1
|
Tariq MH, Advani D, Almansoori BM, AlSamahi ME, Aldhaheri MF, Alkaabi SE, Mousa M, Kohli N. The Identification of Novel Therapeutic Biomarkers in Rheumatoid Arthritis: A Combined Bioinformatics and Integrated Multi-Omics Approach. Int J Mol Sci 2025; 26:2757. [PMID: 40141401 PMCID: PMC11943070 DOI: 10.3390/ijms26062757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 03/28/2025] Open
Abstract
Rheumatoid arthritis (RA) is a multifaceted autoimmune disease that is marked by a complex molecular profile influenced by an array of factors, including genetic, epigenetic, and environmental elements. Despite significant advancements in research, the precise etiology of RA remains elusive, presenting challenges in developing innovative therapeutic markers. This study takes an integrated multi-omics approach to uncover novel therapeutic markers for RA. By analyzing both transcriptomics and epigenomics datasets, we identified common gene candidates that span these two omics levels in patients diagnosed with RA. Remarkably, we discovered eighteen multi-evidence genes (MEGs) that are prevalent across transcriptomics and epigenomics, twelve of which have not been previously linked directly to RA. The bioinformatics analyses of the twelve novel MEGs revealed they are part of tightly interconnected protein-protein interaction networks directly related to RA-associated KEGG pathways and gene ontology terms. Furthermore, these novel MEGs exhibited direct interactions with miRNAs linked to RA, underscoring their critical role in the disease's pathogenicity. Overall, this comprehensive bioinformatics approach opens avenues for identifying new candidate markers for RA, empowering researchers to validate these markers efficiently through experimental studies. By advancing our understanding of RA, we can pave the way for more effective therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Muhammad Hamza Tariq
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (M.H.T.); (D.A.); (B.M.A.); (M.E.A.); (M.F.A.); (S.E.A.)
| | - Dia Advani
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (M.H.T.); (D.A.); (B.M.A.); (M.E.A.); (M.F.A.); (S.E.A.)
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai 505055, United Arab Emirates
| | - Buttia Mohamed Almansoori
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (M.H.T.); (D.A.); (B.M.A.); (M.E.A.); (M.F.A.); (S.E.A.)
| | - Maithah Ebraheim AlSamahi
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (M.H.T.); (D.A.); (B.M.A.); (M.E.A.); (M.F.A.); (S.E.A.)
| | - Maitha Faisal Aldhaheri
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (M.H.T.); (D.A.); (B.M.A.); (M.E.A.); (M.F.A.); (S.E.A.)
| | - Shahad Edyen Alkaabi
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (M.H.T.); (D.A.); (B.M.A.); (M.E.A.); (M.F.A.); (S.E.A.)
| | - Mira Mousa
- Department of Public Health and Epidemiology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Nupur Kohli
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (M.H.T.); (D.A.); (B.M.A.); (M.E.A.); (M.F.A.); (S.E.A.)
- Healthcare Engineering Innovation Group, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
2
|
Wang F, Liu J. The dual anti-inflammatory and anticoagulant effects of Jianpi Huashi Tongluo prescription on Rheumatoid Arthritis through inhibiting the activation of the PI3K/AKT signaling pathway. Front Pharmacol 2025; 16:1541314. [PMID: 40012623 PMCID: PMC11860884 DOI: 10.3389/fphar.2025.1541314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025] Open
Abstract
Background Rheumatoid arthritis (RA) is often accompanied by abnormal changes in inflammatory responses and coagulation-fibrinolysis indicators. Jianpi Huashi Tongluo Prescription - Xinfeng Capsule (XFC), a traditional Chinese medicine formulation comprising multiple herbal ingredients, is widely used clinically for the treatment of RA. It exhibits dual anti-inflammatory and anticoagulant effects. However, the specific mechanisms underlying its actions remain to be further investigated. Objective This study aims to elucidate the anti-inflammatory and anticoagulant mechanisms of XFC in the treatment of RA. Methods A multidimensional methodological framework was employed. Firstly, through retrospective clinical data mining, combined with the Apriori algorithm and random walk models, an in-depth analysis was conducted to explore the potential associations between XFC treatment and improvements in clinical inflammatory and coagulation markers among RA patients. Secondly, an adjuvant-induced arthritis rat model was established to directly observe the anti-inflammatory and anticoagulant effects of XFC in vivo. Furthermore, bioinformatics and network pharmacology techniques were applied to decipher the major active components and their targets of XFC. Lastly, a co-culture system of RA patient-derived peripheral blood mononuclear cells (RA-PBMCs) and vascular endothelial cells (VECs) was established to mimic the in vivo microenvironment, and the anti-inflammatory and anticoagulant mechanisms of XFC were validated in vitro. Results Data mining analysis revealed abnormally elevated levels of inflammatory and coagulation markers such as fibrinogen (FBG), erythrocyte sedimentation rate (ESR), high-sensitivity C-reactive protein (Hs-CRP), and rheumatoid factor (RF) in RA patients (p < 0.001), and emphasized the close correlation between XFC treatment and the improvement of these markers including Hs-CRP, ESR, and RF (confidence >60% and lift >1). Animal experimental data indicated that XFC effectively reduced the levels of inflammatory and coagulant markers (IL-6, D-D, FBG, PAF, VEGF, and TF) in adjuvant-induced arthritis (AA) rats while enhancing the expression of anti-inflammatory factors (IL-10) (p < 0.05). Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results suggested that the pharmacodynamic mechanism of XFC may be closely related to the regulation of the PI3K/AKT signaling pathway. Additionally, network pharmacology and molecular docking results show that the main active components of XFC, namely, calycosin-7-O-beta-D-glucoside, calycosin, and formononetin, exhibit excellent docking with the core targets HIF1A, PTGS2, and MMP9. In vitro co-culture model showed that XFC inhibited RA-related inflammatory responses and hypercoagulable states by suppressing the activation of the PI3K/AKT signaling pathway. Conclusion This study demonstrates that XFC exerts its dual anti-inflammatory and anticoagulant effects, at least in part, by inhibiting the activation of the PI3K/AKT signaling pathway, providing potential insights into targeted therapy for RA.
Collapse
Affiliation(s)
- Fanfan Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, First Clinical Medical College, Hefei, Anhui, China
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jian Liu
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
3
|
Napiórkowska-Baran K, Doligalska A, Drozd M, Czarnowska M, Łaszczych D, Dolina M, Szymczak B, Schmidt O, Bartuzi Z. Management of a Patient with Cardiovascular Disease Should Include Assessment of Primary and Secondary Immunodeficiencies: Part 2-Secondary Immunodeficiencies. Healthcare (Basel) 2024; 12:1977. [PMID: 39408157 PMCID: PMC11477378 DOI: 10.3390/healthcare12191977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Cardiovascular diseases are among the most common chronic diseases, generating high social and economic costs. Secondary immunodeficiencies occur more often than primary ones and may result from the co-occurrence of specific diseases, treatment, nutrient deficiencies and non-nutritive bio-active compounds that result from the industrial nutrient practices. OBJECTIVES The aim of this article is to present selected secondary immunodeficiencies and their impact on the cardiovascular system. RESULTS The treatment of a patient with cardiovascular disease should include an assess-ment for immunodeficiencies, because the immune and cardiovascular systems are closely linked. CONCLUSIONS Immune system dysfunctions can significantly affect the course of cardiovascular diseases and their treatment. For this reason, comprehensive care for a patient with cardiovascular disease requires taking into account potential immunodeficiencies, which can have a significant impact on the patient's health.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Agata Doligalska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Dariusz Łaszczych
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marcin Dolina
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Jiang F, Wang MQ, Zhang MY, Gu SL, Xie YW, Huang Y, Zhou MY, Li FL, Yang YC, Zhang PP, Liu XS, Li R. CPD-002, a novel VEGFR2 inhibitor, relieves rheumatoid arthritis by reducing angiogenesis through the suppression of the VEGFR2/PI3K/AKT signaling pathway. Int Immunopharmacol 2024; 131:111850. [PMID: 38479157 DOI: 10.1016/j.intimp.2024.111850] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Synovial angiogenesis is a key player in the development of rheumatoid arthritis (RA), and anti-angiogenic therapy is considered a promising approach for treating RA. CPD-002 has demonstrated efficacy in suppressing tumor angiogenesis as a VEGFR2 inhibitor, but its specific impacts on RA synovial angiogenesis and possible anti-RA effects need further study. We examined the influences of CPD-002 on the migration and invasion of human umbilical vein endothelial cells (HUVECs) and its impacts on HUVECs' tube formation and vessel sprouting ex vivo. The therapeutic potential of CPD-002 in adjuvant-induced arthritis (AIA) rats and its suppression of synovial angiogenesis were examined. The involvement of the VEGFR2/PI3K/AKT pathway was assessed both in HUVECs and AIA rat synovium. Here, CPD-002 inhibited the migration and invasion of VEGF-stimulated HUVECs, decreased their chemotactic response to RA fibroblast-like synoviocyte-released chemoattractants, and exhibited anti-angiogenic effects in vitro and ex vivo. CPD-002's targeting of VEGFR2 was confirmed with molecular docking and cellular thermal shift assays, supported by the abolishment of CPD-002's effects upon using VEGFR2 siRNA. CPD-002 relieved paw swelling, arthritis index, joint damage, and synovial angiogenesis, indicating its anti-arthritic and anti-angiogenic effects in AIA rats. Moreover, the anti-inflammatory effects in vivo and in vitro of CPD-002 contributed to its anti-angiogenic effects. Mechanistically, CPD-002 hindered the activation of VEGFR2/PI3K/AKT pathway in VEGF-induced HUVECs and AIA rat synovium, as evidenced by reduced p-VEGFR2, p-PI3K, and p-AKT protein levels alongside elevated PTEN protein levels. Totally, CPD-002 showed anti-rheumatoid effects via attenuating angiogenesis through the inhibition of the VEGFR2/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Fei Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Meng-Qing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Man-Yu Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Sheng-Long Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Ya-Wen Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Fei-Long Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Yu-Chen Yang
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Pei-Pei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Xue-Song Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230026, Anhui Province, PR China.
| |
Collapse
|
5
|
Bakinowska E, Kiełbowski K, Pawlik A. The Role of Extracellular Vesicles in the Pathogenesis and Treatment of Rheumatoid Arthritis and Osteoarthritis. Cells 2023; 12:2716. [PMID: 38067147 PMCID: PMC10706487 DOI: 10.3390/cells12232716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Cells can communicate with each other through extracellular vesicles (EVs), which are membrane-bound structures that transport proteins, lipids and nucleic acids. These structures have been found to mediate cellular differentiation and proliferation apoptosis, as well as inflammatory responses and senescence, among others. The cargo of these vesicles may include immunomodulatory molecules, which can then contribute to the pathogenesis of various diseases. By contrast, EVs secreted by mesenchymal stem cells (MSCs) have shown important immunosuppressive and regenerative properties. Moreover, EVs can be modified and used as drug carriers to precisely deliver therapeutic agents. In this review, we aim to summarize the current evidence on the roles of EVs in the progression and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which are important and prevalent joint diseases with a significant global burden.
Collapse
Affiliation(s)
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.)
| |
Collapse
|
6
|
Chen Q, Fan K, Chen X, Xie X, Huang L, Song G, Qi W. Ezrin regulates synovial angiogenesis in rheumatoid arthritis through YAP and Akt signalling. J Cell Mol Med 2021; 25:9378-9389. [PMID: 34459110 PMCID: PMC8500952 DOI: 10.1111/jcmm.16877] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
This study aimed to investigate the role and regulatory mechanisms of Ezrin in synovial vessels in rheumatoid arthritis (RA). Synovial tissues were obtained from people with osteoarthritis people and patients with RA patients. We also used an antigen-induced arthritis (AIA) mice model by using Freund's adjuvant injections. Ezrin expression was analysed by immunofluorescence and immunohistochemical staining in synovial vessels of patients with RA and AIA mice. We investigated the role of Ezrin on vascular endothelial cells and its regulatory mechanism in vivo and in vitro by adenoviral transfection technology. Our results suggest a role for the Ezrin protein in proliferation, migration and angiogenesis of vascular endothelial cells in RA. We also demonstrate that Ezrin plays an important role in vascular endothelial cell migration and tube formation through regulation of the Hippo-yes-associated protein 1 (YAP) pathway. YAP, as a key protein, can further regulate the activity of PI3K/Akt signalling pathway in vascular endothelial cells. In AIA mice experiments, we observed that the inhibition of Ezrin or of its downstream YAP pathway can affect synovial angiogenesis and may lead to progression of RA. In conclusion, Ezrin plays an important role in angiogenesis in the RA synovium by regulating YAP nuclear translocation and interacting with the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Qiyue Chen
- Department of Special ClinicsStomatological HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Kai Fan
- Department of Special ClinicsStomatological HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xi Chen
- Department of DermatologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaobo Xie
- Department of Joint and OrthopedicsZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Li Huang
- Department of Joint and OrthopedicsZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Guangbao Song
- Department of Special ClinicsStomatological HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Weizhong Qi
- Department of Joint and OrthopedicsZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
7
|
Qiu BM, Wang P, Li J. Salprzesides A and B: two novel icetexane diterpenes with antiangiogenic activity from Salvia przewalskii Maxim. Nat Prod Res 2021; 36:2479-2485. [PMID: 33843371 DOI: 10.1080/14786419.2021.1906666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Two novel icetexane diterpenes were isolated from Salvia przewalskii Maxim., namely Salprzesides A (1) and B (2), together with two known abietane-type diterpenes respectively identified as sahandinone (3) and miltirone (4). The structures of isolated compounds were determined by UV, IR, HR-ESI-MS, 1D and 2D NMR analysis. The in vitro antiangiogenic activities of compounds 1-4 were studied against human umbilical vascular endothelial cells (HUVECs). The IC50 values of compounds 1-4 ranged from 4.22 ± 1.07 to 39.31 ± 2.17 μM against HUVECs.
Collapse
Affiliation(s)
- Bei-Ming Qiu
- Department of Orthopaedics, The Second People's Hospital of Yibin, Sichuan, P.R. China
| | - Pan Wang
- Department of Orthopaedics, The Second People's Hospital of Yibin, Sichuan, P.R. China
| | - Jie Li
- Department of Orthopaedics, The Second People's Hospital of Yibin, Sichuan, P.R. China
| |
Collapse
|
8
|
Gi T, Yamashita A, Aman M, Kuwahara A, Asada Y, Kawagoe Y, Onishi J, Sameshima H, Sato Y. Tissue factor expression and tumor-infiltrating T lymphocytes in ovarian carcinomas and their association with venous thromboembolism. Pathol Int 2021; 71:261-266. [PMID: 33559251 DOI: 10.1111/pin.13074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Ovarian cancer is a known risk factor of venous thromboembolism (VTE). Thrombogenic factor expression and lymphocytic infiltrate have been reported in endometriosis and ovarian cancers. We reviewed 30 cases of ovarian carcinomas (high grade serous carcinoma, 10; endometrioid carcinoma, 10; clear cell carcinoma (CCC), 10) and 16 endometriotic lesions. We immunohistochemically investigated the expressions of tissue factor (TF), podoplanin, P-selectin, and number of CD4 and CD8 positive lymphocytes in cancer tissue and endometriotic lesions, along with their relationship with VTE. The expression of TF was higher in CCC. The TF expression and the number of CD8 positive cells were higher in cancer tissues with VTE than in those without VTE. The podoplanin or P-selectin expression did not differ among histological types or between cases with and without VTE. Our results demonstrated a high TF expression and intraepithelial CD8 cells in CCC, which were associated with VTE. The results suggest that infiltrating lymphocytes may affect TF expression that, in turn, influences VTE.
Collapse
Affiliation(s)
- Toshihiro Gi
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Murasaki Aman
- Department of Diagnostic Pathology, University of Miyazaki Hospital, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Aya Kuwahara
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Laboratory Center, University of Miyazaki Hospital, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yasuyuki Kawagoe
- Department of Obstetrics and Gynecology, University of Miyazaki Hospital, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Junji Onishi
- Department of Obstetrics and Gynecology, University of Miyazaki Hospital, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Sameshima
- Department of Obstetrics and Gynecology, University of Miyazaki Hospital, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
9
|
Pryzdial ELG, Sutherland MR, Lin BH, Horwitz M. Antiviral anticoagulation. Res Pract Thromb Haemost 2020; 4:774-788. [PMID: 32685886 PMCID: PMC7354393 DOI: 10.1002/rth2.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel envelope virus that causes coronavirus disease 2019 (COVID-19). Hallmarks of COVID-19 are a puzzling form of thrombophilia that has elevated D-dimer but only modest effects on other parameters of coagulopathy. This is combined with severe inflammation, often leading to acute respiratory distress and possible lethality. Coagulopathy and inflammation are interconnected by the transmembrane receptor, tissue factor (TF), which initiates blood clotting as a cofactor for factor VIIa (FVIIa)-mediated factor Xa (FXa) generation. TF also functions from within the nascent TF/FVIIa/FXa complex to trigger profound changes via protease-activated receptors (PARs) in many cell types, including SARS-CoV-2-trophic cells. Therefore, aberrant expression of TF may be the underlying basis of COVID-19 symptoms. Evidence suggests a correlation between infection with many virus types and development of clotting-related symptoms, ranging from heart disease to bleeding, depending on the virus. Since numerous cell types express TF and can act as sites for virus replication, a model envelope virus, herpes simplex virus type 1 (HSV1), has been used to investigate the uptake of TF into the envelope. Indeed, HSV1 and other viruses harbor surface TF antigen, which retains clotting and PAR signaling function. Strikingly, envelope TF is essential for HSV1 infection in mice, and the FXa-directed oral anticoagulant apixaban had remarkable antiviral efficacy. SARS-CoV-2 replicates in TF-bearing epithelial and endothelial cells and may stimulate and integrate host cell TF, like HSV1 and other known coagulopathic viruses. Combined with this possibility, the features of COVID-19 suggest that it is a TFopathy, and the TF/FVIIa/FXa complex is a feasible therapeutic target.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Michael R. Sutherland
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Bryan H. Lin
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Marc Horwitz
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
10
|
Yang Z, Wang M, Yan T, Hu Z, Zhang H, Liu R. Association between vascular endothelial growth factor receptor 2 rs11941492 C/T polymorphism and Chinese Han patients in rheumatoid arthritis. Medicine (Baltimore) 2019; 98:e18606. [PMID: 31876763 PMCID: PMC6946575 DOI: 10.1097/md.0000000000018606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to examine the association between vascular endothelial growth factor receptor 2 (VEGFR2) rs11941492 C/T polymorphism and rheumatoid arthritis (RA) risk in an eastern Chinese Han population. We examined VEGFR2 rs11941492 C/T polymorphism in 615 RA patients and 839 controls in an East Chinese Han population. The power analysis was used for evaluating the reliability of the results. Genotyping was performed using a custom-by-design 48-Plex single nucleotide polymorphism scan Kit. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression.Our results indicated that VEGFR2 rs11941492 C/T polymorphism (TT vs CC, P = .012, OR = 0.61, 95% CI = 0.41-0.89; TT vs CT + CC, P = .017, OR = 0.63, 95% CI = 0.43-0.92) was associated with a significantly decreased risk of RA. The power analysis showed that this study had a power of 98.5% to detect the effect of rs11941492 C/T polymorphism on RA susceptibility, assuming an OR of 0.61. After stratification analysis, a decreased risk of RA was associated with VEGFR2 rs11941492 TT genotype (TT vs CC) among female patients (TT vs CC, P = .007, OR = 0.53, 95% CI = 0.33-0.84), older patients (Yr ≥55) (TT vs CC, P = .039, OR = 0.58, 95% CI = 0.35-0.97), C-reactive protein-positive patients, anti-cyclic citrullinated peptide antibody-negative patients, rheumatoid factor-positive patients (TT vs CT + CC, P = .015, OR = 0.60, 95% CI = 0.39-0.90), functional class III + IV patients, patients with a DAS28 of ≥3.20, and those with an erythrocyte sedimentation rate of <25. However, our results were obtained from only a moderate-sized sample. Studies with larger sample sizes in other ethnic populations are needed to confirm these results. The VEGFR2 rs11941492 genotype is associated with decreased susceptibility to RA.
Collapse
|
11
|
陈 永, 邱 富, 朱 兴, 莫 海, 吴 自, 肖 长. [Pannus does not occur only in rheumatoid arthritis: a pathological observation of pannus of knee osteoarthritis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:747-750. [PMID: 31270057 PMCID: PMC6743915 DOI: 10.12122/j.issn.1673-4254.2019.06.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To compare the histopathological features of the synovium between rheumatoid arthritis (RA) and osteoarthritis (OA). METHODS We retrospectively analyzed the synovial specimens obtained after synovial surgery in 72 cases of RA and 24 cases of OA. Two independent pathologists reviewed the sections of the synovial tissues with HE staining, quantitatively scored the degree of fibroblast-like synoviocyte (FLS) hyperplasia, vascular hyperplasia, fibroplasia, and lymphocyte infiltration, and examined the presence plasma cell infiltration. The pathological morphology of the synovial tissues was evaluated in relation with the clinical data of the patients. RESULTS Pannus formation was also detected in the synovium of OA patients, which showed a lesser degree of OA-FLS hyperplasia, fibrosis and lymphocyte infiltration and a significantly lower rate of plasma cell infiltration compared with the pannus in RA patients. Vascular proliferation was also milder in the pannus of OA patients than in RA pannus, but the difference was not statistically significant. In OA patients, the pannus could be observed under a microscope and was difficult to distinguish from that in RA patients. CONCLUSIONS Pannus formation occurs also in the synovium of OA patients but with milder FLS hyperplasia, fibrosis and lymphocyte infiltration and a lower rate of plasma cell infiltration compared with the pannus in RA patients. These differences in the pannus between OA and RA can be of potential value in the diagnosis and treatment of the patients.
Collapse
Affiliation(s)
- 永 陈
- 南方医科大学中西医结合医院 风湿免疫科,广东 广州 510330Department of Rheumatology, Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510330, China
| | - 富娟 邱
- 南方医科大学中西医结合医院 风湿免疫科,广东 广州 510330Department of Rheumatology, Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510330, China
| | - 兴旺 朱
- 南方医科大学中西医结合医院 风湿免疫科,广东 广州 510330Department of Rheumatology, Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510330, China
| | - 海月 莫
- 南方医科大学中西医结合医院 病理科,广东 广州 510330Department of Pathology, Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510330, China
| | - 自勍 吴
- 南方医科大学中西医结合医院 病理科,广东 广州 510330Department of Pathology, Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510330, China
| | - 长虹 肖
- 南方医科大学中西医结合医院 风湿免疫科,广东 广州 510330Department of Rheumatology, Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510330, China
| |
Collapse
|
12
|
He P, Zhang F, Zhong C, Li M, Zheng J, Hua B, Sun J. Timely and large dose of clotting factor IX provides better joint wound healing after hemarthrosis in hemophilia B mice. Int J Hematol 2019; 110:59-68. [PMID: 31006077 DOI: 10.1007/s12185-019-02639-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
Bleeding into the joints represents the major morbidity of severe hemophilia and predisposes it to hemophilic arthropathy (HA). In a reproducible hemarthrosis mouse model, we found distinct changes in thrombin activity in joint tissue homogenate following exposure of the joint to blood in wide type (WT) and hemophilic B mice. Specifically, at early time points (4 h and 24 h) after hemarthrosis, thrombin activity in WT mice quickly peaked at 4 h, and returned to baseline after 1 week. In hemophilia B mice, there was no/minimal thrombin activity in joint tissues at 4 h and 24 h, whereas at 72 h and thereafter, thrombin activity kept rising, and persisted at a higher level. Nevertheless, prothrombin had not decreased in both WT and hemophilia. The pattern was also confirmed by Western blotting and immunostaining. To optimize the protection against development of HA, we tested different treatment regimens by administration of clotting factor IX into hemophilia B mouse after hemarthrosis induction, including a total of 600 IU/kg FIX within the first 24 h or the whole 2-week period. We concluded that timely (in the first 24 h) and sufficient hemostasis correction is critical for a better protection against the development of hemophilic arthropathy.
Collapse
Affiliation(s)
- Ping He
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Feixu Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Chen Zhong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Min Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Baolai Hua
- Department of Hematology, Clinical Medical College, Yangzhou University, Yangzhou, China.
| | - Junjiang Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA.
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Tan L, Wang Q, Zeng T, Long T, Guan X, Wu S, Zheng W, Fu H, Meng Y, Wu Y, Tian Y, Yu J, Chen J, Li H, Cao L. Clinical significance of detecting HLA-DR, 14-3-3η protein and d-dimer in the diagnosis of rheumatoid arthritis. Biomark Med 2018; 12:697-705. [PMID: 29856230 DOI: 10.2217/bmm-2017-0371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM To investigate the clinical significance of detecting several biomarkers collectively in the diagnosis of rheumatoid arthritis (RA). METHODS 128 RA patients, 174 non-RA patients and 80 healthy controls were enrolled. HLA-DR4 and HLA-DR53 were detected by the PCR-SSP method, 14-3-3η protein, anti-CCP and anti-Sa were detected by ELISA and DD was detected by latex immunoturbidimetric assay. RESULTS The positive rates of HLA-DR4, HLA-DR53, 14-3-3η protein, anti-CCP and anti-Sa were obviously higher in the RA group (43.8, 38.3, 51.6, 80 and 40.6%, respectively); anti-CCP was of highest sensitivity (79.68%), highest specificity (97.5%) and Youden index (0.77). The AUC of 14-3-3η protein, DD, anti-CCP, anti-Sa were 0.813, 0.859, 0.930, 0.861, respectively. CONCLUSION All biomarkers were strongly correlated risk factors for RA; the combination of multiple biomarkers might be of help for diagnostic and therapeutic strategies in RA of recent onset.
Collapse
Affiliation(s)
- Liming Tan
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| | - Qiaohua Wang
- School of Public Health, Nanchang University, Nanchang Jiangxi 330031, PR China
| | - Tingting Zeng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| | - Tingting Long
- School of Public Health, Nanchang University, Nanchang Jiangxi 330031, PR China
| | - Xiaolin Guan
- School of Public Health, Nanchang University, Nanchang Jiangxi 330031, PR China
| | - Sifan Wu
- School of Public Health, Nanchang University, Nanchang Jiangxi 330031, PR China
| | - Wei Zheng
- School of Public Health, Nanchang University, Nanchang Jiangxi 330031, PR China
| | - Huiying Fu
- School of Public Health, Nanchang University, Nanchang Jiangxi 330031, PR China
| | - Yimei Meng
- School of Public Health, Nanchang University, Nanchang Jiangxi 330031, PR China
| | - Yang Wu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| | - Yongjian Tian
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| | - Jianlin Yu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| | - Hua Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| | - Liping Cao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi 330006, PR China
| |
Collapse
|
14
|
Hu Z. Therapeutic Antibody-Like Immunoconjugates against Tissue Factor with the Potential to Treat Angiogenesis-Dependent as Well as Macrophage-Associated Human Diseases. Antibodies (Basel) 2018; 7:8. [PMID: 31105982 PMCID: PMC6519474 DOI: 10.3390/antib7010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that tissue factor (TF) is selectively expressed in pathological angiogenesis-dependent as well as macrophage-associated human diseases. Pathological angiogenesis, the formation of neovasculature, is involved in many clinically significant human diseases, notably cancer, age-related macular degeneration (AMD), endometriosis and rheumatoid arthritis (RA). Macrophage is involved in the progression of a variety of human diseases, such as atherosclerosis and viral infections (human immunodeficiency virus, HIV and Ebola). It is well documented that TF is selectively expressed on angiogenic vascular endothelial cells (VECs) in these pathological angiogenesis-dependent human diseases and on disease-associated macrophages. Under physiology condition, TF is not expressed by quiescent VECs and monocytes but is solely restricted on some cells (such as pericytes) that are located outside of blood circulation and the inner layer of blood vessel walls. Here, we summarize TF expression on angiogenic VECs, macrophages and other diseased cell types in these human diseases. In cancer, for example, the cancer cells also overexpress TF in solid cancers and leukemia. Moreover, our group recently reported that TF is also expressed by cancer-initiating stem cells (CSCs) and can serve as a novel oncotarget for eradication of CSCs without drug resistance. Furthermore, we review and discuss two generations of TF-targeting therapeutic antibody-like immunoconjugates (ICON and L-ICON1) and antibody-drug conjugates that are currently being tested in preclinical and clinical studies for the treatment of some of these human diseases. If efficacy and safety are proven in current and future clinical trials, TF-targeting immunoconjugates may provide novel therapeutic approaches with potential to broadly impact the treatment regimen of these significant angiogenesis-dependent, as well as macrophage-associated, human diseases.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Surgery Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Arzi B, DuRaine G, Lee C, Huey D, Borjesson D, Murphy B, Hu J, Baumgarth N, Athanasiou K. Cartilage immunoprivilege depends on donor source and lesion location. Acta Biomater 2015; 23:72-81. [PMID: 26028293 DOI: 10.1016/j.actbio.2015.05.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 01/25/2023]
Abstract
The ability to repair damaged cartilage is a major goal of musculoskeletal tissue engineering. Allogeneic (same species, different individual) or xenogeneic (different species) sources can provide an attractive source of chondrocytes for cartilage tissue engineering, since autologous (same individual) cells are scarce. Immune rejection of non-autologous hyaline articular cartilage has seldom been considered due to the popular notion of "cartilage immunoprivilege". The objective of this study was to determine the suitability of allogeneic and xenogeneic engineered neocartilage tissue for cartilage repair. To address this, scaffold-free tissue engineered articular cartilage of syngeneic (same genetic background), allogeneic, and xenogeneic origin were implanted into two different locations of the rabbit knee (n=3 per group/location). Xenogeneic engineered cartilage and control xenogeneic chondral explants provoked profound innate inflammatory and adaptive cellular responses, regardless of transplant location. Cytological quantification of immune cells showed that, while allogeneic neocartilage elicited an immune response in the patella, negligible responses were observed when implanted into the trochlea; instead the responses were comparable to microfracture-treated empty defect controls. Allogeneic neocartilage survived within the trochlea implant site and demonstrated graft integration into the underlying bone. In conclusion, the knee joint cartilage does not represent an immune privileged site, strongly rejecting xenogeneic but not allogeneic chondrocytes in a location-dependent fashion. This difference in location-dependent survival of allogeneic tissue may be associated with proximity to the synovium. STATEMENT OF SIGNIFICANCE Through a series of in vivo studies this research demonstrates that articular cartilage is not fully immunoprivileged. In addition, we now show that anatomical location of the defect, even within the same joint compartment, strongly influences the degree of the resultant immune response. This is one of the first investigations to show that (1) immune tolerance to allogeneic tissue engineered cartilage and (2) subsequent implant survival are dependent on the implant location and proximity to the synovium.
Collapse
|
16
|
Nair N, Mei HE, Chen SY, Hale M, Nolan GP, Maecker HT, Genovese M, Fathman CG, Whiting CC. Mass cytometry as a platform for the discovery of cellular biomarkers to guide effective rheumatic disease therapy. Arthritis Res Ther 2015; 17:127. [PMID: 25981462 PMCID: PMC4436107 DOI: 10.1186/s13075-015-0644-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The development of biomarkers for autoimmune diseases has been hampered by a lack of understanding of disease etiopathogenesis and of the mechanisms underlying the induction and maintenance of inflammation, which involves complex activation dynamics of diverse cell types. The heterogeneous nature and suboptimal clinical response to treatment observed in many autoimmune syndromes highlight the need to develop improved strategies to predict patient outcome to therapy and personalize patient care. Mass cytometry, using CyTOF®, is an advanced technology that facilitates multiparametric, phenotypic analysis of immune cells at single-cell resolution. In this review, we outline the capabilities of mass cytometry and illustrate the potential of this technology to enhance the discovery of cellular biomarkers for rheumatoid arthritis, a prototypical autoimmune disease.
Collapse
Affiliation(s)
- Nitya Nair
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA. .,Division of Immune Monitoring and Biomarker Development, Aduro BioTech, Inc., Berkeley, CA, 94710, USA. .,Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
| | - Henrik E Mei
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, 94305, USA.
| | - Shih-Yu Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
| | - Matthew Hale
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
| | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, 94305, USA.
| | - Mark Genovese
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
| | | | - Chan C Whiting
- Division of Immune Monitoring and Biomarker Development, Aduro BioTech, Inc., Berkeley, CA, 94710, USA. .,Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
A preliminary study on the characterization of follicular helper T (Tfh) cells in rheumatoid arthritis synovium. Acta Histochem 2014; 116:539-43. [PMID: 24287433 DOI: 10.1016/j.acthis.2013.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 10/24/2013] [Accepted: 10/27/2013] [Indexed: 01/27/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic and systematic autoimmune inflammatory disease. Recently, a novel T cell subset, follicular helper CD4 T cell (Tfh cells) was found in relation to the pathogenesis and progression of RA, and increased numbers of circulating Tfh cells were found in RA patients. However, there is little evidence regarding the localization of Tfh cells in synovium tissues from RA patients, owing to the lack of an available method to characterize their localization in tissue. The aim of our present study was to characterize the Tfh cells in rheumatoid synovium tissues from RA patients by using immunohistochemistry and triple-fluorescence immunostaining methods. Our results showed that specific staining of CD4, CXCR5 and ICOS could be found on infiltrating immune cells in rheumatoid synovium tissues. The use of triple-fluorescence immunostaining and confocal laser scanning showed immunolocalization of CD4(+)CXCR5(+)ICOS(+)T cells (Tfh cells) in the rheumatoid synovium tissues, whereas these signals were absent in osteoarthritis (OA) synovium and in normal synovium tissues. Thus the data from our present preliminary study support the notion that CD4(+)CXCR5(+)ICOS(+)Tfh cells could be found in rheumatoid synovium tissues from RA patients, indicating the possibility that this T cell subset in synovium tissues may have important roles in the pathogenesis and progression of RA.
Collapse
|
18
|
Azizi G, Boghozian R, Mirshafiey A. The potential role of angiogenic factors in rheumatoid arthritis. Int J Rheum Dis 2014; 17:369-83. [PMID: 24467605 DOI: 10.1111/1756-185x.12280] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Angiogenesis is an important phenomenon in the pathogenesis of some diseases, such as numerous types of tumors and autoimmunity, and also a number of soluble and cell-bound factors may stimulate neovascularization in inflammatory reaction processes. Here, by highlighting the significance of angiogenesis reaction in rheumatoid arthritis (RA), we will mainly focus on the role of various growth factors, cytokines, enzymes, cells, hypoxic conditions and transcription factors in the angiogenic process and we will then explain some therapeutic strategies based on blockage of angiogenesis and modification of the vascular pathology in RA.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | | | | |
Collapse
|