1
|
Ma L, Li Y, Wang CS, Chen ZH, Zhao SY, Cheng B, Li CL. Bioactive Zn ingredients endow Ti-Zn composites with exceptional mechanical and osteogenic properties as biomedical implants. BIOMATERIALS ADVANCES 2025; 174:214308. [PMID: 40215942 DOI: 10.1016/j.bioadv.2025.214308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/15/2025] [Accepted: 04/04/2025] [Indexed: 05/07/2025]
Abstract
Titanium-based (Ti-) alloys are promising materials as bioimplants with superior mechanical properties and excellent biocompatibility. However, their bioinertia and high elastic moduli are not comparable to natural bone tissue; thus, novel Ti alloys with good biomechanical adaptation and high bioactivity are desired. Zinc (Zn) is recognized for ideal biodegradability and its biological effects can be considered to endow pure Ti with rewarding bio functions. Herein, this study has employed a designed spark plasma sintering (SPS) procedure to effectively diffuse varying amounts of Zn into pure Ti as bioactive ingredients and generate novel TiZn composites as bone defect implants. The as-sintered TiZn samples feature a gradient core-shell structure, achieving a match of high strength and low elastic moduli to satisfy the load-bearing requirements while avoiding the stress-shielding effect. A moderate degradation of the Zn component allows TiZn materials to maintain stable mechanical support and exhibit satisfactory cytocompatibility. Ti20Zn, Ti30Zn, and Ti90Zn are confirmed to exert antibacterial and osteogenic abilities by in vitro experiments. Further analyses of in vivo implantation in the rat femur show they exhibit qualified biosafety and are superior to pure Ti in treating bone defects through bio-friendly Zn ions release. This study achieves a reasonable combination of the mechanical properties of pure Ti and the biological functions of pure Zn, providing a better choice for bone injury and fracture treatment.
Collapse
Affiliation(s)
- Li Ma
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Yue Li
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| | - Chang-Shun Wang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Zi-Hao Chen
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Si-Yu Zhao
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| | - Cheng-Lin Li
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Liu A, Zhang Z, Liang Y, Wang X, Chen L, Li M, Zheng Y, Li Y, Wen P. Magnesium-induced strengthening, degradation and osteogenesis for additively manufactured Zn-Mg orthopedic implants. Acta Biomater 2025; 197:495-506. [PMID: 40090508 DOI: 10.1016/j.actbio.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Additively manufactured biodegradable metals demonstrate great potential in orthopedic implants, enabling patient-specific designs and eliminating the need for secondary surgeries through degradation. Zinc (Zn)-magnesium (Mg) alloys reconcile the dilemma between Zn's low biological activity and Mg's rapid degradation, and become promising bone-repair materials. However, Zn-Mg alloys currently fabricated via additive manufacturing exhibit high strength but low ductility, and the effects and mechanisms by which Mg influences their degradation and bone regeneration remain unclear. Here, Zn-xMg alloys (x = 0, 0.1, 0.2, 0.4, 1.0 wt%) are prepared using laser powder bed fusion (L-PBF). Adding Mg refines the microstructure and forms brittle secondary phases, improving strength but reducing ductility. Zn-0.4Mg shows superior balance, with an ultimate tensile strength of 289.40 MPa and elongation of 12.53 %. The addition of Mg slows degradation by forming protective Mg-containing products and accelerating the passivation. Furthermore, Mg alloying significantly enhances bone regeneration, as indicated by both in vitro and in vivo tests. This improvement is driven by the release of less Zn2+ and more Mg2+, which promotes cytocompatibility and osteogenic differentiation. This study offers critical insights for optimizing Zn-based biodegradable metals and advancing the development of next-generation orthopedic implants. STATEMENT OF SIGNIFICANCE: Laser powder bed fusion (L-PBF) enables the fabrication of customized implants. Zn-Mg alloys are among the most promising materials for bone repair. However, Zn-Mg alloys fabricated by l-PBF exhibit high strength but low ductility, while the effects and mechanisms of Mg alloying on degradation and osteogenesis remain unclear. This study first fabricated Zn-Mg bulk materials (0-1 wt% Mg) via l-PBF, clarifying their microstructure and degradation products. Mg enhanced mechanical strength, with Zn-0.4Mg achieving a balanced combination of strength and ductility. Mg slowed degradation by forming protective Mg-containing products and accelerating passivation, while promoting osteogenesis by releasing more Mg2+ and less Zn2+. These findings offer valuable insights for optimizing Zn-based metals and developing next-generation biodegradable implants.
Collapse
Affiliation(s)
- Aobo Liu
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Zhenbao Zhang
- Department of Stomatology, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Yijie Liang
- Department of Stomatology, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Xuan Wang
- Department of Stomatology, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Li Chen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Manxi Li
- Department of Stomatology, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China.
| | - Yanfeng Li
- Department of Stomatology, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China.
| | - Peng Wen
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
3
|
Qin Y, Jing Z, Zou D, Wang Y, Yang H, Chen K, Li W, Wen P, Zheng Y. A metamaterial scaffold beyond modulus limits: enhanced osteogenesis and angiogenesis of critical bone defects. Nat Commun 2025; 16:2180. [PMID: 40038291 PMCID: PMC11880532 DOI: 10.1038/s41467-025-57609-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
Metallic scaffolds have shown promise in regenerating critical bone defects. However, limitations persist in achieving a modulus below 100 MPa due to insufficient strength. Consequently, the osteogenic impact of lower modulus and greater bone tissue strain ( > 1%) remains unclear. Here, we introduce a metamaterial scaffold that decouples strength and modulus through two-stage deformation. The scaffold facilitates an effective modulus of only 13 MPa, ensuring adaptability during bone regeneration. Followed by a stiff stage, it provides the necessary strength for load-bearing requirements. In vivo, the scaffold induces > 2% callus strain, upregulating calcium channels and HIF-1α to enhance osteogenesis and angiogenesis. 4-week histomorphology reveals a 44% and 498% increase in new bone fraction versus classic scaffolds with 500 MPa and 13 MPa modulus, respectively. This design transcends traditional modulus-matching paradigms, prioritizing bone tissue strain requirements. Its tunable mechanical properties also present promising implications for advancing osteogenesis mechanisms and addressing clinical challenges.
Collapse
Affiliation(s)
- Yu Qin
- School of Materials Science and Engineering, Peking University, Beijing, China
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Zehao Jing
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Da Zou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Youhao Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Hongtao Yang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Kai Chen
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Weishi Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China.
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China.
| |
Collapse
|
4
|
Jin J, Wang D, Qian H, Ruan C, Yang Y, Li D, Wang G, Zhu X, Hu Y, Lei P. Precision pore structure optimization of additive manufacturing porous tantalum scaffolds for bone regeneration: A proof-of-concept study. Biomaterials 2025; 313:122756. [PMID: 39182327 DOI: 10.1016/j.biomaterials.2024.122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Currently, the treatment of bone defects in arthroplasty is a challenge in clinical practice. Nonetheless, commercially available orthopaedic scaffolds have shown limited therapeutic effects for large bone defects, especially for massiveand irregular defects. Additively manufactured porous tantalum, in particular, has emerged as a promising material for such scaffolds and is widely used in orthopaedics for its exceptional biocompatibility, osteoinduction, and mechanical properties. Porous tantalum has also exhibited unique advantages in personalised rapid manufacturing, which allows for the creation of customised scaffolds with complex geometric shapes for clinical applications at a low cost and high efficiency. However, studies on the effect of the pore structure of additively manufactured porous tantalum on bone regeneration have been rare. In this study, our group designed and fabricated a batch of precision porous tantalum scaffolds via laser powder bed fusion (LPBF) with pore sizes of 250 μm (Ta 250), 450 μm (Ta 450), 650 μm (Ta 650), and 850 μm (Ta 850). We then performed a series of in vitro experiments and observed that all four groups showed good biocompatibility. In particular, Ta 450 demonstrated the best osteogenic performance. Afterwards, our team used a rat bone defect model to determine the in vivo osteogenic effects. Based on micro-computed tomography and histology, we identified that Ta 450 exhibited the best bone ingrowth performance. Subsequently, sheep femur and hip defect models were used to further confirm the osteogenic effects of Ta 450 scaffolds. Finally, we verified the aforementioned in vitro and in vivo results via clinical application (seven patients waiting for revision total hip arthroplasty) of the Ta 450 scaffold. The clinical results confirmed that Ta 450 had satisfactory clinical outcomes up to the 12-month follow-up. In summary, our findings indicate that 450 μm is the suitable pore size for porous tantalum scaffolds. This study may provide a new therapeutic strategy for the treatment of massive, irreparable, and protracted bone defects in arthroplasty.
Collapse
Affiliation(s)
- Jiale Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dongyu Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Department of Orthopedic Surgery, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Hu Qian
- Department of Orthopedic Surgery, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Chengxin Ruan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yiqi Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dongdong Li
- Department of Orthopedic Surgery, Ningxia Medical University, Yinchuan, 200233, China
| | - Guohua Wang
- Hunan Huaxiang Medical Technology Co., Ltd, Changsha, 410008, China
| | - Xiaobo Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Yihe Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Pengfei Lei
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Department of Orthopedic Surgery, Xiangya Hospital Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Xu J, Zhang Z, Wang J, Qi Y, Qi X, Liang Y, Li M, Li H, Zhao Y, Liu Z, Li Y. Natural potential difference induced functional optimization mechanism for Zn-based multimetal bone implants. Bioact Mater 2025; 44:572-588. [PMID: 39717830 PMCID: PMC11664294 DOI: 10.1016/j.bioactmat.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 12/25/2024] Open
Abstract
Zn-based biodegradable metals (BMs) are regarded as revolutionary biomaterials for bone implants. However, their clinical application is limited by insufficient mechanical properties, delayed in vivo degradation, and overdose-induced Zn2+ toxicity. Herein, innovative multi-material additive manufacturing (MMAM) is deployed to construct a Zn/titanium (Ti) hetero-structured composite. The biodegradation and biofunction of Zn exhibited intriguing characteristics in composites. A potential difference of about 300 mV naturally existed between Zn and Ti. This natural potential difference triggered galvanic coupling corrosion, resulting in 2.7 times accelerated degradation of Zn. The excess release of Zn2+ induced by accelerated degradation enhanced the antibacterial function. A voltage signal generated by the natural potential difference also promoted in vitro osteogenic differentiation through activating the PI3K-Akt signaling pathway, and inhibited the toxicity of overdose Zn2+ in vivo, significantly improving bone regeneration. Furthermore, MMAM technology allows for the specific region deployment of components. In the future, Ti and Zn could be respectively deployed in the primary and non-load-bearing regions of bone implants by structural designs, thereby achieving a functionally graded application to overcome the insufficient mechanical properties of Zn-based BMs. This work clarifies the functional optimization mechanism for multimetal bone implants, which possibly breaks the application dilemma of Zn-based BMs.
Collapse
Affiliation(s)
- Jing Xu
- Medical School of Chinese PLA, Beijing, 100039, China
- Department of Stomatology, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Zhenbao Zhang
- Department of Stomatology, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Jianhui Wang
- Key Laboratory for Advanced Materials Processing, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuhan Qi
- Medical School of Chinese PLA, Beijing, 100039, China
- Department of Stomatology, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Xiaohong Qi
- Key Laboratory for Advanced Materials Processing, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yijie Liang
- Department of Stomatology, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Manxi Li
- Department of Stomatology, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Haixia Li
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yantao Zhao
- Department of Stomatology, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
- Senior Department of Orthopedics, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Zhuangzhuang Liu
- Key Laboratory for Advanced Materials Processing, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanfeng Li
- Medical School of Chinese PLA, Beijing, 100039, China
- Department of Stomatology, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
| |
Collapse
|
6
|
Limón I, Bedmar J, Fernández-Hernán JP, Multigner M, Torres B, Rams J, Cifuentes SC. A Review of Additive Manufacturing of Biodegradable Fe and Zn Alloys for Medical Implants Using Laser Powder Bed Fusion (LPBF). MATERIALS (BASEL, SWITZERLAND) 2024; 17:6220. [PMID: 39769819 PMCID: PMC11677746 DOI: 10.3390/ma17246220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
This review explores the advancements in additive manufacturing (AM) of biodegradable iron (Fe) and zinc (Zn) alloys, focusing on their potential for medical implants, particularly in vascular and bone applications. Fe alloys are noted for their superior mechanical properties and biocompatibility but exhibit a slow corrosion rate, limiting their biodegradability. Strategies such as alloying with manganese (Mn) and optimizing microstructure via laser powder bed fusion (LPBF) have been employed to increase Fe's corrosion rate and mechanical performance. Zn alloys, characterized by moderate biodegradation rates and biocompatible corrosion products, address the limitations of Fe, though their mechanical properties require improvement through alloying and microstructural refinement. LPBF has enabled the fabrication of dense and porous structures for both materials, with energy density optimization playing a critical role in achieving defect-free parts. Fe alloys exhibit higher strength and hardness, while Zn alloys offer better corrosion control and biocompatibility. In vitro and in vivo studies demonstrate promising outcomes for both materials, with Fe alloys excelling in load-bearing applications and Zn alloys in controlled degradation and vascular applications. Despite these advancements, challenges such as localized corrosion, cytotoxicity, and long-term performance require further investigation to fully harness the potential of AM-fabricated Fe and Zn biodegradable implants.
Collapse
Affiliation(s)
- Irene Limón
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (I.L.); (J.B.); (J.P.F.-H.); (M.M.); (B.T.); (J.R.)
| | - Javier Bedmar
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (I.L.); (J.B.); (J.P.F.-H.); (M.M.); (B.T.); (J.R.)
| | - Juan Pablo Fernández-Hernán
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (I.L.); (J.B.); (J.P.F.-H.); (M.M.); (B.T.); (J.R.)
| | - Marta Multigner
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (I.L.); (J.B.); (J.P.F.-H.); (M.M.); (B.T.); (J.R.)
| | - Belén Torres
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (I.L.); (J.B.); (J.P.F.-H.); (M.M.); (B.T.); (J.R.)
- Institute of Research on Technologies for Sustainability (ITPS), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Joaquín Rams
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (I.L.); (J.B.); (J.P.F.-H.); (M.M.); (B.T.); (J.R.)
- Institute of Research on Technologies for Sustainability (ITPS), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Sandra C. Cifuentes
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain; (I.L.); (J.B.); (J.P.F.-H.); (M.M.); (B.T.); (J.R.)
| |
Collapse
|
7
|
Liu A, Qin Y, Dai J, Song F, Tian Y, Zheng Y, Wen P. Fabrication and performance of Zinc-based biodegradable metals: From conventional processes to laser powder bed fusion. Bioact Mater 2024; 41:312-335. [PMID: 39161793 PMCID: PMC11331728 DOI: 10.1016/j.bioactmat.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/25/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Zinc (Zn)-based biodegradable metals (BMs) fabricated through conventional manufacturing methods exhibit adequate mechanical strength, moderate degradation behavior, acceptable biocompatibility, and bioactive functions. Consequently, they are recognized as a new generation of bioactive metals and show promise in several applications. However, conventional manufacturing processes face formidable limitations for the fabrication of customized implants, such as porous scaffolds for tissue engineering, which are future direction towards precise medicine. As a metal additive manufacturing technology, laser powder bed fusion (L-PBF) has the advantages of design freedom and formation precision by using fine powder particles to reliably fabricate metallic implants with customized structures according to patient-specific needs. The combination of Zn-based BMs and L-PBF has become a prominent research focus in the fields of biomaterials as well as biofabrication. Substantial progresses have been made in this interdisciplinary field recently. This work reviewed the current research status of Zn-based BMs manufactured by L-PBF, covering critical issues including powder particles, structure design, processing optimization, chemical compositions, surface modification, microstructure, mechanical properties, degradation behaviors, biocompatibility, and bioactive functions, and meanwhile clarified the influence mechanism of powder particle composition, structure design, and surface modification on the biodegradable performance of L-PBF Zn-based BM implants. Eventually, it was closed with the future perspectives of L-PBF of Zn-based BMs, putting forward based on state-of-the-art development and practical clinical needs.
Collapse
Affiliation(s)
- Aobo Liu
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yu Qin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jiabao Dai
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fei Song
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Peng Wen
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Ma Y, Wang Y, Tong S, Wang Y, Wang Z, Sui R, Yang K, Witte F, Yang S. Porous metal materials for applications in orthopedic field: A review on mechanisms in bone healing. J Orthop Translat 2024; 49:135-155. [PMID: 40226784 PMCID: PMC11993841 DOI: 10.1016/j.jot.2024.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 04/15/2025] Open
Abstract
Background Porous metal materials have been widely studied for applications in orthopedic field, owing to their excellent features and properties in bone healing. Porous metal materials with different compositions, manufacturing methods, and porosities have been developed. Whereas, the systematic mechanisms on how porous metal materials promote bone healing still remain unclear. Methods This review is concerned on the porous metal materials from three aspects with accounts of specific mechanisms, inflammatory regulation, angiogenesis and osteogenesis. We place great emphasis on different cells regulated by porous metal materials, including mesenchymal stem cells (MSCs), macrophages, endothelial cells (ECs), etc. Result The design of porous metal materials is diversified, with its varying pore sizes, porosity material types, modification methods and coatings help researchers create the most experimentally suitable and clinically effective scaffolds. Related signal pathways presented from different functions showed that porous metal materials could change the behavior of cells and the amount of cytokines, achieving good influence on osteogenesis. Conclusion This article summarizes the current progress achieved in the mechanism of porous metal materials promoting bone healing. By modulating the cellular behavior and physiological status of a spectrum of cellular constituents, such as macrophages, osteoblasts, and osteoclasts, porous metal materials are capable of activating different pathways and releasing regulatory factors, thus exerting pivotal influence on improving the bone healing effect. The translational potential of this article Porous metal materials play a vital role in the treatment of bone defects. Unfortunately, although an increasing number of studies have been concentrated on the effect of porous metal materials on osteogenesis-related cells, the comprehensive regulation of porous metal materials on the host cell functions during bone regeneration and the related intrinsic mechanisms remain unclear. This review summarizes different design methods for porous metal materials to fabricate the most suitable scaffolds for bone remodeling, and systematically reviews the corresponding mechanisms on inflammation, angiogenesis and osteogenesis of porous metal materials. This review can provide more theoretical framework and innovative optimization for the application of porous metal materials in orthopedics, dentistry, and other areas, thereby advancing their clinical utility and efficacy.
Collapse
Affiliation(s)
- Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yi Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Shuang Tong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuehan Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Zhuoya Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Rongze Sui
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité Medical University, Assmannshauser Strasse 4–6, 14197, Berlin, Germany
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
9
|
Meng F, Du Y. Research Progress on Laser Powder Bed Fusion Additive Manufacturing of Zinc Alloys. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4309. [PMID: 39274701 PMCID: PMC11395926 DOI: 10.3390/ma17174309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
Zinc, along with magnesium and iron, is considered one of the most promising biodegradable metals. Compared with magnesium and iron, pure Zn exhibits poor mechanical properties, despite its mild biological corrosion behavior and beneficial biocompatibility. Laser powder bed fusion (LPBF), unlike traditional manufacturing techniques, has the capability to rapidly manufacture near-net-shape components. At present, although the combination of LPBF and Zn has made great progress, it is still in its infancy. Element loss and porosity are common processing problems for LPBF Zn, mainly due to evaporation during melting under a high-energy beam. The formation quality and properties of the final material are closely related to the alloy composition, design and processing. This work reviews the state of research and future perspective on LPBF zinc from comprehensive assessments such as powder characteristics, alloy composition, processing, formation quality, microstructure, and properties. The effects of powder characteristics, process parameters and evaporation on formation quality are introduced. The mechanical, corrosion, and biocompatibility properties of LPBF Zn and their test methodologies are introduced. The effects of microstructure on mechanical properties and corrosion properties are analyzed in detail. The practical medical application of Zn is introduced. Finally, current research status is summarized together with suggested directions for advancing knowledge about LPBF Zn.
Collapse
Affiliation(s)
- Fuxiang Meng
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yulei Du
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
10
|
Xu J, Bao G, Jia B, Wang M, Wen P, Kan T, Zhang S, Liu A, Tang H, Yang H, Yue B, Dai K, Zheng Y, Qu X. An adaptive biodegradable zinc alloy with bidirectional regulation of bone homeostasis for treating fractures and aged bone defects. Bioact Mater 2024; 38:207-224. [PMID: 38756201 PMCID: PMC11096722 DOI: 10.1016/j.bioactmat.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Healing of fractures or bone defects is significantly hindered by overactivated osteoclasts and inhibited osteogenesis in patients with abnormal bone metabolism. Current clinical approaches using titanium alloys or stainless steel provide mechanical support but have no biological effects on bone regeneration. Therefore, designing and fabricating degradable metal materials with sufficient mechanical strength and bidirectional regulation of both osteoblasts and osteoclasts is a substantial challenge. Here, this study first reported an adaptive biodegradable Zn-0.8 Mg alloy with bidirectional regulation of bone homeostasis, which promotes osteogenic differentiation by activating the Pi3k/Akt pathway and inhibits osteoclast differentiation by inhibiting the GRB2/ERK pathway. The anti-osteolytic ability of the Zn-0.8 Mg alloy was verified in a mouse calvarial osteolysis model and its suitability for internal fracture fixation with high-strength screws was confirmed in the rabbit femoral condyle fracture model. Furthermore, in an aged postmenopausal rat femoral condyle defect model, 3D printed Zn-0.8 Mg scaffolds promoted excellent bone regeneration through adaptive structures with good mechanical properties and bidirectionally regulated bone metabolism, enabling personalized bone defect repair. These findings demonstrate the substantial potential of the Zn-0.8 Mg alloy for treating fractures or bone defects in patients with aberrant bone metabolism.
Collapse
Affiliation(s)
- Jialian Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Guo Bao
- Laboratory Animal centre, National Research Institute for Family Planning, Beijing, 100081, China
| | - Bo Jia
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tianyou Kan
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Aobo Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Kerong Dai
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| |
Collapse
|
11
|
Zheng Y, Huang C, Li Y, Gao J, Yang Y, Zhao S, Che H, Yang Y, Yao S, Li W, Zhou J, Zadpoor AA, Wang L. Mimicking the mechanical properties of cortical bone with an additively manufactured biodegradable Zn-3Mg alloy. Acta Biomater 2024; 182:139-155. [PMID: 38750914 DOI: 10.1016/j.actbio.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Additively manufactured (AM) biodegradable zinc (Zn) alloys have recently emerged as promising porous bone-substituting materials, due to their moderate degradation rates, good biocompatibility, geometrically ordered microarchitectures, and bone-mimicking mechanical properties. While AM Zn alloy porous scaffolds mimicking the mechanical properties of trabecular bone have been previously reported, mimicking the mechanical properties of cortical bone remains a formidable challenge. To overcome this challenge, we developed the AM Zn-3Mg alloy. We used laser powder bed fusion to process Zn-3Mg and compared it with pure Zn. The AM Zn-3Mg alloy exhibited significantly refined grains and a unique microstructure with interlaced α-Zn/Mg2Zn11 phases. The compressive properties of the solid Zn-3Mg specimens greatly exceeded their tensile properties, with a compressive yield strength of up to 601 MPa and an ultimate strain of >60 %. We then designed and fabricated functionally graded porous structures with a solid core and achieved cortical bone-mimicking mechanical properties, including a compressive yield strength of >120 MPa and an elastic modulus of ≈20 GPa. The biodegradation rates of the Zn-3Mg specimens were lower than those of pure Zn and could be adjusted by tuning the AM process parameters. The Zn-3Mg specimens also exhibited improved biocompatibility as compared to pure Zn, including higher metabolic activity and enhanced osteogenic behavior of MC3T3 cells cultured with the extracts from the Zn-3Mg alloy specimens. Altogether, these results marked major progress in developing AM porous biodegradable metallic bone substitutes, which paved the way toward clinical adoption of Zn-based scaffolds for the treatment of load-bearing bony defects. STATEMENT OF SIGNIFICANCE: Our study presents a significant advancement in the realm of biodegradable metallic bone substitutes through the development of an additively manufactured Zn-3Mg alloy. This novel alloy showcases refined grains and a distinctive microstructure, enabling the fabrication of functionally graded porous structures with mechanical properties resembling cortical bone. The achieved compressive yield strength and elastic modulus signify a critical leap toward mimicking the mechanical behavior of load-bearing bone. Moreover, our findings reveal tunable biodegradation rates and enhanced biocompatibility compared to pure Zn, emphasizing the potential clinical utility of Zn-based scaffolds for treating load-bearing bony defects. This breakthrough opens doors for the wider adoption of zinc-based materials in regenerative orthopedics.
Collapse
Affiliation(s)
- Yuzhe Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chengcong Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China.
| | - Jiaqi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Youwen Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Shangyan Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Haodong Che
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yabin Yang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shenglian Yao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, No. 49 NorthGarden Road, Haidian District, Beijing, 100191, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Luning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China.
| |
Collapse
|
12
|
Wang Y, Zhang H, Qiang H, Li M, Cai Y, Zhou X, Xu Y, Yan Z, Dong J, Gao Y, Pan C, Yin X, Gao J, Zhang T, Yu Z. Innovative Biomaterials for Bone Tumor Treatment and Regeneration: Tackling Postoperative Challenges and Charting the Path Forward. Adv Healthc Mater 2024; 13:e2304060. [PMID: 38429938 DOI: 10.1002/adhm.202304060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Surgical resection of bone tumors is the primary approach employed in the treatment of bone cancer. Simultaneously, perioperative interventions, particularly postoperative adjuvant anticancer strategies, play a crucial role in achieving satisfactory therapeutic outcomes. However, the occurrence of postoperative bone tumor recurrence, metastasis, extensive bone defects, and infection are significant risks that can result in unfavorable prognoses or even treatment failure. In recent years, there has been significant progress in the development of biomaterials, leading to the emergence of new treatment options for bone tumor therapy and bone regeneration. This progress report aims to comprehensively analyze the strategic development of unique therapeutic biomaterials with inherent healing properties and bioactive capabilities for bone tissue regeneration. These composite biomaterials, classified into metallic, inorganic non-metallic, and organic types, are thoroughly investigated for their responses to external stimuli such as light or magnetic fields, internal interventions including chemotherapy or catalytic therapy, and combination therapy, as well as their role in bone regeneration. Additionally, an overview of self-healing materials for osteogenesis is provided and their potential applications in combating osteosarcoma and promoting bone formation are explored. Furthermore, the safety concerns of integrated materials and current limitations are addressed, while also discussing the challenges and future prospects.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Huifen Qiang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, P. R. China
| | - Meigui Li
- School of Pharmacy, Henan University, Kaifeng City, Henan, 475004, P. R. China
| | - Yili Cai
- Department of Gastroenterology, Naval Medical Center, Naval Medical University, Shanghai, 200052, P. R. China
| | - Xuan Zhou
- School of Pharmacy, Henan University, Kaifeng City, Henan, 475004, P. R. China
| | - Yanlong Xu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Zhenzhen Yan
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Jinhua Dong
- The Women and Children Hospital Affiliated to Jiaxing University, Jiaxing, Zhejiang, 314000, P. R. China
| | - Yuan Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200433, P. R. China
| | - Chengye Pan
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Xiaojing Yin
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, P. R. China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, P. R. China
| | - Zuochong Yu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| |
Collapse
|
13
|
Li P, Dai J, Li Y, Alexander D, Čapek J, Geis-Gerstorfer J, Wan G, Han J, Yu Z, Li A. Zinc based biodegradable metals for bone repair and regeneration: Bioactivity and molecular mechanisms. Mater Today Bio 2024; 25:100932. [PMID: 38298560 PMCID: PMC10826336 DOI: 10.1016/j.mtbio.2023.100932] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024] Open
Abstract
Bone fractures and critical-size bone defects are significant public health issues, and clinical treatment outcomes are closely related to the intrinsic properties of the utilized implant materials. Zinc (Zn)-based biodegradable metals (BMs) have emerged as promising bioactive materials because of their exceptional biocompatibility, appropriate mechanical properties, and controllable biodegradation. This review summarizes the state of the art in terms of Zn-based metals for bone repair and regeneration, focusing on bridging the gap between biological mechanism and required bioactivity. The molecular mechanism underlying the release of Zn ions from Zn-based BMs in the improvement of bone repair and regeneration is elucidated. By integrating clinical considerations and the specific bioactivity required for implant materials, this review summarizes the current research status of Zn-based internal fixation materials for promoting fracture healing, Zn-based scaffolds for regenerating critical-size bone defects, and Zn-based barrier membranes for reconstituting alveolar bone defects. Considering the significant progress made in the research on Zn-based BMs for potential clinical applications, the challenges and promising research directions are proposed and discussed.
Collapse
Affiliation(s)
- Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Jaroslav Čapek
- FZU – the Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 18200, Czech Republic
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianmin Han
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zhentao Yu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road 366, Guangzhou 510280, China
| |
Collapse
|
14
|
Huo L, Li Q, Jiang L, Jiang H, Zhao J, Yang K, Dong Q, Shao Y, Chu C, Xue F, Bai J. Porous Mg-Zn-Ca scaffolds for bone repair: a study on microstructure, mechanical properties and in vitro degradation behavior. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:22. [PMID: 38526601 PMCID: PMC10963566 DOI: 10.1007/s10856-023-06754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/23/2023] [Indexed: 03/26/2024]
Abstract
Biodegradable porous Mg scaffolds are a promising approach to bone repair. In this work, 3D-spherical porous Mg-1.5Zn-0.2Ca (wt.%) scaffolds were prepared by vacuum infiltration casting technology, and MgF2 and fluorapatite coatings were designed to control the degradation behavior of Mg-based scaffolds. The results showed that the pores in Mg-based scaffolds were composed of the main spherical pores (450-600 μm) and interconnected pores (150-200 μm), and the porosity was up to 74.97%. Mg-based porous scaffolds exhibited sufficient mechanical properties with a compressive yield strength of about 4.04 MPa and elastic modulus of appropriately 0.23 GPa. Besides, both MgF2 coating and fluorapatite coating could effectively improve the corrosion resistance of porous Mg-based scaffolds. In conclusion, this research would provide data support and theoretical guidance for the application of biodegradable porous Mg-based scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Lei Huo
- Taixing Second People's Hospital, Taizhou, 225411, China.
| | - Qiang Li
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Linlin Jiang
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Huiqin Jiang
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Jianping Zhao
- Taixing Second People's Hospital, Taizhou, 225411, China
| | - Kangjian Yang
- Taixing Second People's Hospital, Taizhou, 225411, China
| | - Qiangsheng Dong
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Yi Shao
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Chenglin Chu
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Feng Xue
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Jing Bai
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China.
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China.
- Jiangsu Key Laboratory for Light Metal Alloys, Nanjing Yunhai Special Metals Co., Ltd., Nanjing, 211200, China.
| |
Collapse
|
15
|
Wang X, Liu A, Zhang Z, Hao D, Liang Y, Dai J, Jin X, Deng H, Zhao Y, Wen P, Li Y. Additively Manufactured Zn-2Mg Alloy Porous Scaffolds with Customizable Biodegradable Performance and Enhanced Osteogenic Ability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307329. [PMID: 38059810 PMCID: PMC10837348 DOI: 10.1002/advs.202307329] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Indexed: 12/08/2023]
Abstract
The combination of bioactive Zn-2Mg alloy and additively manufactured porous scaffold is expected to achieve customizable biodegradable performance and enhanced bone regeneration. Herein, Zn-2Mg alloy scaffolds with different porosities, including 40% (G-40-2), 60% (G-60-2), and 80% (G-80-2), and different unit sizes, including 1.5 mm (G-60-1.5), 2 mm (G-60-2), and 2.5 mm (G-60-2.5), are manufactured by a triply periodic minimal surface design and a reliable laser powder bed fusion process. With the same unit size, compressive strength (CS) and elastic modulus (EM) of scaffolds substantially decrease with increasing porosities. With the same porosity, CS and EM just slightly decrease with increasing unit sizes. The weight loss after degradation increases with increasing porosities and decreasing unit sizes. In vivo tests indicate that Zn-2Mg alloy scaffolds exhibit satisfactory biocompatibility and osteogenic ability. The osteogenic ability of scaffolds is mainly determined by their physical and chemical characteristics. Scaffolds with lower porosities and smaller unit sizes show better osteogenesis due to their suitable pore size and larger surface area. The results indicate that the biodegradable performance of scaffolds can be accurately regulated on a large scale by structure design and the additively manufactured Zn-2Mg alloy scaffolds have improved osteogenic ability for treating bone defects.
Collapse
Affiliation(s)
- Xuan Wang
- Postgraduate Training BaseJinzhou Medical University and The Fourth Medical CentreChinese PLA General HospitalBeijing100048China
- Department of Stomatologythe Fourth Medical CentreChinese PLA General HospitalBeijing100048China
| | - Aobo Liu
- State Key Laboratory of Tribology in Advanced EquipmentBeijing100084China
- Department of Mechanical EngineeringTsinghua UniversityBeijing100084China
| | - Zhenbao Zhang
- Department of Stomatologythe Fourth Medical CentreChinese PLA General HospitalBeijing100048China
| | - Dazhong Hao
- State Key Laboratory of Tribology in Advanced EquipmentBeijing100084China
- Department of Mechanical EngineeringTsinghua UniversityBeijing100084China
| | - Yijie Liang
- Department of Stomatologythe Fourth Medical CentreChinese PLA General HospitalBeijing100048China
| | - Jiabao Dai
- State Key Laboratory of Tribology in Advanced EquipmentBeijing100084China
- Department of Mechanical EngineeringTsinghua UniversityBeijing100084China
| | - Xiang Jin
- Department of Stomatologythe Fourth Medical CentreChinese PLA General HospitalBeijing100048China
| | - Huanze Deng
- Department of Stomatologythe Fourth Medical CentreChinese PLA General HospitalBeijing100048China
| | - Yantao Zhao
- Department of Stomatologythe Fourth Medical CentreChinese PLA General HospitalBeijing100048China
- Senior Department of Orthopedicsthe Fourth Medical CentrePLA General HospitalBeijing100048China
- Beijing Engineering Research Center of Orthopedics ImplantsBeijing100048China
| | - Peng Wen
- State Key Laboratory of Tribology in Advanced EquipmentBeijing100084China
- Department of Mechanical EngineeringTsinghua UniversityBeijing100084China
| | - Yanfeng Li
- Postgraduate Training BaseJinzhou Medical University and The Fourth Medical CentreChinese PLA General HospitalBeijing100048China
- Department of Stomatologythe Fourth Medical CentreChinese PLA General HospitalBeijing100048China
| |
Collapse
|
16
|
Luo Y, Peng X, Cheng C, Deng Y, Lei N, Feng S, Yu X. 3D Molybdenum Disulfide Nanospheres Loaded with Metformin to Enhance SCPP Scaffolds for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:201-216. [PMID: 38127723 DOI: 10.1021/acsami.3c14229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Conventional strontium-doped calcium polyphosphate (SCPP) ceramics have attracted a lot of attention due to good cytocompatibility and controlled degradation. However, their poor mechanical strength, brittleness, and difficulty in eliminating unavoidable postoperative inflammation and bacterial infections in practical applications limit their further clinical application. In this study, carboxylated molybdenum disulfide nanospheres (MoS2-COOH) were first prepared via a one-step hydrothermal method. The optimal doping concentration of MoS2-COOH was then incorporated into SCPP to overcome its poor mechanical strength. To further enhance the anti-inflammatory properties of scaffolds, metformin (MET) was loaded onto MoS2-COOH through covalent bond cross-linking (MoS2-MET). Then MoS2-MET was doped into SCPP (SCPP/MoS2-MET) according to the previously obtained concentration, resulting in the controlled and sustained release of MET from the SCPP/MoS2-MET scaffolds for 21 days in vitro. The SCPP/MoS2-MET scaffolds were shown to have good biological activity in vitro to promote stem cell proliferation and the potential to promote mineralization in vitro. It also showed good osteoimmunomodulatory activity could reduce the expression of proinflammatory factors and effectively induce the differentiation of BMSCs under inflammatory conditions, upregulating the expression of relevant osteoblastic cytokines. In addition, SCPP/MoS2-MET scaffolds could effectively inhibit Staphylococcus aureus and Escherichia coli. In vivo experiments also demonstrated better osteogenic potential of SCPP/MoS2-MET scaffolds compared with the other scaffold-samples. Thus, the introduction of carboxylated molybdenum disulfide nanospheres is a promising approach to improve the properties of SCPP and may provide a new modification strategy for inert ceramic scaffolds and the construction of multifunctional composite scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P.R. China
| | - Chan Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yiqing Deng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
17
|
Sun Q, Zhang D, Tong X, Lin J, Li Y, Wen C. Mechanical properties, corrosion behavior, and cytotoxicity of biodegradable Zn/Mg multilayered composites prepared by accumulative roll bonding process. Acta Biomater 2024; 173:509-525. [PMID: 38006909 DOI: 10.1016/j.actbio.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Zinc (Zn), magnesium (Mg), and their respective alloys have attracted great attention as biodegradable bone-implant materials due to their excellent biocompatibility and biodegradability. However, the poor mechanical strength of Zn alloys and the rapid degradation rate of Mg alloys limit their clinical application. The manufacture of Zn and Mg bimetals may be a promising way to improve their mechanical and degradation properties. Here we report on Zn/Mg multilayered composites prepared via an accumulative roll bonding (ARB) process. With an increase in the number of ARB cycles, the thicknesses of the Zn layer and the Mg layer were reduced, while a large number of heterogeneous interfaces were introduced into the Zn/Mg multilayered composites. The composite samples after 14 ARB cycles showed the highest yield strength of 411±3 MPa and highest ultimate tensile strength of 501±3 MPa among all the ARB processed samples, significantly higher than those of the Zn/Zn and Mg/Mg multilayered samples. The Zn and Mg layers remained continuous in the Zn/Mg composite samples after annealing at 150 °C for 10 min, resulting in a decrease in yield strength from 411±3 MPa to 349±3 MPa but an increase in elongation from 8±1% to 28±1%. The degradation rate of the Zn/Mg multilayered composite samples in Hanks' solution was ranged from 127±18 µm/y to 6±1 µm/y. The Zn/Mg multilayered composites showed over 100% cell viability with their 25% and 12.5% extracts in relation to MG-63 cells after culturing for 3 d, indicating excellent cytocompatibility. STATEMENT OF SIGNIFICANCE: This work reports a biodegradable Zn/Mg multilayered composite prepared by accumulative roll bonding (ARB) process. The yield and ultimate tensile strength of the Zn/Mg multilayered composites were improved due to grain refinement and the introduction of a large number of heterogeneous interfaces. The composite samples after 14 ARB cycles showed the highest yield strength of 411±3 MPa and highest ultimate tensile strength of 501±3 MPa among all the ARB processed samples. The degradation rate of the Zn/Mg multilayered composite meets the required degradation rate for biodegradable bone-implant materials. The results demonstrated that it is a very promising approach to improve the strength and biocompatibility of biodegradable Zn-based alloys.
Collapse
Affiliation(s)
- Quanxiang Sun
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Dechuang Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Xian Tong
- Key Laboratory of Low Dimensional Materials & Application Technology, Xiangtan University, Ministry of Education, Hunan 411105, China
| | - Jianguo Lin
- Key Laboratory of Low Dimensional Materials & Application Technology, Xiangtan University, Ministry of Education, Hunan 411105, China.
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
18
|
Fan L, Chen S, Yang M, Liu Y, Liu J. Metallic Materials for Bone Repair. Adv Healthc Mater 2024; 13:e2302132. [PMID: 37883735 DOI: 10.1002/adhm.202302132] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Repair of large bone defects caused by trauma or disease poses significant clinical challenges. Extensive research has focused on metallic materials for bone repair because of their favorable mechanical properties, biocompatibility, and manufacturing processes. Traditional metallic materials, such as stainless steel and titanium alloys, are widely used in clinics. Biodegradable metallic materials, such as iron, magnesium, and zinc alloys, are promising candidates for bone repair because of their ability to degrade over time. Emerging metallic materials, such as porous tantalum and bismuth alloys, have gained attention as bone implants owing to their bone affinity and multifunctionality. However, these metallic materials encounter many practical difficulties that require urgent improvement. This article systematically reviews and analyzes the metallic materials used for bone repair, providing a comprehensive overview of their morphology, mechanical properties, biocompatibility, and in vivo implantation. Furthermore, the strategies and efforts made to address the short-comings of metallic materials are summarized. Finally, the perspectives for the development of metallic materials to guide future research and advancements in clinical practice are identified.
Collapse
Affiliation(s)
- Linlin Fan
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Sen Chen
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Minghui Yang
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Yajun Liu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Wen X, Wang J, Pei X, Zhang X. Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. J Mater Chem B 2023; 11:11405-11425. [PMID: 38010166 DOI: 10.1039/d3tb01874a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Zinc (Zn) is one of the most important trace elements in the human body and plays a key role in various physiological processes, especially in bone metabolism. Zn-containing materials have been reported to enhance bone repair through promoting cell proliferation, osteogenic activity, angiogenesis, and inhibiting osteoclast differentiation. Therefore, Zn-based biomaterials are potential substitutes for traditional bone grafts. In this review, the specific mechanisms of bone formation promotion by Zn-based biomaterials were discussed, and recent developments in their application in bone tissue engineering were summarized. Moreover, the challenges and perspectives of Zn-based biomaterials were concluded, revealing their attractive potential and development directions in the future.
Collapse
Affiliation(s)
- Xinyu Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
20
|
Marin E. Forged to heal: The role of metallic cellular solids in bone tissue engineering. Mater Today Bio 2023; 23:100777. [PMID: 37727867 PMCID: PMC10506110 DOI: 10.1016/j.mtbio.2023.100777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Metallic cellular solids, made of biocompatible alloys like titanium, stainless steel, or cobalt-chromium, have gained attention for their mechanical strength, reliability, and biocompatibility. These three-dimensional structures provide support and aid tissue regeneration in orthopedic implants, cardiovascular stents, and other tissue engineering cellular solids. The design and material chemistry of metallic cellular solids play crucial roles in their performance: factors such as porosity, pore size, and surface roughness influence nutrient transport, cell attachment, and mechanical stability, while their microstructure imparts strength, durability and flexibility. Various techniques, including additive manufacturing and conventional fabrication methods, are utilized for producing metallic biomedical cellular solids, each offering distinct advantages and drawbacks that must be considered for optimal design and manufacturing. The combination of mechanical properties and biocompatibility makes metallic cellular solids superior to their ceramic and polymeric counterparts in most load bearing applications, in particular under cyclic fatigue conditions, and more in general in application that require long term reliability. Although challenges remain, such as reducing the production times and the associated costs or increasing the array of available materials, metallic cellular solids showed excellent long-term reliability, with high survival rates even in long term follow-ups.
Collapse
Affiliation(s)
- Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100, Udine, Italy
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan
| |
Collapse
|
21
|
Li D, Guo X, Du H, Ding W, Li M, Xu Y. Tetracalcium phosphate/polycaprolactone composite scaffold: Mechanical reinforcement, biodegradability regulation and bioactivity induction. J Mech Behav Biomed Mater 2023; 147:106144. [PMID: 37748317 DOI: 10.1016/j.jmbbm.2023.106144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Polycaprolactone (PCL) is considered a potential biomaterial due to its good biocompatibility, but its slow degradability and insufficient mechanical properties limit its wide application in bone tissue engineering. Tetracalcium phosphate's (TTCP) good degradability and inherent high stiffness are expected to compensate for the aforementioned defects of PCL and endow it with good biological activity. This goal of this study was to obtain bioactive PCL composite scaffolds with tuneable degradation properties and good mechanical strength via selective laser sintering technology (SLS). Composite porous scaffolds with TTCP contents of 0%, 5%, 10%, 15%, 20%, and 25% were prepared, and the experimental results showed that the addition of TTCP significantly improved the mechanical properties of the scaffold. Notably, the tensile strength of the composite scaffold with 20% TTCP content reached 15.2 MPa, which was 2.9 times that of pure PCL, and the best flexural strength was found in the scaffold with 15% TTCP content (4.7 MPa). More importantly, the introduced TTCP not only achieved the effective pH regulation of the soaking solution and the promotion of biodegradation, but also provided the scaffold with good bioactivity and biocompatibility.
Collapse
Affiliation(s)
- Dongying Li
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China
| | - Xiaoping Guo
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China
| | - Haocheng Du
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China
| | - Wenhao Ding
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China
| | - Mengqi Li
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China.
| | - Yong Xu
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China.
| |
Collapse
|
22
|
Luo H, Diao X, Qian F, Shi W, Li K, Liu H, Wu Y, Shen J, Xin H. Fabrication of a micro/nanocomposite structure on the surface of high oxygen concentration titanium to promote bone formation. BIOMATERIALS ADVANCES 2023; 154:213631. [PMID: 37757645 DOI: 10.1016/j.bioadv.2023.213631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/27/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
This study investigated the properties of the micro/nano composite structure on the surface of high oxygen concentration titanium (HOC-Ti) after anodic oxidation modification (HOC-NT) and evaluated its biocompatibility as a dental implant material in vitro and in vivo. HOC-Ti was produced by titanium powders and rutile powders using the powder metallurgy method. Its surface was modified by anodic oxidation. After detecting the electrochemical characteristics, the surface properties of HOC-NT were investigated. MC3T3 and MLO-Y4 cells were employed to evaluate the biocompatibility of HOC-NT and cocultured to study the effects of the changes in osteocytes induced by HOC-NT on osteoblasts. While, its possible mechanism was investigated. In addition, osseointegration around the HOC-NT implant was investigated through in vivo experiments. The results showed that a unique micronano composite structure on the HOC-Ti surface with excellent hydrophilicity and suitable surface roughness was created after anodic oxidation promoted by its electrochemical characteristics. The YAP protein may play an important role in regulating bone remodeling by β-catenin and Rankl/OPG Signaling Pathways. An in vivo study also revealed an accelerated formation rate of new bone and more stable osseointegration around the HOC-NT implant. In view of all experimental results, it could be concluded that the unique morphology of HOC-NT has enhanced physicochemical and biological properties. The promotion of bone formation around implants indicated the feasibility of HOC-NT for applications in oral implants.
Collapse
Affiliation(s)
- Huiwen Luo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoou Diao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Fei Qian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Wendi Shi
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Huan Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yulu Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Jianghua Shen
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Haitao Xin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
23
|
Ivanovski S, Breik O, Carluccio D, Alayan J, Staples R, Vaquette C. 3D printing for bone regeneration: challenges and opportunities for achieving predictability. Periodontol 2000 2023; 93:358-384. [PMID: 37823472 DOI: 10.1111/prd.12525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/18/2023] [Accepted: 08/26/2023] [Indexed: 10/13/2023]
Abstract
3D printing offers attractive opportunities for large-volume bone regeneration in the oro-dental and craniofacial regions. This is enabled by the development of CAD-CAM technologies that support the design and manufacturing of anatomically accurate meshes and scaffolds. This review describes the main 3D-printing technologies utilized for the fabrication of these patient-matched devices, and reports on their pre-clinical and clinical performance including the occurrence of complications for vertical bone augmentation and craniofacial applications. Furthermore, the regulatory pathway for approval of these devices is discussed, highlighting the main hurdles and obstacles. Finally, the review elaborates on a variety of strategies for increasing bone regeneration capacity and explores the future of 4D bioprinting and biodegradable metal 3D printing.
Collapse
Affiliation(s)
- Saso Ivanovski
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Omar Breik
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Danilo Carluccio
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Jamil Alayan
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Ruben Staples
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Cedryck Vaquette
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Liu A, Lu Y, Dai J, Wen P, Xia D, Zheng Y. Mechanical properties, in vitro biodegradable behavior, biocompatibility and osteogenic ability of additively manufactured Zn-0.8Li-0.1Mg alloy scaffolds. BIOMATERIALS ADVANCES 2023; 153:213571. [PMID: 37562158 DOI: 10.1016/j.bioadv.2023.213571] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/29/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Alloying and structural design provide flexibility to modulate performance of biodegradable porous implants manufactured by laser powder bed fusion (L-PBF). Herein, bulk Zn-0.8Li-0.1Mg was first fabricated to indicate the influence of the ternary alloy system on strengthening effect. Porous scaffolds with different porosities, including 60 % (P60), 70 % (P70) and 80 % (P80), were designed and fabricated to study the influence of porosity on mechanical properties, in vitro degradation behavior, biocompatibility and osteogenic ability. Pure Zn (Zn-P70) scaffolds with a porosity of 70 % were utilized for the comparison. The results showed Zn-0.8Li-0.1Mg bulks had an ultimate tensile strength of 460.78 ± 5.79 MPa, which was more than 3 times that of pure Zn ones and was the highest value ever reported for Zn alloys fabricated by L-PBF. The compressive strength (CS) and elastic modulus (E) of scaffolds decreased with increasing porosities. The CS of P70 scaffolds was 24.59 MPa, more than 2 times that of Zn-P70. The weight loss of scaffolds during in vitro immersion increased with increasing porosities. Compared with Zn-P70, a lower weight loss, better biocompatibility and improved osteogenic ability were observed for P70 scaffolds. P70 scaffolds also exhibited the best biocompatibility and osteogenic ability among all the used porosities. Influence mechanism of alloying elements and structural porosities on mechanical behaviors, in vitro biodegradation behavior, biocompatibility and osteogenic ability of scaffolds were discussed using finite element analysis and the characterization of degradation products. The results indicated that the proper design of alloying and porosity made Zn-0.8Li-0.1Mg scaffolds promising for biodegradable applications.
Collapse
Affiliation(s)
- Aobo Liu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China; Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yupu Lu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Jiabao Dai
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China; Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Peng Wen
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China; Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China..
| |
Collapse
|
25
|
Martynenko N, Anisimova N, Shinkareva M, Rybalchenko O, Rybalchenko G, Zheleznyi M, Lukyanova E, Temralieva D, Gorbenko A, Raab A, Pashintseva N, Babayeva G, Kiselevskiy M, Dobatkin S. Bioactivity Features of a Zn-1%Mg-0.1%Dy Alloy Strengthened by Equal-Channel Angular Pressing. Biomimetics (Basel) 2023; 8:408. [PMID: 37754159 PMCID: PMC10526681 DOI: 10.3390/biomimetics8050408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
The structure, phase composition, corrosion and mechanical properties, as well as aspects of biocompatibility in vitro and in vivo, of a Zn-1%Mg-0.1%Dy alloy after equal-channel angular pressing (ECAP) were studied. The structure refinement after ECAP leads to the formation of elongated α-Zn grains with a width of ~10 µm and of Mg- and Dy-containing phases. In addition, X-ray diffraction analysis demonstrated that ECAP resulted in the formation of the basal texture in the alloy. These changes in the microstructure and texture lead to an increase in ultimate tensile strength up to 262 ± 7 MPa and ductility up to 5.7 ± 0.2%. ECAP slows down the degradation process, apparently due to the formation of a more homogeneous microstructure. It was found that the alloy degradation rate in vivo after subcutaneous implantation in mice is significantly lower than in vitro ones. ECAP does not impair biocompatibility in vitro and in vivo of the Zn-1%Mg-0.1%Dy alloy. No signs of suppuration, allergic reactions, the formation of visible seals or skin ulcerations were observed after implantation of the alloy. This may indicate the absence of an acute reaction of the animal body to the Zn-1%Mg-0.1%Dy alloy in both states.
Collapse
Affiliation(s)
- Natalia Martynenko
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
| | - Natalia Anisimova
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO) of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (G.B.); (M.K.)
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Maria Shinkareva
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Olga Rybalchenko
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
| | - Georgy Rybalchenko
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Mark Zheleznyi
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
- Department of Physical Materials Science, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
- Institute of Innovative Engineering Technologies, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Elena Lukyanova
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
| | - Diana Temralieva
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
| | - Artem Gorbenko
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
| | - Arseny Raab
- Institute of Physics of Advanced Materials, Ufa University of Science and Technology, 450076 Ufa, Russia;
| | - Natalia Pashintseva
- Limited liability Company “Veterinary Oncological Scientific Center”, 115211 Moscow, Russia;
| | - Gulalek Babayeva
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO) of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (G.B.); (M.K.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Mikhail Kiselevskiy
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO) of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (G.B.); (M.K.)
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Sergey Dobatkin
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
| |
Collapse
|
26
|
Zhang Z, Liu A, Fan J, Wang M, Dai J, Jin X, Deng H, Wang X, Liang Y, Li H, Zhao Y, Wen P, Li Y. A drug-loaded composite coating to improve osteogenic and antibacterial properties of Zn-1Mg porous scaffolds as biodegradable bone implants. Bioact Mater 2023; 27:488-504. [PMID: 37180641 PMCID: PMC10173180 DOI: 10.1016/j.bioactmat.2023.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Zinc (Zn) alloy porous scaffolds produced by additive manufacturing own customizable structures and biodegradable functions, having a great application potential for repairing bone defect. In this work, a hydroxyapatite (HA)/polydopamine (PDA) composite coating was constructed on the surface of Zn-1Mg porous scaffolds fabricated by laser powder bed fusion, and was loaded with a bioactive factor BMP2 and an antibacterial drug vancomycin. The microstructure, degradation behavior, biocompatibility, antibacterial performance and osteogenic activities were systematically investigated. Compared with as-built Zn-1Mg scaffolds, the rapid increase of Zn2+, which resulted to the deteriorated cell viability and osteogenic differentiation, was inhibited due to the physical barrier of the composite coating. In vitro cellular and bacterial assay indicated that the loaded BMP2 and vancomycin considerably enhanced the cytocompatibility and antibacterial performance. Significantly improved osteogenic and antibacterial functions were also observed according to in vivo implantation in the lateral femoral condyle of rats. The design, influence and mechanism of the composite coating were discussed accordingly. It was concluded that the additively manufactured Zn-1Mg porous scaffolds together with the composite coating could modulate biodegradable performance and contribute to effective promotion of bone recovery and antibacterial function.
Collapse
Affiliation(s)
- Zhenbao Zhang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Aobo Liu
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiadong Fan
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Menglin Wang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Medical School of Chinese PLA, Beijing, 100039, China
| | - Jiabao Dai
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiang Jin
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Huanze Deng
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Medical School of Chinese PLA, Beijing, 100039, China
| | - Xuan Wang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yijie Liang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Haixia Li
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yantao Zhao
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
- Corresponding author. Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Peng Wen
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Corresponding author. State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China.
| | - Yanfeng Li
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Medical School of Chinese PLA, Beijing, 100039, China
- Corresponding author. Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
27
|
Zhou J, Georgas E, Su Y, Zhou J, Kröger N, Benn F, Kopp A, Qin Y, Zhu D. Evolution from Bioinert to Bioresorbable: In Vivo Comparative Study of Additively Manufactured Metal Bone Scaffolds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302702. [PMID: 37424385 PMCID: PMC10502659 DOI: 10.1002/advs.202302702] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 07/11/2023]
Abstract
Additively manufactured scaffolds offer significant potential for treating bone defects, owing to their porous, customizable architecture and functionalization capabilities. Although various biomaterials have been investigated, metals - the most successful orthopedic material - have yet to yield satisfactory results. Conventional bio-inert metals, such as titanium (Ti) and its alloys, are widely used for fixation devices and reconstructive implants, but their non-bioresorbable nature and the mechanical property mismatch with human bones limit their application as porous scaffolds for bone regeneration. Advancements in additive manufacturing have facilitated the use of bioresorbable metals, including magnesium (Mg), zinc (Zn), and their alloys, as porous scaffolds via Laser Powder Bed Fusion (L-PBF) technology. This in vivo study presents a comprehensive, side-by-side comparative analysis of the interactions between bone regeneration and additively manufactured bio-inert/bioresorbable metal scaffolds, as well as their therapeutic outcomes. The research offers an in-depth understanding of the metal scaffold-assisted bone healing process, illustrating that Mg and Zn scaffolds contribute to the bone healing process in distinct ways, but ultimately deliver superior therapeutic outcomes compared to Ti scaffolds. These findings suggest that bioresorbable metal scaffolds hold considerable promise for the clinical treatment of bone defects in the near future.
Collapse
Affiliation(s)
- Juncen Zhou
- Department of Biomedical EngineeringUniversity of Stony BrookStony BrookNY11794USA
| | - Elias Georgas
- Department of Biomedical EngineeringUniversity of Stony BrookStony BrookNY11794USA
| | - Yingchao Su
- Department of Biomedical EngineeringUniversity of Stony BrookStony BrookNY11794USA
| | - Jiayi Zhou
- Department of Biomedical EngineeringUniversity of Stony BrookStony BrookNY11794USA
| | - Nadja Kröger
- Division of Plastic‐Reconstructive‐ and Aesthetic SurgeryUniversity Hospital Cologne50937CologneGermany
| | | | | | - Yi‐Xian Qin
- Department of Biomedical EngineeringUniversity of Stony BrookStony BrookNY11794USA
| | - Donghui Zhu
- Department of Biomedical EngineeringUniversity of Stony BrookStony BrookNY11794USA
| |
Collapse
|
28
|
Liu Q, Li A, Liu S, Fu Q, Xu Y, Dai J, Li P, Xu S. Cytotoxicity of Biodegradable Zinc and Its Alloys: A Systematic Review. J Funct Biomater 2023; 14:206. [PMID: 37103296 PMCID: PMC10144193 DOI: 10.3390/jfb14040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Zinc-based biodegradable metals (BMs) have been developed for biomedical implant materials. However, the cytotoxicity of Zn and its alloys has caused controversy. This work aims to investigate whether Zn and its alloys possess cytotoxic effects and the corresponding influence factors. According to the guidelines of the PRISMA statement, an electronic combined hand search was conducted to retrieve articles published in PubMed, Web of Science, and Scopus (2013.1-2023.2) following the PICOS strategy. Eighty-six eligible articles were included. The quality of the included toxicity studies was assessed utilizing the ToxRTool. Among the included articles, extract tests were performed in 83 studies, and direct contact tests were conducted in 18 studies. According to the results of this review, the cytotoxicity of Zn-based BMs is mainly determined by three factors, namely, Zn-based materials, tested cells, and test system. Notably, Zn and its alloys did not exhibit cytotoxic effects under certain test conditions, but significant heterogeneity existed in the implementation of the cytotoxicity evaluation. Furthermore, there is currently a relatively lower quality of current cytotoxicity evaluation in Zn-based BMs owing to the adoption of nonuniform standards. Establishing a standardized in vitro toxicity assessment system for Zn-based BMs is required for future investigations.
Collapse
Affiliation(s)
- Qian Liu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - An Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shizhen Liu
- The School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK
| | - Qingyun Fu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingtao Dai
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
29
|
A novel method combining VAT photopolymerization and casting for the fabrication of biodegradable Zn-1Mg scaffolds with triply periodic minimal surface. J Mech Behav Biomed Mater 2023; 141:105763. [PMID: 36905706 DOI: 10.1016/j.jmbbm.2023.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Zinc alloy porous scaffolds are expected to be the next generation of degradable orthopedic implants attributed to their suitable degradation rate. However, a few studies have thoroughly investigated its applicable preparation method and functionality as an orthopedic implant. This study fabricated Zn-1Mg porous scaffolds with triply periodic minimal surface (TPMS) structure by a novel method combining VAT photopolymerization and casting. As-built porous scaffolds displayed fully connected pore structures with controllable topology. The manufacturability, mechanical properties, corrosion behaviors, biocompatibility, and antimicrobial performance of the bioscaffolds with pore sizes of 650 μm, 800 μm, and 1040 μm were investigated, and then compared and discussed with each other. In simulations, the mechanical behaviors of porous scaffolds exhibited the same tendency as the experiments. In addition, the mechanical properties of porous scaffolds as a function of degradation time were studied through a 90-day immersion experiment, which can provide a new option for analyzing the mechanical properties of porous scaffolds implanted in vivo. The G06 scaffold with lower pore size presented better mechanical properties before and after degradation compared with G10. The G06 scaffold with the pore size of 650 μm revealed good biocompatibility and antibacterial properties, which makes it possible to be one of the candidates for orthopedic implants.
Collapse
|
30
|
Zhang B, Li S, Zhang Z, Meng Z, He J, Ramakrishna S, Zhang C. Intelligent biomaterials for micro and nanoscale 3D printing. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
31
|
Zhang Y, Liu Y, Zheng R, Zheng Y, Chen L. Research progress on corrosion behaviors and biocompatibility of rare-earth magnesium alloys in vivo and in vitro. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
32
|
Three-Dimensional Printing of Poly-L-Lactic Acid Composite Scaffolds with Enhanced Bioactivity and Controllable Zn Ion Release Capability by Coupling with Carbon-ZnO. Bioengineering (Basel) 2023; 10:bioengineering10030307. [PMID: 36978698 PMCID: PMC10045836 DOI: 10.3390/bioengineering10030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Poly-L-lactic acid (PLLA) has gained great popularity with researchers in regenerative medicine owing to its superior biocompatibility and biodegradability, although its inadequate bioactivity inhibits the further use of PLLA in the field of bone regeneration. Zinc oxide (ZnO) has been utilized to improve the biological performance of biopolymers because of its renowned osteogenic activity. However, ZnO nanoparticles tend to agglomerate in the polymer matrix due to high surface energy, which would lead to the burst release of the Zn ion and, thus, cytotoxicity. In this study, to address this problem, carbon–ZnO (C–ZnO) was first synthesized through the carbonization of ZIF-8. Then, C–ZnO was introduced to PLLA powder before it was manufactured as scaffolds (PLLA/C–ZnO) by a selective laser sintering 3D printing technique. The results showed that the PLLA/C–ZnO scaffold was able to continuously release Zn ions in a reasonable range, which can be attributed to the interaction of Zn–N bonding and the shielding action of the PLLA scaffold. The controlled release of Zn ions from the scaffold further facilitated cell adhesion and proliferation and improved the osteogenic differentiation ability at the same time. In addition, C–ZnO endowed the scaffold with favorable photodynamic antibacterial ability, which was manifested by an efficient antibacterial rate of over 95%.
Collapse
|
33
|
Francisco I, Basílio Â, Ribeiro MP, Nunes C, Travassos R, Marques F, Pereira F, Paula AB, Carrilho E, Marto CM, Vale F. Three-Dimensional Impression of Biomaterials for Alveolar Graft: Scoping Review. J Funct Biomater 2023; 14:76. [PMID: 36826875 PMCID: PMC9961517 DOI: 10.3390/jfb14020076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Craniofacial bone defects are one of the biggest clinical challenges in regenerative medicine, with secondary autologous bone grafting being the gold-standard technique. The development of new three-dimensional matrices intends to overcome the disadvantages of the gold-standard method. The aim of this paper is to put forth an in-depth review regarding the clinical efficiency of available 3D printed biomaterials for the correction of alveolar bone defects. A survey was carried out using the following databases: PubMed via Medline, Cochrane Library, Scopus, Web of Science, EMBASE, and gray literature. The inclusion criteria applied were the following: in vitro, in vivo, ex vivo, and clinical studies; and studies that assessed bone regeneration resorting to 3D printed biomaterials. The risk of bias of the in vitro and in vivo studies was performed using the guidelines for the reporting of pre-clinical studies on dental materials by Faggion Jr and the SYRCLE risk of bias tool, respectively. In total, 92 publications were included in the final sample. The most reported three-dimensional biomaterials were the PCL matrix, β-TCP matrix, and hydroxyapatite matrix. These biomaterials can be combined with different polymers and bioactive molecules such as rBMP-2. Most of the included studies had a high risk of bias. Despite the advances in the research on new three-dimensionally printed biomaterials in bone regeneration, the existing results are not sufficient to justify the application of these biomaterials in routine clinical practice.
Collapse
Affiliation(s)
- Inês Francisco
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (ICBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Laboratory for Evidence-Based Sciences and Precision Dentistry, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Ângela Basílio
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Madalena Prata Ribeiro
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Catarina Nunes
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Raquel Travassos
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Filipa Marques
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Flávia Pereira
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Anabela Baptista Paula
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (ICBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Laboratory for Evidence-Based Sciences and Precision Dentistry, University of Coimbra, 3000-075 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-075 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3030-370 Coimbra, Portugal
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Eunice Carrilho
- Coimbra Institute for Clinical and Biomedical Research (ICBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Laboratory for Evidence-Based Sciences and Precision Dentistry, University of Coimbra, 3000-075 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-075 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3030-370 Coimbra, Portugal
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Carlos Miguel Marto
- Coimbra Institute for Clinical and Biomedical Research (ICBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Laboratory for Evidence-Based Sciences and Precision Dentistry, University of Coimbra, 3000-075 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-075 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3030-370 Coimbra, Portugal
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Francisco Vale
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (ICBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Laboratory for Evidence-Based Sciences and Precision Dentistry, University of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
34
|
Peng W, Liu Y, Wang C. Definition, measurement, and function of pore structure dimensions of bioengineered porous bone tissue materials based on additive manufacturing: A review. Front Bioeng Biotechnol 2023; 10:1081548. [PMID: 36686223 PMCID: PMC9845791 DOI: 10.3389/fbioe.2022.1081548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Bioengineered porous bone tissue materials based on additive manufacturing technology have gradually become a research hotspot in bone tissue-related bioengineering. Research on structural design, preparation and processing processes, and performance optimization has been carried out for this material, and further industrial translation and clinical applications have been implemented. However, based on previous studies, there is controversy in the academic community about characterizing the pore structure dimensions of porous materials, with problems in the definition logic and measurement method for specific parameters. In addition, there are significant differences in the specific morphological and functional concepts for the pore structure due to differences in defining the dimensional characterization parameters of the pore structure, leading to some conflicts in perceptions and discussions among researchers. To further clarify the definitions, measurements, and dimensional parameters of porous structures in bioengineered bone materials, this literature review analyzes different dimensional characterization parameters of pore structures of porous materials to provide a theoretical basis for unified definitions and the standardized use of parameters.
Collapse
Affiliation(s)
- Wen Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Foshan Orthopedic Implant (Stable) Engineering Technology Research Center, Foshan, China
| | - Yami Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Foshan Orthopedic Implant (Stable) Engineering Technology Research Center, Foshan, China
| | - Cheng Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Cheng Wang,
| |
Collapse
|
35
|
Antoniac I, Manescu (Paltanea) V, Paltanea G, Antoniac A, Nemoianu IV, Petrescu MI, Dura H, Bodog AD. Additive Manufactured Magnesium-Based Scaffolds for Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8693. [PMID: 36500191 PMCID: PMC9739563 DOI: 10.3390/ma15238693] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Additive manufacturing (AM) is an important technology that led to a high evolution in the manufacture of personalized implants adapted to the anatomical requirements of patients. Due to a worldwide graft shortage, synthetic scaffolds must be developed. Regarding this aspect, biodegradable materials such as magnesium and its alloys are a possible solution because the second surgery for implant removal is eliminated. Magnesium (Mg) exhibits mechanical properties, which are similar to human bone, biodegradability in human fluids, high biocompatibility, and increased ability to stimulate new bone formation. A current research trend consists of Mg-based scaffold design and manufacture using AM technologies. This review presents the importance of biodegradable implants in treating bone defects, the most used AM methods to produce Mg scaffolds based on powder metallurgy, AM-manufactured implants properties, and in vitro and in vivo analysis. Scaffold properties such as biodegradation, densification, mechanical properties, microstructure, and biocompatibility are presented with examples extracted from the recent literature. The challenges for AM-produced Mg implants by taking into account the available literature are also discussed.
Collapse
Affiliation(s)
- Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iosif Vasile Nemoianu
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Mircea Ionut Petrescu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania
| |
Collapse
|
36
|
Wang Z, Liu B, Yin B, Zheng Y, Tian Y, Wen P. Comprehensive review of additively manufactured biodegradable magnesium implants for repairing bone defects from biomechanical and biodegradable perspectives. Front Chem 2022; 10:1066103. [PMID: 36523749 PMCID: PMC9745192 DOI: 10.3389/fchem.2022.1066103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 10/21/2023] Open
Abstract
Bone defect repair is a complicated clinical problem, particularly when the defect is relatively large and the bone is unable to repair itself. Magnesium and its alloys have been introduced as versatile biomaterials to repair bone defects because of their excellent biocompatibility, osteoconductivity, bone-mimicking biomechanical features, and non-toxic and biodegradable properties. Therefore, magnesium alloys have become a popular research topic in the field of implants to treat critical bone defects. This review explores the popular Mg alloy research topics in the field of bone defects. Bibliometric analyses demonstrate that the degradation control and mechanical properties of Mg alloys are the main research focus for the treatment of bone defects. Furthermore, the additive manufacturing (AM) of Mg alloys is a promising approach for treating bone defects using implants with customized structures and functions. This work reviews the state of research on AM-Mg alloys and the current challenges in the field, mainly from the two aspects of controlling the degradation rate and the fabrication of excellent mechanical properties. First, the advantages, current progress, and challenges of the AM of Mg alloys for further application are discussed. The main mechanisms that lead to the rapid degradation of AM-Mg are then highlighted. Next, the typical methods and processing parameters of laser powder bed fusion fabrication on the degradation characteristics of Mg alloys are reviewed. The following section discusses how the above factors affect the mechanical properties of AM-Mg and the recent research progress. Finally, the current status of research on AM-Mg for bone defects is summarized, and some research directions for AM-Mg to drive the application of clinical orthopedic implants are suggested.
Collapse
Affiliation(s)
- Zhengguang Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Bangzhao Yin
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
37
|
Drug-device systems based on biodegradable metals for bone applications: Potential, development and challenges. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Asaduzzaman Chowdhury M, Helal Hossain MD, Hossain N, Hossen Z, Arefin Kowser M, Masud Rana M. Advances in coatings on Mg alloys and their anti-microbial activity for implant applications. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
39
|
Wang Z, Wang W, Zhang X, Cao F, Zhang T, Bhakta Pokharel D, Chen D, Li J, Yang J, Xiao C, Ren Y, Qin G, Zhao D. Modulation of Osteogenesis and Angiogenesis Activities Based on Ionic Release from Zn-Mg Alloys. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207117. [PMID: 36295204 PMCID: PMC9608845 DOI: 10.3390/ma15207117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 05/12/2023]
Abstract
The enhancement of osteogenesis and angiogenesis remains a great challenge for the successful regeneration of engineered tissue. Biodegradable Mg and Zn alloys have received increasing interest as potential biodegradable metallic materials, partially due to the biological functions of Mg2+ and Zn2+ with regard to osteogenesis and angiogenesis, respectively. In the present study, novel biodegradable Zn-xMg (x = 0.2, 0.5, 1.0 wt.%) alloys were designed and fabricated, and the effects of adding different amounts of Mg to the Zn matrix were investigated. The osteogenesis and angiogenesis beneficial effects of Zn2+ and Mg2+ release during the biodegradation were characterized, demonstrating coordination with the bone regeneration process in a dose-dependent manner. The results show that increased Mg content leads to a higher amount of released Mg2+ while decreasing the Zn2+ concentration in the extract. The osteogenesis of pre-osteoblasts was promoted in Zn-0.5Mg and Zn-1Mg due to the higher concentration of Mg2+. Moreover, pure Zn extract presented the highest activity in angiogenesis, owing to the highest concentration of Zn2+ release (6.415 μg/mL); the proliferation of osteoblast cells was, however, inhibited under such a high Zn2+ concentration. Although the concentration of Zn ion was decreased in Zn-0.5Mg and Zn-1Mg compared with pure Zn, the angiogenesis was not influenced when the concentration of Mg in the extract was sufficiently increased. Hence, Mg2+ and Zn2+ in Zn-Mg alloys show a dual modulation effect. The Zn-0.5Mg alloy was indicated to be a promising implant candidate due to demonstrating the appropriate activity in regulating osteogenesis and angiogenesis. The present work evaluates the effect of the Mg content in Zn-based alloys on biological activities, and the results provide guidance regarding the Zn-Mg composition in designs for orthopedic application.
Collapse
Affiliation(s)
- Ziming Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Weidan Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiuzhi Zhang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
- Correspondence: (X.Z.); (D.Z.)
| | - Fang Cao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tianwei Zhang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Durga Bhakta Pokharel
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Di Chen
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Junlei Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Jiahui Yang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Chi Xiao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Yuping Ren
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Gaowu Qin
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
- Correspondence: (X.Z.); (D.Z.)
| |
Collapse
|
40
|
Zhao D, Han C, Peng B, Cheng T, Fan J, Yang L, Chen L, Wei Q. Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold. Acta Biomater 2022; 153:614-629. [PMID: 36162767 DOI: 10.1016/j.actbio.2022.09.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/15/2022] [Accepted: 09/19/2022] [Indexed: 12/16/2022]
Abstract
Additively manufactured biodegradable zinc (Zn) alloy scaffolds constitute an important branch in orthopedic implants because of their moderate degradation behavior and bone-mimicking mechanical properties. This work investigated the corrosion fatigue response of a zinc-magnesium (Zn-Mg) alloy gyroid scaffold fabricated via laser-powder-bed-fusion additive manufacturing at the first time. The high-cycle compression-compression fatigue testing of the printed Zn-Mg scaffold was conducted in simulated body fluid, showing its favorable fatigue strength, structural reliability, and anti-fatigue capability. The printed Zn-Mg scaffold obtained a 227% higher fatigue strength than that of the printed Zn scaffold but 17% lower strain accumulation at 106 cycles. The accumulative strain of the Zn-Mg scaffold at its fatigue strength was dominant by fatigue ratcheting, since the fatigue damage strain of the scaffold was approximately zero. The corrosion products (ZnO and Zn(OH)2) were conducive to the inhibition of fatigue ratcheting and fatigue damage. Dislocation pile-up and solid solution phases at the grain boundaries of the Zn-Mg scaffold could retard the spreading of the crack tip and impede excessive grain coarsening, improving its fatigue endurance limit. Notably, the printed Zn-Mg scaffold could dissipate the fatigue energy through moderate grain boundary migration, thus reducing its plastic deformation. These findings illuminated the anti-fatigue mechanisms related to microstructural features and corrosive environments and highlighted the promising prospects of additively manufactured Zn-Mg scaffolds in orthopedic applications. STATEMENT OF SIGNIFICANCE: : Additive manufacturing (AM) of biodegradable metals shows unprecedented prospects for bone tissue regeneration medicine. The corrosion fatigue property is one of the key determinants in the performance of AM biodegradable scaffolds. In this study, a Zn-Mg gyroid scaffold was additively manufactured with admirable fatigue endurance limit and anti-fatigue capability. We reported that the corrosion fatigue performance was highly relevant to the microstructural features, validating that the grain boundary engineering strategy improved fatigue strength and inhibited crack penetration. Notably, moderate grain boundary migration could dissipate fatigue energy and reduce plastic deformation. Furthermore, corrosion products were conducive to impeding fatigue ratcheting and fatigue damage, indicating the promising potential of AM Zn-Mg scaffolds in treating load-bearing bone defects.
Collapse
Affiliation(s)
- Danlei Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Changjun Han
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Bo Peng
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tan Cheng
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junxiang Fan
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lei Yang
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430010, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| | - Qingsong Wei
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
41
|
Ren H, Pan C, Liu Y, Liu D, He X, Li X, Sun X. Fabrication, in vitro and in vivo properties of porous Zn–Cu alloy scaffolds for bone tissue engineering. MATERIALS CHEMISTRY AND PHYSICS 2022; 289:126458. [DOI: 10.1016/j.matchemphys.2022.126458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
42
|
Yuan Z, Wan Z, Gao C, Wang Y, Huang J, Cai Q. Controlled magnesium ion delivery system for in situ bone tissue engineering. J Control Release 2022; 350:360-376. [PMID: 36002052 DOI: 10.1016/j.jconrel.2022.08.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Magnesium cation (Mg2+) has been an emerging therapeutic agent for inducing vascularized bone regeneration. However, the therapeutic effects of current magnesium (Mg) -containing biomaterials are controversial due to the concentration- and stage-dependent behavior of Mg2+. Here, we first provide an overview of biochemical mechanism of Mg2+ in various concentrations and suggest that 2-10 mM Mg2+in vitro may be optimized. This review systematically summarizes and discusses several types of controlled Mg2+ delivery systems based on polymer-Mg composite scaffolds and Mg-containing hydrogels, as well as their design philosophy and several parameters that regulate Mg2+ release. Given that the continuous supply of Mg2+ may prevent biomineral deposition in the later stage of bone regeneration and maturation, we highlight the controlled delivery of Mg2+ based dual- or multi-ions system, especially for the hierarchical therapeutic ion release system, which shows enhanced biomineralization. Finally, the remaining challenges and perspectives of Mg-containing biomaterials for future in situ bone tissue engineering are discussed as well.
Collapse
Affiliation(s)
- Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Chenyuan Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China.
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China..
| |
Collapse
|
43
|
Huang X, Zhu Z, Lu L, Jin R, Sun D, Luo X. Frozen bean curd-inspired Xenogeneic acellular dermal matrix with triple pretreatment approach of freeze-thaw, laser drilling and ADSCs pre-culture for promoting early vascularization and integration. Regen Biomater 2022; 9:rbac053. [PMID: 35974951 PMCID: PMC9375572 DOI: 10.1093/rb/rbac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/03/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Xenogeneic acellular dermal matrix (ADM) is widely used in clinical practice given its good biocompatibility and biomechanical properties. Yet, its dense structure remains a hindrance. Incorporation of laser drilling and pre-culture with Adipose-derived stem cells (ADSCs) have been attempted to promote early vascularization and integration, but the results were not ideal. Inspired by the manufacturing procedure of frozen bean curd, we proposed a freeze-thaw treatment to enhance the porosity of ADM. We found that the ADM treated with -80°C3R+-30°C3R had the largest disorder of stratified plane arrangement (deviation angle 28.6%) and the largest porosity (96%), making it an optimal approach. Human umbilical vein endothelial cells on freeze-thaw treated ADM demonstrated increased expression in Tie-2 and CD105 genes, proliferation, and tube formation in vitro compared with those on ADM. Combining freeze-thaw with laser drilling and pre-culture with ADSCs, such tri-treatment improved the gene expression of pro-angiogenic factors including IGF-1, EGF, and VEGF, promoted tube formation, increased cell infiltration, and accelerated vascularization soon after implantation. Overall, freeze-thaw is an effective method for optimizing the internal structure of ADM, and tri-treatments may yield clinical significance by promoting early cell infiltration, vascularization, and integration with surrounding tissues.
Collapse
Affiliation(s)
- Xing Huang
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
- Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, PR China
| | - Zhu Zhu
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
- Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, PR China
| | - Lin Lu
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| | - Rui Jin
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| | - Di Sun
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| | - Xusong Luo
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| |
Collapse
|