1
|
Narayanan KB. Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review. Biomimetics (Basel) 2025; 10:317. [PMID: 40422147 DOI: 10.3390/biomimetics10050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol-gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials' surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
2
|
Shah FA. Revisiting the physical and chemical nature of the mineral component of bone. Acta Biomater 2025; 196:1-16. [PMID: 39892685 DOI: 10.1016/j.actbio.2025.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
The physico-chemical characteristics of bone mineral remain heavily debated. On the nanoscale, bone mineral resides both inside and outside the collagen fibril as distinct compartments fused together into a cohesive continuum. On the micrometre level, larger aggregates are arranged in a staggered pattern described as crossfibrillar tessellation. Unlike geological and synthetic hydroxy(l)apatite, bone mineral is a unique form of apatite deficient in calcium and hydroxyl ions with distinctive carbonate and acid phosphate substitutions (CHAp), together with a minor contribution of amorphous calcium phosphate as a surface layer around a crystalline core of CHAp. In mammalian bone, an amorphous solid phase has not been observed, though an age-dependent shift in the amorphous-to-crystalline character is observed. Although octacalcium phosphate has been postulated as a bone mineral precursor, there is inconsistent evidence of calcium phosphate phases other than CHAp in the extracellular matrix. In association with micropetrosis, magnesium whitlockite is occasionally detected, indicating pathological calcification rather than a true extracellular matrix component. Therefore, the terms 'biomimetic' or 'bone-like' should be used cautiously in descriptions of synthetic biomaterials. The practice of reporting the calcium-to-phosphorus ratio (Ca/P) as proxy for bone mineral maturity oversimplifies the chemistry since both Ca2+ and PO43- ions are partially substituted. Moreover, non-mineral sources of phosphorus are ignored. Alternative compositional metrics should be considered. In the context of bone tissue and bone mineral, the term 'mature' must be used carefully, with clear criteria that consider both compositional and structural parameters and the potential impact on mechanical properties. STATEMENT OF SIGNIFICANCE: Bone mineral exhibits a unique hierarchical structure and is classified into intrafibrillar and extrafibrillar mineral compartments with distinct physico-chemical characteristics. The dynamic nature of bone mineral, i.e., evolving chemical composition and physical form, is poorly understood. For instance, bone mineral is frequently described as "hydroxy(l)apatite", even though the OH- content of mature bone mineral is negligible. Moreover, the calcium-to-phosphorus ratio is often taken as an indicator of bone mineral maturity without acknowledging substitutions at calcium and phosphate sites. This review takes a comprehensive look at the structure and composition of bone mineral, highlighting how experimental data are misinterpreted and unresolved concerns that warrant further investigation, which have implications for characterisation of bone material properties and development of bone repair biomaterials.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg Sweden.
| |
Collapse
|
3
|
Allgayer R, Kabir RF, Bergeron A, Demers P, Mantovani D, Cerruti M. A collagen-based laboratory model to mimic sex-specific features of calcific aortic valve disease. Acta Biomater 2025; 194:204-218. [PMID: 39864641 DOI: 10.1016/j.actbio.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Calcific aortic valve disease (CAVD) shows in the deposition of calcium phosphates in the collagen-rich layer of the valve leaflets. This stiffens the leaflets and eventually leads to heart failure. Recent research suggests that CAVD follows sex-specific pathways: at the same severity of the disease, women tend to have fewer and less crystalline calcifications, and the phases of their calcifications are decidedly different than those of men; namely, dicalcium phosphate dihydrate (DCPD) - one of the mineral phases in CAVD - occurs almost exclusively in females. Furthermore, the morphologies of heart valve calcifications might be sex-specific, but the sex dependence of the morphologies has not been systematically investigated. Herein, we first show that male CAVD patients have more compact and less fibrous calcifications than females, establishing sex-dependent morphological features of heart valve calcification. We then build a model that recapitulates the sex differences of the calcifications in CAVD, which is based on a collagen gel that we calcify in simulated body fluid with varying fetuin A concentrations. With increasing fetuin A concentration, the calcifications become less crystalline and more fibrous, and more DCPD deposits in the collagen matrix, resembling the physicochemical characteristics of the calcifications in female valves. Lower fetuin A concentrations give rise to a model that replicates male-specific mineral characteristics. The models could be used to develop sex-specific detection and treatment methods for CAVD. STATEMENT OF SIGNIFICANCE: Although calcific aortic valve disease (CAVD) affects ∼10 million people globally, researchers have only discovered recently that the disease follows sex-specific pathways, and many of its sex-specific features remain unknown. To further our understanding of sex differences in CAVD and to develop better detection and treatment methods, there is an urgent need to establish models for CAVD that account for its sex-specific manifestations. In this study, we first show that CAVD calcifications in men and women take on different morphologies. Second, we present a model that can replicate physicochemical calcification characteristics of male or female valves, including morphology, and that can help to develop sex-specific detection and treatment methods for CAVD.
Collapse
Affiliation(s)
- Raphaela Allgayer
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, QC H3A 0C5, Canada
| | - Reefah Fahmida Kabir
- Department of Bioengineering, McGill University, 3480 Rue University, Montreal, QC H2A 0E9, Canada
| | - Alexandre Bergeron
- Department of Surgery, Montreal Heart Institute, 5000 Rue Bélanger, Montreal, QC H1T 1C8, Canada
| | - Philippe Demers
- Department of Surgery, Montreal Heart Institute, 5000 Rue Bélanger, Montreal, QC H1T 1C8, Canada
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering & Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, QC H3A 0C5, Canada.
| |
Collapse
|
4
|
Scott R, Lyburn ID, Cornford E, Bouzy P, Stone N, Greenwood C, Gosling S, Arnold EL, Bouybayoune I, Pinder SE, Rogers K. Anisotropy visualisation from X-ray diffraction of biological apatite in mixed phase calcified tissue samples. Sci Rep 2025; 15:5478. [PMID: 39953121 PMCID: PMC11828961 DOI: 10.1038/s41598-025-88940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
X-ray diffraction is widely used to characterise the mineral component of calcified tissue. Broadening of the diffraction peaks yields valuable information on the size of coherently diffracting domains, sometimes loosely described as crystallite size or crystallinity. These domains are markedly anisotropic, hence a single number describing their size is misleading. We present a novel variation on a method for visualising crystallographic anisotropy in X-ray diffraction data. This provides an intuitively interpretable depiction of crystalline domain size and anisotropy. The new method involves creating a polar plot of calculated domain thickness for peaks in a diffractogram versus crystallographic direction. Points with the least error are emphasised. Anisotropic domain dimensions are calculated by refining an ellipsoidal model in a whole pattern fit. These dimensions are then used to overlay an ellipse on the peak broadening plot. This is illustrated by application of the method to calcifications in breast tissue with suspected cancer, which frequently contain whitlockite as well as nanocrystalline apatite. Like most biogenic apatite, this exhibits markedly anisotropic peak broadening. The nature of this anisotropy offers potentially useful information on normal function and pathology of calcified tissue and is a frequently neglected crystallographic feature of these materials.
Collapse
Affiliation(s)
- Robert Scott
- Cranfield Forensic Institute, Cranfield University, Bedford, UK.
| | - Iain D Lyburn
- Cranfield Forensic Institute, Cranfield University, Bedford, UK
- Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, UK
- Medical Imaging Centre, Cobalt Medical Charity, Cheltenham, UK
| | | | - Pascaline Bouzy
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | - Nicholas Stone
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | | | - Sarah Gosling
- School of Chemical and Physical Sciences, Keele University, Keele, UK
| | | | | | - Sarah E Pinder
- School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Keith Rogers
- Cranfield Forensic Institute, Cranfield University, Bedford, UK
| |
Collapse
|
5
|
Oliveira LKRD, Nascimento Neto CDD, Costa E Silva AB, Rocha SMW, Bianchi PR, Galdino AGDS, Silva DN. Physicochemical characterization and effects of monetite obtained from titania-reinforced eggshell on bone repair: a new possibility for tissue bioengineering? Clin Oral Investig 2025; 29:108. [PMID: 39903319 DOI: 10.1007/s00784-025-06195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
OBJECTIVES To carry out physicomechanical characterization of the HA/DCPA/TiO2 and to evaluate the tissue repair in rat calvaria. METHODS Two bone defects were made in the calvaria of 36 Wistar rats, divided into groups: HA/DCPA, HA/DCPA/TiO2 and sham (blood clot). The animals were euthanized at 30, 60 and 90 days and calvaria slides were processed with hematoxylin/eosin. The newly formed bone, connective tissue, biomaterial remnant, and total tissue repair percentages were calculated in relation to the total defect area. The HA/DCPA/TiO2 was characterized structurally by scanning electron microscopy (SEM), and chemically by energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). It was submitted to apparent density (AD), apparent porosity (AP), water absorption (WA) and compressive strength (CS) physical tests. The ANOVA test was applied, followed by Turkey's test and Student's t-test (p ≤ 0,05). RESULTS The SEM showed biomaterials inside the bone defects and newly formed bone. EDS identified oxygen, calcium, phosphorus, and titanium in the sample. The HA/DCPA/TiO2 and HA/DCPA groups presented a total tissue repair area that was larger than the sham group (p < 0.001). CONCLUSIONS The physical-mechanical assays showed that HA/DCPA/TiO2 has AD and CS properties within the limits of trabecular bone and with values higher than HA/DCPA.HA/DCPA/TiO2 presented higher densification and compressive strength rates than HA/DCPA. CLINICAL RELEVANCE Potential as a scaffold for bone.
Collapse
Affiliation(s)
- Laisa Kindely Ramos de Oliveira
- Postgraduate Program in Dental Sciences, UFES, Vitória, ES, Brazil.
- , Marechal Campos, 1.355, Bonfim, Vitória, Espírito Santo, 29047160, Brazil.
| | | | | | | | | | | | - Daniela Nascimento Silva
- Department of Clinical Dentistry, Postgraduate Program in Dental Sciences, UFES, Vitória, ES, Brazil
| |
Collapse
|
6
|
Thangavel M, Elsen S R. Evaluation and optimization of physical, mechanical, and biological characteristics of 3D printed Whitlockite/calcium silicate composite scaffold for bone tissue regeneration using response surface methodology. Biomed Mater 2025; 20:025017. [PMID: 39842082 DOI: 10.1088/1748-605x/adad27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Calcium phosphate-based bioscaffolds are used for bone tissue regeneration because of their physical and chemical resemblance to human bone. Calcium, phosphate, sodium, potassium, magnesium, and silicon are important components of human bone. The successful biomimicking of human bone characteristics involves incorporating all the human bone elements into the scaffold material. In this work, Mg-Whitlockite (WH) and Calcium Silicate (CS) were selected as matrix and reinforcement respectively, because of their desirable elemental composition and regenerative properties. The magnesium in WH increases mineralization in bone, and the silicon ions in CS support vascularization. The Mg-WH was synthesized using the wet chemical method, and powder characterization tests were performed. Response surface methodology (RSM) is used to design the experiments with a combination of material compositions, infill ratios (IFs), and sintering temperatures (STs). The WH/CS bioceramic composite is 3D printed in three different compositions: 100/0, 75/25, and 50/50 wt%, with IFs of 50%, 75%, and 100%. The physical and mechanical characterization study of printed samples is conducted and the result is optimized using RSM. ANOVA (Analysis of Variance) is used to establish the relationship between input parameters and responses. The optimized input parameters were the WH/CS composition of 50/50 wt%, IF of 50%, and ST of 1150 °C, which bring out the best possible combination of physical and mechanical characteristics. The RSM optimized response was a density of 2.27 g cm-3, porosity of 36.74%, wettability of 45.79%, shrinkage of 25.13%, compressive strength of 12 MPa, and compressive modulus of 208.49 MPa with 92% desirability. The biological characterization studies were conducted for the scaffold samples prepared with optimized input parameters. The biological studies confirmed the capabilities of the WH/CS composite scaffolds in bone regenerative applications.
Collapse
Affiliation(s)
- Mahendran Thangavel
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Renold Elsen S
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
7
|
Lyburn ID, Scott R, Cornford E, Bouzy P, Stone N, Greenwood C, Bouybayoune I, Pinder SE, Rogers K. Translating microcalcification biomarker information into the laboratory: A preliminary assessment utilizing core biopsies obtained from sites of mammographic calcification. Heliyon 2024; 10:e27686. [PMID: 38509936 PMCID: PMC10950651 DOI: 10.1016/j.heliyon.2024.e27686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Rationale and objectives The potential of breast microcalcification chemistry to provide clinically valuable intelligence is being increasingly studied. However, acquisition of crystallographic details has, to date, been limited to high brightness, synchrotron radiation sources. This study, for the first time, evaluates a laboratory-based system that interrogates histological sections containing microcalcifications. The principal objective was to determine the measurement precision of the laboratory system and assess whether this was sufficient to provide potentially clinical valuable information. Materials and methods Sections from 5 histological specimens from breast core biopsies obtained to evaluate mammographic calcification were examined using a synchrotron source and a laboratory-based instrument. The samples were chosen to represent a significant proportion of the known breast tissue, mineralogical landscape. Data were subsequently analysed using conventional methods and microcalcification characteristics such as crystallographic phase, chemical deviation from ideal stoichiometry and microstructure were determined. Results The crystallographic phase of each microcalcification (e.g., hydroxyapatite, whitlockite) was easily determined from the laboratory derived data even when a mixed phase was apparent. Lattice parameter values from the laboratory experiments agreed well with the corresponding synchrotron values and, critically, were determined to precisions that were significantly greater than required for potential clinical exploitation. Conclusion It has been shown that crystallographic characteristics of microcalcifications can be determined in the laboratory with sufficient precision to have potential clinical value. The work will thus enable exploitation acceleration of these latent microcalcification features as current dependence upon access to limited synchrotron resources is minimized.
Collapse
Affiliation(s)
- Iain D. Lyburn
- Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, United Kingdom
| | - Robert Scott
- Cranfield Forensic Institute, Cranfield University, Swindon, United Kingdom
| | - Eleanor Cornford
- Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, United Kingdom
| | - Pascaline Bouzy
- School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Nicholas Stone
- School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Charlene Greenwood
- School of Chemical and Physical Sciences, Keele University, Staffordshire, United Kingdom
| | - Ihsanne Bouybayoune
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Sarah E. Pinder
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Keith Rogers
- Cranfield Forensic Institute, Cranfield University, Swindon, United Kingdom
| |
Collapse
|
8
|
Raiseliene R, Linkaite G, Zarkov A, Kareiva A, Grigoraviciute I. Large-Scale Green Synthesis of Magnesium Whitlockite from Environmentally Benign Precursor. MATERIALS (BASEL, SWITZERLAND) 2024; 17:788. [PMID: 38399039 PMCID: PMC10890023 DOI: 10.3390/ma17040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Magnesium whitlockite (Mg-WH) powders were synthesized with remarkable efficiency via the dissolution-precipitation method by employing an environmentally benign precursor, gypsum. Under optimized conditions, each 5.00 g of initial gypsum yielded an impressive amount of 3.00 g (89% yield) of Mg-WH in a single batch. Remarkably, no XRD peaks attributable to impurity phases were observed, indicating the single-phase nature of the sample. FT-IR analysis confirmed the presence of the PO43- and HPO42- groups in the obtained Mg-WH phase. The SEM-EDX results confirmed that Mg-WH crystals with homogeneous Ca, Mg, P, and O distributions were obtained. In previously published research papers, the synthesis of Mg-WH has been consistently described as a highly intricate process due to material formation within a narrow pH and temperature range. Our proposed synthesis method is particularly compelling as it eliminates the need for meticulous monitoring, presenting a notable improvement in the quest for a more convenient and efficient Mg-WH synthesis. The proposed procedure not only emphasizes the effectiveness of the process, but also highlights its potential to meet significant demands, providing a reliable solution for large-scale production needs in various promising applications.
Collapse
Affiliation(s)
- Ruta Raiseliene
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Greta Linkaite
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Aleksej Zarkov
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Aivaras Kareiva
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Inga Grigoraviciute
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| |
Collapse
|
9
|
Griesiute D, Kizalaite A, Dubnika A, Klimavicius V, Kalendra V, Tyrpekl V, Cho SH, Goto T, Sekino T, Zarkov A. A copper-containing analog of the biomineral whitlockite: dissolution-precipitation synthesis, structural and biological properties. Dalton Trans 2024; 53:1722-1734. [PMID: 38167907 DOI: 10.1039/d3dt03756h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the present work, copper whitlockite (Cu-WH, Ca18Cu2(HPO4)2(PO4)12) was successfully synthesized and comprehensively characterized, founding the base knowledge for its future studies in medicine, particularly for bone regeneration. This material is a copper-containing analog of the well-known biomineral magnesium whitlockite (Mg-WH, Ca18Mg2(HPO4)2(PO4)12). The synthesis of powders was performed by a dissolution-precipitation method in an aqueous medium under hydrothermal conditions. Phase conversion from brushite (CaHPO4·2H2O) to Cu-WH took place in an acidic medium in the presence of Cu2+ ions. Optimization of the synthesis conditions in terms of medium pH, temperature, time, Ca/Cu molar ratio and concentration of starting materials was performed. The crystal structure of the synthesized products was confirmed by XRD, FTIR and Raman spectroscopy, 1H and 31P solid-state NMR, and EPR. Morphological features and elemental distribution of the synthesized powders were studied by means of SEM/EDX analysis. The ion release in SBF solution was estimated using ICP-OES. Cytotoxicity experiments were performed with MC3T3-E1 cells. The study on thermal stability revealed that the synthesized material is thermally unstable and gradually decomposes upon annealing to Cu-substituted β-Ca3(PO4)2 and Ca2P2O7.
Collapse
Affiliation(s)
- Diana Griesiute
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| | - Agne Kizalaite
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| | - Arita Dubnika
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Vytautas Klimavicius
- Institute of Chemical Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Vidmantas Kalendra
- Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Vaclav Tyrpekl
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Sung Hun Cho
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomoyo Goto
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Sekino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Aleksej Zarkov
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
10
|
Su Z, Tan P, Zhang J, Wang P, Zhu S, Jiang N. Understanding the Mechanics of the Temporomandibular Joint Osteochondral Interface from Micro- and Nanoscopic Perspectives. NANO LETTERS 2023; 23:11702-11709. [PMID: 38060440 DOI: 10.1021/acs.nanolett.3c03564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The condylar cartilage of the temporomandibular joint (TMJ) is connected to the subchondral bone by an osteochondral interface that transmits loads without causing fatigue damage. However, the microstructure, composition, and mechanical properties of this interface remain elusive. In this study, we found that structurally, a spatial gradient assembly of hydroxyapatite (HAP) particles exists in the osteochondral interface, with increasing volume of apatite crystals with depth and a tendency to form denser and stacked structures. Combined with nanoindentation, this complex assembly of nanoscale structures and components enhanced energy dissipation at the osteochondral interface, achieving a smooth stress transition between soft and hard tissues. This study comprehensively demonstrates the elemental composition and complex nanogradient spatial assembly of the osteochondral interface at the ultramicroscopic scale, providing a basis for exploring the construction of complex mechanical models of the interfacial region.
Collapse
Affiliation(s)
- Zhan Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
11
|
González-Enguita C, Bueno-Serrano G, López de Alda-González A, García-Giménez R. Environmental Conditions as Determinants of Kidney Stone Formation. ACS APPLIED BIO MATERIALS 2023; 6:5030-5036. [PMID: 37913796 PMCID: PMC10863387 DOI: 10.1021/acsabm.3c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Urolithiasis is a disease characterized by the presence of stones in the urinary tract, whether in the kidneys, ureters, or bladder. Its origin is multiple, and causes can be cited as hereditary, environmental, dietary, anatomical, metabolic, or infectious factors. A kidney stone is a biomaterial that originates inside the urinary tract, following the principles of crystalline growth, and in most cases, it cannot be eliminated naturally. In this work, 40 calculi from the Don Benito, Badajoz University Hospital are studied and compared with those collected in Madrid to establish differences between both populations with the same pathology and located in very different geographical areas. Analysis by cathodoluminescence offers information on the low crystallinity of the phases and their hydration states, as well as the importance of the bonds with the Ca cation in all of the structures, which, in turn, is related to environmental and social factors of different population groups such as a high intake of proteins, medications, bacterial factors, or possible contamination with greenhouse gases, among other factors.
Collapse
Affiliation(s)
- Carmen González-Enguita
- Hospital
Universitario Fundación Jiménez Díaz, Avenida Reyes Católicos,
2, 28040 Madrid, Spain
| | - Gonzalo Bueno-Serrano
- Hospital
Universitario Fundación Jiménez Díaz, Avenida Reyes Católicos,
2, 28040 Madrid, Spain
| | | | - Rosario García-Giménez
- Departamento
de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
12
|
Keeling GP, Baark F, Katsamenis OL, Xue J, Blower PJ, Bertazzo S, T M de Rosales R. 68Ga-bisphosphonates for the imaging of extraosseous calcification by positron emission tomography. Sci Rep 2023; 13:14611. [PMID: 37669973 PMCID: PMC10480432 DOI: 10.1038/s41598-023-41149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Radiolabelled bisphosphonates (BPs) and [18F]NaF (18F-fluoride) are the two types of radiotracers available to image calcium mineral (e.g. bone), yet only [18F]NaF has been widely explored for the non-invasive molecular imaging of extraosseous calcification (EC) using positron emission tomography (PET) imaging. These two radiotracers bind calcium mineral deposits via different mechanisms, with BPs chelating to calcium ions and thus being non-selective, and [18F]NaF being selective for hydroxyapatite (HAp) which is the main component of bone mineral. Considering that the composition of EC has been reported to include a diverse range of non-HAp calcium minerals, we hypothesised that BPs may be more sensitive for imaging EC due to their ability to bind to both HAp and non-HAp deposits. We report a comparison between the 68Ga-labelled BP tracer [68Ga]Ga-THP-Pam and [18F]NaF for PET imaging in a rat model of EC that develops macro- and microcalcifications in several organs. Macrocalcifications were identified using preclinical computed tomography (CT) and microcalcifications were identified using µCT-based 3D X-ray histology (XRH) on isolated organs ex vivo. The morphological and mineral analysis of individual calcified deposits was performed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). PET imaging and ex vivo analysis results demonstrated that while both radiotracers behave similarly for bone imaging, the BP-based radiotracer [68Ga]Ga-THP-Pam was able to detect EC more sensitively in several organs in which the mineral composition departs from that of HAp. Our results strongly suggest that BP-based PET radiotracers such as [68Ga]Ga-THP-Pam may have a particular advantage for the sensitive imaging and early detection of EC by being able to detect a wider array of relevant calcium minerals in vivo than [18F]NaF, and should be evaluated clinically for this purpose.
Collapse
Affiliation(s)
- George P Keeling
- Department of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Friedrich Baark
- Department of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Orestis L Katsamenis
- Faculty of Engineering and Physical Sciences, Highfield Campus, µ-VIS X-Ray Imaging Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jing Xue
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
| | - Philip J Blower
- Department of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Sergio Bertazzo
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
| | - Rafael T M de Rosales
- Department of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
13
|
Cohen A, Gotnayer L, Gal S, Aranovich D, Vidavsky N. Multicellular spheroids containing synthetic mineral particles: an advanced 3D tumor model system to investigate breast precancer malignancy potential according to the mineral type. J Mater Chem B 2023; 11:8033-8045. [PMID: 37534429 DOI: 10.1039/d3tb00439b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Mineral particles that form in soft tissues in association with disease conditions are heterogeneous in their composition and physiochemical properties. Hence, it is challenging to study the effect of mineral type on disease progression in a high-throughput and realistic manner. For example, most early breast precancer lesions, termed ductal carcinoma in situ (DCIS), contain microcalcifications (MCs), calcium-containing pathological minerals. The most common type of MCs is calcium phosphate crystals, mainly carbonated apatite; it is associated with either benign or malignant lesions. In vitro studies indicate that the crystal properties of apatite MCs can affect breast cancer progression. A less common type of MCs is calcium oxalate dihydrate (COD), which is almost always found in benign lesions. We developed a 3D tumor model of multicellular spheroids of human precancer cells containing synthetic MC analogs that link the crystal properties of MCs with the progression of breast precancer to invasive cancer. Using this 3D model, we show that apatite crystals induce Her2 overexpression in DCIS cells. This tumor-triggering effect is increased when the carbonate fraction in the MCs decreases. COD crystals, in contrast, decrease Her2 expression in the spheroids, even compared with a control group with no added MC analogs. Furthermore, COD decreases cell proliferation and migration in DCIS monolayers compared to untreated cells and cells incubated with apatite crystals. This finding suggests that COD is not randomly located only in benign lesions-it may actively contribute to suppressing precancer progression in its surroundings. Our model provides an easy-to-manipulate platform to better understand the interactions between mineral particles and their biological microenvironment. A better understanding of the effect of the crystal properties of MCs on precancer progression will potentially provide new directions for better precancer prognosis and treatment.
Collapse
Affiliation(s)
- Amit Cohen
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Lotem Gotnayer
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Sahar Gal
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Dina Aranovich
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
14
|
Burdusel AC, Neacsu IA, Birca AC, Chircov C, Grumezescu AM, Holban AM, Curutiu C, Ditu LM, Stan M, Andronescu E. Microwave-Assisted Hydrothermal Treatment of Multifunctional Substituted Hydroxyapatite with Prospective Applications in Bone Regeneration. J Funct Biomater 2023; 14:378. [PMID: 37504872 PMCID: PMC10381662 DOI: 10.3390/jfb14070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Orthopedic bone graft infections are major complications in today's medicine, and the demand for antibacterial treatments is expanding because of the spread of antibiotic resistance. Various compositions of hydroxyapatite (HAp) in which Calcium (Ca2+) ions are substituted with Cerium (Ce3+) and Magnesium (Mg2+) are herein proposed as biomaterials for hard tissue implants. This approach gained popularity in recent years and, in the pursuit of mimicking the natural bone mineral's composition, over 70 elements of the Periodic Table were already reported as substituents into HAp structure. The current study aimed to create materials based on HAp, Hap-Ce, and Hap-Mg using hydrothermal maturation in the microwave field. This route has been considered a novel, promising, and effective way to obtain monodisperse, fine nanoparticles while easily controlling the synthesis parameters. The synthesized HAp powders were characterized morphologically and structurally by XRD diffraction, Dynamic light scattering, zeta potential, FTIR spectrometry, and SEM analysis. Proliferation and morphological analysis on osteoblast cell cultures were used to demonstrate the cytocompatibility of the produced biomaterials. The antimicrobial effect was highlighted in the synthesized samples, especially for hydroxyapatite substituted with cerium. Therefore, the samples of HAp substituted with cerium or magnesium are proposed as biomaterials with enhanced osseointegration, also having the capacity to reduce device-associated infections.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdusel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Alexandra Catalina Birca
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Alexandru-Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Carmen Curutiu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Lia Mara Ditu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Miruna Stan
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| |
Collapse
|
15
|
Abstract
Patients with chronic kidney disease (CKD) exhibit tremendously elevated risk for cardiovascular disease, particularly ischemic heart disease, due to premature vascular and cardiac aging and accelerated ectopic calcification. The presence of cardiovascular calcification associates with increased risk in patients with CKD. Disturbed mineral homeostasis and diverse comorbidities in these patients drive increased systemic cardiovascular calcification in different manifestations with diverse clinical consequences, like plaque instability, vessel stiffening, and aortic stenosis. This review outlines the heterogeneity in calcification patterning, including mineral type and location and potential implications on clinical outcomes. The advent of therapeutics currently in clinical trials may reduce CKD-associated morbidity. Development of therapeutics for cardiovascular calcification begins with the premise that less mineral is better. While restoring diseased tissues to a noncalcified homeostasis remains the ultimate goal, in some cases, calcific mineral may play a protective role, such as in atherosclerotic plaques. Therefore, developing treatments for ectopic calcification may require a nuanced approach that considers individual patient risk factors. Here, we discuss the most common cardiac and vascular calcification pathologies observed in CKD, how mineral in these tissues affects function, and the potential outcomes and considerations for therapeutic strategies that seek to disrupt the nucleation and growth of mineral. Finally, we discuss future patient-specific considerations for treating cardiac and vascular calcification in patients with CKD-a population in need of anticalcification therapies.
Collapse
Affiliation(s)
- Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL (J.D.H.)
| | - Claudia Goettsch
- Department of Internal Medicine I, Division of Cardiology, Medical Faculty, RWTH Aachen University, Germany (C.G.)
| |
Collapse
|
16
|
Shah FA. The many facets of micropetrosis - Magnesium whitlockite deposition in bisphosphonate-exposed human alveolar bone with osteolytic metastasis. Micron 2023; 168:103441. [PMID: 36924676 DOI: 10.1016/j.micron.2023.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The lacuno-canalicular space of apoptotic osteocytes eventually becomes mineralised in vivo. This condition is known as micropetrosis and is a fundamental characteristic of ageing bone. Increased prevalence of such hypermineralised osteocyte lacunae is viewed as a structural marker of impaired bone function - both mechanical and biological. Within the lacuno-canalicular space, mineralised apoptotic debris typically occurs as micrometre-sized, spherical nodules of magnesium-rich, carbonated apatite. Moreover, characteristically facetted, rhomboidal nodules of magnesium whitlockite [Mg-whitlockite; Ca18Mg2(HPO4)2(PO4)12] have been reported in human alveolar bone exposed to the bisphosphonate alendronate. This work provides supporting evidence for Mg-whitlockite formation in the alveolar bone of a 70-year-old male exposed to the bisphosphonate zoledronic acid to suppress osteolytic changes in skeletal metastasis. Backscattered electron scanning electron microscopy (BSE-SEM) revealed spherical and rhomboidal nodules within the lacuno-canalicular space. A variant of spherical nodules exhibited a fuzzy surface layer comprising radially extending acicular crystallites. The rhomboidal nodules ranged between ∼200 nm to ∼2.4 µm across the widest dimension (652 ± 331 nm). Micro-Raman spectroscopy and energy dispersive X-ray spectroscopy confirmed that rhomboidal nodules are compositionally distinct from spherical nodules, exhibiting higher Mg content and lower Ca/P ratio. Formation of Mg-whitlockite within osteocyte lacunae is multifactorial in nature and suggests altered bone biomineralisation. Nevertheless, the underlying mechanism(s) and sequence of events remain poorly understood and warrant further investigation. The possibility to discriminate between carbonated apatite and Mg-whitlockite nodules within osteocyte lacunae, based on particle morphology, attests to the diagnostic potential of BSE-SEM with or without additional analyses of material composition.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
17
|
Kunitake JA, Sudilovsky D, Johnson LM, Loh HC, Choi S, Morris PG, Jochelson MS, Iyengar NM, Morrow M, Masic A, Fischbach C, Estroff LA. Biomineralogical signatures of breast microcalcifications. SCIENCE ADVANCES 2023; 9:eade3152. [PMID: 36812311 PMCID: PMC9946357 DOI: 10.1126/sciadv.ade3152] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Microcalcifications, primarily biogenic apatite, occur in cancerous and benign breast pathologies and are key mammographic indicators. Outside the clinic, numerous microcalcification compositional metrics (e.g., carbonate and metal content) are linked to malignancy, yet microcalcification formation is dependent on microenvironmental conditions, which are notoriously heterogeneous in breast cancer. We interrogate multiscale heterogeneity in 93 calcifications from 21 breast cancer patients using an omics-inspired approach: For each microcalcification, we define a "biomineralogical signature" combining metrics derived from Raman microscopy and energy-dispersive spectroscopy. We observe that (i) calcifications cluster into physiologically relevant groups reflecting tissue type and local malignancy; (ii) carbonate content exhibits substantial intratumor heterogeneity; (iii) trace metals including zinc, iron, and aluminum are enhanced in malignant-localized calcifications; and (iv) the lipid-to-protein ratio within calcifications is lower in patients with poor composite outcome, suggesting that there is potential clinical value in expanding research on calcification diagnostic metrics to include "mineral-entrapped" organic matrix.
Collapse
Affiliation(s)
| | - Daniel Sudilovsky
- Department of Pathology and Laboratory Medicine, Cayuga Medical Center at Ithaca, Ithaca, NY 14850, USA
- Pathology Department, Kingman Regional Medical Center, Kingman, AZ 86409, USA
- Pathology Department, Western Arizona Medical Center, Bullhead City, AZ 86442, USA
- Pathology Department, Yuma Regional Medical Center, Yuma, AZ 85364, USA
| | - Lynn M. Johnson
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY 14850, USA
| | - Hyun-Chae Loh
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Patrick G. Morris
- Medical Oncology Service, Beaumont Hospital, Dublin, Ireland
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Maxine S. Jochelson
- Department of Radiology, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY 10065, USA
| | - Neil M. Iyengar
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Monica Morrow
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Admir Masic
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author. (L.A.E.); (C.F.); (A.M.)
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850, USA
- Corresponding author. (L.A.E.); (C.F.); (A.M.)
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850, USA
- Corresponding author. (L.A.E.); (C.F.); (A.M.)
| |
Collapse
|
18
|
Effect of EDTA Gel on Residual Subgingival Calculus and Biofilm: An In Vitro Pilot Study. Dent J (Basel) 2023; 11:dj11010022. [PMID: 36661559 PMCID: PMC9857820 DOI: 10.3390/dj11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Residual calculus, following scaling and root planing (SRP), is associated with persistent inflammation and the progression of periodontitis. This study examined the effects of a 24% neutral ethylenediaminetetraacetic acid (EDTA) gel on subgingival calculus and biofilms. METHODS Eleven single-rooted teeth extracted because of severe periodontal disease were randomly assigned to the following treatment groups: (1) three teeth served as untreated controls; (2) three teeth were treated by scaling and root planing (SRP) only; and (3) three teeth were treated by SRP + EDTA. The remaining two teeth, one SRP only and the other SRP + EDTA were designated for energy-dispersive X-ray spectroscopy (EDS) analysis. EDTA gel was placed on the SRP surface for 2 min and then burnished with a sterile cotton pellet. RESULTS SRP + EDTA treated specimens exhibited severely damaged biofilm and the disruption of the extracellular polymeric matrix. EDS scans of the smear layer and calculus featured reductions in the Weight % and Atomic % for N, F, Na, and S and increases in Mg, P, and Ca. CONCLUSIONS A 25% neutral EDTA gel was applied after SRP severely disrupted the residual biofilm and altered the character of dental calculus and the smear layer as shown by reductions in the Weight % and Atomic % for N, F, Na, and S and increases in Mg, P, and Ca.
Collapse
|
19
|
Xiao F, Shi J, Zhang X, Hu M, Chen K, Shen C, Chen X, Guo Y, Li Y. Gadolinium-doped whitlockite/chitosan composite scaffolds with osteogenic activity for bone defect treatment: In vitro and in vivo evaluations. Front Bioeng Biotechnol 2023; 11:1071692. [PMID: 36873374 PMCID: PMC9975562 DOI: 10.3389/fbioe.2023.1071692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Reducing the incidence of bone defects caused by trauma and other primary diseases is an urgent task in modern society. In the present study, we developed a gadolinium-doped whitlockite/chitosan (Gd-WH/CS) scaffold and assessed its biocompatibility, osteoinductivity, and bone regeneration capacity for the treatment of calvarial defect in a Sprague-Dawley (SD) rat model. The Gd-WH/CS scaffolds possessed a macroporous structure, with a pore size ranging 200-300 μm, which facilitated the growth of bone precursor cells and tissues into scaffold. Results of cytological and histological biosafety experiments showed that both WH/CS and Gd-WH/CS scaffolds were non-cytotoxic to human adipose-derived stromal cells (hADSCs) and bone tissue, which demonstrated the excellent biocompatibility of Gd-WH/CS scaffolds. Results of western blotting and real-time PCR analysis provided a possible mechanism that Gd3+ ions in the Gd-WH/CS scaffolds promoted the osteogenic differentiation of hADSCs through the GSK3β/β-catenin signaling pathway and significantly upregulated the expression of osteogenic related genes (OCN, OSX and COL1A1). Finally, in animal experiments, SD rat cranial defects were effectively treated and repaired with Gd-WH/CS scaffolds due to its appropriate degradation rate and excellent osteogenic activity. This study suggests the potential utility of the Gd-WH/CS composite scaffolds in treating bone defect disease.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jingjing Shi
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Xinhai Zhang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Min Hu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Kangming Chen
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Shen
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiaodong Chen
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Yang Li
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Shah FA, Jolic M, Micheletti C, Omar O, Norlindh B, Emanuelsson L, Engqvist H, Engstrand T, Palmquist A, Thomsen P. Bone without borders - Monetite-based calcium phosphate guides bone formation beyond the skeletal envelope. Bioact Mater 2023; 19:103-114. [PMID: 35441115 PMCID: PMC9005875 DOI: 10.1016/j.bioactmat.2022.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
Calcium phosphates (CaP) represent an important class of osteoconductive and osteoinductive biomaterials. As proof-of-concept, we show how a multi-component CaP formulation (monetite, beta-tricalcium phosphate, and calcium pyrophosphate) guides osteogenesis beyond the physiological envelope. In a sheep model, hollow dome-shaped constructs were placed directly over the occipital bone. At 12 months, large amounts of bone (∼75%) occupy the hollow space with strong evidence of ongoing remodelling. Features of both compact bone (osteonal/osteon-like arrangements) and spongy bone (trabeculae separated by marrow cavities) reveal insights into function/need-driven microstructural adaptation. Pores within the CaP also contain both woven bone and vascularised lamellar bone. Osteoclasts actively contribute to CaP degradation/removal. Of the constituent phases, only calcium pyrophosphate persists within osseous (cutting cones) and non-osseous (macrophages) sites. From a translational perspective, this multi-component CaP opens up exciting new avenues for osteotomy-free and minimally-invasive repair of large bone defects and augmentation of the dental alveolar ridge.
Collapse
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Jolic
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chiara Micheletti
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Omar Omar
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Birgitta Norlindh
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Emanuelsson
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Engqvist
- Department of Engineering Sciences, Applied Materials Science Section, Uppsala University, Uppsala, Sweden
| | - Thomas Engstrand
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Bazin D, Frochot V, Haymann JP, Letavernier E, Daudon M. Crystal size in μcrystalline pathologies and its clinical implication. CR CHIM 2022. [DOI: 10.5802/crchim.96] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Kravchik MV, Zolotenkova GV, Grusha YO, Pigolkin YI, Fettser EI, Zolotenkov DD, Gridina NV, Badyanova LV, Alexandrov AA, Novikov IA. Age-related changes in cationic compositions of human cranial base bone apatite measured by X-ray energy dispersive spectroscopy (EDS) coupled with scanning electron microscope (SEM). Biometals 2022; 35:1077-1094. [PMID: 35922585 DOI: 10.1007/s10534-022-00425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
One of the most common scientific methods to study the chemical composition of bone matter is energy-dispersive X-ray spectroscopy (EDS). However, interpretation of the data obtained can be quite complicated and require a thorough understanding of bone structure. This is especially important when evaluating subtle changes of chemical composition, including the age-related ones. The aim of current study is to create a method of processing the obtained data that can be utilized in clinical medicine and use it to evaluate the age evolution of bone chemical composition. To achieve this goal, an elemental composition of 62 samples of cadaver compact bone, taken from the skull base (age: Me = 57.5; 21/91(min/max); Q1 = 39.5, Q3 = 73.75), was studied with EDS. We used the original method to estimate the amount of Mg2+ cations. We detected and confirmed an increase of Mg2+ cation formula amount in the bone apatite, which characterizes age-related resorption rate. Analysis of cation estimated ratio in a normative bone hydroxylapatite showed an increase of Mg2+ amount (R = 0.43, p = 0.0005). Also, Ca weight fraction was shown to decrease with age (R = - 0.43, p = 0.0005), which in turn confirmed the age-dependent bone decalcification. In addition, electron probe microanalysis (EPMA) and X-ray diffraction analysis (XRD) were performed. EDS data confirmed the EPMA results (R = 0.76, p = 0.001). In conclusion, the proposed method can be used in forensic medicine and provide additional data to the known trends of decalcification and change of density and crystallinity of mineral bone matter.
Collapse
Affiliation(s)
- M V Kravchik
- Scientific Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021.
| | - G V Zolotenkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation, 119495
| | - Y O Grusha
- Scientific Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation, 119495
| | - Y I Pigolkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation, 119495
| | - E I Fettser
- Scientific Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation, 119495
| | - D D Zolotenkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation, 119495
| | - N V Gridina
- Design Information Technologies Center Russian Academy of Sciences, Odintsovo, Russian Federation, 143000
| | - L V Badyanova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation, 119991
| | - A A Alexandrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation, 119991
| | - I A Novikov
- Scientific Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation, 119991
| |
Collapse
|
23
|
Kizalaite A, Klimavicius V, Versockiene J, Lastauskiene E, Murauskas T, Skaudzius R, Yokoi T, Kawashita M, Goto T, Sekino T, Zarkov A. Peculiarities of the formation, structural and morphological properties of zinc whitlockite (Ca 18Zn 2(HPO 4) 2(PO 4) 12) synthesized via a phase transformation process under hydrothermal conditions. CrystEngComm 2022. [DOI: 10.1039/d2ce00497f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the present work, the formation of zinc whitlockite via a dissolution–precipitation process was investigated in detail. The influence of medium pH, reaction time, temperature and concentration of precursors on the formation of the material was studied.
Collapse
Affiliation(s)
- Agne Kizalaite
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Vytautas Klimavicius
- Institute of Chemical Physics, Vilnius University, Sauletekio 3, LT-10257, Vilnius, Lithuania
| | - Justina Versockiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - Egle Lastauskiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - Tomas Murauskas
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Ramunas Skaudzius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Taishi Yokoi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tomoyo Goto
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Sekino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Aleksej Zarkov
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
24
|
Xie J, Rittel D, Shemtov-Yona K, Shah FA, Palmquist A. A stochastic micro to macro mechanical model for the evolution of bone-implant interface stiffness. Acta Biomater 2021; 131:415-423. [PMID: 34129958 DOI: 10.1016/j.actbio.2021.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 01/05/2023]
Abstract
Upon placement of an implant into living bone, an interface is formed through which various biochemical, biological, physical, and mechanical interactions take place. This interface evolves over time as the mechanical properties of peri-implant bone increase. Owing to the multifactorial nature of interfacial processes, it is challenging to devise a comprehensive model for predicting the mechanical behavior of the bone-implant interface. We propose a simple spatio-temporally evolving mechanical model - from an elementary unit cell comprising randomly oriented mineralized collagen fibrils having randomly assigned stiffness all the way up to a macroscopic bone-implant interface in a gap healing scenario. Each unit cell has an assigned Young's modulus value between 1.62 GPa and 25.73 GPa corresponding to minimum (i.e., 0) and maximum (i.e., 0.4) limits of mineral volume fraction, respectively, in the overlap region of the mineralized collagen fibril. Gap closure and subsequent stiffening are modeled to reflect the two main directions of peri-implant bone formation, i.e., contact osteogenesis and distance osteogenesis. The linear elastic stochastic finite element model reveals highly nonlinear temporal evolution of bone-implant interface stiffness, strongly dictated by the specific kinetics of contact osteogenesis and distance osteogenesis. The bone-implant interface possesses a small stiffness until gap closure, which subsequently evolves into a much higher stiffness, and this transition is reminiscent of a percolation transition whose threshold corresponds to gap closure. The model presented here, albeit preliminary, can be incorporated into future calculations of the bone-implant system where the interface is well-defined mechanically. STATEMENT OF SIGNIFICANCE: A simple, physically informed model for the mechanical characteristics of the bone-implant interface is still missing. Here, we start by extending the reported mechanical characteristics of a one cubic micrometre unit cell to a 250 µm long interface made of 1 µm thick layers. The stiffness of each cell (based on mineral content) is assigned randomly to mimic bone micro-heterogeneity. The numerical study of this interface representative structure allows for the simultaneous determination of the spatio-temporal evolution of the mechanical response at local (discrete element) and global (overall model) scales. The proposed model is the first of this kind that can easily be incorporated into realistic future models of bone-implant interaction with emphasis on implant stability and different loading conditions.
Collapse
|