1
|
Wang L, Yang L, Tian L, Guo B, Dai T, Lv Q, Xie J, Liu F, Bao H, Cao F, Liu Y, Gao Y, Hou Y, Ye Z, Wang S, Zhang Q, Kong L, Cai B. Exosome-capturing scaffold promotes endogenous bone regeneration through neutrophil-derived exosomes by enhancing fast vascularization. Biomaterials 2025; 319:123215. [PMID: 40023128 DOI: 10.1016/j.biomaterials.2025.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/19/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Exosomes (Exos), extracellular vesicles of endosomal origin, are a promising therapeutic platform for tissue regeneration. In the current study, an exosome-capturing scaffold (ECS) was designed to attract and anchor exosomes via electrostatic adherence followed by lipophilic interactions. Our findings demonstrate that local enrichment of exosomes in the ECS implanted into critical mandibular defects could significantly accelerate endogenous bone regeneration by enhancing vascularization at the defect site. Notably, neutrophil (PMN)-derived exosomes (PMN-Exos) were identified as the predominant exosome subtype among all captured exosomes. During endogenous bone regeneration, PMN-Exos promoted endogenous vascularization primarily by stimulating the proliferation of endothelial progenitor cells (EPCs), which play a pivotal role in the vasculogenesis of new blood vessels. Mechanistically, vascularization involved PMN-Exo-derived miR455-3p, which promotes EPC proliferation by targeting the Smad4 pathway. In conclusion, this study offers an ECS with broad application prospects for enhancing tissue regeneration by accelerating vascularization. The elucidation of underlying mechanisms paves the way for developing novel strategies to regenerate various tissues and organs.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Luying Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Lei Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Taiqiang Dai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qianxin Lv
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Jirong Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Fuwei Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Han Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Feng Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Ya Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China; College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Ye Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yan Hou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R, China.
| | - Shenqiang Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Liang Kong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Bolei Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Sillmann YM, Eber P, Orbeta E, Wilde F, Gross AJ, Guastaldi FPS. Milestones in Mandibular Bone Tissue Engineering: A Systematic Review of Large Animal Models and Critical-Sized Defects. J Clin Med 2025; 14:2717. [PMID: 40283548 PMCID: PMC12027812 DOI: 10.3390/jcm14082717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Mandibular reconstruction following trauma or oncologic resection is crucial for restoring function and aesthetics. While autologous bone grafting remains the gold standard, it presents challenges such as donor site morbidity and graft availability. Bone tissue engineering (BTE) offers an innovative alternative, integrating scaffolds, osteogenic cells, and bioactive factors to regenerate functional bone. This systematic review evaluates BTE strategies for mandibular reconstruction, focusing on critical-sized defects in large animal models and their translational potential for clinical applications. Methods: A systematic review was performed following PRISMA guidelines. Eligible studies involved large animal models and critical-sized mandibular defects treated with at least two BTE components (scaffold, osteogenic cells, or growth factors). Quality and bias assessments were conducted using ARRIVE guidelines and SYRCLE tools. Results: Of the 6088 studies screened, 27 met the inclusion criteria, focusing on critical-sized mandibular defects in large animal models such as pigs, sheep, and dogs. Common scaffolds included β-tricalcium phosphate (β-TCP), poly-lactic-co-glycolic acid (PLGA), and polycaprolactone (PCL), frequently combined with bone marrow-derived mesenchymal stem cells (BMSCs) and growth factors like recombinant human bone morphogenetic protein-2 (rhBMP-2). Preclinical outcomes demonstrated effective bone regeneration, vascularization, and biomechanical restoration. Advanced strategies, including in vivo bioreactors and 3D-printed scaffolds, further enhanced regeneration. However, challenges such as incomplete scaffold degradation, hypoxic conditions within constructs, and variability in growth factor efficacy and dose optimization were observed, emphasizing the need for further refinement to ensure consistent outcomes. Conclusions: BTE shows promise in mandibular reconstruction, achieving bone regeneration and functional restoration in preclinical models of critical-sized defects. However, challenges such as scaffold optimization, vascularization enhancement, and protocol standardization require further investigation to facilitate clinical translation. These findings emphasize the need for refinement to achieve consistent, scalable outcomes for clinical use.
Collapse
Affiliation(s)
- Yannick M. Sillmann
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA 02115, USA; (Y.M.S.); (P.E.)
- Department of Oral and Plastic Maxillofacial Surgery, University Hospital Ulm, 89081 Ulm, Germany;
| | - Pascal Eber
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA 02115, USA; (Y.M.S.); (P.E.)
| | - Elizabeth Orbeta
- College of Dental Medicine, Western University, Pomona, CA 91766, USA;
| | - Frank Wilde
- Department of Oral and Plastic Maxillofacial Surgery, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm (Academic Hospital of the University of Ulm), 89081 Ulm, Germany
| | - Andrew J. Gross
- Division of Oral and Maxillofacial Surgery, University of Utah, Salt Lake City, UT 84112, USA;
| | - Fernando P. S. Guastaldi
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA 02115, USA; (Y.M.S.); (P.E.)
| |
Collapse
|
3
|
Mirmohammadi SA, Pasini D, Barthelat F. Calcium sulfate-based load-bearing bone grafts with patient-specific geometry. J Mech Behav Biomed Mater 2025; 162:106822. [PMID: 39603153 DOI: 10.1016/j.jmbbm.2024.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/17/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
The treatment of bone defects with complex three-dimensional geometry presents challenges in terms of bone grafting and restoration. In this paper, we propose a rapid and effective method that uses 3D printing, ceramic casting, and the incorporation of mesh reinforcement to create load-bearing bone grafts with patient-specific three-dimensional geometry. Using two types of facial bones as examples, we show that this fabrication method has a high degree of geometrical fidelity. We also experimentally study the fracture behavior of six different architectures designed for the treatment of mandibular defects, one of the principal load-bearing facial bones. These design configurations include un-reinforced calcium sulfate samples, and samples reinforced with one or two layers of stainless steel, poly (lactic acid), and poly (L-lactic acid). The results suggested a trade-off between energy dissipation and maximum load based on the position of the metal mesh in the sample. Samples reinforced with one layer of metallic mesh at their lowermost margin exhibited a 17% higher stiffness and a 21.3% higher peak load, while samples with a layer of metal mesh embedded within dissipated 16% more energy. Samples with two layers of metallic mesh demonstrated the highest improvements among all samples, dissipating 5767.85% more energy and exhibiting a peak load 145.6% higher compared to plain CS. The improvements in stiffness for SD, SL, and S2 were 3%, 21.3%, and 21.9% respectively compared to the plain ceramic. In contrast, PLA mesh improved energy dissipation by 96.71% but reduced the peak load by 29.18%, while PLLA mesh decreased both the peak load and the dissipated energy by 13.05% and 35.31%, respectively. While PLA mesh reduced stiffness by 11% compared to plain CS, PLLA mesh-reinforced samples were slightly stiffer than pure CS by 1.6%.
Collapse
Affiliation(s)
| | - Damiano Pasini
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| | - Francois Barthelat
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
4
|
Nicolas T, Ségolène R, Thierry R, Maeva D, Joelle V, Arnaud P, Ludmila B, Pierre W, Pierre C, Baptiste C. Multiparametric influence of 3D-printed organo-mineral scaffolds on bone regeneration. Sci Rep 2024; 14:20848. [PMID: 39242756 PMCID: PMC11379694 DOI: 10.1038/s41598-024-71698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
The development of synthetic bone substitutes that equal or exceed the efficacy of autologous graft remains challenging. In this study, a rat calvarial defect model was used as a reference to investigate the influence of composition and architecture of 3D-printed cement, with or without bioactives, on tissue regeneration. Printable cement pastes were formulated by combining hyaluronic acid and cement precursors. Cementitious scaffolds were printed with 3 different patterns. After 7 weeks of implantation with or without bone marrow, multiparametric qualitative and quantitative assessments were performed using µCT, SEM, and histology. None of the set-up strategies was as efficient as autologous cancellous bone graft to repair calvarial defects. Nonetheless, the presence of scaffold improved the skull vault closure, particularly when the scaffold was soaked in total bone marrow before implantation. No significant effect of scaffold macro-architecture was observed on tissue mineralization. Magnesium phosphate-based scaffolds (MgP) seemed to induce higher bone formation than their calcium-phosphate-based counterparts. They also displayed a quicker biodegradation and sparse remaining material was found after 7 weeks of implantation. Although further improvements are required to reach clinical settings, this study demonstrated the potential of organo-mineral cements for bone regeneration and highlighted the peculiar properties of MgP-based cements.
Collapse
Affiliation(s)
- Touya Nicolas
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Reiss Ségolène
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Rouillon Thierry
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Dutilleul Maeva
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Veziers Joelle
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Pare Arnaud
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Brasset Ludmila
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Weiss Pierre
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Corre Pierre
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Charbonnier Baptiste
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France.
| |
Collapse
|
5
|
Systermans S, Cobraiville E, Camby S, Meyer C, Louvrier A, Lie SA, Schouman T, Siciliano S, Beckers O, Poulet V, Ullmann N, Nolens G, Biscaccianti V, Nizet JL, Hascoët JY, Gilon Y, Vidal L. An innovative 3D hydroxyapatite patient-specific implant for maxillofacial bone reconstruction: A case series of 13 patients. J Craniomaxillofac Surg 2024; 52:420-431. [PMID: 38461138 DOI: 10.1016/j.jcms.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/28/2023] [Accepted: 02/17/2024] [Indexed: 03/11/2024] Open
Abstract
The study aimed to evaluate and discuss the use of an innovative PSI made of porous hydroxyapatite, with interconnected porosity promoting osteointegration, called MyBone Custom® implant (MBCI), for maxillofacial bone reconstruction. A multicentric cohort of 13 patients underwent maxillofacial bone reconstruction surgery using MBCIs for various applications, from genioplasty to orbital floor reconstruction, including zygomatic and mandibular bone reconstruction, both for segmental defects and bone augmentation. The mean follow-up period was 9 months (1-22 months). No infections, displacements, or postoperative fractures were reported. Perioperative modifications of the MBCIs were possible when necessary. Additionally, surgeons reported significant time saved during surgery. For patients with postoperative CT scans, osteointegration signs were visible at the 6-month postoperative follow-up control, and continuous osteointegration was observed after 1 year. The advantages and disadvantages compared with current techniques used are discussed. MBCIs offer new bone reconstruction possibilities with long-term perspectives, while precluding the drawbacks of titanium and PEEK. The low level of postoperative complications associated with the high osteointegration potential of MBCIs paves the way to more extensive use of this new hydroxyapatite PSI in maxillofacial bone reconstruction.
Collapse
Affiliation(s)
- Simon Systermans
- Department of Plastic and Maxillofacial Surgery, CHU, University of Liège, Liège, Belgium; Department of Oral and Maxillofacial Surgery, ZOL Genk, Genk, Belgium
| | | | - Séverine Camby
- Department of Plastic and Maxillofacial Surgery, CHU, University of Liège, Liège, Belgium
| | - Christophe Meyer
- Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU, Université de Franche-Comté, Besançon, France
| | - Aurélien Louvrier
- Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU, Université de Franche-Comté, Besançon, France
| | - Suen An Lie
- Department of Cranio-Maxillofacial Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Thomas Schouman
- Department of Maxillofacial Surgery, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Assistance Publique des Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Sergio Siciliano
- Department of Stomatology and Maxillofacial Surgery, Clinique Sainte Elisabeth, Brussels, Belgium
| | - Olivier Beckers
- Department of Oral and Maxillofacial Surgery, ZOL Genk, Genk, Belgium
| | - Vinciane Poulet
- Department of Maxillofacial Surgery, Toulouse Purpan University Hospital, Toulouse, France
| | - Nicolas Ullmann
- Service de Chirurgie Maxillo-faciale et Stomatologie, Hôpital de Villeneuve Saint Georges, France
| | | | - Vincent Biscaccianti
- Research Institute of Civil Engineering and Mechanics (GeM), CNRS, Nantes, France
| | - Jean-Luc Nizet
- Department of Plastic and Maxillofacial Surgery, CHU, University of Liège, Liège, Belgium
| | - Jean-Yves Hascoët
- Research Institute of Civil Engineering and Mechanics (GeM), CNRS, Nantes, France
| | - Yves Gilon
- Department of Plastic and Maxillofacial Surgery, CHU, University of Liège, Liège, Belgium
| | - Luciano Vidal
- Research Institute of Civil Engineering and Mechanics (GeM), CNRS, Nantes, France; Department of Plastic and Reconstructive Surgery, Clinique Bretéché - ELSAN, Nantes, France.
| |
Collapse
|
6
|
Garot C, Schoffit S, Monfoulet C, Machillot P, Deroy C, Roques S, Vial J, Vollaire J, Renard M, Ghanem H, El‐Hafci H, Decambron A, Josserand V, Bordenave L, Bettega G, Durand M, Manassero M, Viateau V, Logeart‐Avramoglou D, Picart C. 3D-Printed Osteoinductive Polymeric Scaffolds with Optimized Architecture to Repair a Sheep Metatarsal Critical-Size Bone Defect. Adv Healthc Mater 2023; 12:e2301692. [PMID: 37655491 PMCID: PMC11468956 DOI: 10.1002/adhm.202301692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/10/2023] [Indexed: 09/02/2023]
Abstract
The reconstruction of critical-size bone defects in long bones remains a challenge for clinicians. A new osteoinductive medical device is developed here for long bone repair by combining a 3D-printed architectured cylindrical scaffold made of clinical-grade polylactic acid (PLA) with a polyelectrolyte film coating delivering the osteogenic bone morphogenetic protein 2 (BMP-2). This film-coated scaffold is used to repair a sheep metatarsal 25-mm long critical-size bone defect. In vitro and in vivo biocompatibility of the film-coated PLA material is proved according to ISO standards. Scaffold geometry is found to influence BMP-2 incorporation. Bone regeneration is followed using X-ray scans, µCT scans, and histology. It is shown that scaffold internal geometry, notably pore shape, influenced bone regeneration, which is homogenous longitudinally. Scaffolds with cubic pores of ≈870 µm and a low BMP-2 dose of ≈120 µg cm-3 induce the best bone regeneration without any adverse effects. The visual score given by clinicians during animal follow-up is found to be an easy way to predict bone regeneration. This work opens perspectives for a clinical application in personalized bone regeneration.
Collapse
Affiliation(s)
- Charlotte Garot
- CNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)INSERM U1292 BiosantéCEAUniversité Grenoble Alpes17 avenue des MartyrsGrenobleF‐38054France
| | - Sarah Schoffit
- Ecole Nationale Vétérinaire d'AlfortUniversité Paris‐EstMaisons‐AlfortF‐94704France
- CNRSINSERMENVAB3OAUniversité Paris CitéParisF‐75010France
| | - Cécile Monfoulet
- INSERMInstitut BergoniéUniversity of BordeauxCIC 1401BordeauxF‐33000France
- CIC‐ITINSERMInstitut BergoniéCHU de BordeauxCIC 1401BordeauxF‐33000France
| | - Paul Machillot
- CNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)INSERM U1292 BiosantéCEAUniversité Grenoble Alpes17 avenue des MartyrsGrenobleF‐38054France
| | - Claire Deroy
- INSERMInstitut BergoniéUniversity of BordeauxCIC 1401BordeauxF‐33000France
- CIC‐ITINSERMInstitut BergoniéCHU de BordeauxCIC 1401BordeauxF‐33000France
| | - Samantha Roques
- INSERMInstitut BergoniéUniversity of BordeauxCIC 1401BordeauxF‐33000France
- CIC‐ITINSERMInstitut BergoniéCHU de BordeauxCIC 1401BordeauxF‐33000France
| | - Julie Vial
- Ecole Nationale Vétérinaire d'AlfortUniversité Paris‐EstMaisons‐AlfortF‐94704France
- CNRSINSERMENVAB3OAUniversité Paris CitéParisF‐75010France
| | - Julien Vollaire
- INSERM U1209Institute of Advanced BiosciencesGrenobleF‐38000France
- Institute of Advanced BiosciencesUniversité Grenoble AlpesGrenobleF‐38000France
| | - Martine Renard
- INSERMInstitut BergoniéUniversity of BordeauxCIC 1401BordeauxF‐33000France
- CIC‐ITINSERMInstitut BergoniéCHU de BordeauxCIC 1401BordeauxF‐33000France
| | - Hasan Ghanem
- CNRSINSERMENVAB3OAUniversité Paris CitéParisF‐75010France
| | | | - Adeline Decambron
- Ecole Nationale Vétérinaire d'AlfortUniversité Paris‐EstMaisons‐AlfortF‐94704France
- CNRSINSERMENVAB3OAUniversité Paris CitéParisF‐75010France
| | - Véronique Josserand
- INSERM U1209Institute of Advanced BiosciencesGrenobleF‐38000France
- Institute of Advanced BiosciencesUniversité Grenoble AlpesGrenobleF‐38000France
| | - Laurence Bordenave
- INSERMInstitut BergoniéUniversity of BordeauxCIC 1401BordeauxF‐33000France
- CIC‐ITINSERMInstitut BergoniéCHU de BordeauxCIC 1401BordeauxF‐33000France
| | - Georges Bettega
- INSERM U1209Institute of Advanced BiosciencesGrenobleF‐38000France
- Service de Chirurgie Maxillo‐FacialeCentre Hospitalier Annecy Genevois1 avenue de l'hôpitalEpagny Metz‐TessyF‐74370France
| | - Marlène Durand
- INSERMInstitut BergoniéUniversity of BordeauxCIC 1401BordeauxF‐33000France
- CIC‐ITINSERMInstitut BergoniéCHU de BordeauxCIC 1401BordeauxF‐33000France
| | - Mathieu Manassero
- Ecole Nationale Vétérinaire d'AlfortUniversité Paris‐EstMaisons‐AlfortF‐94704France
- CNRSINSERMENVAB3OAUniversité Paris CitéParisF‐75010France
| | - Véronique Viateau
- Ecole Nationale Vétérinaire d'AlfortUniversité Paris‐EstMaisons‐AlfortF‐94704France
- CNRSINSERMENVAB3OAUniversité Paris CitéParisF‐75010France
| | | | - Catherine Picart
- CNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)INSERM U1292 BiosantéCEAUniversité Grenoble Alpes17 avenue des MartyrsGrenobleF‐38054France
- Institut Universitaire de France (IUF)1 rue DescartesParis CEDEX 0575231France
| |
Collapse
|
7
|
Bouakaz I, Drouet C, Grossin D, Cobraiville E, Nolens G. Hydroxyapatite 3D-printed scaffolds with Gyroid-Triply periodic minimal surface porous structure: Fabrication and an in vivo pilot study in sheep. Acta Biomater 2023; 170:580-595. [PMID: 37673232 DOI: 10.1016/j.actbio.2023.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Bone repair is a major challenge in regenerative medicine, e.g. for large defects. There is a need for bioactive, highly percolating bone substitutes favoring bone ingrowth and tissue healing. Here, a modern 3D printing approach (VAT photopolymerization) was exploited to fabricate hydroxyapatite (HA) scaffolds with a Gyroid-"Triply periodic minimal surface" (TPMS) porous structure (65% porosity, 90.5% HA densification) inspired from trabecular bone. Percolation and absorption capacities were analyzed in gaseous and liquid conditions. Mechanical properties relevant to guided bone regeneration in non-load bearing sites, as for maxillofacial contour reconstruction, were evidenced from 3-point bending tests and macrospherical indentation. Scaffolds were implanted in a clinically-relevant large animal model (sheep femur), over 6 months, enabling thorough analyses at short (4 weeks) and long (26 weeks) time points. In vivo performances were systematically compared to the bovine bone-derived Bio-OssⓇ standard. The local tissue response was examined thoroughly by semi-quantitative histopathology. Results demonstrated the absence of toxicity. Bone healing was assessed by bone dynamics analysis through epifluorescence using various fluorochromes and quantitative histomorphometry. Performant bone regeneration was evidenced with similar overall performances to the control, although the Gyroid biomaterial slightly outperformed Bio-OssⓇ at early healing time in terms of osteointegration and appositional mineralization. This work is considered a pilot study on the in vivo evaluation of TPMS-based 3D porous scaffolds in a large animal model, for an extended period of time, and in comparison to a clinical standard. Our results confirm the relevance of such scaffolds for bone regeneration in view of clinical practice. STATEMENT OF SIGNIFICANCE: Bone repair, e.g. for large bone defects or patients with defective vascularization is still a major challenge. Highly percolating TPMS porous structures have recently emerged, but no in vivo data were reported on a large animal model of clinical relevance and comparing to an international standard. Here, we fabricated TPMS scaffolds of HA, determined their chemical, percolation and mechanical features, and ran an in-depth pilot study in the sheep with a systematic comparison to the Bio-OssⓇ reference. Our results clearly show the high bone-forming capability of such scaffolds, with outcomes even better than Bio-OssⓇ at short implantation time. This preclinical work provides quantitative data validating the relevance of such TMPS porous scaffolds for bone regeneration in view of clinical evaluation.
Collapse
Affiliation(s)
- Islam Bouakaz
- CERHUM - PIMW, 4000 Liège, Belgium; CIRIMAT, Université de Toulouse, CNRS / Toulouse INP / UT3, 31030 Toulouse, France
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, CNRS / Toulouse INP / UT3, 31030 Toulouse, France.
| | - David Grossin
- CIRIMAT, Université de Toulouse, CNRS / Toulouse INP / UT3, 31030 Toulouse, France
| | | | - Grégory Nolens
- CERHUM - PIMW, 4000 Liège, Belgium; Faculty of Medicine, University of Namur, 5000 Namur, Belgium.
| |
Collapse
|