1
|
Guo G, Ding W, Li F, Li Z, Qin S, Xu G, Yue X, Wang X, Song W, Sun W, Zhong W. Nano co-inducer of immunogenic cell death and ferroptosis for anti-tumor immunotherapy. J Colloid Interface Sci 2025; 697:137980. [PMID: 40424799 DOI: 10.1016/j.jcis.2025.137980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/07/2025] [Accepted: 05/23/2025] [Indexed: 05/29/2025]
Abstract
Due to population aging and lifestyle changes, the global tumor burden has increased, making tumor disease a significant challenge in public health. Recently, immunotherapy emerged as an effective approach for tumor treatment by activating and enhancing the body's immune system to precisely identify and attack tumor cells. However, its efficacy was limited by the "cold" immunosuppressive tumor microenvironment (ITME) and the tissue repair capabilities of tumors. To address this issue, we developed a dual-target ferroptosis immune-inducer, FTB@CC, which releases photosensitizer (PS), calcium (Ca2+), and Fe2+ under weakly acidic conditions. Upon near-infrared (NIR) laser irradiation, PSs induced endoplasmic reticulum (ER) stress, producing large amounts of reactive oxygen species (ROS) and releasing significant quantities of damage-associated molecular patterns (DAMPs), which mediated immunogenic cell death (ICD). Simultaneously, Ca2+ overload activates the inflammasome and amplifies cellular cytotoxicity for DAMPs release, eventually activating the ICD pathway. The supplementation of Fe2+ increased iron storage within tumor cells and downregulated the expression of glutathione peroxidase 4 (GPX4), leading to the accumulation of lipid peroxides (LPO) and ultimately resulting in ferroptosis. This multi-level interaction strategy restructured the ITME and induced ICD, overcoming the limitations of single-agent therapies, and significantly enhancing the efficacy of anti-PD-L1 antibody (α-PD-L1) in suppressing tumor cell immune evasion. As a result, it promoted the infiltration of immune cells and inhibited both distal and proximal tumors. This nano-integrated ICD-ferroptosis co-inducer offers an intelligent strategy for effectively overcoming ITME, thereby providing a promising avenue for advanced immunotherapeutic interventions.
Collapse
Affiliation(s)
- Guanhong Guo
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| | - Wenshuo Ding
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| | - Fahui Li
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| | - Zhengbo Li
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| | - Shuangfeng Qin
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| | - Guangzhao Xu
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| | - Xiangguo Yue
- Weifang University of Science and Technology, Weifang 262700, People's Republic of China
| | - Xudong Wang
- Harway Pharma (Weifang) Co., Ltd., Weifang 262700, People's Republic of China
| | - Weiguo Song
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Wenda Zhong
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China.
| |
Collapse
|
2
|
Hu J, Arvejeh PM, Bone S, Hett E, Marincola FM, Roh KH. Nanocarriers for cutting-edge cancer immunotherapies. J Transl Med 2025; 23:447. [PMID: 40234928 PMCID: PMC12001629 DOI: 10.1186/s12967-025-06435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer immunotherapy aims to harness the body's own immune system for effective and long-lasting elimination of malignant neoplastic tissues. Owing to the advance in understanding of cancer pathology and immunology, many novel strategies for enhancing immunological responses against various cancers have been successfully developed, and some have translated into excellent clinical outcomes. As one promising strategy for the next generation of immunotherapies, activating the multi-cellular network (MCN) within the tumor microenvironment (TME) to deploy multiple mechanisms of action (MOAs) has attracted significant attention. To achieve this effectively and safely, delivering multiple or pleiotropic therapeutic cargoes to the targeted sites of cancerous tissues, cells, and intracellular organelles is critical, for which numerous nanocarriers have been developed and leveraged. In this review, we first introduce therapeutic payloads categorized according to their predicted functions in cancer immunotherapy and their physicochemical structures and forms. Then, various nanocarriers, along with their unique characteristics, properties, advantages, and limitations, are introduced with notable recent applications in cancer immunotherapy. Following discussions on targeting strategies, a summary of each nanocarrier matching with suitable therapeutic cargoes is provided with comprehensive background information for designing cancer immunotherapy regimens.
Collapse
Affiliation(s)
- Joyce Hu
- Translational and Advanced Medicine (TAM) Biosciences, Nashville, TN, 37011, USA
| | - Pooria M Arvejeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sydney Bone
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Erik Hett
- Translational and Advanced Medicine (TAM) Biosciences, Nashville, TN, 37011, USA
| | | | - Kyung-Ho Roh
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
- Biotechnology Science and Engineering Program, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
3
|
Yang K, Sha Q, Li X, Hua J, Chen W. An esterase-activated prodrug against pancreatic cancer by imaging-guided photodynamic immunotherapy. Biomater Sci 2025; 13:2092-2101. [PMID: 40052699 DOI: 10.1039/d4bm01718h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Photodynamic therapy (PDT) has received much attention as a promising modality for tumor treatment. However, the weak targeting ability of conventional photosensitisers and the metastasis of malignant tumors have severely limited the development of PDT. To address this, an esterase-activated prodrug (BPYM) has been developed for imaging-guided photodynamic therapy cascade immunotherapy for the treatment of pancreatic cancer. Upon reaction with esterase, BPYM releases the photosensitiser BPY and exhibits strong red fluorescence emission, which is further enhanced by the aggregation-induced emission (AIE) characteristics of BPY. Interestingly, the activation of the fluorescence signal simultaneously indicates the activation of photosensitivity capabilities. Under white light irradiation, activated BPYM can generate large amounts of reactive oxygen species (ROS) to induce apoptosis in pancreatic cancer cells. More importantly, BPYM-mediated PDT can trigger immunogenic cell death (ICD) and elicit a systemic anti-tumor immune response. Ultimately, this imaging-guided PDT not only precisely ablates the primary pancreatic cancer tumors, but also inhibits the growth of distant tumors through an immune response. In summary, we report a strategy to achieve photodynamic immunotherapy for the treatment of pancreatic cancer through the rational design of an esterase-activated prodrug.
Collapse
Affiliation(s)
- Kaini Yang
- Department of Biliary-pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Qingyang Sha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xinsheng Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jianli Hua
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Wei Chen
- Department of Biliary-pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
4
|
Xiong K, Luo G, Zeng W, Wen G, Wang C, Ding A, Qi M, Liu Y, Zhang J. Magnetic Microbubbles Combined with ICG-Loaded Liposomes for Synergistic Mild-Photothermal and Ferroptosis-Enhanced Photodynamic Therapy of Melanoma. Int J Nanomedicine 2025; 20:2901-2921. [PMID: 40093542 PMCID: PMC11908402 DOI: 10.2147/ijn.s503753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Background Melanoma poses a significant threat to human health due to the lack of effective treatment options. Previous studies have demonstrated that the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) can enhance therapeutic efficacy. However, conventional PTT/PDT combination strategies face various challenges, including complex preparation processes, potential damage to healthy tissues, and insufficient generation of reactive oxygen species (ROS). This study aims to design a rational and efficient PTT/PDT therapeutic strategy for melanoma and to explore its underlying mechanisms. Methods We first synthesized two target materials, indocyanine green-targeted liposomes (ICG-Lips) and magnetic microbubbles (MMBs), using the thin-film hydration method, followed by characterization and performance evaluation of both materials. Subsequently, we evaluated the synergistic therapeutic effects and underlying mechanisms of ICG-Lips combined with MMBs in melanoma treatment through in vitro experiments using cellular models and in vivo experiments using animal models. Results Herein, we developed a multifunctional system comprising ICG-Lips and MMBs. ICG-Lips enhance targeted delivery through specific binding to the S100B protein on melanoma cells, while MMBs, via ultrasound (US)-induced cavitation effects, shorten the uptake time of ICG-Lips by melanoma cells and improve uptake efficiency. Furthermore, the combination of ICG-Lips and MMBs induces significant reactive oxygen species (ROS) generation. Under 808 nm laser irradiation, the accumulation of ICG-Lips in melanoma cells achieves mild photothermal therapy (mPTT) and PDT effects. The elevated temperature and excessive ROS generated during these processes result in glutathione (GSH) depletion, ultimately triggering ferroptosis. The occurrence of ferroptosis further amplifies PDT efficacy, creating a synergistic effect that effectively suppresses melanoma growth. Additionally, the combined therapeutic strategy of ICG-Lips and MMBs demonstrates excellent biosafety. Conclusion In summary, this study presents a novel and straightforward strategy that integrates mPTT, PDT, and ferroptosis synergistically to combat melanoma, thereby laying a solid foundation for improving melanoma treatment outcomes.
Collapse
Affiliation(s)
- Kaifen Xiong
- Department of Dermatology, Shenzhen People’s Hospital, The second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Guanghong Luo
- Department of Radiation Oncology, Shenzhen People’s Hospital, The second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Wei Zeng
- Department of Ultrasonography, Shenzhen People’s Hospital, second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Guanxi Wen
- Department of Ultrasonography, Shenzhen People’s Hospital, second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Chong Wang
- Department of Dermatology, Shenzhen People’s Hospital, The second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, Guangdong, People’s Republic of China
- Department of Geriatrics, Shenzhen People’s Hospital, The second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Aijia Ding
- Department of Dermatology, Shenzhen People’s Hospital, The second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Min Qi
- Department of Plastic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, People’s Republic of China
| | - Yingying Liu
- Department of Ultrasonography, Shenzhen People’s Hospital, second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital, The second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, Guangdong, People’s Republic of China
- Department of Geriatrics, Shenzhen People’s Hospital, The second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
5
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
6
|
Yang Y, Wang S, Chen X, Wu X, Wang J, Bu Y, Xu C, Zhang Q, Zhu X, Zhou H. Acid triggering highly-efficient release of reactive oxygen species to block mitochondrial-mediated homeostasis maintenance for accelerating cell death. Anal Chim Acta 2025; 1340:343645. [PMID: 39863315 DOI: 10.1016/j.aca.2025.343645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
A pivotal pathway of photodynamic therapy (PDT) is to prompt mitochondrial damage by reactive oxygen species (ROS) generation, thus leading to cancer cell apoptosis. However, mitochondrial autophagy is induced during such a PDT process, which is a protective mechanism for cancer cell homeostasis, resulting in undermined therapeutic efficacy. Herein, we report a series of meticulously designed donor (D)-π-acceptor (A) photosensitizers (PSs), characterized by the strategic modulation of thiophene π-bridges, which exhibit unparalleled mitochondrial targeting proficiency. Notably, TTBI within this series possesses remarkable ROS generation capability, which can directly trigger mitochondrial depolarization, thus effectively inducing apoptosis in cancer cells. Meanwhile, the damaged mitochondria activate the mitophagy process, which further boosts the ROS generation of the TTBI owing to the acidic environment in the lysosome, ultimately inducing lysosomal membrane permeability (LMP), thereby blocking the protective autophagy route and promoting extra apoptotic cell death. Accordingly, TTBI disrupts the integrity of mitochondrial and lysosome, leveraging a synergistic interplay between cellular compartments to achieve more potent apoptosis. This work provides new insights to overcome the limitation of PDT efficacy imposed by mitochondrial autophagy.
Collapse
Affiliation(s)
- Yuxin Yang
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Shen Wang
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Xingxing Chen
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China.
| | - Xuetao Wu
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Yingcui Bu
- School of Science, Anhui Agricultural University, 230036, Hefei, PR China
| | - Chang Xu
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Qiong Zhang
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China.
| |
Collapse
|
7
|
Yang EL, Wang WY, Liu YQ, Yi H, Lei A, Sun ZJ. Tumor-Targeted Catalytic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413210. [PMID: 39676382 DOI: 10.1002/adma.202413210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials. This review provides a comprehensive and systematic overview of recent advancements in tumor-targeted catalytic materials and their critical role in enhancing catalytic immunotherapy. It highlights the types of catalytic reactions, the construction strategies of catalytic materials, and their fundamental mechanisms for tumor targeting, including passive, bioactive, stimuli-responsive, and biomimetic targeting approaches. Furthermore, this review outlines various tumor-specific targeting strategies, encompassing tumor tissue, tumor cell, exogenous stimuli-responsive, TME-responsive, and cellular TME targeting strategies. Finally, the discussion addresses the challenges and future perspectives for transitioning catalytic materials into clinical applications, offering insights that pave the way for next-generation cancer therapies and provide substantial benefits to patients in clinical settings.
Collapse
Affiliation(s)
- En-Li Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wu-Yin Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Ying-Qi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
8
|
Hu D, Li Y, Li R, Wang M, Zhou K, He C, Wei Q, Qian Z. Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer. Acta Pharm Sin B 2024; 14:5106-5131. [PMID: 39807318 PMCID: PMC11725102 DOI: 10.1016/j.apsb.2024.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 01/16/2025] Open
Abstract
Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment. We elucidate in detail the operational mechanisms of ROS-responsive linkers, including thioether, thioketal, selenide, diselencide, telluride and aryl boronic acids/esters, as well as the latest developments in ROS-responsive nanomedicines that integrate with PDT strategies. These insights are intended to inspire the design of innovative ROS-responsive nanocarriers for enhanced cancer PDT.
Collapse
Affiliation(s)
- Danrong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yicong Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Yang Y, Zhang B, Xu Y, Zhu W, Zhu Z, Zhang X, Wu W, Chen J, Yu Z. An immunotherapeutic hydrogel booster inhibits tumor recurrence and promotes wound healing for postoperative management of melanoma. Bioact Mater 2024; 42:178-193. [PMID: 39285910 PMCID: PMC11402546 DOI: 10.1016/j.bioactmat.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Low tumor immunogenicity, immunosuppressive tumor microenvironment, and bacterial infections have emerged as significant challenges in postsurgical immunotherapy and skin regeneration for preventing melanoma recurrence. Herein, an immunotherapeutic hydrogel booster (GelMA-CJCNPs) was developed to prevent postoperative tumor recurrence and promote wound healing by incorporating ternary carrier-free nanoparticles (CJCNPs) containing chlorine e6 (Ce6), a BRD4 inhibitor (JQ1), and a glutaminase inhibitor (C968) into methacrylic anhydride-modified gelatin (GelMA) dressings. GelMA-CJCNPs reduced glutathione production by inhibiting glutamine metabolism, thereby preventing the destruction of reactive oxygen species generated by photodynamic therapy, which could amplify oxidative stress to induce severe cell death and enhance immunogenic cell death. In addition, GelMA-CJCNPs reduced M2-type tumor-associated macrophage polarization by blocking glutamine metabolism to reverse the immunosuppressive tumor microenvironment, recruiting more tumor-infiltrating T lymphocytes. GelMA-CJCNPs also downregulated IFN-γ-induced expression of programmed cell death ligand 1 to mitigate acquired immune resistance. Benefiting from the amplified systemic antitumor immunity, GelMA-CJCNPs markedly inhibited the growth of both primary and distant tumors. Moreover, GelMA-CJCNPs demonstrated satisfactory photodynamic antibacterial effects against Staphylococcus aureus infections, thereby promoting postsurgical wound healing. Hence, this immunotherapeutic hydrogel booster, as a facile and effective postoperative adjuvant, possesses a promising potential for inhibiting tumor recurrence and accelerating skin regeneration.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Bo Zhang
- Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Yangtao Xu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Wenxiang Zhu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zinian Zhu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Xibo Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Wenze Wu
- Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Jierong Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| |
Collapse
|
10
|
Liu S, Li Y, Yang J, Zhang L, Yan J. An in situ-activated and chemi-excited photooxygenation system based on G-poly(thioacetal) for Aβ 1-42 aggregates. J Mater Chem B 2024; 12:10850-10860. [PMID: 39417544 DOI: 10.1039/d4tb01147c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The abnormal aggregation of Aβ proteins, inflammatory responses, and mitochondrial dysfunction have been reported as major targets in Alzheimer's disease (AD). Photooxygenation of the amyloid-β peptide (Aβ) is viewed as a promising therapeutic intervention for AD treatment. However, the limitations of the depth of the external light source passing through the brain and the toxic side effects on healthy tissues are two significant challenges in the photooxidation of Aβ aggregates. We proposed a method to initiate the chemical stimulation of Aβ1-42 aggregate oxidation through H2O2 and correct the abnormal microenvironment of the lesions by eliminating the cascading reactions of oxidative stress. The degradable G-poly(thioacetal) undergoes cascade release of cinnamaldehyde (CA) and thioacetal triggered by endogenous H2O2, with CA in turn amplifying degradation by generating more H2O2 through mitochondrial dysfunction. A series of novel photosensitizers have been prepared and synthesized for use in the photodynamic oxidation of Aβ1-42 aggregates under white light activation. The nanoparticles (BD-6-QM/NPs) self-assembled from BD-6-QM, bis[2,4,5-trichloro-6-(pentoxycarbonyl) phenyl] ester (CPPO), and G-poly(thioacetal) not only exhibit H2O2-stimulated controlled release but also can be chemically triggered by H2O2 to generate singlet oxygen to inhibit Aβ1-42 aggregates, reducing the Aβ1-42-induced neurotoxicity.
Collapse
Affiliation(s)
- Shasha Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Yanping Li
- School of Medicine, Foshan University, Foshan 528225, P. R. China
| | - Jinrong Yang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
11
|
Chen X, Yong Z, Xiong Y, Yang H, Xu C, Wang X, Deng Q, Li J, Yang X, Li Z. Hydroxyethyl starch conjugates co-assembled nanoparticles promote photodynamic therapy and antitumor immunity by inhibiting antioxidant systems. Asian J Pharm Sci 2024; 19:100950. [PMID: 39497748 PMCID: PMC11532429 DOI: 10.1016/j.ajps.2024.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 11/07/2024] Open
Abstract
Photodynamic therapy (PDT) can produce high levels of reactive oxygen species (ROS) to kill tumor cells and induce antitumor immunity. However, intracellular antioxidant systems, including glutathione (GSH) system and thioredoxin (Trx) system, limit the accumulation of ROS, resulting in compromised PDT and insufficient immune stimulation. Herein, we designed a nanomedicine PtHPs co-loading photosensitizer pyropheophorbide a (PPa) and cisplatin prodrug Pt-COOH(IV) (Pt (IV)) based on hydroxyethyl starch (HES) to inhibit both GSH and Trx antioxidant systems and achieve potent PDT as well as antitumor immune responses. Specifically, HES-PPa and HES-Pt were obtained by coupling HES with PPa and Pt (IV), and assembled into nanoparticle PtHPs by emulsification method to achieve the purpose of co-delivery of PPa and Pt (IV). PtHPs improved PPa photostability while retaining PPa photodynamic properties. In vitro experiments showed that PtHPs reduced GSH, inhibited Trx system and had better cell-killing effect and ROS generation ability. Subcutaneous tumor models showed that PtHPs had good safety and tumor inhibition effect. Bilateral tumor models suggested that PtHPs promoted the release of damage-associated molecular patterns and the maturation of dendritic cells, induced T cell-mediated immune responses, and thus suppressed the growth of both primary and distal tumors. This study reports a novel platinum-based nanomedicine and provides a new strategy for boosting PDT therapy-mediated antitumor immunity by overcoming intrinsic antioxidant systems.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengtao Yong
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuxuan Xiong
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hai Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen Xu
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingyuan Deng
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiayuan Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zifu Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
12
|
Li XP, Hou DY, Wu JC, Zhang P, Wang YZ, Lv MY, Yi Y, Xu W. Stimuli-Responsive Nanomaterials for Tumor Immunotherapy. ACS Biomater Sci Eng 2024; 10:5474-5495. [PMID: 39171865 DOI: 10.1021/acsbiomaterials.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Cancer remains a significant challenge in extending human life expectancy in the 21st century, with staggering numbers projected by the International Agency for Research on Cancer for upcoming years. While conventional cancer therapies exist, their limitations, in terms of efficacy and side effects, demand the development of novel treatments that selectively target cancer cells. Tumor immunotherapy has emerged as a promising approach, but low response rates and immune-related side effects present significant clinical challenges. Researchers have begun combining immunotherapy with nanomaterials to optimize tumor-killing effects. Stimuli-responsive nanomaterials have become a focus of cancer immunotherapy research due to their unique properties. These nanomaterials target specific signals in the tumor microenvironment, such as pH or temperature changes, to precisely deliver therapeutic agents and minimize damage to healthy tissue. This article reviews the recent developments and clinical applications of endogenous and exogenous stimuli-responsive nanomaterials for tumor immunotherapy, analyzing the advantages and limitations of these materials and highlighting their potential for enhancing the immune response to cancer and improving patient outcomes.
Collapse
Affiliation(s)
- Xiang-Peng Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Da-Yong Hou
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Jiong-Cheng Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Peng Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Yue-Ze Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Mei-Yu Lv
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Yu Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| |
Collapse
|
13
|
Luobin L, Wanxin H, Yingxin G, Qinzhou Z, Zefeng L, Danyang W, Huaqin L. Nanomedicine-induced programmed cell death in cancer therapy: mechanisms and perspectives. Cell Death Discov 2024; 10:386. [PMID: 39209834 PMCID: PMC11362291 DOI: 10.1038/s41420-024-02121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The balance of programmed cell death (PCD) mechanisms, including apoptosis, autophagy, necroptosis and others, is pivotal in cancer progression and treatment. Dysregulation of these pathways results in uncontrolled cell growth and resistance to conventional therapies. Nanomedicine offers a promising solution in oncology through targeted drug delivery enabling precise targeting of cancer cells while preserving healthy tissues. This approach reduces the side effects of traditional chemotherapy and enhances treatment efficacy by engaging PCD pathways. We details each PCD pathway, their mechanisms, and innovative nanomedicine strategies to activate these pathways, thereby enhancing therapeutic specificity and minimizing harm to healthy tissues. The precision of nanotechnology in targeting PCD pathways promises significant improvements in cancer treatment outcomes. This synergy between nanotechnology and targeted PCD activation could lead to more effective and less toxic cancer therapies, heralding a new era in cancer treatment.
Collapse
Affiliation(s)
- Lin Luobin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - He Wanxin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Guo Yingxin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Zheng Qinzhou
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Liang Zefeng
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wu Danyang
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Li Huaqin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China.
| |
Collapse
|
14
|
Kazemi KS, Kazemi P, Mivehchi H, Nasiri K, Eshagh Hoseini SS, Nejati ST, Pour Bahrami P, Golestani S, Nabi Afjadi M. Photodynamic Therapy: A Novel Approach for Head and Neck Cancer Treatment with Focusing on Oral Cavity. Biol Proced Online 2024; 26:25. [PMID: 39154015 PMCID: PMC11330087 DOI: 10.1186/s12575-024-00252-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
Oral cancers, specifically oral squamous cell carcinoma (OSCC), pose a significant global health challenge, with high incidence and mortality rates. Conventional treatments such as surgery, radiotherapy, and chemotherapy have limited effectiveness and can result in adverse reactions. However, as an alternative, photodynamic therapy (PDT) has emerged as a promising option for treating oral cancers. PDT involves using photosensitizing agents in conjunction with specific light to target and destroy cancer cells selectively. The photosensitizers accumulate in the cancer cells and generate reactive oxygen species (ROS) upon exposure to the activating light, leading to cellular damage and ultimately cell death. PDT offers several advantages, including its non-invasive nature, absence of known long-term side effects when administered correctly, and cost-effectiveness. It can be employed as a primary treatment for early-stage oral cancers or in combination with other therapies for more advanced cases. Nonetheless, it is important to note that PDT is most effective for superficial or localized cancers and may not be suitable for larger or deeply infiltrating tumors. Light sensitivity and temporary side effects may occur but can be managed with appropriate care. Ongoing research endeavors aim to expand the applications of PDT and develop novel photosensitizers to further enhance its efficacy in oral cancer treatment. This review aims to evaluate the effectiveness of PDT in treating oral cancers by analyzing a combination of preclinical and clinical studies.
Collapse
Affiliation(s)
- Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | | | | | - Shayan Golestani
- Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
15
|
Jiang W, Cheng Y, Hou L, Huang Y, Wang S, Zhang Y, Jiang T, Yang F, Ma Z. A dual-prodrug nanogel combining Vorinostat and Pyropheophorbide a for a high efficient photochemotherapy. Int J Pharm 2024; 661:124422. [PMID: 38977163 DOI: 10.1016/j.ijpharm.2024.124422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
The challenges posed by intractable relapse and metastasis in cancer treatment have led to the development of various forms of photodynamic therapy (PDT). However, traditional drug delivery systems, such as virus vectors, liposomes, and polymers, often suffer from issues like desynchronized drug release, carrier instability, and drug leakage during circulation. To address these problems, we have developed a dual-prodrug nanogel (PVBN) consisting of Pyro (Pyropheophorbide a) and SAHA (Vorinostat) bound to BSA (Bovine Serum Albumin), which facilitates synchronous and spontaneous drug release in situ within the lysosome. Detailed results indicate that PVBN-treated tumor cells exhibit elevated levels of ROS and Acetyl-H3, leading to necrosis, apoptosis, and cell cycle arrest, with PDT playing a dominant role in the synergistic therapeutic effect. Furthermore, the anti-tumor efficacy of PVBN was validated in melanoma-bearing mice, where it significantly inhibited tumor growth and pulmonary metastasis. Overall, our dual-prodrug nanogel, formed by the binding of SAHA and Pyro to BSA and releasing drugs within the lysosome, represents a novel and promising strategy for enhancing the clinical efficacy of photochemotherapy.
Collapse
Affiliation(s)
- Weiwei Jiang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yuwei Cheng
- Department of Pharmacy, Hebei North University Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, China
| | - Lei Hou
- Department of Pharmacy, Hebei North University Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, China
| | - Ying Huang
- Department of Pharmacy, Hebei North University Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, China
| | - Sizhen Wang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yunchang Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Tao Jiang
- Department of Nuclear Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Feng Yang
- School of Pharmacy, Naval Medical University, Shanghai, China; Department of Nuclear Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhiqiang Ma
- School of Pharmacy, Naval Medical University, Shanghai, China.
| |
Collapse
|
16
|
Wang B, Wang W, Xu Y, Liu R, Li R, Yang P, Zhao C, Dai Z, Wang Y. Manipulating Redox Homeostasis of Cancer Stem Cells Overcome Chemotherapeutic Resistance through Photoactivatable Biomimetic Nanodiscs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308539. [PMID: 38326103 DOI: 10.1002/smll.202308539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Tumor heterogeneity remains a significant obstacle in cancer therapy due to diverse cells with varying treatment responses. Cancer stem-like cells (CSCs) contribute significantly to intratumor heterogeneity, characterized by high tumorigenicity and chemoresistance. CSCs reside in the depth of the tumor, possessing low reactive oxygen species (ROS) levels and robust antioxidant defense systems to maintain self-renewal and stemness. A nanotherapeutic strategy is developed using tumor-penetrating peptide iRGD-modified high-density lipoprotein (HDL)-mimetic nanodiscs (IPCND) that ingeniously loaded with pyropheophorbide-a (Ppa), bis (2-hydroxyethyl) disulfide (S-S), and camptothecin (CPT) by synthesizing two amphiphilic drug-conjugated sphingomyelin derivatives. Photoactivatable Ppa can generate massive ROS which as intracellular signaling molecules effectively shut down self-renewal and trigger differentiation of the CSCs, while S-S is utilized to deplete GSH and sustainably imbalance redox homeostasis by reducing ROS clearance. Simultaneously, the depletion of GSH is accompanied by the release of CPT, which leads to subsequent cell death. This dual strategy successfully disturbed the redox equilibrium of CSCs, prompting their differentiation and boosting the ability of CPT to kill CSCs upon laser irradiation. Additionally, it demonstrated a synergistic anti-cancer effect by concurrently eliminating therapeutically resistant CSCs and bulk tumor cells, effectively suppressing tumor growth in CSC-enriched heterogeneous colon tumor mouse models.
Collapse
Affiliation(s)
- Bo Wang
- Department of Ultrasound, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wuwan Wang
- Department of Ultrasound, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical, Imaging Center, Peking University, Beijing, 100871, China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical, Imaging Center, Peking University, Beijing, 100871, China
| | - Rui Li
- Department of Biomedical Engineering, College of Future Technology, National Biomedical, Imaging Center, Peking University, Beijing, 100871, China
| | - Peipei Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Chenyang Zhao
- Department of Ultrasound, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical, Imaging Center, Peking University, Beijing, 100871, China
| | - Yong Wang
- Department of Ultrasound, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
17
|
Zhong YL, Zhang X, Wang AJ, Song P, Zhao T, Feng JJ. Zeolitic imidazole framework-derived rich-Zn-Co 3O 4/N-doped porous carbon with multiple enzyme-like activities for synergistic cancer therapy. J Colloid Interface Sci 2024; 665:1065-1078. [PMID: 38579389 DOI: 10.1016/j.jcis.2024.03.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Reactive oxygen species (ROS)-centered chemodynamic therapy (CDT) holds significant potential for tumor-specific treatment. However, insufficient endogenous H2O2 and extra glutathione within tumor microenvironment (TME) severely deteriorate the CDT's effectiveness. Herein, rich-Zn-Co3O4/N-doped porous carbon (Zn-Co3O4/NC) was fabricated by two-step pyrolysis, and applied to build high-efficiency nano-platform for synergistic cancer therapy upon combination with glucose oxidase (GOx), labeled Zn-Co3O4/NC-GOx for clarity. Specifically, the multiple enzyme-like activities of the Zn-Co3O4/NC were scrutinously investigated, including peroxidase-like activity to convert H2O2 to O2∙-, catalase-like activity to decompose H2O2 into O2, and oxidase-like activity to transform O2 to O2∙-, which achieved the CDT through the catalytic cascade reaction. Simultaneously, GOx reacted with intracellular glucose to produce gluconic acid and H2O2, realizing starvation therapy. In the acidic TME, the Zn-Co3O4/NC-GOx rapidly caused intracellular Zn2+ pool overload and disrupted cellular homeostasis for ion-intervention therapy. Additionally, the Zn-Co3O4/NC exhibited glutathione peroxidase-like activity, which consumed glutathione in tumor cells and reduced the ROS consumption for ferroptosis. The tumor treatments offer some constructive insights into the nanozyme-mediated catalytic medicine, coupled by avoiding the TME limitations.
Collapse
Affiliation(s)
- Yu-Lin Zhong
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xu Zhang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China.
| | - Tiejun Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
18
|
Xu Q, Chen G, Hu H, Mo Z, Chen W, He Q, Xu Z, Dai X. Multifunctional nanoplatform based on tetragonal BaTiO 3-Au@polydopamine for computed tomography imaging-guided photothermal synergistic and enhanced piezocatalytic cancer therapy. J Colloid Interface Sci 2024; 658:597-609. [PMID: 38134668 DOI: 10.1016/j.jcis.2023.12.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Non-centrosymmetric tetragonal barium titanate nanocrystals have the potential to serve as piezoelectric catalysts in cancer therapy. When exposed to ultrasound irradiation, BaTiO3 can generate reactive oxygen species with a noninvasive and deep tissue-penetrating approach. However, the application of BaTiO3 in cancer nanomedicine is limited by their biosafety, biocompatibility, and dosage efficiency. To explore the potential application of BaTiO3 in nanomedical cancer treatment, we introduced ultra-small Au nanoparticles onto the surface of BaTiO3 to enhance the piezoelectric catalytic performance. Additionally, we also coated the BaTiO3 with polydopamine to improve their biosafety and biocompatibility. This led to the preparation of a novel multifunctional BaTiO3-based nanoplatform called BTAPs. In vitro and in vivo experiments demonstrated that the incorporation of Au dopants and polydopamine coating successfully improved the piezoelectric catalysis properties and biocompatibility of BaTiO3. Compared with unmodified BaTiO3, BTAPs achieved a similar piezoelectric catalytic effect at a low dose (0.3 mg ml-1 in vitro and 10 mg kg-1 in vivo). Moreover, BTAPs also exhibited enhanced properties in computed tomography imaging and photothermal effects in vivo. Therefore, BTAPs offer valuable insights into the advantages and limitations of piezoelectric catalytic nanomedicine in cancer treatment.
Collapse
Affiliation(s)
- Qi Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Gong Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Han Hu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zhimin Mo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wenqiu Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; HAISO Technology Co., Ltd., Wuhan, Hubei 430074, PR China
| | - Qianyuan He
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| |
Collapse
|
19
|
Huang S, Wang K, Hua Z, Abd El-Aty AM, Tan M. Size-controllable food-grade nanoparticles based on sea cucumber polypeptide with good anti-oxidative capacity to prolong lifespan in tumor-bearing mice. Int J Biol Macromol 2023; 253:127039. [PMID: 37742886 DOI: 10.1016/j.ijbiomac.2023.127039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Liver cancer, a malignancy with a rising global incidence, poses a significant challenge in achieving effective treatment outcomes. As food-derived nutrient, sea cucumber peptide (SCP) has shown promising anticancer effects. Therefore, we explored the nanodelivery systems to encapsulate SCP to enhance its stability in the gastrointestinal tract and improve absorption within the tumor microenvironment. This study aimed to develop size-controllable multifunctional nanoparticles using SCP, procyanidins (PCs), and vanillin through molecular assembly via a one-pot Mannich condensation approach. These food-grade nanoparticles demonstrated water solubility and exhibited a spherical structure with sizes ranging from 441 to 1360 nm, depending on the concentration of the reactants. In vitro cell experiments demonstrated that SCP nanoparticles modified with PCs effectively reduced the generation of reactive oxygen species from H2O2 and acrylamide while maintaining normal levels of mitochondrial membrane potential. Furthermore, in vivo nutrition intervention studies conducted on tumor-bearing mice revealed that mice treated with SCP nanoparticles exhibited a survival rate of 40 %, which was significantly higher than the 0 % and 20 % survival rates observed in the control and SCP-treated groups, respectively. These findings suggest that SCP nanoparticles, possessing antioxidative properties and controllable sizes, hold potential for precision nutrition in the field of cancer treatment.
Collapse
Affiliation(s)
- Shasha Huang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zheng Hua
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
20
|
Zou J, Sun R, He M, Chen Y, Cheng Y, Xia C, Ma Y, Zheng S, Fu X, Yuan Z, Lan M, Lou K, Chen X, Gao F. Sequential Rocket-Mode Bioactivating Ticagrelor Prodrug Nanoplatform Combining Light-Switchable Diphtherin Transgene System for Breast Cancer Metastasis Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53198-53216. [PMID: 37942626 DOI: 10.1021/acsami.3c11594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The increased risk of breast cancer metastasis is closely linked to the effects of platelets. Our previously light-switchable diphtheria toxin A fragment (DTA) gene system, known as the LightOn system, has demonstrated significant therapeutic potential; it lacks antimetastatic capabilities. In this study, we devised an innovative system by combining cell membrane fusion liposomes (CML) loaded with the light-switchable transgene DTA (pDTA) and a ticagrelor (Tig) prodrug. This innovative system, named the sequential rocket-mode bioactivating drug delivery system (pDTA-Tig@CML), aims to achieve targeted pDTA delivery while concurrently inhibiting platelet activity through the sequential release of Tig triggered by reactive oxygen species with the tumor microenvironment. In vitro investigations have indicated that pDTA-Tig@CML, with its ability to sequentially release Tig and pDTA, effectively suppresses platelet activity, resulting in improved therapeutic outcomes and the mitigation of platelet driven metastasis in breast cancer. Furthermore, pDTA-Tig@CML exhibits enhanced tumor aggregation and successfully restrains tumor growth and metastasis. It also reduces the levels of ADP, ATP, TGF-β, and P-selectin both in vitro and in vivo, underscoring the advantages of combining the bioactivating Tig prodrug nanoplatform with the LightOn system. Consequently, pDTA-Tig@CML emerges as a promising light-switchable DTA transgene system, offering a novel bioactivating prodrug platform for breast cancer treatment.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Sun
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Muye He
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - You Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Cheng
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Ma
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shulei Zheng
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuzhi Fu
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyan Lou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianjun Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
21
|
Zheng W, Wu D, Zhang Y, Luo Y, Yang L, Xu X, Luo F. Multifunctional modifications of polyetheretherketone implants for bone repair: A comprehensive review. BIOMATERIALS ADVANCES 2023; 154:213607. [PMID: 37651963 DOI: 10.1016/j.bioadv.2023.213607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Polyetheretherketone (PEEK) has emerged as a highly promising orthopedic implantation material due to its elastic modulus which is comparable to that of natural bone. This polymer exhibits impressive properties for bone implantation such as corrosion resistance, fatigue resistance, self-lubrication and chemical stability. Significantly, compared to metal-based implants, PEEK implants have mechanical properties that are closer to natural bone, which can mitigate the "stress shielding" effect in bone implantation. Nevertheless, PEEK is incapable of inducing osteogenesis due to its bio-inert molecular structure, thereby hindering the osseointegration process. To optimize the clinical application of PEEK, researchers have been working on promoting its bioactivity and endowing this polymer with beneficial properties, such as antibacterial, anti-inflammatory, anti-tumor, and angiogenesis-promoting capabilities. Considering the significant growth of research on PEEK implants over the past 5 years, this review aims to present a timely update on PEEK's modification methods. By highlighting the latest advancements in PEEK modification, we hope to provide guidance and inspiration for researchers in developing the next generation bone implants and optimizing their clinical applications.
Collapse
Affiliation(s)
- Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dongxu Wu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiangrui Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|