate (SADA), hydroxypropyl chitosan (HPCS) and 2-formylphenylboronic acid (2-FPBA). The Au nanoparticles-decorated Ti/Fe bimetallic organic framework tetragonal nanosheets (Au/TF-MOF TNS) were synthesized and incorporated into the hydrogel with the anticancer drugs doxorubicin (DOX). Upon intratumoral injection of nanocomposite hydrogel, the acidic tumor microenvironment triggered the cleavage of borate ester and imine bonds, causing the hydrogel to break down and accelerating the release of both Au/TF-MOF TNS and DOX. These Au/TF-MOF TNS functioned as nanozymes, producing hydroxyl radicals (·OH) for chemodynamic therapy (CDT), generating oxygen (O2) to support sonodynamic therapy (SDT), and depleting glucose for starvation therapy (ST). Additionally, the Au/TF-MOF TNS served as sonosensitizers, capable of converting O2 into singlet oxygen (1O2) upon ultrasound irradiation to achieve SDT. Therefore, this nanocomposite hydrogel system enabled synergistic sonodynamic-chemodynamic-starvation-chemo therapy (SDT-CDT-ST-CT) of cancer, presenting a promising platform for advanced cancer therapy strategies.
Collapse
Affiliation(s)
- Sicheng Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Hanyan Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Zhiyi Qian
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
5
|
Zhuang K, Shu X, Xie W. Konjac glucomannan-based composite materials: Construction, biomedical applications, and prospects. Carbohydr Polym 2024; 344:122503. [PMID: 39218541 DOI: 10.1016/j.carbpol.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Konjac glucomannan (KGM) as an emerging natural polymer has attracted increasing interests owing to its film-forming properties, excellent gelation, non-toxic characteristics, strong adhesion, good biocompatibility, and easy biodegradability. Benefiting from these superior performances, KGM has been widely applied in the construction of multiple composite materials to further improve their intrinsic performances (e.g., mechanical strength and properties). Up to now, KGM-based composite materials have obtained widespread applications in diverse fields, especially in the field of biomedical. Therefore, a timely review of relevant research progresses is important for promoting the development of KGM-based composite materials. Innovatively, firstly, this review briefly introduced the structure properties and functions of KGMs based on the unique perspective of the biomedical field. Then, the latest advances on the preparation and properties of KGM-based composite materials (i.e., gels, microspheres, films, nanofibers, nanoparticles, etc.) were comprehensively summarized. Finally, the promising applications of KGM-based composite materials in the field of biomedical are comprehensively summarized and discussed, involving drug delivery, wound healing, tissue engineering, antibacterial, tumor treatment, etc. Impressively, the remaining challenges and opportunities in this promising field were put forward. This review can provide a reference for guiding and promoting the design and biomedical applications of KGM-based composites.
Collapse
Affiliation(s)
- Kejin Zhuang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing, China; National Coarse Cereals Engineering Research Center, Daqing, China.
| | - Xin Shu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjing Xie
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
6
|
Ying R, Wang W, Chen R, Zhou R, Mao X. Intestinal-Target and Glucose-Responsive Smart Hydrogel toward Oral Delivery System of Drug with Improved Insulin Utilization. Biomacromolecules 2024; 25:7446-7458. [PMID: 39413303 DOI: 10.1021/acs.biomac.4c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
An intelligent insulin delivery system targeting intestinal absorption and glucose responsiveness can enhance the bioavailability through oral insulin therapy, offering promising diabetes treatment. In this paper, a glucose and pH dual-response polymer hydrogel using carboxymethyl agarose modified with 3-amino-phenylboronic acid and l-valine (CPL) was developed as an insulin delivery carrier, exhibiting excellent biocompatibility and effective insulin encapsulation. The insulin encapsulated in the hydrogel (Ins-CPL) was released in a controlled manner in response to the in vivo stimulation of blood glucose and pH levels with higher levels of intracellular uptake and utilization of insulin in the intestinal environment simultaneously. Notably, the Ins-CPL hydrogel effectively regulated blood sugar in diabetic rats over a long period by simulating endogenous insulin, responding to changes in plasma pH and glucose levels, and overcoming the intestinal epithelium barrier. This indicates a significant boost in oral insulin bioavailability and broadens its application prospects.
Collapse
Affiliation(s)
- Rui Ying
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Wei Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Rui Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Ruoyu Zhou
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| |
Collapse
|
7
|
Yadav K. Nanotechnology in diabetes Management: Revolutionizing treatment and diagnostics. J Mol Liq 2024; 414:126117. [DOI: 10.1016/j.molliq.2024.126117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Terriac L, Helesbeux JJ, Maugars Y, Guicheux J, Tibbitt MW, Delplace V. Boronate Ester Hydrogels for Biomedical Applications: Challenges and Opportunities. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:6674-6695. [PMID: 39070669 PMCID: PMC11270748 DOI: 10.1021/acs.chemmater.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/30/2024]
Abstract
Boronate ester (BE) hydrogels are increasingly used for biomedical applications. The dynamic nature of these molecular networks enables bond rearrangement, which is associated with viscoelasticity, injectability, printability, and self-healing, among other properties. BEs are also sensitive to pH, redox reactions, and the presence of sugars, which is useful for the design of stimuli-responsive materials. Together, BE hydrogels are interesting scaffolds for use in drug delivery, 3D cell culture, and biofabrication. However, designing stable BE hydrogels at physiological pH (≈7.4) remains a challenge, which is hindering their development and biomedical application. In this context, advanced chemical insights into BE chemistry are being used to design new molecular solutions for material fabrication. This review article summarizes the state of the art in BE hydrogel design for biomedical applications with a focus on the materials chemistry of this class of materials. First, we discuss updated knowledge in BE chemistry including details on the molecular mechanisms associated with BE formation and breakage. Then, we discuss BE hydrogel formation at physiological pH, with an overview of the main systems reported to date along with new perspectives. A last section covers several prominent biomedical applications of BE hydrogels, including drug delivery, 3D cell culture, and bioprinting, with critical insights on the design relevance, limitations and potential.
Collapse
Affiliation(s)
- Léa Terriac
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | | | - Yves Maugars
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Jérôme Guicheux
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Mark W. Tibbitt
- Macromolecular
Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Vianney Delplace
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
9
|
Huang S, Lu H, Chen J, Jiang C, Jiang G, Maduraiveeran G, Pan Y, Liu J, Deng LE. Advances in drug delivery-based therapeutic strategies for renal fibrosis treatment. J Mater Chem B 2024; 12:6532-6549. [PMID: 38913013 DOI: 10.1039/d4tb00737a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Renal fibrosis is the result of all chronic kidney diseases and is becoming a major global health hazard. Currently, traditional treatments for renal fibrosis are difficult to meet clinical needs due to shortcomings such as poor efficacy or highly toxic side effects. Therefore, therapeutic strategies that target the kidneys are needed to overcome these shortcomings. Drug delivery can be attained by improving drug stability and addressing controlled release and targeted delivery of drugs in the delivery category. By combining drug delivery technology with nanosystems, controlled drug release and biodistribution can be achieved, enhancing therapeutic efficacy and reducing toxic cross-wise effects. This review discusses nanomaterial drug delivery strategies reported in recent years. Firstly, the present review describes the mechanisms of renal fibrosis and anti-renal fibrosis drug delivery. Secondly, different nanomaterial drug delivery strategies for the treatment of renal injury and fibrosis are highlighted. Finally, the limitations of these strategies are also discussed. Investigating various anti-renal fibrosis drug delivery strategies reveals the characteristics and therapeutic effects of various novel nanosystem-derived drug delivery approaches. This will serve as a reference for future research on drug delivery strategies for renal fibrosis treatment.
Collapse
Affiliation(s)
- Sida Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Hanqi Lu
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| | - Jin Chen
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| | - Chengyi Jiang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Guanmin Jiang
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan people's hospital), 78 Wandao Road South, Dongguan, 523059 Guangdong, China.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu, Tamil Nadu, India.
| | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Li-Er Deng
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| |
Collapse
|
10
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
11
|
Ziebarth J, da Silva LM, Lorenzett AKP, Figueiredo ID, Carlstrom PF, Cardoso FN, de Freitas ALF, Baviera AM, Mainardes RM. Oral Delivery of Liraglutide-Loaded Zein/Eudragit-Chitosan Nanoparticles Provides Pharmacokinetic and Glycemic Outcomes Comparable to Its Subcutaneous Injection in Rats. Pharmaceutics 2024; 16:634. [PMID: 38794296 PMCID: PMC11125159 DOI: 10.3390/pharmaceutics16050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Liraglutide (LIRA) is a glucagon-like peptide-1 (GLP-1) receptor agonist renowned for its efficacy in treating type 2 diabetes mellitus (T2DM) and is typically administered via subcutaneous injections. Oral delivery, although more desirable for being painless and potentially enhancing patient adherence, is challenged by the peptide's low bioavailability and vulnerability to digestive enzymes. This study aimed to develop LIRA-containing zein-based nanoparticles stabilized with eudragit RS100 and chitosan for oral use (Z-ERS-CS/LIRA). These nanoparticles demonstrated a spherical shape, with a mean diameter of 238.6 nm, a polydispersity index of 0.099, a zeta potential of +40.9 mV, and an encapsulation efficiency of 41%. In vitro release studies indicated a prolonged release, with up to 61% of LIRA released over 24 h. Notably, the nanoparticles showed considerable resistance and stability in simulated gastric and intestinal fluids, suggesting protection from pH and enzymatic degradation. Pharmacokinetic analysis revealed that orally administered Z-ERS-CS/LIRA paralleled the pharmacokinetic profile seen with subcutaneously delivered LIRA. Furthermore, in vivo tests on a diabetic rat model showed that Z-ERS-CS/LIRA significantly controlled glucose levels, comparable to the results observed with free LIRA. The findings underscore Z-ERS-CS/LIRA nanoparticles as a promising approach for oral LIRA delivery in T2DM management.
Collapse
Affiliation(s)
- Jeferson Ziebarth
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, PR, Brazil; (J.Z.); (L.M.d.S.); (A.K.P.L.)
| | - Letícia Marina da Silva
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, PR, Brazil; (J.Z.); (L.M.d.S.); (A.K.P.L.)
| | - Ariane Krause Padilha Lorenzett
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, PR, Brazil; (J.Z.); (L.M.d.S.); (A.K.P.L.)
| | - Ingrid Delbone Figueiredo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara Jaú, Km 1–s/n, Araraquara 14800-903, SP, Brazil; (I.D.F.); (P.F.C.); (F.N.C.); (A.L.F.d.F.); (A.M.B.)
| | - Paulo Fernando Carlstrom
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara Jaú, Km 1–s/n, Araraquara 14800-903, SP, Brazil; (I.D.F.); (P.F.C.); (F.N.C.); (A.L.F.d.F.); (A.M.B.)
| | - Felipe Nunes Cardoso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara Jaú, Km 1–s/n, Araraquara 14800-903, SP, Brazil; (I.D.F.); (P.F.C.); (F.N.C.); (A.L.F.d.F.); (A.M.B.)
| | - André Luiz Ferreira de Freitas
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara Jaú, Km 1–s/n, Araraquara 14800-903, SP, Brazil; (I.D.F.); (P.F.C.); (F.N.C.); (A.L.F.d.F.); (A.M.B.)
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara Jaú, Km 1–s/n, Araraquara 14800-903, SP, Brazil; (I.D.F.); (P.F.C.); (F.N.C.); (A.L.F.d.F.); (A.M.B.)
| | - Rubiana Mara Mainardes
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, PR, Brazil; (J.Z.); (L.M.d.S.); (A.K.P.L.)
- Department of Pharmacy, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, PR, Brazil
| |
Collapse
|
12
|
Li X, Gao L, Li X, Xia J, Pan Y, Bai C. Autophagy, Pyroptosis and Ferroptosis are Rising Stars in the Pathogenesis of Diabetic Nephropathy. Diabetes Metab Syndr Obes 2024; 17:1289-1299. [PMID: 38505538 PMCID: PMC10949337 DOI: 10.2147/dmso.s450695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes and can potentially develop into end-stage renal disease. Its pathogenesis is complex and not fully understood. Podocytes, glomerular endothelial cells (GECs), glomerular mesangial cells (GMCs) and renal tubular epithelial cells (TECs) play important roles in the normal function of glomerulus and renal tubules, and their injury is involved in the progression of DN. Although our understanding of the mechanisms leading to DN has substantially improved, we still need to find more effective therapeutic targets. Autophagy, pyroptosis and ferroptosis are programmed cell death processes that are associated with inflammation and are closely related to a variety of diseases. Recently, a growing number of studies have reported that autophagy, pyroptosis and ferroptosis regulate the function of podocytes, GECs, GMCs and TECs. This review highlights the contributions of autophagy, pyroptosis, and ferroptosis to DN injury in these cells, offering potential therapeutic targets for DN treatment.
Collapse
Affiliation(s)
- Xiudan Li
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Lifeng Gao
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Xuyang Li
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Jingdong Xia
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
| | - Yurong Pan
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
| | - Chunying Bai
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| |
Collapse
|
13
|
Fang H, Xu S, Wang Y, Yang H, Su D. Endogenous stimuli-responsive drug delivery nanoplatforms for kidney disease therapy. Colloids Surf B Biointerfaces 2023; 232:113598. [PMID: 37866237 DOI: 10.1016/j.colsurfb.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Kidney disease is one of the most life-threatening health problems, affecting millions of people in the world. Commonly used steroids and immunosuppressants often fall exceptionally short of outcomes with inescapable systemic toxicity. With the booming research in nanobiotechnology, stimuli-responsive nanoplatform has come an appealing therapeutic strategy for kidney disease. Endogenous stimuli-responsive materials have shown profuse promise owing to their enhanced spatiotemporal control and precise to the location of the lesion. This review focuses on recent advances stimuli-responsive drug delivery nano-architectonics for kidney disease. First, a brief introduction of pathogenesis of kidney disease and pathological microenvironment were provided. Then, various endogenous stimulus involved in drug delivery nanoplatforms including pH, ROS, enzymes, and glucose were categorized based on the pathological mechanisms of kidney disease. Next, we separately summarized literature examples of endogenous stimuli-responsive nanomaterials, and outlined the design strategies and response mechanisms. Finally, the paper was concluded by discussing remaining challenges and future perspectives of endogenous stimuli-responsive drug delivery nanoplatform for expediting the speed of development and clinical applications.
Collapse
Affiliation(s)
- Hufeng Fang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Yu Wang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| |
Collapse
|
14
|
Malta R, Marques AC, da Costa PC, Amaral MH. Stimuli-Responsive Hydrogels for Protein Delivery. Gels 2023; 9:802. [PMID: 37888375 PMCID: PMC10606693 DOI: 10.3390/gels9100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Proteins and peptides are potential therapeutic agents, but their physiochemical properties make their use as drug substances challenging. Hydrogels are hydrophilic polymeric networks that can swell and retain high amounts of water or biological fluids without being dissolved. Due to their biocompatibility, their porous structure, which enables the transport of various peptides and proteins, and their protective effect against degradation, hydrogels have gained prominence as ideal carriers for these molecules' delivery. Particularly, stimuli-responsive hydrogels exhibit physicochemical transitions in response to subtle modifications in the surrounding environment, leading to the controlled release of entrapped proteins or peptides. This review is focused on the application of these hydrogels in protein and peptide delivery, including a brief overview of therapeutic proteins and types of stimuli-responsive polymers.
Collapse
Affiliation(s)
- Rafaela Malta
- CeNTI—Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal;
| | - Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Cardoso da Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Ghandforoushan P, Alehosseini M, Golafshan N, Castilho M, Dolatshahi-Pirouz A, Hanaee J, Davaran S, Orive G. Injectable hydrogels for cartilage and bone tissue regeneration: A review. Int J Biol Macromol 2023; 246:125674. [PMID: 37406921 DOI: 10.1016/j.ijbiomac.2023.125674] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Annually, millions of patients suffer from irreversible injury owing to the loss or failure of an organ or tissue caused by accident, aging, or disease. The combination of injectable hydrogels and the science of stem cells have emerged to address this persistent issue in society by generating minimally invasive treatments to augment tissue function. Hydrogels are composed of a cross-linked network of polymers that exhibit a high-water retention capacity, thereby mimicking the wet environment of native cells. Due to their inherent mechanical softness, hydrogels can be used as needle-injectable stem cell carrier materials to mend tissue defects. Hydrogels are made of different natural or synthetic polymers, displaying a broad portfolio of eligible properties, which include biocompatibility, low cytotoxicity, shear-thinning properties as well as tunable biological and physicochemical properties. Presently, novel ongoing developments and native-like hydrogels are increasingly being used broadly to improve the quality of life of those with disabling tissue-related diseases. The present review outlines various future and in-vitro applications of injectable hydrogel-based biomaterials, focusing on the newest ongoing developments of in-situ forming injectable hydrogels for bone and cartilage tissue engineering purposes.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran; Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Alehosseini
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nasim Golafshan
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | - Jalal Hanaee
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; University of the Basque Country, Spain.
| |
Collapse
|
16
|
Tang RC, Yang IH, Lin FH. Current Role and Potential of Polymeric Biomaterials in Clinical Obesity Treatment. Biomacromolecules 2023; 24:3438-3449. [PMID: 37442789 DOI: 10.1021/acs.biomac.3c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The rise of obesity and associated fatal diseases has taken a massive toll worldwide. Despite the existing pharmaceuticals and bariatric surgeries, these approaches manifest limited efficacy or accompany various side effects. Therefore, researchers seek to facilitate the prolonged and specific delivery of therapeutics. Or else, to mimic the essential part of "gastric bypass" by physically blocking excessive absorption via less invasive methods. To achieve these goals, polymeric biomaterials have gained tremendous interest recently. They are known for synthesizing hydrogels, microneedle patches, mucoadhesive coatings, polymer conjugates, and so forth. In this Review, we provide insights into the current studies of polymeric biomaterials in the prevention and treatment of obesity, inspiring future improvements in this regime of study.
Collapse
Affiliation(s)
- Rui-Chian Tang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - I-Hsuan Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Road, Taipei 10672, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Road, Taipei 10672, Taiwan
| |
Collapse
|
17
|
Wang Y, Wang Y, Wu Y, Wang Y. Dulaglutide Ameliorates Intrauterine Adhesion by Suppressing Inflammation and Epithelial-Mesenchymal Transition via Inhibiting the TGF-β/Smad2 Signaling Pathway. Pharmaceuticals (Basel) 2023; 16:964. [PMID: 37513876 PMCID: PMC10384231 DOI: 10.3390/ph16070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Intrauterine adhesion (IUA) is a common gynecological disease with limited therapeutic options. Dulaglutide is a long-acting glucagon-like peptide-1 (GLP-1) analog with some anti-fibrotic and anti-inflammatory properties; however, its action on IUA remains uncertain. The purpose of the experiments in this study was to explore the effect of dulaglutide on IUA and to elucidate its mechanism to provide new ideas for the clinical treatment of IUA. An IUA mouse model was established via mechanical curettage and inflammation induction; mice received subcutaneous injection with three doses of dulaglutide once a day for two weeks (treatment) or equal amounts of sterile ddH2O (control), and sham-operated mice were treated similarly to the control mice. Mice were sacrificed, and uterine tissues were subjected to hematoxylin and eosin (H&E) and Masson's trichrome staining for histomorphological and pathological analyses and real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB) for gene and protein expression analyses. Dulaglutide improved the shape of the uterine cavity, increased endometrial thickness and the number of glands, and significantly reduced the area of collagen fiber deposition in the endometrium. It significantly reduced collagen type I A 1 (COL1A1), interleukin-1beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), C-C motif chemokine ligand 2 (CCL2), F4/80 (macrophage), vimentin and transforming growth factor-beta (TGF-β) mRNA levels and COL1A1, IL-1β, IL-6, TNF-α, F4/80, vimentin, E-cadherin, TGF-β, and p-Smad2 protein expression levels. This study demonstrates that dulaglutide reduces inflammatory responses by inhibiting M1 macrophage polarization and inflammatory factor release and may ameliorate fibrosis by inhibiting epithelial-mesenchymal transition (EMT) via TGF-β/Smad2 signaling.
Collapse
Affiliation(s)
- Yifan Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yixiang Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yang Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yiqing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Gansu Key Laboratory of Reproductive Medicine and Embryo, Lanzhou 730000, China
| |
Collapse
|
18
|
Ali A, Saroj S, Saha S, Gupta SK, Rakshit T, Pal S. Glucose-Responsive Chitosan Nanoparticle/Poly(vinyl alcohol) Hydrogels for Sustained Insulin Release In Vivo. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37368956 DOI: 10.1021/acsami.3c05031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Stimuli-responsive hydrogels (HGs) with a controlled drug release profile are the current challenge for advanced therapeutic applications. Specifically, antidiabetic drug-loaded glucose-responsive HGs are being investigated for closed-loop insulin delivery in insulin-dependent diabetes patients. In this direction, new design principles must be exploited to create inexpensive, naturally occurring, biocompatible glucose-responsive HG materials for the future. In this work, we developed chitosan nanoparticle/poly(vinyl alcohol) (PVA) hybrid HGs (CPHGs) for controlled insulin delivery for diabetes management. In this design, PVA and chitosan nanoparticles (CNPs) are cross-linked with a glucose-responsive formylphenylboronic acid (FPBA)-based cross-linker in situ. Leveraging the structural diversity of FPBA and its pinacol ester-based cross-linkers, we fabricate six CPHGs (CPHG1-6) with more than 80% water content. Using dynamic rheological measurements, we demonstrate elastic solid-like properties of CPHG1-6, which are dramatically reduced under low-pH and high-glucose environments. An in vitro drug release assay reveals size-dependent glucose-responsive drug release from the CPHGs under physiological conditions. It is important to note that the CPHGs show appreciable self-healing and noncytotoxic properties. Promisingly, we observe a significantly slower insulin release profile from the CPHG matrix in the type-1 diabetes (T1D) rat model. We are actively pursuing scaling up of CPHGs and the in vivo safety studies for clinical trial in the near future.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Indian Institute of Technology-Bhilai, Raipur 492015, CG, India
| | - Saroj Saroj
- Department of Chemistry, Shiv Nadar Institution of Eminence, Greater Noida 201314, UP, India
| | - Sunita Saha
- Department of Chemistry, Indian Institute of Technology-Bhilai, Raipur 492015, CG, India
| | - Sanjay Kumar Gupta
- Department of Pharmacology, Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari 490042, CG, India
| | - Tatini Rakshit
- Department of Chemistry, Shiv Nadar Institution of Eminence, Greater Noida 201314, UP, India
| | - Suchetan Pal
- Department of Chemistry, Indian Institute of Technology-Bhilai, Raipur 492015, CG, India
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology-Bhilai Raipur 492015, CG, India
| |
Collapse
|
19
|
Liu B, Kong Y, Alimi OA, Kuss MA, Tu H, Hu W, Rafay A, Vikas K, Shi W, Lerner M, Berry WL, Li Y, Carlson MA, Duan B. Multifunctional Microgel-Based Cream Hydrogels for Postoperative Abdominal Adhesion Prevention. ACS NANO 2023; 17:3847-3864. [PMID: 36779870 PMCID: PMC10820954 DOI: 10.1021/acsnano.2c12104] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Postoperative abdominal adhesions are a common problem after surgery and can produce serious complications. Current antiadhesive strategies focus mostly on physical barriers and are unsatisfactory and inefficient. In this study, we designed and synthesized advanced injectable cream-like hydrogels with multiple functionalities, including rapid gelation, self-healing, antioxidation, anti-inflammation, and anti-cell adhesion. The multifunctional hydrogels were facilely formed by the conjugation reaction of epigallocatechin-3-gallate (EGCG) and hyaluronic acid (HA)-based microgels and poly(vinyl alcohol) (PVA) based on the dynamic boronic ester bond. The physicochemical properties of the hydrogels including antioxidative and anti-inflammatory activities were systematically characterized. A mouse cecum-abdominal wall adhesion model was implemented to investigate the efficacy of our microgel-based hydrogels in preventing postoperative abdominal adhesions. The hydrogels, with a high molecular weight HA, significantly decreased the inflammation, oxidative stress, and fibrosis and reduced the abdominal adhesion formation, compared to the commercial Seprafilm group or Injury-only group. Label-free quantitative proteomics analysis demonstrated that S100A8 and S100A9 expressions were associated with adhesion formation; the microgel-containing hydrogels inhibited these expressions. The microgel-containing hydrogels with multifunctionality decreased the formation of postoperative intra-abdominal adhesions in a murine model, demonstrating promise for clinical applications.
Collapse
Affiliation(s)
- Bo Liu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Olawale A. Alimi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mitchell A. Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Huiyin Tu
- Department of Emergency Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wenfeng Hu
- Department of Emergency Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Abu Rafay
- Mass Spectrometry & Proteomics Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kumar Vikas
- Mass Spectrometry & Proteomics Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Megan Lerner
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - William L. Berry
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yulong Li
- Department of Emergency Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mark A. Carlson
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery-General Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery-General Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
20
|
Ali A, Saroj S, Saha S, Rakshit T, Pal S. In Situ-Forming Protein-Polymer Hydrogel for Glucose-Responsive Insulin Release. ACS APPLIED BIO MATERIALS 2023; 6:745-753. [PMID: 36624977 DOI: 10.1021/acsabm.2c00951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phenylboronic acid (PBA)-containing hydrogels (HGs), capable of glucose-responsive insulin release, have shown promise in diabetes management in preclinical studies. However, sustainable material usage and attaining an optimum insulin release profile pose a significant challenge in such HG design. Herein, we present the development of a straightforward fabrication strategy for glucose-responsive protein-polymer hybrid HGs (PPHGs). We prepare PPHGs by crosslinking polyvinyl alcohol (PVA) with various nature-abundant proteins, such as bovine serum albumin (BSA), egg albumin, casein, whey protein, and so forth, using formylphenylboronic acid (FPBA)-based crosslinkers. We showcase PPHGs with diverse bulk rheological properties that are appropriately modulated by the positions of aldehyde, boronic acid, and fluorine substitutions in the FPBA-crosslinker. The orthogonal imine and boronate ester bonds formed by FPBAs are susceptible to the acidic pH environment and glucose concentrations, leading to the glucose-responsive dissolution of the PPHGs. We further demonstrate that by an appropriate selection of FPBAs, glucose-responsive insulin release profiles of the PPHGs can be precisely engineered at the molecular level. Importantly, PPHGs are injectable, incur no cytotoxicity, and, therefore, hold great potential as smart insulin for in vivo applications in the near future.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Indian Institute of Technology-Bhilai, Raipur, Chhattisgarh492015, India
| | - Saroj Saroj
- Department of Chemistry, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh201314, India
| | - Sunita Saha
- Department of Chemistry, Indian Institute of Technology-Bhilai, Raipur, Chhattisgarh492015, India
| | - Tatini Rakshit
- Department of Chemistry, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh201314, India
| | - Suchetan Pal
- Department of Chemistry, Indian Institute of Technology-Bhilai, Raipur, Chhattisgarh492015, India
| |
Collapse
|
21
|
Su M, Ruan L, Dong X, Tian S, Lang W, Wu M, Chen Y, Lv Q, Lei L. Current state of knowledge on intelligent-response biological and other macromolecular hydrogels in biomedical engineering: A review. Int J Biol Macromol 2023; 227:472-492. [PMID: 36549612 DOI: 10.1016/j.ijbiomac.2022.12.148] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Because intelligent hydrogels have good biocompatibility, a rapid response, and good degradability as well as a stimulus response mode that is rich, hydrophilic, and similar to the softness and elasticity of living tissue, they have received widespread attention and are widely used in biomedical engineering. In this article, we conduct a systematic review of the use of smart hydrogels in biomedical engineering. First, we introduce the properties and applications of hydrogels and compare the similarities and differences between traditional hydrogels and smart hydrogels. Secondly, we summarize the intelligent hydrogel types, the mechanisms of action used by different hydrogels, and the materials for preparing different types of hydrogels, such as the materials for the preparation of temperature-responsive hydrogels, which mainly include gelatin, carrageenan, agarose, amylose, etc.; summarize the morphologies of different hydrogels, such as films, fibers and microspheres; and summarize the application of smart hydrogels in biomedical engineering, such as for the delivery of proteins, antibiotics, deoxyribonucleic acid, etc. Finally, we summarize the shortcomings of current research and present future prospects for smart hydrogels. The purpose of this paper is to provide researchers engaged in related fields with a systematic review of the application of intelligent hydrogels in biomedical engineering. We hope that they will get some inspiration from this work to provide new directions for the development of related fields.
Collapse
Affiliation(s)
- Mengrong Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Xiaoyu Dong
- Institute of Medicine Nursing, Hubei University of Medicine, Shiyan 442000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Wen Lang
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Minhui Wu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China.
| | - Lanjie Lei
- Jiangxi Provincial Key Lab of System Biomedicine, Jiujiang University, Jiujiang 332000, China.
| |
Collapse
|
22
|
Stimuli-Responsive Boron-Based Materials in Drug Delivery. Int J Mol Sci 2023; 24:ijms24032757. [PMID: 36769081 PMCID: PMC9917063 DOI: 10.3390/ijms24032757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Drug delivery systems, which use components at the nanoscale level as diagnostic tools or to release therapeutic drugs to particular target areas in a regulated manner, are a fast-evolving field of science. The active pharmaceutical substance can be released via the drug delivery system to produce the desired therapeutic effect. The poor bioavailability and irregular plasma drug levels of conventional drug delivery systems (tablets, capsules, syrups, etc.) prevent them from achieving sustained delivery. The entire therapy process may be ineffective without a reliable delivery system. To achieve optimal safety and effectiveness, the drug must also be administered at a precision-controlled rate and the targeted spot. The issues with traditional drug delivery are overcome by the development of stimuli-responsive controlled drug release. Over the past decades, regulated drug delivery has evolved considerably, progressing from large- and nanoscale to smart-controlled drug delivery for several diseases. The current review provides an updated overview of recent developments in the field of stimuli-responsive boron-based materials in drug delivery for various diseases. Boron-containing compounds such as boron nitride, boronic acid, and boron dipyrromethene have been developed as a moving field of research in drug delivery. Due to their ability to achieve precise control over drug release through the response to particular stimuli (pH, light, glutathione, glucose or temperature), stimuli-responsive nanoscale drug delivery systems are attracting a lot of attention. The potential of developing their capabilities to a wide range of nanoscale systems, such as nanoparticles, nanosheets/nanospheres, nanotubes, nanocarriers, microneedles, nanocapsules, hydrogel, nanoassembly, etc., is also addressed and examined. This review also provides overall design principles to include stimuli-responsive boron nanomaterial-based drug delivery systems, which might inspire new concepts and applications.
Collapse
|
23
|
Srivastava N, Choudhury AR. Stimuli-Responsive Polysaccharide-Based Smart Hydrogels and Their Emerging Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
| |
Collapse
|
24
|
Farasati Far B, Naimi-Jamal MR, Safaei M, Zarei K, Moradi M, Yazdani Nezhad H. A Review on Biomedical Application of Polysaccharide-Based Hydrogels with a Focus on Drug Delivery Systems. Polymers (Basel) 2022; 14:5432. [PMID: 36559799 PMCID: PMC9784417 DOI: 10.3390/polym14245432] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Over the last years of research on drug delivery systems (DDSs), natural polymer-based hydrogels have shown many scientific advances due to their intrinsic properties and a wide variety of potential applications. While drug efficacy and cytotoxicity play a key role, adopting a proper DDS is crucial to preserve the drug along the route of administration and possess desired therapeutic effect at the targeted site. Thus, drug delivery technology can be used to overcome the difficulties of maintaining drugs at a physiologically related serum concentration for prolonged periods. Due to their outstanding biocompatibility, polysaccharides have been thoroughly researched as a biological material for DDS advancement. To formulate a modified DDS, polysaccharides can cross-link with different molecules, resulting in hydrogels. According to our recent findings, targeted drug delivery at a certain spot occurs due to external stimulation such as temperature, pH, glucose, or light. As an adjustable biomedical device, the hydrogel has tremendous potential for nanotech applications in involved health areas such as pharmaceutical and biomedical engineering. An overview of hydrogel characteristics and functionalities is provided in this review. We focus on discussing the various kinds of hydrogel-based systems on their potential for effectively delivering drugs that are made of polysaccharides.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta 99628, Turkey
| | - Kimia Zarei
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Marzieh Moradi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hamed Yazdani Nezhad
- Department of Mechanical Engineering & Aeronautics, City University of London, London EC1V 0HB, UK
| |
Collapse
|
25
|
Su D, Bai X, He X. Research progress on hydrogel materials and their antifouling properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Hong Y, Yu H, Wang L, Chen X, Huang Y, Yang J, Ren S. Transdermal Insulin Delivery and Microneedles-based Minimally Invasive Delivery Systems. Curr Pharm Des 2022; 28:3175-3193. [PMID: 35676840 DOI: 10.2174/1381612828666220608130056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/25/2022] [Indexed: 01/28/2023]
Abstract
Diabetes has become a serious threat to human health, causing death and pain to numerous patients. Transdermal insulin delivery is a substitute for traditional insulin injection to avoid pain from the injection. Transdermal methods include non-invasive and invasive methods. As the non-invasive methods could hardly get through the stratum corneum, minimally invasive devices, especially microneedles, could enhance the transappendageal route in transcutaneous insulin delivery, and could act as connectors between the tissue and outer environment or devices. Microneedle patches have been in quick development in recent years and with different types, materials and functions. In those patches, the smart microneedle patch could perform as a sensor and reactor responding to glucose to regulate the blood level. In the smart microneedles field, the phenylboronic acid system and the glucose oxidase system have been successfully applied on the microneedle platform. Insulin transdermal delivery strategy, microneedles technology and smart microneedles' development would be discussed in this review.
Collapse
Affiliation(s)
- Yichuan Hong
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Xiang Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Yudi Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Jian Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Shuning Ren
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|
27
|
Advanced Formulations/Drug Delivery Systems for Subcutaneous Delivery of Protein-Based Biotherapeutics. J Pharm Sci 2022; 111:2968-2982. [PMID: 36058255 DOI: 10.1016/j.xphs.2022.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Multiple advanced formulations and drug delivery systems (DDSs) have been developed to deliver protein-based biotherapeutics via the subcutaneous (SC) route. These formulations/DDSs include high-concentration solution, co-formulation of two or more proteins, large volume injection, protein cluster/complex, suspension, nanoparticle, microparticle, and hydrogel. These advanced systems provide clinical benefits related to efficacy and safety, but meanwhile, have more complicated formulations and manufacturing processes compared to conventional solution formulations. To develop a fit-for-purpose formulation/DDS for SC delivery, scientists need to consider multiple factors, such as the primary indication, targeted site, immunogenicity, compatibility, biopharmaceutics, patient compliance, etc. Next, they need to develop appropriate formulation (s) and manufacturing processes using the QbD principle and have a control strategy. This paper aims to provide a comprehensive review of advanced formulations/DDSs recently developed for SC delivery of proteins, as well as some knowledge gaps and potential strategies to narrow them through future research.
Collapse
|
28
|
Liu S, Li X, Han L. Recent developments in stimuli‐responsive hydrogels for biomedical applications. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Shuyun Liu
- School of Medicine and Pharmaceutics Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology Ocean University of China Qingdao Shandong China
| | - Xiaozhuang Li
- School of Medicine and Pharmaceutics Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology Ocean University of China Qingdao Shandong China
| | - Lu Han
- School of Medicine and Pharmaceutics Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology Ocean University of China Qingdao Shandong China
| |
Collapse
|
29
|
Owh C, Ow V, Lin Q, Wong JHM, Ho D, Loh XJ, Xue K. Bottom-up design of hydrogels for programmable drug release. BIOMATERIALS ADVANCES 2022; 141:213100. [PMID: 36096077 DOI: 10.1016/j.bioadv.2022.213100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Hydrogels are a promising drug delivery system for biomedical applications due to their biocompatibility and similarity to native tissue. Programming the release rate from hydrogels is critical to ensure release of desired dosage over specified durations, particularly with the advent of more complicated medical regimens such as combinatorial drug therapy. While it is known how hydrogel structure affects release, the parameters that can be explicitly controlled to modulate release ab initio could be useful for hydrogel design. In this review, we first survey common physical models of hydrogel release. We then extensively go through the various input parameters that we can exercise direct control over, at the levels of synthesis, formulation, fabrication and environment. We also illustrate some examples where hydrogels can be programmed with the input parameters for temporally and spatially defined release. Finally, we discuss the exciting potential and challenges for programming release, and potential implications with the advent of machine learning.
Collapse
Affiliation(s)
- Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| | - Valerie Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| | - Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Dean Ho
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, Singapore 117583, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, #01-30 General Office, Block N4.1, Singapore 639798, Singapore.
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.
| |
Collapse
|
30
|
Skin-adaptive film dressing with smart-release of growth factors accelerated diabetic wound healing. Int J Biol Macromol 2022; 222:2729-2743. [DOI: 10.1016/j.ijbiomac.2022.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
31
|
Zhang Y, Dong L, Liu L, Wu Z, Pan D, Liu L. Recent Advances of Stimuli-Responsive Polysaccharide Hydrogels in Delivery Systems: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6300-6316. [PMID: 35578738 DOI: 10.1021/acs.jafc.2c01080] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels obtained from natural polymers have received widespread attention for their excellent biocompatible property, nontoxicity, easy gelation, and functionalization. Polysaccharides can regulate the gut microbiota and improve the intestinal microenvironment, thus exerting the healthy effect of intestinal immunity. In an active substance delivery system, the extent and speed of the substance reaching its target are highly dependent on the carrier. Thus, the smart active substance delivery systems are gradually increasing. The smart polysaccharide-hydrogels possess the ability in response to external stimuli through changing their volume phase and structure, which are applied in various fields. Natural polysaccharide-based hydrogels possess excellent characteristics of environmental friendliness, good biocompatibility, and abundant sources. According to the response type, natural polysaccharide-based hydrogels are usually divided into stimulus-responsive hydrogels, including internal response (pH, temperature, enzyme, redox) and external response (light, electricity, magnetism) hydrogels. The delivery system based on polysaccharides can exert their effects in the gastrointestinal tract. At the same time, polysaccharides may also take part in regulating the brain signals through the microbiota-gut-brain axis. Therefore, natural polysaccharide-hydrogels are considered as promising biomaterials, which can be designed as delivery systems for regulating the gut-brain axis. This article reviews the research advance of stimulus-responsive hydrogels, which focus on the types, response characteristics, and applications for polysaccharide-based smart hydrogels as delivery systems.
Collapse
Affiliation(s)
- Yunzhen Zhang
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lezhen Dong
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lingyi Liu
- University of Nebraska Lincoln, Department of Food Science & Technology, Lincoln, Nebraska 68588, United States
| | - Zufang Wu
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Daodong Pan
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lianliang Liu
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| |
Collapse
|
32
|
Wang J, Yang ZY, Sheng Zhou C, Fang Qiao C, Yuan F, Liu Q, Luo XX. Preparation and Properties of Composite Hydrogels Based on Microgels Containing Chitosan. J MACROMOL SCI B 2022. [DOI: 10.1080/00222348.2022.2071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jun Wang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo, China
| | | | - Chun Sheng Zhou
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo, China
| | - Cheng Fang Qiao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo, China
| | - Fei Yuan
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo, China
| | - Qian Liu
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo, China
| | - Xiang Xiang Luo
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo, China
| |
Collapse
|
33
|
Hong Y, Lin Z, Yang Y, Jiang T, Shang J, Luo Z. Biocompatible Conductive Hydrogels: Applications in the Field of Biomedicine. Int J Mol Sci 2022; 23:4578. [PMID: 35562969 PMCID: PMC9104506 DOI: 10.3390/ijms23094578] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
The impact of COVID-19 has rendered medical technology an important factor to maintain social stability and economic increase, where biomedicine has experienced rapid development and played a crucial part in fighting off the pandemic. Conductive hydrogels (CHs) are three-dimensional (3D) structured gels with excellent electrical conductivity and biocompatibility, which are very suitable for biomedical applications. CHs can mimic innate tissue's physical, chemical, and biological properties, which allows them to provide environmental conditions and structural stability for cell growth and serve as efficient delivery substrates for bioactive molecules. The customizability of CHs also allows additional functionality to be designed for different requirements in biomedical applications. This review introduces the basic functional characteristics and materials for preparing CHs and elaborates on their synthetic techniques. The development and applications of CHs in the field of biomedicine are highlighted, including regenerative medicine, artificial organs, biosensors, drug delivery systems, and some other application scenarios. Finally, this review discusses the future applications of CHs in the field of biomedicine. In summary, the current design and development of CHs extend their prospects for functioning as an intelligent and complex system in diverse biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Tao Jiang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (Y.H.); (Z.L.); (Y.Y.); (J.S.)
| | | | - Zirong Luo
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (Y.H.); (Z.L.); (Y.Y.); (J.S.)
| |
Collapse
|
34
|
Bordbar-Khiabani A, Gasik M. Smart Hydrogels for Advanced Drug Delivery Systems. Int J Mol Sci 2022; 23:3665. [PMID: 35409025 PMCID: PMC8998863 DOI: 10.3390/ijms23073665] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
Since the last few decades, the development of smart hydrogels, which can respond to stimuli and adapt their responses based on external cues from their environments, has become a thriving research frontier in the biomedical engineering field. Nowadays, drug delivery systems have received great attention and smart hydrogels can be potentially used in these systems due to their high stability, physicochemical properties, and biocompatibility. Smart hydrogels can change their hydrophilicity, swelling ability, physical properties, and molecules permeability, influenced by external stimuli such as pH, temperature, electrical and magnetic fields, light, and the biomolecules' concentration, thus resulting in the controlled release of the loaded drugs. Herein, this review encompasses the latest investigations in the field of stimuli-responsive drug-loaded hydrogels and our contribution to this matter.
Collapse
Affiliation(s)
- Aydin Bordbar-Khiabani
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University Foundation, 02150 Espoo, Finland;
| | | |
Collapse
|
35
|
Li X, Bian L, Zhao X, He D, Liu G, Tang DW, Li Z, Wu J. Nanoparticles capable of managing hypoglycemia and preventing myocardial ischemia‐reperfusion injury. J Appl Polym Sci 2022. [DOI: 10.1002/app.51758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaofeng Li
- Cardiothoracic and Great Vascular Surgery Xianyang First People's Hospital Xianyang China
| | - Ligong Bian
- College of Clinical Medical Kunming Medical University Kunming China
| | - Xi Zhao
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| | - Dan He
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| | - Guohua Liu
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| | - Di Wei Tang
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| | - Zhiqin Li
- Cardiothoracic and Great Vascular Surgery Xianyang First People's Hospital Xianyang China
| | - Junzi Wu
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| |
Collapse
|
36
|
El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, Yoshida T, Tanaka T, Yokoi A, Elbadawy M, Tanaka R. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13:100186. [PMID: 34917924 PMCID: PMC8669385 DOI: 10.1016/j.mtbio.2021.100186] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/14/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, biomedicine and tissue regeneration have emerged as great advances that impacted the spectrum of healthcare. This left the door open for further improvement of their applications to revitalize the impaired tissues. Hence, restoring their functions. The implementation of therapeutic protocols that merge biomimetic scaffolds, bioactive molecules, and cells plays a pivotal role in this track. Smart/stimuli-responsive hydrogels are remarkable three-dimensional (3D) bioscaffolds intended for tissue engineering and other biomedical purposes. They can simulate the physicochemical, mechanical, and biological characters of the innate tissues. Also, they provide the aqueous conditions for cell growth, support 3D conformation, provide mechanical stability for the cells, and serve as potent delivery matrices for bioactive molecules. Many natural and artificial polymers were broadly utilized to design these intelligent platforms with novel advanced characteristics and tailored functionalities that fit such applications. In the present review, we highlighted the different types of smart/stimuli-responsive hydrogels with emphasis on their synthesis scheme. Besides, the mechanisms of their responsiveness to different stimuli were elaborated. Their potential for tissue engineering applications was discussed. Furthermore, their exploitation in other biomedical applications as targeted drug delivery, smart biosensors, actuators, 3D and 4D printing, and 3D cell culture were outlined. In addition, we threw light on smart self-healing hydrogels and their applications in biomedicine. Eventually, we presented their future perceptions in biomedical and tissue regeneration applications. Conclusively, current progress in the design of smart/stimuli-responsive hydrogels enhances their prospective to function as intelligent, and sophisticated systems in different biomedical applications.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Eman A. Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Takashi Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Aimi Yokoi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| |
Collapse
|
37
|
Banach Ł, Williams GT, Fossey JS. Insulin Delivery Using Dynamic Covalent Boronic Acid/Ester‐Controlled Release. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Łukasz Banach
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - George T. Williams
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - John S. Fossey
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| |
Collapse
|