1
|
Shen X, Boyd P, Dallal Bashi YH, McCoy CF, Zhao X, Malcolm RK. A multipurpose silicone elastomer vaginal ring releasing dapivirine and Cu 2+/Zn 2+ ions for HIV prevention and non-hormonal contraception. Int J Pharm 2025; 674:125442. [PMID: 40064380 DOI: 10.1016/j.ijpharm.2025.125442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
A dapivirine (DPV)-releasing vaginal ring (DapiRing®, containing 25 mg DPV) has been approved in various African countries for prevention of human immunodeficiency virus type 1 (HIV-1). Current research is focused on next-generation multipurpose prevention technology (MPT) vaginal rings that additionally provide contraception, and a combination dapivirine + levonorgestrel ring is in clinical development. However, hormonal contraceptives have numerous side effects and contraindications, and many women are interested in hormone-free contraceptive options. Copper and zinc have well documented spermicidal activity; for example, copper intrauterine devices-comprising a copper metal wire fitted to a polyethylene frame and releasing cupric (Cu2+) ions-have a long history of use as a long-actingreversible non-hormonal form of contraception. Here, we report a multipurpose vaginal ring offering sustained release of DPV, Cu2+ ions, and Zn2+ ions. Matrix-type silicone elastomer vaginal rings containing different combinations of DPV (25 mg) and various copper/zinc substances (copper nanopowders, zinc nanopowders, copper sulphate pentahydrate, and zinc acetate dihydrate) were successfully manufactured by injection molding. DPV and the metal nanopowders were stable during manufacturing; partial dehydration occurred with copper sulphate pentahydrate and zinc acetate dihydrate. Incorporation of copper/zinc substances had minimal impact on DPV release, and the formulations produced similar DPV release compared with DapiRing®. Rings containing metal salts released significantly more Cu2+/Zn2+ ions than those containing metal nanopowders, and greater quantities of Cu2+/Zn2+ ions compared with marketed copper IUDs or experimental copper-zinc IUDs. The results demonstrate that copper/zinc metals and salts can be effectively incorporated into and released from silicone elastomer vaginal rings and are compatible with DPV. The inclusion of copper/zinc offers potential as non-hormonal contraception and warrants further investigation in the context of MPTs.
Collapse
Affiliation(s)
- Xin Shen
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Peter Boyd
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | - Clare F McCoy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Xinyu Zhao
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
2
|
Abhang A, Burgess DJ. Recent advancements and future applications of intrauterine drug delivery systems. Expert Opin Drug Deliv 2025:1-16. [PMID: 40193227 DOI: 10.1080/17425247.2025.2490266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION Intrauterine devices (IUDs) are drug-device combination products that are placed inside the uterus above the endometrium. IUDs contain a therapeutic agent used for contraception and have been shown to have other therapeutic benefits. Over the past century, intrauterine drug delivery systems (IUDDS) have revolutionized women's health, and they hold immense growth potential in the future for new developments in the therapeutic areas beyond contraception. AREAS COVERED The aim of this review is to offer a comprehensive description of the history, development, and current state of IUDDS, next-generation IUDDS, and future applications of IUDDS in therapeutic areas beyond contraception such as multi-purpose prevention technologies, hormone replacement therapy, endometriosis, uterine fibroids, and endometrial cancer. EXPERT OPINION The uterus's unique features make it an ideal site for controlled, prolonged, and localized delivery of drugs, ensuring maximum concentration at the target site. Currently, IUDs are the most widely used contraceptive method. Future IUDDS hold the potential to deliver therapeutic agents for broader therapeutic areas for women's health, potentially aiding in the treatment of various diseases and disorders of the female reproductive system. Further research in development, characterization, and translation is warranted to ensure IUDDS reach their potential in many areas of women's health.
Collapse
Affiliation(s)
- Ashwin Abhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
3
|
Luo K, Liu Z, Yu R, Xu T, Legut D, Yin X, Zhang R. Electrochemical stability of biodegradable Zn-Cu alloys through machine-learning accelerated high-throughput discovery. Phys Chem Chem Phys 2024; 26:23010-23022. [PMID: 39171693 DOI: 10.1039/d4cp02307b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Zn-Cu alloys have attracted great attention as biodegradable alloys owing to their excellent mechanical properties and biocompatibility, with corrosion characteristics being crucial for their suitability for biomedical applications. However, the unresolved identification of intermetallic compounds in Zn-Cu alloys affecting corrosion and the complexity of the application environment hamper the understanding of their electrochemical behavior. Utilizing high-throughput first-principles calculations and machine-learning accelerated evolutionary algorithms for screening the most stable compounds in Zn-Cu systems, a dataset encompassing the formation energy of 2033 compounds is generated. It reveals that most of the experimentally reported Zn-Cu compounds can be replicated, especially the structure of R32 CuZn5 is first discovered which possesses the lowest formation energy of -0.050 eV per atom. Furthermore, the simulated X-ray diffraction pattern matches perfectly with the experimental ones. By formulating 342 potential electrochemical reactions based on the binary compounds, the Pourbaix diagrams for Zn-Cu alloys are constructed to clarify the fundamental competition between different phases and ions. The calculated equilibrium potential of CuZn5 is higher than that of Zn through the forward reaction Zn + CuZn5 ⇌ CuZn5 + Zn2+ + 2e-, resulting in microcell formation owing to the stronger charge density localization in Zn compared to CuZn5. The presence of chlorine accelerates the corrosion of Zn through the reaction Zn + CuZn5 + 6Cl- + 6H2O ⇌ Cu + 6ZnOHCl + 6H+ + 12e-, where the formation of ZnOHCl disrupts the ZnO passive film and expands the corrosion pH range from 9.2 to 8.8. Our findings reveal an accurate quantitative corrosion mechanism for Zn-Cu alloys, providing an effective pathway to investigate the corrosion resistance of biodegradable alloys.
Collapse
Affiliation(s)
- Kun Luo
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Zhaorui Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Rui Yu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Tengfei Xu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Dominik Legut
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, CZ-70800 Ostrava, Czech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Xing Yin
- National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610041, China.
| | - Ruifeng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
4
|
Li P, Dai J, Li Y, Alexander D, Čapek J, Geis-Gerstorfer J, Wan G, Han J, Yu Z, Li A. Zinc based biodegradable metals for bone repair and regeneration: Bioactivity and molecular mechanisms. Mater Today Bio 2024; 25:100932. [PMID: 38298560 PMCID: PMC10826336 DOI: 10.1016/j.mtbio.2023.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024] Open
Abstract
Bone fractures and critical-size bone defects are significant public health issues, and clinical treatment outcomes are closely related to the intrinsic properties of the utilized implant materials. Zinc (Zn)-based biodegradable metals (BMs) have emerged as promising bioactive materials because of their exceptional biocompatibility, appropriate mechanical properties, and controllable biodegradation. This review summarizes the state of the art in terms of Zn-based metals for bone repair and regeneration, focusing on bridging the gap between biological mechanism and required bioactivity. The molecular mechanism underlying the release of Zn ions from Zn-based BMs in the improvement of bone repair and regeneration is elucidated. By integrating clinical considerations and the specific bioactivity required for implant materials, this review summarizes the current research status of Zn-based internal fixation materials for promoting fracture healing, Zn-based scaffolds for regenerating critical-size bone defects, and Zn-based barrier membranes for reconstituting alveolar bone defects. Considering the significant progress made in the research on Zn-based BMs for potential clinical applications, the challenges and promising research directions are proposed and discussed.
Collapse
Affiliation(s)
- Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Jaroslav Čapek
- FZU – the Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 18200, Czech Republic
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianmin Han
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zhentao Yu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road 366, Guangzhou 510280, China
| |
Collapse
|
5
|
Su Z, Diao T, McGuire H, Yao C, Yang L, Bao G, Xu X, He B, Zheng Y. Nanomaterials Solutions for Contraception: Concerns, Advances, and Prospects. ACS NANO 2023; 17:20753-20775. [PMID: 37856253 DOI: 10.1021/acsnano.3c04366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Preventing unintentional pregnancy is one of the goals of a global public health policy to minimize effects on individuals, families, and society. Various contraceptive formulations with high effectiveness and acceptance, including intrauterine devices, hormonal patches for females, and condoms and vasectomy for males, have been developed and adopted over the last decades. However, distinct breakthroughs of contraceptive techniques have not yet been achieved, while the associated long-term adverse effects are insurmountable, such as endocrine system disorder along with hormone administration, invasive ligation, and slowly restored fertility after removal of intrauterine devices. Spurred by developments of nanomaterials and bionanotechnologies, advanced contraceptives could be fulfilled via nanomaterial solutions with much safer and more controllable and effective approaches to meet various and specific needs for women and men at different reproductive stages. Nanomedicine techniques have been extended to develop contraceptive methods, such as the targeted drug delivery and controlled release of hormone using nanocarriers for females and physical stimulation assisted vasectomy using functional nanomaterials via photothermal treatment or magnetic hyperthermia for males. Nanomaterial solutions for advanced contraceptives offer significantly improved biosafety, noninvasive administration, and controllable reversibility. This review summarizes the nanomaterial solutions to female and male contraceptives including the working mechanisms, clinical concerns, and their merits and demerits. This work also reviewed the nanomaterials that have been adopted in contraceptive applications. In addition, we further discuss safety considerations and future perspectives of nanomaterials in nanostrategy development for next-generation contraceptives. We expect that nanomaterials would potentially replace conventional materials for contraception in the near future.
Collapse
Affiliation(s)
- Zhenning Su
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Tian Diao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Helen McGuire
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Cancan Yao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Lijun Yang
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Guo Bao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Science, Western Sydney University, Kumamoto NSW 2751, Australia
| | - Bin He
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan
| |
Collapse
|
6
|
Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, Waite D, Glover K, Picco CJ, Korelidou A, Detamornrat U, Vora LK, Li L, Anjani QK, Donnelly RF, Domínguez-Robles J, Larrañeta E. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev 2023; 199:114950. [PMID: 37295560 DOI: 10.1016/j.addr.2023.114950] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.
Collapse
Affiliation(s)
- Elizabeth Magill
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - David Waite
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
7
|
Liu Q, Li A, Liu S, Fu Q, Xu Y, Dai J, Li P, Xu S. Cytotoxicity of Biodegradable Zinc and Its Alloys: A Systematic Review. J Funct Biomater 2023; 14:206. [PMID: 37103296 PMCID: PMC10144193 DOI: 10.3390/jfb14040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Zinc-based biodegradable metals (BMs) have been developed for biomedical implant materials. However, the cytotoxicity of Zn and its alloys has caused controversy. This work aims to investigate whether Zn and its alloys possess cytotoxic effects and the corresponding influence factors. According to the guidelines of the PRISMA statement, an electronic combined hand search was conducted to retrieve articles published in PubMed, Web of Science, and Scopus (2013.1-2023.2) following the PICOS strategy. Eighty-six eligible articles were included. The quality of the included toxicity studies was assessed utilizing the ToxRTool. Among the included articles, extract tests were performed in 83 studies, and direct contact tests were conducted in 18 studies. According to the results of this review, the cytotoxicity of Zn-based BMs is mainly determined by three factors, namely, Zn-based materials, tested cells, and test system. Notably, Zn and its alloys did not exhibit cytotoxic effects under certain test conditions, but significant heterogeneity existed in the implementation of the cytotoxicity evaluation. Furthermore, there is currently a relatively lower quality of current cytotoxicity evaluation in Zn-based BMs owing to the adoption of nonuniform standards. Establishing a standardized in vitro toxicity assessment system for Zn-based BMs is required for future investigations.
Collapse
Affiliation(s)
- Qian Liu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - An Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shizhen Liu
- The School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK
| | - Qingyun Fu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingtao Dai
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
8
|
Yang K, Wang L, Zhang D, Yan Y, Ji XJ, Cao M, Shi ZZ, Wang LN. Nanomechanical probing of bacterial adhesion to biodegradable Zn alloys. BIOMATERIALS ADVANCES 2023; 145:213243. [PMID: 36566645 DOI: 10.1016/j.bioadv.2022.213243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/13/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Bacterial infections on implants cause an inflammatory response and even implant failure. Bacterial adhesion is an initial and critical step during implant infection. The prevention of bacterial adhesion to implant materials has attracted much attention, especially for biodegradable metals. A deep understanding of the mechanisms of bacterial adhesion to biodegradable metals is urgently needed. In this work, a bacterial probe based on atomic force spectroscopy was employed to determine the bacterial adhesion to Zn alloy, which depended on surface charge, roughness, and wettability. Negative surface charges of Zn, Zn-0.5Li, and 316L generated electrostatic repulsion force towards bacteria. The surface roughness of Zn-0.5Li was significantly increased by localized corrosion. Bacterial adhesion forces on Zn, Zn-0.5Li, and 316L were 325.2 pN, 519.1 pN, and 727.7 pN, respectively. The density of attached bacteria (early-stage bacterial adhesion) on these samples exhibited a positive correlation with the bacterial adhesion force. The bacterial adhesion force and adhesion work provide a quantitative determination of the interactions between bacteria and biodegradable alloys. These results provide a deeper understanding of early bacterial adhesion on Zn alloys, which can further guide the antibacterial surface design of biodegradable materials for clinical application.
Collapse
Affiliation(s)
- Kun Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lei Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Dawei Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute for Advanced Materials and Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Yu Yan
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute for Advanced Materials and Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Xiao-Jing Ji
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Meng Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zhang-Zhi Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lu-Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|