1
|
Shoffstall A, Li L, Hartzler A, Menendez-Lustri D, Zhang J, Chen A, Lam D, Traylor B, Quill E, Hoeferlin G, Pawlowski C, Bruckman M, Gupta SA, Capadona J. Dexamethasone-loaded platelet-inspired nanoparticles improve intracortical microelectrode recording performance. RESEARCH SQUARE 2025:rs.3.rs-6018202. [PMID: 39989959 PMCID: PMC11844648 DOI: 10.21203/rs.3.rs-6018202/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Long-term robust intracortical microelectrode (IME) neural recording quality is negatively affected by the neuroinflammatory response following microelectrode insertion. This adversely impacts brain-machine interface (BMI) performance for patients with neurological disorders or amputations. Recent studies suggest that the leakage of blood-brain barrier (BBB) and microhemorrhage caused by the IME insertions lead to the increased neuroinflammation and reduced neural recording performance. Additionally, a sustained presence of activated platelets and coagulation factors is found near the insertion site. Thus, we hypothesized that the systemic administration of dexamethasone sodium phosphate-loaded platelet-inspired nanoparticle (SPPINDEX) can improve the neural recording performance of intracortical microelectrodes (IMEs) by promoting hemostasis, facilitating blood-brain barrier (BBB) healing, and achieving implant-targeted drug delivery. Leveraging the hemostatic and coagulation factor-binding properties of the platelet-inspired nanoparticle (PIN) drug delivery platform, SPPINDEX treatment can initially attenuate the invasion of neuroinflammatory triggers into the brain parenchyma caused by insertion-induced microhemorrhages or a compromised BBB. Furthermore, targeted delivery of the anti-inflammatory drug dexamethasone sodium phosphate (DEXSP) to the implant site via these nanoparticles can attenuate ongoing neuroinflammation, enhancing overall therapeutic efficacy. Weekly treatment with SPPINDEX for 8 weeks significantly improved the recording capabilities of IMEs compared to platelet-inspired nanoparticles alone (PIN), free dexamethasone sodium phosphate (Free DEXSP), and a diluent control trehalose buffer (TH), as assessed through extracellular single-unit recordings. Immunohistochemical analyses of neuron density, activated microglia/macrophage density, astrocyte density, and BBB permeability suggest that the improved neural recording performance may be attributed to reduced neuron degeneration, activated microglia and astrocytes at the implant interface caused by the decreased infiltration of blood-derived proteins that trigger neuroinflammation and the therapeutic effects from DEXSP. Overall, SPPINDEX treatment promotes an anti-inflammatory environment that improves neuronal density and enhances recording performance.
Collapse
|
2
|
Song SS, Druschel LN, Kasthuri NM, Wang JJ, Conard JH, Chan ER, Acharya AP, Capadona JR. Comprehensive proteomic analysis of the differential expression of 62 proteins following intracortical microelectrode implantation. Sci Rep 2024; 14:17596. [PMID: 39080300 PMCID: PMC11289480 DOI: 10.1038/s41598-024-68017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Intracortical microelectrodes (IMEs) are devices designed to be implanted into the cerebral cortex for various neuroscience and neuro-engineering applications. A critical feature of IMEs is their ability to detect neural activity from individual neurons. Currently, IMEs are limited by chronic failure, largely considered to be caused by the prolonged neuroinflammatory response to the implanted devices. Over the past few years, the characterization of the neuroinflammatory response has grown in sophistication, with the most recent advances focusing on mRNA expression following IME implantation. While gene expression studies increase our broad understanding of the relationship between IMEs and cortical tissue, advanced proteomic techniques have not been reported. Proteomic evaluation is necessary to describe the diverse changes in protein expression specific to neuroinflammation, neurodegeneration, or tissue and cellular viability, which could lead to the further development of targeted intervention strategies designed to improve IME functionality. In this study, we have characterized the expression of 62 proteins within 180 μm of the IME implant site at 4-, 8-, and 16-weeks post-implantation. We identified potential targets for immunotherapies, as well as key pathways that contribute to neuronal dieback around the IME implant.
Collapse
Affiliation(s)
- Sydney S Song
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Lindsey N Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Niveda M Kasthuri
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Jaime J Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Jacob H Conard
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Abhinav P Acharya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Galindo AN, Frey Rubio DA, Hettiaratchi MH. Biomaterial strategies for regulating the neuroinflammatory response. MATERIALS ADVANCES 2024; 5:4025-4054. [PMID: 38774837 PMCID: PMC11103561 DOI: 10.1039/d3ma00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/07/2024] [Indexed: 05/24/2024]
Abstract
Injury and disease in the central nervous system (CNS) can result in a dysregulated inflammatory environment that inhibits the repair of functional tissue. Biomaterials present a promising approach to tackle this complex inhibitory environment and modulate the mechanisms involved in neuroinflammation to halt the progression of secondary injury and promote the repair of functional tissue. In this review, we will cover recent advances in biomaterial strategies, including nanoparticles, hydrogels, implantable scaffolds, and neural probe coatings, that have been used to modulate the innate immune response to injury and disease within the CNS. The stages of inflammation following CNS injury and the main inflammatory contributors involved in common neurodegenerative diseases will be discussed, as understanding the inflammatory response to injury and disease is critical for identifying therapeutic targets and designing effective biomaterial-based treatment strategies. Biomaterials and novel composites will then be discussed with an emphasis on strategies that deliver immunomodulatory agents or utilize cell-material interactions to modulate inflammation and promote functional tissue repair. We will explore the application of these biomaterial-based strategies in the context of nanoparticle- and hydrogel-mediated delivery of small molecule drugs and therapeutic proteins to inflamed nervous tissue, implantation of hydrogels and scaffolds to modulate immune cell behavior and guide axon elongation, and neural probe coatings to mitigate glial scarring and enhance signaling at the tissue-device interface. Finally, we will present a future outlook on the growing role of biomaterial-based strategies for immunomodulation in regenerative medicine and neuroengineering applications in the CNS.
Collapse
Affiliation(s)
- Alycia N Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - David A Frey Rubio
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - Marian H Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| |
Collapse
|
4
|
Song SS, Druschel LN, Conard JH, Wang JJ, Kasthuri NM, Ricky Chan E, Capadona JR. Depletion of complement factor 3 delays the neuroinflammatory response to intracortical microelectrodes. Brain Behav Immun 2024; 118:221-235. [PMID: 38458498 DOI: 10.1016/j.bbi.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024] Open
Abstract
The neuroinflammatory response to intracortical microelectrodes (IMEs) used with brain-machine interfacing (BMI) applications is regarded as the primary contributor to poor chronic performance. Recent developments in high-plex gene expression technologies have allowed for an evolution in the investigation of individual proteins or genes to be able to identify specific pathways of upregulated genes that may contribute to the neuroinflammatory response. Several key pathways that are upregulated following IME implantation are involved with the complement system. The complement system is part of the innate immune system involved in recognizing and eliminating pathogens - a significant contributor to the foreign body response against biomaterials. Specifically, we have identified Complement 3 (C3) as a gene of interest because it is the intersection of several key complement pathways. In this study, we investigated the role of C3 in the IME inflammatory response by comparing the neuroinflammatory gene expression at the microelectrode implant site between C3 knockout (C3-/-) and wild-type (WT) mice. We have found that, like in WT mice, implantation of intracortical microelectrodes in C3-/- mice yields a dramatic increase in the neuroinflammatory gene expression at all post-surgery time points investigated. However, compared to WT mice, C3 depletion showed reduced expression of many neuroinflammatory genes pre-surgery and 4 weeks post-surgery. Conversely, depletion of C3 increased the expression of many neuroinflammatory genes at 8 weeks and 16 weeks post-surgery, compared to WT mice. Our results suggest that C3 depletion may be a promising therapeutic target for acute, but not chronic, relief of the neuroinflammatory response to IME implantation. Additional compensatory targets may also be required for comprehensive long-term reduction of the neuroinflammatory response for improved intracortical microelectrode performance.
Collapse
Affiliation(s)
- Sydney S Song
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Lindsey N Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Jacob H Conard
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.
| | - Jaime J Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Niveda M Kasthuri
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, United States.
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
5
|
Song S, Druschel L, Kasthuri N, Wang J, Conard J, Chan E, Acharya A, Capadona J. Comprehensive Proteomic Analysis of the Differential Expression of 83 Proteins Following Intracortical Microelectrode Implantation. RESEARCH SQUARE 2024:rs.3.rs-4039586. [PMID: 38559066 PMCID: PMC10980140 DOI: 10.21203/rs.3.rs-4039586/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Intracortical microelectrodes (IMEs) are devices designed to be implanted into the cerebral cortex for various neuroscience and neuro-engineering applications. A critical feature of these devices is their ability to detect neural activity from individual neurons. Currently, IMEs are limited by chronic failure, largely considered to be caused by the prolonged neuroinflammatory response to the implanted devices. Over the decades, characterization of the neuroinflammatory response has grown in sophistication, with the most recent advances including advanced genomics and spatially resolved transcriptomics. While gene expression studies increase our broad understanding of the relationship between IMEs and cortical tissue, advanced proteomic techniques have not been reported. Proteomic evaluation is necessary to describe the diverse changes in protein expression specific to neuroinflammation, neurodegeneration, or tissue and cellular viability, which could lead to the development of more targeted intervention strategies designed to improve IME function. In this study, we have characterized the expression of 83 proteins within 180 μm of the IME implant site at 4-, 8-, and 16-weeks post-implantation. We identified potential targets for immunotherapies, as well as key pathways and functions that contribute to neuronal dieback around the IME implant.
Collapse
|
6
|
Sturgill B, Hernandez-Reynoso AG, Druschel LN, Smith TJ, Boucher PE, Hoeferlin GF, Thai TTD, Jiang MS, Hess JL, Alam NN, Menendez DM, Duncan JL, Cogan SF, Pancrazio JJ, Capadona JR. Reactive Amine Functionalized Microelectrode Arrays Provide Short-Term Benefit but Long-Term Detriment to In Vivo Recording Performance. ACS APPLIED BIO MATERIALS 2024; 7:1052-1063. [PMID: 38290529 PMCID: PMC10880090 DOI: 10.1021/acsabm.3c01014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Intracortical microelectrode arrays (MEAs) are used for recording neural signals. However, indwelling devices result in chronic neuroinflammation, which leads to decreased recording performance through degradation of the device and surrounding tissue. Coating the MEAs with bioactive molecules is being explored to mitigate neuroinflammation. Such approaches often require an intermediate functionalization step such as (3-aminopropyl)triethoxysilane (APTES), which serves as a linker. However, the standalone effect of this intermediate step has not been previously characterized. Here, we investigated the effect of coating MEAs with APTES by comparing APTES-coated to uncoated controls in vivo and ex vivo. First, we measured water contact angles between silicon uncoated and APTES-coated substrates to verify the hydrophilic characteristics of the APTES coating. Next, we implanted MEAs in the motor cortex (M1) of Sprague-Dawley rats with uncoated or APTES-coated devices. We assessed changes in the electrochemical impedance and neural recording performance over a chronic implantation period of 16 weeks. Additionally, histology and bulk gene expression were analyzed to understand further the reactive tissue changes arising from the coating. Results showed that APTES increased the hydrophilicity of the devices and decreased electrochemical impedance at 1 kHz. APTES coatings proved detrimental to the recording performance, as shown by a constant decay up to 16 weeks postimplantation. Bulk gene analysis showed differential changes in gene expression between groups that were inconclusive with regard to the long-term effect on neuronal tissue. Together, these results suggest that APTES coatings are ultimately detrimental to chronic neural recordings. Furthermore, interpretations of studies using APTES as a functionalization step should consider the potential consequences if the final functionalization step is incomplete.
Collapse
Affiliation(s)
- Brandon
S. Sturgill
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Ana G. Hernandez-Reynoso
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Lindsey N. Druschel
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - Thomas J. Smith
- School
of Behavioral and BrainSciences, The University
of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Pierce E. Boucher
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - George F. Hoeferlin
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - Teresa Thuc Doan Thai
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Madison S. Jiang
- School
of Behavioral and BrainSciences, The University
of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Jordan L. Hess
- School
of Behavioral and BrainSciences, The University
of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Neeha N. Alam
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Dhariyat M. Menendez
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - Jonathan L. Duncan
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - Stuart F. Cogan
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Joseph J. Pancrazio
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Jeffrey R. Capadona
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| |
Collapse
|
7
|
Duncan JL, Wang JJ, Glusauskas G, Weagraff GR, Gao Y, Hoeferlin GF, Hunter AH, Hess-Dunning A, Ereifej ES, Capadona JR. In Vivo Characterization of Intracortical Probes with Focused Ion Beam-Etched Nanopatterned Topographies. MICROMACHINES 2024; 15:286. [PMID: 38399014 PMCID: PMC10893395 DOI: 10.3390/mi15020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
(1) Background: Intracortical microelectrodes (IMEs) are an important part of interfacing with the central nervous system (CNS) and recording neural signals. However, recording electrodes have shown a characteristic steady decline in recording performance owing to chronic neuroinflammation. The topography of implanted devices has been explored to mimic the nanoscale three-dimensional architecture of the extracellular matrix. Our previous work used histology to study the implant sites of non-recording probes and showed that a nanoscale topography at the probe surface mitigated the neuroinflammatory response compared to probes with smooth surfaces. Here, we hypothesized that the improvement in the neuroinflammatory response for probes with nanoscale surface topography would extend to improved recording performance. (2) Methods: A novel design modification was implemented on planar silicon-based neural probes by etching nanopatterned grooves (with a 500 nm pitch) into the probe shank. To assess the hypothesis, two groups of rats were implanted with either nanopatterned (n = 6) or smooth control (n = 6) probes, and their recording performance was evaluated over 4 weeks. Postmortem gene expression analysis was performed to compare the neuroinflammatory response from the two groups. (3) Results: Nanopatterned probes demonstrated an increased impedance and noise floor compared to controls. However, the recording performances of the nanopatterned and smooth probes were similar, with active electrode yields for control probes and nanopatterned probes being approximately 50% and 45%, respectively, by 4 weeks post-implantation. Gene expression analysis showed one gene, Sirt1, differentially expressed out of 152 in the panel. (4) Conclusions: this study provides a foundation for investigating novel nanoscale topographies on neural probes.
Collapse
Affiliation(s)
- Jonathan L. Duncan
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Jaime J. Wang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Gabriele Glusauskas
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Gwendolyn R. Weagraff
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Yue Gao
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - George F. Hoeferlin
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Allen H. Hunter
- Michigan Center for Materials Characterization, University of Michigan, 500 S. State St, Ann Arbor, MI 48109, USA
| | - Allison Hess-Dunning
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Evon S. Ereifej
- Department of Biomedical Engineering, University of Michigan, 500 S. State St, Ann Arbor, MI 48109, USA
- Veterans Affairs Hospital, 2215 Fuller Rd, Ann Arbor, MI 48105, USA
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Hoeferlin GF, Bajwa T, Olivares H, Zhang J, Druschel LN, Sturgill BS, Sobota M, Boucher P, Duncan J, Hernandez-Reynoso AG, Cogan SF, Pancrazio JJ, Capadona JR. Antioxidant Dimethyl Fumarate Temporarily but Not Chronically Improves Intracortical Microelectrode Performance. MICROMACHINES 2023; 14:1902. [PMID: 37893339 PMCID: PMC10609067 DOI: 10.3390/mi14101902] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Intracortical microelectrode arrays (MEAs) can be used in a range of applications, from basic neuroscience research to providing an intimate interface with the brain as part of a brain-computer interface (BCI) system aimed at restoring function for people living with neurological disorders or injuries. Unfortunately, MEAs tend to fail prematurely, leading to a loss in functionality for many applications. An important contributing factor in MEA failure is oxidative stress resulting from chronically inflammatory-activated microglia and macrophages releasing reactive oxygen species (ROS) around the implant site. Antioxidants offer a means for mitigating oxidative stress and improving tissue health and MEA performance. Here, we investigate using the clinically available antioxidant dimethyl fumarate (DMF) to reduce the neuroinflammatory response and improve MEA performance in a rat MEA model. Daily treatment of DMF for 16 weeks resulted in a significant improvement in the recording capabilities of MEA devices during the sub-chronic (Weeks 5-11) phase (42% active electrode yield vs. 35% for control). However, these sub-chronic improvements were lost in the chronic implantation phase, as a more exacerbated neuroinflammatory response occurs in DMF-treated animals by 16 weeks post-implantation. Yet, neuroinflammation was indiscriminate between treatment and control groups during the sub-chronic phase. Although worse for chronic use, a temporary improvement (<12 weeks) in MEA performance is meaningful. Providing short-term improvement to MEA devices using DMF can allow for improved use for limited-duration studies. Further efforts should be taken to explore the mechanism behind a worsened neuroinflammatory response at the 16-week time point for DMF-treated animals and assess its usefulness for specific applications.
Collapse
Affiliation(s)
- George F. Hoeferlin
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Tejas Bajwa
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Hannah Olivares
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Jichu Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Lindsey N. Druschel
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Brandon S. Sturgill
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA (J.J.P.)
| | - Michael Sobota
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Pierce Boucher
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Jonathan Duncan
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Ana G. Hernandez-Reynoso
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA (J.J.P.)
| | - Stuart F. Cogan
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA (J.J.P.)
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA (J.J.P.)
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| |
Collapse
|