1
|
Tang Y, Li Y, Yang W, Tao Z, Shi W, Yu M, Xu B, Lu X. Nasal mucosal mesenchymal stem cells promote repair of sciatic nerve injury in rats by modulating the inflammatory microenvironment. Neurosci Lett 2025; 848:138112. [PMID: 39742941 DOI: 10.1016/j.neulet.2024.138112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Sciatic nerve injury (SNI) represents the most prevalent form of peripheral nerve damage, resulting in the rapid activation of macrophages into the M1 phenotype following injury. This activation induces an inflammatory microenvironment that negatively impacts nerve regeneration. Ectodermal mesenchymal stem cells (EMSCs), isolated from nasal mucosa, possess the capacity for multidirectional differentiation and exhibit immunomodulatory effects. Modulating macrophage polarization to create a favorable environment for nerve repair may represent a potential approach to facilitate nerve recovery. This investigation sought to explore the effects of EMSCs transplantation on macrophage polarization and nerve regeneration in SNI, as well as to identify the underlying mechanisms. An in vivo SNI model was established, and behavioral and histological analyses demonstrated that EMSCs transplantation facilitated nerve function recovery. Furthermore, immunofluorescence and Western blot assays revealed an increase in M2 macrophage presence and the secretion of anti-inflammatory cytokines following EMSCs transplantation, thereby promoting nerve regeneration. In vitro, EMSCs were found to enhance M2 macrophage polarization and the production of anti-inflammatory factors. Additionally, it was confirmed that EMSCs regulate macrophage polarization through the PI3K/AKT/NF-κB signaling pathway, thereby fostering an optimal inflammatory environment for nerve regeneration.
Collapse
Affiliation(s)
- Yushi Tang
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Yilu Li
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Wenhui Yang
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Zhenxing Tao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Wentao Shi
- Department of Neurosurgery, Jiangnan University Medical Center ,Wuxi, Jiangsu Province, 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Mengyuan Yu
- Wuxi neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Bai Xu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center ,Wuxi, Jiangsu Province, 214122, PR China.
| | - Xiaojie Lu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center ,Wuxi, Jiangsu Province, 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China.
| |
Collapse
|
2
|
Seyyedin S, Ezzatabadipour M, Nematollahi-Mahani SN. The Role of Various Factors in Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells with a Special Focus on the Physical Stimulants. Curr Stem Cell Res Ther 2024; 19:166-177. [PMID: 36734908 DOI: 10.2174/1574888x18666230124151311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023]
Abstract
Human umbilical cord matrix-derived mesenchymal stem cells (hUCMs) are considered as ideal tools for cell therapy procedures and regenerative medicine. The capacity of these cells to differentiate into neural lineage cells make them potentially important in the treatment of various neurodegenerative diseases. An electronic search was performed in Web of Science, PubMed/MEDLINE, Scopus and Google Scholar databases for articles published from January 1990 to March 2022. This review discusses the current knowledge on the effect of various factors, including physical, chemical and biological stimuli which play a key role in the differentiation of hUCMs into neural and glial cells. Moreover, the currently understood molecular mechanisms involved in the neural differentiation of hUCMs under various environmental stimuli are reviewed. Various stimuli, especially physical stimuli and specifically different light sources, have revealed effects on neural differentiation of mesenchymal stem cells, including hUCMs; however, due to the lack of information about the exact mechanisms, there is still a need to find optimal conditions to promote the differentiation capacity of these cells which in turn can lead to significant progress in the clinical application of hUCMs for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Sajad Seyyedin
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Noureddin Nematollahi-Mahani
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Bonilla X, Lara AM, Llano-León M, López-González DA, Hernández-Mejía DG, Bustos RH, Camacho-Rodríguez B, Perdomo-Arciniegas AM. Mesenchymal Stromal Cells from Perinatal Tissues as an Alternative for Ex Vivo Expansion of Hematopoietic Progenitor and Stem Cells from Umbilical Cord Blood. Int J Mol Sci 2023; 24:15544. [PMID: 37958529 PMCID: PMC10648510 DOI: 10.3390/ijms242115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Umbilical cord blood (UCB) serves as a source of hematopoietic stem and progenitor cells (HSPCs) utilized in the regeneration of hematopoietic and immune systems, forming a crucial part of the treatment for various benign and malignant hematological diseases. UCB has been utilized as an alternative HSPC source to bone marrow (BM). Although the use of UCB has extended transplantation access to many individuals, it still encounters significant challenges in selecting a histocompatible UCB unit with an adequate cell dose for a substantial proportion of adults with malignant hematological diseases. Consequently, recent research has focused on developing ex vivo expansion strategies for UCB HSPCs. Our results demonstrate that co-cultures with the investigated mesenchymal stromal cells (MSCs) enable a 10- to 15-fold increase in the cellular dose of UCB HSPCs while partially regulating the proliferation capacity when compared to HSPCs expanded with early acting cytokines. Furthermore, the secretory profile of UCB-derived MSCs closely resembles that of BM-derived MSCs. Moreover, both co-cultures exhibit alterations in cytokine secretion, which could potentially impact HSPC proliferation during the expansion process. This study underscores the fact that UCB-derived MSCs possess a remarkably similar supportive capacity to BM-derived MSCs, implying their potential use as feeder layers in the ex vivo expansion process of HSPCs.
Collapse
Affiliation(s)
- Ximena Bonilla
- Pharmaceutical Biotechnology Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (A.M.L.); (D.A.L.-G.); (B.C.-R.)
| | - Ana Milena Lara
- Pharmaceutical Biotechnology Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (A.M.L.); (D.A.L.-G.); (B.C.-R.)
| | - Manuela Llano-León
- Advanced Therapies Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (M.L.-L.); (D.G.H.-M.)
| | - David A. López-González
- Pharmaceutical Biotechnology Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (A.M.L.); (D.A.L.-G.); (B.C.-R.)
| | - David G. Hernández-Mejía
- Advanced Therapies Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (M.L.-L.); (D.G.H.-M.)
| | - Rosa Helena Bustos
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana and Clínica Universidad de La Sabana, Chía 140013, Colombia;
| | - Bernardo Camacho-Rodríguez
- Pharmaceutical Biotechnology Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (A.M.L.); (D.A.L.-G.); (B.C.-R.)
| | | |
Collapse
|
4
|
Khaled MM, Ibrahium AM, Abdelgalil AI, El-Saied MA, El-Bably SH. Regenerative Strategies in Treatment of Peripheral Nerve Injuries in Different Animal Models. Tissue Eng Regen Med 2023; 20:839-877. [PMID: 37572269 PMCID: PMC10519924 DOI: 10.1007/s13770-023-00559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Peripheral nerve damage mainly resulted from traumatic or infectious causes; the main signs of a damaged nerve are the loss of sensory and/or motor functions. The injured nerve has limited regenerative capacity and is recovered by the body itself, the recovery process depends on the severity of damage to the nerve, nowadays the use of stem cells is one of the new and advanced methods for treatment of these problems. METHOD Following our review, data are collected from different databases "Google scholar, Springer, Elsevier, Egyptian Knowledge Bank, and PubMed" using different keywords such as Peripheral nerve damage, Radial Nerve, Sciatic Nerve, Animals, Nerve regeneration, and Stem cell to investigate the different methods taken in consideration for regeneration of PNI. RESULT This review contains tables illustrating all forms and types of regenerative medicine used in treatment of peripheral nerve injuries (PNI) including different types of stem cells " adipose-derived stem cells, bone marrow stem cells, Human umbilical cord stem cells, embryonic stem cells" and their effect on re-constitution and functional recovery of the damaged nerve which evaluated by physical, histological, Immuno-histochemical, biochemical evaluation, and the review illuminated the best regenerative strategies help in rapid peripheral nerve regeneration in different animal models included horse, dog, cat, sheep, monkey, pig, mice and rat. CONCLUSION Old surgical attempts such as neurorrhaphy, autogenic nerve transplantation, and Schwann cell implantation have a limited power of recovery in cases of large nerve defects. Stem cell therapy including mesenchymal stromal cells has a high potential differentiation capacity to renew and form a new nerve and also restore its function.
Collapse
Affiliation(s)
- Mona M Khaled
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt.
| | - Asmaa M Ibrahium
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Ahmed I Abdelgalil
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Mohamed A El-Saied
- Department of Pathology, Faculty of Veterinary of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Samah H El-Bably
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| |
Collapse
|
5
|
Cecerska-Heryć E, Pękała M, Serwin N, Gliźniewicz M, Grygorcewicz B, Michalczyk A, Heryć R, Budkowska M, Dołęgowska B. The Use of Stem Cells as a Potential Treatment Method for Selected Neurodegenerative Diseases: Review. Cell Mol Neurobiol 2023:10.1007/s10571-023-01344-6. [PMID: 37027074 DOI: 10.1007/s10571-023-01344-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Stem cells have been the subject of research for years due to their enormous therapeutic potential. Most neurological diseases such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are incurable or very difficult to treat. Therefore new therapies are sought in which autologous stem cells are used. They are often the patient's only hope for recovery or slowing down the progress of the disease symptoms. The most important conclusions arise after analyzing the literature on the use of stem cells in neurodegenerative diseases. The effectiveness of MSC cell therapy has been confirmed in ALS and HD therapy. MSC cells slow down ALS progression and show early promising signs of efficacy. In HD, they reduced huntingtin (Htt) aggregation and stimulation of endogenous neurogenesis. MS therapy with hematopoietic stem cells (HSCs) inducted significant recalibration of pro-inflammatory and immunoregulatory components of the immune system. iPSC cells allow for accurate PD modeling. They are patient-specific and therefore minimize the risk of immune rejection and, in long-term observation, did not form any tumors in the brain. Extracellular vesicles derived from bone marrow mesenchymal stromal cells (BM-MSC-EVs) and Human adipose-derived stromal/stem cells (hASCs) cells are widely used to treat AD. Due to the reduction of Aβ42 deposits and increasing the survival of neurons, they improve memory and learning abilities. Despite many animal models and clinical trial studies, cell therapy still needs to be refined to increase its effectiveness in the human body.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland.
| | - Maja Pękała
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Gliźniewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460, Szczecin, Poland
| | - Rafał Heryć
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
6
|
Kouchakian MR, Koruji M, Najafi M, Moniri SF, Asgari A, Shariatpanahi M, Moosavi SA, Asgari HR. Human umbilical cord mesenchymal stem cells express cholinergic neuron markers during co-culture with amniotic membrane cells and retinoic acid induction. Med J Islam Repub Iran 2022; 35:129. [PMID: 35321367 PMCID: PMC8840847 DOI: 10.47176/mjiri.35.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Background: A wide variety of cytokines are released from human amniotic membrane cells (hAMCs), which can increase the rate of differentiation of mesenchymal stem cells into the neurons. We studied the effect of Retinoic Acid (RA) on the differentiation rate of human Umbilical Cord Mesenchymal Stem Cells (hUMSCs) which were co-cultured with hAMCs. Methods: In this experimental study, both hUMSCs and hAMCs were isolated from postpartum human umbilical cords and placenta respectively. The expression of mesenchymal (CD73, CD90 and CD105), hematopoietic and endothelial (CD34 and CD45) markers in hUMSCs were confirmed by flow cytometry. The hUMSCs were cultured in four distinct groups: group 1) Control, group 2) Co-culture with hAMCs, group 3) RA treatment and group 4) Co-culture with hAMCs treated by RA. Twelve days after culturing, the expression of NSE, MAP2 and ChAT differentiation genes and their related proteins were examined by real-time PCR and immunocytochemistry respectively. Results: The flow-cytometry analysis indicated increased expression of mesenchymal markers and a low expression of both hematopoietic and endothelial markers (CD73:98.24%, CD90: 97.32%, CD105: 90.75%, CD34: 2.96%, and CD45:1.74%). Moreover, the expression of both NSE and MAP2 markers was increased significantly in all studied groups in comparison to the control group On the other hand, the expression of ChAT had a significant increase in the group 2 and 4 (RA and RA+ co-culture). Conclusion: RA can be used as an effective inducer to differentiate hUMSCs into cholinergic-like cells, and hAMCs could increase the number of differentiated cells as an effective factor.
Collapse
Affiliation(s)
| | - Morteza Koruji
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Farzaneh Moniri
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Asgari
- School of Pharmacy, Zanjan University of medical sciences, Zanjan, Iran
| | - Marjan Shariatpanahi
- Department of Toxicology & Pharmacology, School of Pharmacy, International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Akbar Moosavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Asgari
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Chaplygina AV, Zhdanova DY, Kovalev VI, Poltavtseva RA, Medvinskaya NI, Bobkova NV. Cell Therapy as a Way to Correct Impaired Neurogenesis in the Adult Brain in a Model of Alzheimer’s Disease. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Gamage TKJB, Fraser M. The Role of Extracellular Vesicles in the Developing Brain: Current Perspective and Promising Source of Biomarkers and Therapy for Perinatal Brain Injury. Front Neurosci 2021; 15:744840. [PMID: 34630028 PMCID: PMC8498217 DOI: 10.3389/fnins.2021.744840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
This comprehensive review focuses on our current understanding of the proposed physiological and pathological functions of extracellular vesicles (EVs) in the developing brain. Furthermore, since EVs have attracted great interest as potential novel cell-free therapeutics, we discuss advances in the knowledge of stem cell- and astrocyte-derived EVs in relation to their potential for protection and repair following perinatal brain injury. This review identified 13 peer-reviewed studies evaluating the efficacy of EVs in animal models of perinatal brain injury; 12/13 utilized mesenchymal stem cell-derived EVs (MSC-EVs) and 1/13 utilized astrocyte-derived EVs. Animal model, method of EV isolation and size, route, timing, and dose administered varied between studies. Notwithstanding, EV treatment either improved and/or preserved perinatal brain structures both macroscopically and microscopically. Additionally, EV treatment modulated inflammatory responses and improved brain function. Collectively this suggests EVs can ameliorate, or repair damage associated with perinatal brain injury. These findings warrant further investigation to identify the optimal cell numbers, source, and dosage regimens of EVs, including long-term effects on functional outcomes.
Collapse
|
9
|
Shokati A, Naser Moghadasi A, Nikbakht M, Sahraian MA, Mousavi SA, Ai J. A focus on allogeneic mesenchymal stromal cells as a versatile therapeutic tool for treating multiple sclerosis. Stem Cell Res Ther 2021; 12:400. [PMID: 34256857 PMCID: PMC8278627 DOI: 10.1186/s13287-021-02477-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/13/2021] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) chronic illness with autoimmune, inflammatory, and neurodegenerative effects characterized by neurological disorder and axonal loss signs due to myelin sheath autoimmune T cell attacks. Existing drugs, including disease-modifying drugs (DMD), help decrease the intensity and frequency of MS attacks, inflammatory conditions, and CNS protection from axonal damage. As they cannot improve axonal repair and show side effects, new therapeutic options are required. In this regard, due to their neuroprotection properties, immunomodulatory effects, and the ability to differentiate into neurons, the transplantation of mesenchymal stromal cells (MSCs) can be used for MS therapy. The use of adipose-derived MSCs (AdMSCs) or autologous bone marrow MSCs (BMSCs) has demonstrated unexpected effects including the invasive and painful isolation method, inadequate amounts of bone marrow (BM) stem cells, the anti-inflammatory impact reduction of AdMSCs that are isolated from fat patients, and the cell number and differentiation potential decrease with an increase in the age of BMSCs donor. Researchers have been trying to search for alternate tissue sources for MSCs, especially fetal annexes, which could offer a novel therapeutic choice for MS therapy due to the limitation of low cell yield and invasive collection methods of autologous MSCs. The transplantation of MSCs for MS treatment is discussed in this review. Finally, it is suggested that allogeneic sources of MSCs are an appealing alternative to autologous MSCs and could hence be a potential novel solution to MS therapy.
Collapse
Affiliation(s)
- Ameneh Shokati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohsen Nikbakht
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Asadollah Mousavi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Bone marrow-derived mesenchymal stem cells modulate autophagy in RAW264.7 macrophages via the phosphoinositide 3-kinase/protein kinase B/heme oxygenase-1 signaling pathway under oxygen-glucose deprivation/restoration conditions. Chin Med J (Engl) 2021; 134:699-707. [PMID: 33605598 PMCID: PMC7989993 DOI: 10.1097/cm9.0000000000001133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the potential for repairing injured sites and regulating autophagy. This study was to investigate the influence of BM-MSCs on autophagy of macrophages in the oxygen-glucose deprivation/restoration (OGD/R) microenvironment and to explore the potential mechanism. Methods We established a co-culture system of macrophages (RAW264.7) with BM-MSCs under OGD/R conditions in vitro. RAW264.7 cells were transfected with recombinant adenovirus (Ad-mCherry-GFP-LC3B) and autophagic status of RAW264.7 cells was observed under a fluorescence microscope. Autophagy-related proteins light chain 3 (LC3)-I, LC3-II, and p62 in RAW264.7 cells were detected by Western blotting. We used microarray expression analysis to identify the differently expressed genes between OGD/R treated macrophages and macrophages co-culture with BM-MSCs. We investigated the gene heme oxygenase-1 (HO-1), which is downstream of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Results The ratio of LC3-II/LC3-I of OGD/R treated RAW264.7 cells was increased (1.27 ± 0.20 vs. 0.44 ± 0.08, t = 6.67, P < 0.05), while the expression of p62 was decreased (0.77 ± 0.04 vs. 0.95 ± 0.10, t = 2.90, P < 0.05), and PI3K (0.40 ± 0.06 vs. 0.63 ± 0.10, t = 3.42, P < 0.05) and p-Akt/Akt ratio was also decreased (0.39 ± 0.02 vs. 0.58 ± 0.03, t = 9.13, P < 0.05). BM-MSCs reduced the LC3-II/LC3-I ratio of OGD/R treated RAW264.7 cells (0.68 ± 0.14 vs. 1.27 ± 0.20, t = 4.12, P < 0.05), up-regulated p62 expression (1.10 ± 0.20 vs. 0.77 ± 0.04, t = 2.80, P < 0.05), and up-regulated PI3K (0.54 ± 0.05 vs. 0.40 ± 0.06, t = 3.11, P < 0.05) and p-Akt/Akt ratios (0.52 ± 0.05 vs. 0.39 ± 0.02, t = 9.13, P < 0.05). A whole-genome microarray assay screened the differentially expressed gene HO-1, which is downstream of the PI3K/Akt signaling pathway, and the alteration of HO-1 mRNA and protein expression was consistent with the data on PI3K/Akt pathway. Conclusions Our results suggest the existence of the PI3K/Akt/HO-1 signaling pathway in RAW264.7 cells under OGD/R circumstances in vitro, revealing the mechanism underlying BM-MSC-mediated regulation of autophagy and enriching the understanding of potential therapeutic targets for the treatment of ALI.
Collapse
|
11
|
Kahraman NS, Öner A. Umbilical cord-derived mesenchymal stem cell implantation in patients with optic atrophy. Eur J Ophthalmol 2020; 31:3463-3470. [PMID: 33307808 DOI: 10.1177/1120672120977824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Optic nerve cells can be irreversibly damaged by common various causes. Unfortunately optic nerve and retinal ganglion cells have no regenerative capacity and undergo apoptosis in case of damage. In this study, our aim is to investigate the safety and efficacy of suprachoroidal umbilical cord-derived MSCs (UC-MSCs) implantation in patients with optic atrophy. METHODS This study enrolled 29 eyes of 23 patients with optic atrophy who were followed in the ophthalmology department of our hospital. BCVA, anterior segment, fundus examination, color photography, and optical coherence tomography (OCT) were carried out at each visit. Fundus fluorescein angiography and visual field examination were performed at the end of the first, third, sixth months, and 1 year follow-up. RESULTS After suprachoroidal UC-MSCs implantation there were statistically significant improvements in BCVA and VF results during 12 months follow-up (p < 0.05). When we evaluate the results of VF tests, the mean deviation (MD) value at baseline was -26.11 ± 8.36 (range -14.18 to -34.41). At the end of the first year it improved to -25.01 ± 8.73 (range -12.56 to -34.41) which was statistically significant (p < 0.05). When we evaluate the mean RNFL thickness measurements at baseline and at 12 month follow-up the results were 81.8 ± 24.9 μm and 76.6 ± 22.6 μm, respectively. There was not a significant difference between the mean values (p > 0.05). CONCLUSION Stem cell treatment with suprachoroidal implantation of UCMSCs seems to be safe and effective in the treatment for optic nerve diseases that currently have no curative treatment options.
Collapse
Affiliation(s)
| | - Ayşe Öner
- Department of Ophthalmology, Acibadem Hospital, Kayseri, Turkey
| |
Collapse
|
12
|
Noh JE, Oh SH, Park IH, Song J. Intracerebral Transplants of GMP-Grade Human Umbilical Cord-Derived Mesenchymal Stromal Cells Effectively Treat Subacute-Phase Ischemic Stroke in a Rodent Model. Front Cell Neurosci 2020; 14:546659. [PMID: 33100972 PMCID: PMC7546889 DOI: 10.3389/fncel.2020.546659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022] Open
Abstract
In subacute and chronic phases of the stroke, there are no therapeutics available at present to promote functional recovery. Human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) are one of the candidate cell types for treating subacute-phase stroke. The benefits of cell-based therapy largely depend on the migratory capacity of products administered, as well as their potential for engraftment in targeted tissues and paracrine activities. Timing and delivery modes may also influence the outcomes of stem-cell therapy. Still, the functional recuperative effects of differing hUC-MSC delivery modes, about cell replacement and cell-to-cell paracrine activity levels, have yet to be clarified in subacute phases of stroke.This study was conducted to compare the therapeutic effects of various delivery routes when administering Good Manufacturing Practice (GMP)-grade hUC-MSCs in a rodent model of subacute-phase stroke. Cell aliquots (1 × 106) were given to rats as intravenous (IV) injections or intracerebral (IC) transplants 1 week after middle cerebral artery occlusion (MCAo). Transplanted rats were examined up to 7 weeks later using various behavioral tests and immunohistochemical analyses. Most IC-transplanted cells survived for short periods (i.e., <4 weeks after receipt) and gradually disappeared, whereas IV-injected cells were undetectable in the brain at the same time points (i.e., 3 days, 4 weeks, or 7 weeks after injection). Although short-lived, IC-transplanted cells effectively improved behavioral deficits, serving to reduce infarct volumes and glial scar formation, increase subventricular counts of proliferating neuroblasts, and promote cerebrovascular ingrowth in ischemic penumbra regions. IV injection, however, failed to improve behavioral function or histologic parameters during the same 7-week time frame. These findings overall suggest that IC transplantation is preferable to IV injection for delivery of hUC-MSCs during subacute phases of stroke.
Collapse
Affiliation(s)
- Jeong-Eun Noh
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, South Korea
| | - Seung-Hun Oh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, United States
| | - Jihwan Song
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, South Korea.,iPS Bio, Inc., Seongnam-si, South Korea
| |
Collapse
|
13
|
Zeng F, Zhang Y, Han X, Weng J, Gao Y. Liver Buds and Liver Organoids: New Tools for Liver Development, Disease and Medical Application. Stem Cell Rev Rep 2020; 15:774-784. [PMID: 31863336 DOI: 10.1007/s12015-019-09909-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The current understanding and effective treatment of liver disease is far from satisfactory. Liver organoids and liver buds (LBs) transforming cell culture from two dimensions(2D) to three dimensions(3D) has provided infinite possibilities for stem cells to use in clinic. Recent technological advances in the 3D culture have shown the potentiality of liver organoids and LBs as the promising tool to model in vitro liver diseases. The induced LBs and liver organoids provide a platform for cell-based therapy, liver disease models, liver organogenesis and drugs screening. And its genetic heterogeneity supplies a way for the realization of precision medicine.
Collapse
Affiliation(s)
- Fanhong Zeng
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, 253 Gongye Street, Haizhu, Guangzhou, 510280, China
| | - Yue Zhang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, 253 Gongye Street, Haizhu, Guangzhou, 510280, China
| | - Xu Han
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, 253 Gongye Street, Haizhu, Guangzhou, 510280, China
| | - Jun Weng
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, 253 Gongye Street, Haizhu, Guangzhou, 510280, China.
| | - Yi Gao
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, 253 Gongye Street, Haizhu, Guangzhou, 510280, China.
| |
Collapse
|
14
|
Abuarqoub D, Aslam N, Almajali B, Shajrawi L, Jafar H, Awidi A. Neuro-regenerative potential of dental stem cells: a concise review. Cell Tissue Res 2020; 382:267-279. [PMID: 32725424 DOI: 10.1007/s00441-020-03255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
This review will summarize the research information regarding the regenerative potential of dental stem cells for the treatment of neurodegenerative disorders. As compared to existing treatment modalities, the stem cell therapy seems promising, and accumulating evidences about the differentiation of stem cells into various lineages are proving it. The incidence of neurodegenerative diseases such as Alzheimer's, Parkinson's, stroke, and peripheral neuropathy is increasing due to the rise in life expectancies of people which have put a huge burden on economies. Finding a promising treatment could benefit not only the patients but also the communities. Dental stem cells hold a great potential to differentiate into neuronal cells. Many studies have reported the differentiation potential of the dental stem cells with the presence of neuronal lineage markers. In this review, we conferred how the use of dental stem cells can benefit the above-mentioned bedridden diseases.
Collapse
Affiliation(s)
- Duaa Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan. .,Cell Therapy Center, The University of Jordan, Amman, Jordan.
| | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Bayan Almajali
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Leen Shajrawi
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,School of Medicine, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan. .,School of Medicine, The University of Jordan, Amman, Jordan.
| |
Collapse
|
15
|
Yang C, Chen Y, Zhong L, You M, Yan Z, Luo M, Zhang B, Yang B, Chen Q. Homogeneity and heterogeneity of biological characteristics in mesenchymal stem cells from human umbilical cords and exfoliated deciduous teeth. Biochem Cell Biol 2020; 98:415-425. [PMID: 31794246 DOI: 10.1139/bcb-2019-0253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have proven powerful potential for cell-based therapy both in regenerative medicine and disease treatment. Human umbilical cords and exfoliated deciduous teeth are the main sources of MSCs with no donor injury or ethical issues. The goal of this study was to investigate the differences in the biological characteristics of human umbilical cord mesenchymal stem cells (UCMSCs) and stem cells from human exfoliated deciduous teeth (SHEDs). UCMSCs and SHEDs were identified by flow cytometry. The proliferation, differentiation, migration, chemotaxis, paracrine, immunomodulatory, neurite growth-promoting capabilities, and acetaldehyde dehydrogenase (ALDH) activity were comparatively studied between these two MSCs in vitro. The results showed that both SHEDs and UCMSCs expressed cell surface markers characteristic of MSCs. Furthermore, SHEDs exhibited better capacity for proliferation, migration, promotion of neurite growth, and chondrogenic differentiation. Meanwhile, UCMSCs showed more outstanding adipogenic differentiation and chemotaxy. Additionally, there were no significant differences in osteogenic differentiation, immunomodulatory capacity, and the proportion of ALDHBright compartment. Our findings indicate that although both UCMSCs and SHEDs are mesenchymal stem cells and presented some similar biological characteristics, they also have differences in many aspects, which might be helpful for developing future clinical cellular therapies.
Collapse
Affiliation(s)
- Chao Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Yu Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Liwu Zhong
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Min You
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Zhiling Yan
- Department of Stomatology, Chengdu Women's and Children's Central Hospital, Chengdu, China
| | - Maowen Luo
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Bo Zhang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Benyanzi Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Qiang Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
- Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| |
Collapse
|
16
|
Wang B, Wang L, Mao J, Wen H, Xu L, Ren Y, Du H, Yang H. Mouse bone marrow mesenchymal stem cells with distinct p53 statuses display differential characteristics. Mol Med Rep 2020; 21:2051-2062. [PMID: 32186775 PMCID: PMC7115213 DOI: 10.3892/mmr.2020.11025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/26/2019] [Indexed: 11/05/2022] Open
Abstract
Mesenchymal stem cells (MSCs) affect diverse aspects of tumor progression, such as angiogenesis, tumor growth and metastasis. Bone marrow MSCs (BM‑MSCs) are fibroblast‑like cells with multipotent differentiation ability, that localize to areas of tissue damage, including wounds and solid tumors. The tumor suppressor gene, p53, is functionally involved in cell cycle control, apoptosis and genomic stability, and is mutated and inactivated in most human cancers. The present study aimed to investigate the role of p53 in the biology of BM‑MSCs. In the present study, p53 wild‑type (p53+/+), knockdown (p53+/‑) and knockout (p53‑/‑) mouse BM‑MSCs (mBM‑MSCs) were observed to be similar in appearance and in the expression of cell surface biomarkers, but expressed differential p53 protein levels. The p53+/‑ and p53‑/‑ mBM‑MSCs demonstrated an increased proliferation rate compared with mBM‑MSCs derived from p53+/+ mice. mBM‑MSCs from all three groups, representing distinct p53 statuses, were unable to form tumors over a 3‑month period in vivo. The adipogenic and osteogenic differentiation of mBM‑MSCs was increased in the absence of p53. The colony formation and migratory abilities of p53+/‑ and p53‑/‑ mBM‑MSCs were markedly enhanced, and the expression levels of stem cell‑associated proteins were significantly increased compared with p53+/+. The expression levels of microRNA (miR)‑3152 and miR‑337 were significantly increased in p53+/‑ and p53‑/‑ mBM‑MSCs, whereas the expression levels of miR‑221, miR‑155, miR‑1288 and miR‑4669 were significantly decreased. The expression levels of tumor necrosis factor‑α and interferon‑γ‑inducible protein‑10 were significantly upregulated in the supernatant of p53+/‑ and p53‑/‑ mBM‑MSCs. Ubiquitin protein ligase E3 component n‑recognin 2, RING‑finger protein 31 and matrix metalloproteinase 19 were highly expressed in p53+/‑ and p53‑/‑ mBM‑MSCs. The results of the present study indicated that p53 may serve an important role in the biology of mBM‑MSCs, and may provide novel insights into the role of cells with different p53 statuses in cancer progression.
Collapse
Affiliation(s)
- Bo Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Lingxia Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Huiyan Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Longjiang Xu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yang Ren
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Huan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
17
|
Efficient One-Step Induction of Human Umbilical Cord-Derived Mesenchymal Stem Cells (UC-MSCs) Produces MSC-Derived Neurospheres (MSC-NS) with Unique Transcriptional Profile and Enhanced Neurogenic and Angiogenic Secretomes. Stem Cells Int 2019; 2019:9208173. [PMID: 31933651 PMCID: PMC6942888 DOI: 10.1155/2019/9208173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/23/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
Cell therapy has emerged as a promising strategy for treating neurological diseases such as stroke, spinal cord injury, and various neurodegenerative diseases, but both embryonic neural stem cells and human induced Pluripotent Stem Cell- (iPSC-) derived neural stem cells have major limitations which restrict their broad use in these diseases. We want to find a one-step induction method to transdifferentiate the more easily accessible Umbilical Cord-Derived Mesenchymal Stem Cells (UC-MSCs) into neural stem/progenitor cells suitable for cell therapy purposes. In this study, UC-MSCs were induced to form neurospheres under a serum-free suspension culture with Epidermal Growth Factor- (EGF-) and basic Fibroblast Growth Factor- (bFGF-) containing medium within 12 hours. These MSC-derived neurospheres can self-renew to form secondary neurospheres and can be readily induced to become neurons and glial cells. Real-time PCR showed significantly upregulated expression of multiple stemness and neurogenic genes after induction. RNA transcriptional profiling study showed that UC-MSC-derived neurospheres had a unique transcriptional profile of their own, with features of both UC-MSCs and neural stem cells. RayBio human growth factor cytokine array analysis showed significantly upregulated expression levels of multiple neurogenic and angiogenic growth factors, skewing toward a neural stem cell phenotype. Thus, we believe that these UC-MSC-derived neurospheres have amenable features of both MSCs and neural stem/progenitor cells and have great potential in future stem cell transplantation clinical trials targeting neurological disorders.
Collapse
|
18
|
Białkowska J, Mroczkowska D, Huflejt ME, Wojtkiewicz J, Siwek T, Barczewska M, Maksymowicz W. COMPLEX TREATMENT OF AMYOTROPHIC LATERAL SCLEROSIS PATIENT. Acta Clin Croat 2019; 58:757-766. [PMID: 32595261 PMCID: PMC7314291 DOI: 10.20471/acc.2019.58.04.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive and fatal degenerative neuromuscular disease with few if any treatment options and physical rehabilitation addressing specific deficits is the most frequent form of therapy. Patients also suffer from depression and increased anxiety. Our purpose was to assess the neurorehabilitation effectiveness in a patient with amyotrophic lateral sclerosis who underwent stem cell transplantation but refused physiotherapy due to depression. Disease progression was followed using the revised Amyotrophic Lateral Sclerosis Functional Rating Scale bimonthly for six months pre- and then post-stem cell transplantation. Psychological traits were assessed using six standardized tests. Quantitative electroencephalogram diagnostics was performed before the first and after the last neurofeedback session, and sessions were conducted on a 3-times-a-week basis. The physiotherapy protocol included proprioceptive neuromuscular facilitation, electrical modalities unit applied to the lumbar spine area, and breathing, relaxation and walking exercises, among others. Increased motivation and marked decrease in the pain level was associated with the patient's willingness to complete physiotherapy, which resulted in improvements in most neuromuscular deficits and in increased respiratory capacity. During the 12 post-rehabilitation months, progression of the disease decelerated, and a positive behavioral change was noted. The study suggested that neurofeedback could be used as a neurorehabilitation component of the personalized complex rehabilitation protocol in patients with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | - Dorota Mroczkowska
- 1Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 2Clinical University Hospital, Olsztyn, Poland; 3Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 4Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Margaret E Huflejt
- 1Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 2Clinical University Hospital, Olsztyn, Poland; 3Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 4Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Wojtkiewicz
- 1Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 2Clinical University Hospital, Olsztyn, Poland; 3Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 4Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Tomasz Siwek
- 1Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 2Clinical University Hospital, Olsztyn, Poland; 3Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 4Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Monika Barczewska
- 1Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 2Clinical University Hospital, Olsztyn, Poland; 3Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 4Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Wojciech Maksymowicz
- 1Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 2Clinical University Hospital, Olsztyn, Poland; 3Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 4Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
19
|
Ronchi G, Morano M, Fregnan F, Pugliese P, Crosio A, Tos P, Geuna S, Haastert-Talini K, Gambarotta G. The Median Nerve Injury Model in Pre-clinical Research - A Critical Review on Benefits and Limitations. Front Cell Neurosci 2019; 13:288. [PMID: 31316355 PMCID: PMC6609919 DOI: 10.3389/fncel.2019.00288] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The successful introduction of innovative treatment strategies into clinical practise strongly depends on the availability of effective experimental models and their reliable pre-clinical assessment. Considering pre-clinical research for peripheral nerve repair and reconstruction, the far most used nerve regeneration model in the last decades is the sciatic nerve injury and repair model. More recently, the use of the median nerve injury and repair model has gained increasing attention due to some significant advantages it provides compared to sciatic nerve injury. Outstanding advantages are the availability of reliable behavioural tests for assessing posttraumatic voluntary motor recovery and a much lower impact on the animal wellbeing. In this article, the potential application of the median nerve injury and repair model in pre-clinical research is reviewed. In addition, we provide a synthetic overview of a variety of methods that can be applied in this model for nerve regeneration assessment. This article is aimed at helping researchers in adequately adopting this in vivo model for pre-clinical evaluation of peripheral nerve reconstruction as well as for interpreting the results in a translational perspective.
Collapse
Affiliation(s)
- Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Michela Morano
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Pierfrancesco Pugliese
- Dipartimento di Chirurgia Generale e Specialistica, Azienda Ospedaliera Universitaria, Ancona, Italy
| | - Alessandro Crosio
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Pierluigi Tos
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
20
|
Abstract
Nerve injury-induced neuropathic pain is difficult to treat. In this study, we used exosomes derived from human umbilical cord mesenchymal stem cell (UCMSC) as a cell-free therapy for nerve injury-induced pain in rats. Isolated UCMSC exosomes range in size from 30 to 160 nm and contain CD63, HSP60, and CD81 exosome markers. After L5/6 spinal nerve ligation surgery, single intrathecal injection of exosomes reversed nerve ligation-induced mechanical and thermal hypersensitivities of right hindpaw of rats at initial and well-developed pain stages. Moreover, continuous intrathecal infusion of exosomes achieved excellent preventive and reversal effects for nerve ligation-induced pain. In immunofluorescent study, lots of Exo-green-labelled exosomes could be found majorly in the ipsilateral L5 spinal dorsal horn, dorsal root ganglion, and peripheral axons, suggesting the homing ability of UCMSC exosomes. They also appeared in the central terminals or cell bodies of IB4, CGRP, and NF200 sensory neurons. In addition, exosome treatment suppressed nerve ligation-induced upregulation of c-Fos, CNPase, GFAP, and Iba1. All these data suggest that the analgesic effects of exosomes may involve their actions on neuron and glial cells. Exosomes also inhibited the level of TNF-α and IL-1β, while enhanced the level of IL-10, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in the ipsilateral L5/6 dorsal root ganglion of nerve-ligated rats, indicating anti-inflammatory and proneurotrophic abilities. Protein analysis revealed the content of vascular endothelial growth factor C, angiopoietin-2, and fibroblast growth factor-2 in the exosomes. In summary, intrathecal infusion of exosomes from UCMSCs may be considered as a novel therapeutic approach for nerve injury-induced pain.
Collapse
|
21
|
Thomi G, Surbek D, Haesler V, Joerger-Messerli M, Schoeberlein A. Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in perinatal brain injury. Stem Cell Res Ther 2019; 10:105. [PMID: 30898154 PMCID: PMC6429800 DOI: 10.1186/s13287-019-1207-z] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background Preterm newborns are at high risk of developing neurodevelopmental deficits caused by neuroinflammation leading to perinatal brain injury. Human Wharton’s jelly mesenchymal stem cells (hWJ-MSC) derived from the umbilical cord have been suggested to reduce neuroinflammation, in part through the release of extracellular vesicle-like exosomes. Here, we studied whether exosomes derived from hWJ-MSC have anti-inflammatory effects on microglia-mediated neuroinflammation in perinatal brain injury. Methods Using ultracentrifugation, we isolated exosomes from hWJ-MSC culture supernatants. In an in vitro model of neuroinflammation, we stimulated immortalized BV-2 microglia and primary mixed glial cells with lipopolysaccharide (LPS) in the presence or absence of exosomes. In vivo, we introduced brain damage in 3-day-old rat pups and treated them intranasally with hWJ-MSC-derived exosomes. Results hWJ-MSC-derived exosomes dampened the LPS-induced expression of inflammation-related genes by BV-2 microglia and primary mixed glial cells. The secretion of pro-inflammatory cytokines by LPS-stimulated primary mixed glial was inhibited by exosomes as well. Exosomes interfered within the Toll-like receptor 4 signaling of BV-2 microglia, as they prevented the degradation of the NFκB inhibitor IκBα and the phosphorylation of molecules of the mitogen-activated protein kinase family in response to LPS stimulation. Finally, intranasally administered exosomes reached the brain and reduced microglia-mediated neuroinflammation in rats with perinatal brain injury. Conclusions Our data suggest that the administration of hWJ-MSC-derived exosomes represents a promising therapy to prevent and treat perinatal brain injury. Electronic supplementary material The online version of this article (10.1186/s13287-019-1207-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gierin Thomi
- Department of Obstetrics and Feto-maternal Medicine, University Women's Hospital, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Daniel Surbek
- Department of Obstetrics and Feto-maternal Medicine, University Women's Hospital, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Valérie Haesler
- Department of Obstetrics and Feto-maternal Medicine, University Women's Hospital, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marianne Joerger-Messerli
- Department of Obstetrics and Feto-maternal Medicine, University Women's Hospital, Inselspital, Bern University Hospital, Bern, Switzerland. .,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, University Women's Hospital, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Barczewska M, Grudniak M, Maksymowicz S, Siwek T, Ołdak T, Jezierska-Woźniak K, Gładysz D, Maksymowicz W. Safety of intrathecal injection of Wharton's jelly-derived mesenchymal stem cells in amyotrophic lateral sclerosis therapy. Neural Regen Res 2019; 14:313-318. [PMID: 30531015 PMCID: PMC6301165 DOI: 10.4103/1673-5374.243723] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Animal experiments have confirmed that mesenchymal stem cells can inhibit motor neuron apoptosis and inflammatory factor expression and increase neurotrophic factor expression. Therefore, mesenchymal stem cells have been shown to exhibit prospects in the treatment of amyotrophic lateral sclerosis. However, the safety of their clinical application needs to be validated. To investigate the safety of intrathecal injection of Wharton's jelly-derived mesenchymal stem cells in amyotrophic lateral sclerosis therapy, 43 patients (16 females and 27 males, mean age of 57.3 years) received an average dose of 0.42 × 106 cells/kg through intrathecal administration at the cervical, thoracic or lumbar region depending on the clinical symptoms. There was a 2 month interval between two injections. The adverse events occurring during a 6-month treatment period were evaluated. No adverse events occurred. Headache occurred in one case only after first injection of stem cells. This suggests that intrathecal injection of Wharton's Jelly-derived mesenchymal stem cells is well tolerated in patients with amyotrophic lateral sclerosis. This study was approved by the Bioethical Committee of School of Medicine, University of Warmia and Mazury in Olsztyn, Poland (approval No. 36/2014 and approval No. 8/2016). This study was registered with the ClinicalTrials.gov (identifier: NCT02881476) on August 29, 2016.
Collapse
Affiliation(s)
- Monika Barczewska
- Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum - University of Warmia and Mazury in Olsztyn; University Clinical Hospital in Olsztyn; Instytut Terapii Komórkowych w Olsztynie (Cell Therapies Institute, FamiCord Group), Olsztyn, Poland
| | - Mariusz Grudniak
- Polski Bank Komórek Macierzystych (PBKM, FamiCord Group), Warszawa, Poland
| | - Stanisław Maksymowicz
- Department of Psychology, Clinical Logopedics and Social Science in Medicine, Faculty of Health Sciences, Collegium Medicum - University of Warmia and Mazury in Olsztyn; Instytut Terapii Komórkowych w Olsztynie (Cell Therapies Institute, FamiCord Group), Olsztyn, Poland
| | - Tomasz Siwek
- Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum - University of Warmia and Mazury in Olsztyn; University Clinical Hospital in Olsztyn; Instytut Terapii Komórkowych w Olsztynie (Cell Therapies Institute, FamiCord Group), Olsztyn, Poland
| | - Tomasz Ołdak
- Polski Bank Komórek Macierzystych (PBKM, FamiCord Group), Warszawa, Poland
| | - Katarzyna Jezierska-Woźniak
- Department of Neurology and Neurosurgery, Laboratory of Regenerative Medicine, School of Medicine, Collegium Medicum-University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Dominika Gładysz
- Polski Bank Komórek Macierzystych (PBKM, FamiCord Group), Warszawa, Poland
| | - Wojciech Maksymowicz
- Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum - University of Warmia and Mazury in Olsztyn; University Clinical Hospital in Olsztyn, Olsztyn, Poland
| |
Collapse
|
23
|
Babaee A, Nematollahi-Mahani SN, Shojaei M, Dehghani-Soltani S, Ezzatabadipour M. Effects of polarized and non-polarized red-light irradiation on proliferation of human Wharton's jelly-derived mesenchymal cells. Biochem Biophys Res Commun 2018; 504:871-877. [PMID: 30219226 DOI: 10.1016/j.bbrc.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/02/2018] [Indexed: 02/08/2023]
Abstract
Light emitting diode (LED) irradiation has recently been introduced as an encouraging strategy for promotion of cell proliferation. Human umbilical cord Wharton's jelly-derived mesenchymal (hUCM) cells are among the most available mesenchymal cells with a promising application in regenerative medicine. The aim of the present study was to examine the effect of polarized (PL) and non-polarized (NPL) red-light emitted by LED on various proliferation properties of hUCM cells. Cell proliferation was assessed 48 h after irradiation of hUCM cells by different energy densities. Cell density increased to a significant level both in PL and NPL irradiation at 0.954 J/cm2 following WST-1 assay. Staining of irradiated and non-irradiated cells with Hoechst after 3 and 6 days revealed an increased proliferation rate in irradiated cells, but the non-irradiated cells proliferated more than irradiated cells at day 9 of cultivation. Similar results were obtained in trypan blue assay. Scratch repair test for 18 h with an interval of 6 h did not reveal a significant difference between irradiated and non-irradiated cells. In addition, CFU-F assay in PL irradiated cells was higher than control when 500 cells/plate was cultivated. Totally, this study revealed that hUCM cells could be induced to achieve higher number of cells by PL and NPL red-light irradiation after 48 h.
Collapse
Affiliation(s)
- Abdolreza Babaee
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Samereh Dehghani-Soltani
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
24
|
Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair. Stem Cells Int 2018; 2018:1731289. [PMID: 29853908 PMCID: PMC5964589 DOI: 10.1155/2018/1731289] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
This review summarizes current advances in dental pulp stem cells (DPSCs) and their potential applications in the nervous diseases. Injured adult mammalian nervous system has a limited regenerative capacity due to an insufficient pool of precursor cells in both central and peripheral nervous systems. Nerve growth is also constrained by inhibitory factors (associated with central myelin) and barrier tissues (glial scarring). Stem cells, possessing the capacity of self-renewal and multicellular differentiation, promise new therapeutic strategies for overcoming these impediments to neural regeneration. Dental pulp stem cells (DPSCs) derive from a cranial neural crest lineage, retain a remarkable potential for neuronal differentiation, and additionally express multiple factors that are suitable for neuronal and axonal regeneration. DPSCs can also express immunomodulatory factors that stimulate formation of blood vessels and enhance regeneration and repair of injured nerve. These unique properties together with their ready accessibility make DPSCs an attractive cell source for tissue engineering in injured and diseased nervous systems. In this review, we interrogate the neuronal differentiation potential as well as the neuroprotective, neurotrophic, angiogenic, and immunomodulatory properties of DPSCs and its application in the injured nervous system. Taken together, DPSCs are an ideal stem cell resource for therapeutic approaches to neural repair and regeneration in nerve diseases.
Collapse
|
25
|
Ji S, Lin S, Chen J, Huang X, Wei CC, Li Z, Tang S. Neuroprotection of Transplanting Human Umbilical Cord Mesenchymal Stem Cells in a Microbead Induced Ocular Hypertension Rat Model. Curr Eye Res 2018; 43:810-820. [PMID: 29505314 DOI: 10.1080/02713683.2018.1440604] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE The purpose of this study is to investigate the potential therapeutic benefits of intravitreally transplanted human umbilical cord mesenchymal stem cells (UC-MSCs) in an animal model of microbead-injection-induced ocular hypertension (OHT). METHODS UC-MSCs were isolated from human umbilical cords and then cultured. The OHT model was induced via intracameral injection of polystyrene microbeads in Sprague-Dawley adult rat eyes. Fifty-four healthy adult rats were randomly divided into three groups: normal control, OHT model treated with intravitreal transplantation of UC-MSCs, or phosphate-buffered saline (PBS). Two days after OHT was induced, either 5 µl 105 UC-MSCs suspension or PBS was injected into the vitreous cavity of rats. UC-MSCs localization and integration were examined via immunohistochemistry. Neuroprotection was quantified by counting retinal ganglion cells (RGCs) and axons 2 weeks following transplantation. The expression levels of glial-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and glial fibrillary acidic protein (GFAP) were assessed via immunohistochemistry and Western blot. Functional recovery was assessed 2 weeks after transplantation via scotopic threshold response (STR) electroretinography. RESULTS Elevated IOP levels were sustained at least 3 weeks after intracameral microbead injection and the number of β-III-tubulin+ RGCs significantly declined compared to PBS-injected eyes. UC-MSCs survived for at least 2 weeks after intravitreal transplantation and predominantly located in the vitreous cavity. A fraction of cells migrated into the ganglion cell layer of host retina, but without differentiation. Intravitreal UC-MSC transplantation resulted in increased number of RGCs, axons, and increased expression of GDNF and BDNF but decreased expression of GFAP. Intravitreal delivery of UC-MSCs significantly improved the recovery of the positive STR. CONCLUSIONS Intravitreal transplantation of UC-MSCs revealed the neuroprotection in the microbead-injection induced OHT. The effects could be related to the secretion of tropic factors (BDNF and GDNF) and the modulation of glial cell activation.
Collapse
Affiliation(s)
- Shangli Ji
- a Aier School of Ophthalmology , Central South University , Changsha , Hunan , China
| | - Saiyue Lin
- b Department of Anatomy and Neurobiology, Xiangya School of Medicine , Central South University , Changsha , Hunan , China
| | - Jiansu Chen
- a Aier School of Ophthalmology , Central South University , Changsha , Hunan , China
| | - Xinping Huang
- c Department of Biology , ShenzhenHornetcorn Biotechnology Co., Ltd , Shenzhen , Guangdong , China
| | - Chih-Chang Wei
- c Department of Biology , ShenzhenHornetcorn Biotechnology Co., Ltd , Shenzhen , Guangdong , China
| | - Zhiyuan Li
- b Department of Anatomy and Neurobiology, Xiangya School of Medicine , Central South University , Changsha , Hunan , China
| | - Shibo Tang
- a Aier School of Ophthalmology , Central South University , Changsha , Hunan , China
| |
Collapse
|
26
|
Confalonieri D, Schwab A, Walles H, Ehlicke F. Advanced Therapy Medicinal Products: A Guide for Bone Marrow-derived MSC Application in Bone and Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:155-169. [PMID: 28990462 DOI: 10.1089/ten.teb.2017.0305] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Millions of people worldwide suffer from trauma- or age-related orthopedic diseases such as osteoarthritis, osteoporosis, or cancer. Tissue Engineering (TE) and Regenerative Medicine are multidisciplinary fields focusing on the development of artificial organs, biomimetic engineered tissues, and cells to restore or maintain tissue and organ function. While allogenic and future autologous transplantations are nowadays the gold standards for both cartilage and bone defect repair, they are both subject to important limitations such as availability of healthy tissue, donor site morbidity, and graft rejection. Tissue engineered bone and cartilage products represent a promising and alternative approach with the potential to overcome these limitations. Since the development of Advanced Therapy Medicinal Products (ATMPs) such as TE products requires the knowledge of diverse regulation and an extensive communication with the national/international authorities, the aim of this review is therefore to summarize the state of the art on the clinical applications of human bone marrow-derived stromal cells for cartilage and bone TE. In addition, this review provides an overview of the European legislation to facilitate the development and commercialization of new ATMPs.
Collapse
Affiliation(s)
- Davide Confalonieri
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Andrea Schwab
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Heike Walles
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany .,2 Translational Center Wuerzburg "Regenerative Therapies in Oncology and Musculoskeletal Disease," Wuerzburg, Germany
| | - Franziska Ehlicke
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| |
Collapse
|
27
|
Estiri H, Fallah A, Soleimani M, Aliaghaei A, Karimzadeh F, Babaei Abraki S, Ghahremani MH. Stable Knockdown of Adenosine Kinase by Lentiviral Anti-ADK miR-shRNAs in Wharton's Jelly Stem Cells. CELL JOURNAL 2017; 20:1-9. [PMID: 29308612 PMCID: PMC5759670 DOI: 10.22074/cellj.2018.4916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 02/09/2017] [Indexed: 12/02/2022]
Abstract
Objective In this study, we describe an efficient approach for stable knockdown of adenosine kinase (ADK) using lentiviral
system, in an astrocytoma cell line and in human Wharton’s jelly mesenchymal stem cells (hWJMSCs). These sources of stem
cells besides having multilineage differentiation potential and immunomodulatory activities, are easily available in unlimited
numbers, do not raise ethical concerns and are attractive for gene manipulation and cell-based gene therapy.
Materials and Methods In this experimental study, we targeted adenosine kinase mRNA at 3' and performed coding
sequences using eight miR-based expressing cassettes of anti-ADK short hairpin RNA (shRNAs). First, these cassettes with
scrambled control sequences were cloned into expressing lentiviral pGIPZ vector. Quantitative real time-polymerase chain
reaction (qRT-PCR) was used to screen multi-cassettes anti-ADK miR-shRNAs in stably transduced U-251 MG cell line and
measuring ADK gene expression at mRNA level. Extracted WJMSCs were characterized using flow cytometry for expressing
mesenchymal specific marker (CD44+) and lack of expression of hematopoietic lineage marker (CD45-). Then, the lentiviral
vector that expressed the most efficient anti-ADK miR-shRNA, was employed to stably transduce WJMSCs.
Results Transfection of anti-ADK miR-shRNAs in HEK293T cells using CaPO4 method showed high efficiency. We
successfully transduced U-251 cell line by recombinant lentiviruses and screened eight cassettes of anti-ADK miR-
shRNAs in stably transduced U-251 MG cell line by qRT-PCR. RNAi-mediated down-regulation of ADK by lentiviral
system indicated up to 95% down-regulation of ADK. Following lentiviral transduction of WJMSCs with anti-ADK miR-
shRNA expression cassette, we also implicated, down-regulation of ADK up to 95% by qRT-PCR and confirmed it by
western blot analysis at the protein level.
Conclusion Our findings indicate efficient usage of shRNA cassette for ADK knockdown. Engineered WJMSCs with
genome editing methods like CRISPR/cas9 or more safe viral systems such as adeno-associated vectors (AAV) might
be an attractive source in cell-based gene therapy and may have therapeutic potential for epilepsy.
Collapse
Affiliation(s)
- Hajar Estiri
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Institute of Cell and Gene therapy, Tehran, Iran
| | - Ali Fallah
- Bioviva Science USA, Seattle, USA.,Iranian Institute of Cell and Gene therapy, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Aliaghaei
- Neuroscience Lab, Department of Anatomy and Cell Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Zhang B, Zhang J, Shi H, Mao F, Wang J, Yan Y, Zhang X, Qian H, Xu W. A novel method to isolate mesenchymal stem cells from mouse umbilical cord. Mol Med Rep 2017; 17:861-869. [PMID: 29115623 PMCID: PMC5780165 DOI: 10.3892/mmr.2017.7950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 05/11/2017] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs), derived from various tissues, are considered an ideal cell source for clinical use, among which MSCs from the umbilical cord exhibit advantages over those from adult tissues. In preclinical studies, mouse models and xenogeneic MSC treatment are most commonly used to imitate diseases and clinical practice, respectively. However, the efficiency of cross-species therapy remains controversial, making it difficult to elucidate the underlying mechanisms. Thus, allogeneic therapy may be more instructive and meaningful in clinical use. To confirm this hypothesis, the present study established a novel method for the isolation and expansion of MSCs from mouse umbilical cords (mUC-MSCs) to support in vivo experiments in mice. MSCs were isolated from mUCs and mouse bone marrow (mBM), and then identified by flow cytometry. The differences in mUC-MSCs and mBM-MSCs were analyzed using a growth curve and their differentiation ability. The results showed that the harvested cells exhibited general characteristics of MSCs and possessed the capacity for long-term culture. Despite having similar morphology and surface antigens to MSCs derived from mouse bone marrow, the mUC-MSCs showed differences in purification, proliferation, stem cell markers and differentiation. In addition to detailed characterization, the present study verified the presence of Toll-like receptor 3 (TLR3), an important component of immune responses, in mUC-MSCs. It was found that the activation of TLR3 upregulated the levels of stemness-related proteins, and enhanced the secretion and mRNA levels of inflammatory cytokines in the pre-treated mUC-MSCs. Collectively, the results of the present study provide further insight into the features of newly established mUC-MSCs, providing novel evidence for the selection of murine MSCs and their responses to TLR3 priming.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jie Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Shi
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Juanjuan Wang
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yongmin Yan
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
29
|
Tang BL. The use of mesenchymal stem cells (MSCs) for amyotrophic lateral sclerosis (ALS) therapy – a perspective on cell biological mechanisms. Rev Neurosci 2017; 28:725-738. [DOI: 10.1515/revneuro-2017-0018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
AbstractRecent clinical trials of mesenchymal stem cells (MSCs) transplantation have demonstrated procedural safety and clinical proof of principle with a modest indication of benefit in patients with amyotrophic lateral sclerosis (ALS). While replacement therapy remained unrealistic, the clinical efficacy of this therapeutic option could be potentially enhanced if we could better decipher the mechanisms underlying some of the beneficial effects of transplanted cells, and work toward augmenting or combining these in a strategic manner. Novel ways whereby MSCs could act in modifying disease progression should also be explored. In this review, I discuss the known, emerging and postulated mechanisms of action underlying effects that transplanted MSCs may exert to promote motor neuron survival and/or to encourage regeneration in ALS. I shall also speculate on how transplanted cells may alter the diseased environment so as to minimize non-neuron cell autonomous damages by immune cells and astrocytes.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
30
|
Bustos F, Sepúlveda H, Prieto CP, Carrasco M, Díaz L, Palma J, Lattus J, Montecino M, Palma V. Runt-Related Transcription Factor 2 Induction During Differentiation of Wharton's Jelly Mesenchymal Stem Cells to Osteoblasts Is Regulated by Jumonji AT-Rich Interactive Domain 1B Histone Demethylase. Stem Cells 2017; 35:2430-2441. [DOI: 10.1002/stem.2704] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/26/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Francisco Bustos
- Laboratory of Stem Cells and Development; Faculty of Sciences, Universidad de Chile, Ñuñoa; Santiago Chile
- FONDAP Center for Genome Regulation.; Santiago Chile
- Sir James Black Centre, School of Life Sciences; University of Dundee; Dundee United Kingdom
| | - Hugo Sepúlveda
- FONDAP Center for Genome Regulation.; Santiago Chile
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello.; Santiago Chile
| | - Catalina P. Prieto
- Laboratory of Stem Cells and Development; Faculty of Sciences, Universidad de Chile, Ñuñoa; Santiago Chile
- FONDAP Center for Genome Regulation.; Santiago Chile
| | - Margarita Carrasco
- FONDAP Center for Genome Regulation.; Santiago Chile
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello.; Santiago Chile
| | - Lorena Díaz
- Laboratory of Stem Cells and Development; Faculty of Sciences, Universidad de Chile, Ñuñoa; Santiago Chile
| | - José Palma
- Laboratory of Stem Cells and Development; Faculty of Sciences, Universidad de Chile, Ñuñoa; Santiago Chile
| | - José Lattus
- Department of Obstetrics and Gynecology; Dr. Luis Tisné Brousse Hospital, Universidad de Chile, Campus Oriente.; Peñalolén Santiago Chile
| | - Martín Montecino
- FONDAP Center for Genome Regulation.; Santiago Chile
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello.; Santiago Chile
| | - Verónica Palma
- Laboratory of Stem Cells and Development; Faculty of Sciences, Universidad de Chile, Ñuñoa; Santiago Chile
- FONDAP Center for Genome Regulation.; Santiago Chile
| |
Collapse
|
31
|
Dehghani-Soltani S, Shojaee M, Jalalkamali M, Babaee A, Nematollahi-Mahani SN. Effects of light emitting diode irradiation on neural differentiation of human umbilical cord-derived mesenchymal cells. Sci Rep 2017; 7:9976. [PMID: 28855704 PMCID: PMC5577274 DOI: 10.1038/s41598-017-10655-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022] Open
Abstract
Recently, light emitting diodes (LEDs) have been introduced as a potential physical factor for proliferation and differentiation of various stem cells. Among the mesenchymal stem cells human umbilical cord matrix-derived mesenchymal (hUCM) cells are easily propagated in the laboratory and their low immunogenicity make them more appropriate for regenerative medicine procedures. We aimed at this study to evaluate the effect of red and green light emitted from LED on the neural lineage differentiation of hUCM cells in the presence or absence of retinoic acid (RA). Harvested hUCM cells exhibited mesenchymal and stemness properties. Irradiation of these cells by green and red LED with or without RA pre-treatment successfully differentiated them into neural lineage when the morphology of the induced cells, gene expression pattern (nestin, β-tubulin III and Olig2) and protein synthesis (anti-nestin, anti-β-tubulin III, anti-GFAP and anti-O4 antibodies) was evaluated. These data point for the first time to the fact that LED irradiation and optogenetic technology may be applied for neural differentiation and neuronal repair in regenerative medicine.
Collapse
Affiliation(s)
- Samereh Dehghani-Soltani
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahshid Jalalkamali
- Semiconductors Group, Photonics Research Center, Graduate University of Advanced Technology, Kerman, Iran
| | - Abdolreza Babaee
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
32
|
Caprnda M, Kubatka P, Gazdikova K, Gasparova I, Valentova V, Stollarova N, La Rocca G, Kobyliak N, Dragasek J, Mozos I, Prosecky R, Siniscalco D, Büsselberg D, Rodrigo L, Kruzliak P. Immunomodulatory effects of stem cells: Therapeutic option for neurodegenerative disorders. Biomed Pharmacother 2017; 91:60-69. [PMID: 28448871 DOI: 10.1016/j.biopha.2017.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022] Open
Abstract
Stem cells have the capability of self-renewal and can differentiate into different cell types that might be used in regenerative medicine. Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) currently lack effective treatments. Although stem cell therapy is still on the way from bench to bedside, we consider that it might provide new hope for patients suffering with neurodegenerative diseases. In this article, we will give an overview of recent studies on the potential therapeutic use of mesenchymal stem cells (MSCs), neural stem cells (NSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and perinatal stem cells to neurodegenerative disorders and we will describe their immunomodulatory mechanisms of action in specific therapeutic modalities.
Collapse
Affiliation(s)
- Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia; Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovakia; Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Iveta Gasparova
- Institute of Biology, Genetics and Medical Genetics, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Vanda Valentova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Nadezda Stollarova
- Catholic University in Ružomberok, Faculty of Pedagogy, Department of Biology and Ecology, Ružomberok, Slovakia
| | - Giampiero La Rocca
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo and Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Jozef Dragasek
- 1st Department of Psychiatry, Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovakia
| | - Ioana Mozos
- Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Robert Prosecky
- Department of Internal Medicine, Merciful Brotherś Hospital, Brno, Czech Republic
| | - Dario Siniscalco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Dietrich Büsselberg
- Weill Cornell Medical College in Qatar, Qatar Foundation - Education City, Doha, Qatar
| | - Luis Rodrigo
- University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic; 2nd Department of Surgery, Faculty of Medicine,St. Annés University Hospital, Brno, Czech Republic.
| |
Collapse
|
33
|
Oses C, Olivares B, Ezquer M, Acosta C, Bosch P, Donoso M, Léniz P, Ezquer F. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy. PLoS One 2017; 12:e0178011. [PMID: 28542352 PMCID: PMC5438173 DOI: 10.1371/journal.pone.0178011] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/06/2017] [Indexed: 12/24/2022] Open
Abstract
Diabetic neuropathy (DN) is one of the most frequent and troublesome complications of diabetes mellitus. Evidence from diabetic animal models and diabetic patients suggests that reduced availability of neuroprotective and pro-angiogenic factors in the nerves in combination with a chronic pro-inflammatory microenvironment and high level of oxidative stress, contribute to the pathogenesis of DN. Mesenchymal stem cells (MSCs) are of great interest as therapeutic agents for regenerative purposes, since they can secrete a broad range of cytoprotective and anti-inflammatory factors. Therefore, the use of the MSC secretome may represent a promising approach for DN treatment. Recent data indicate that the paracrine potential of MSCs could be boosted by preconditioning these cells with an environmental or pharmacological stimulus, enhancing their therapeutic efficacy. In the present study, we observed that the preconditioning of human adipose tissue-derived MSCs (AD-MSCs) with 150μM or 400μM of the iron chelator deferoxamine (DFX) for 48 hours, increased the abundance of the hypoxia inducible factor 1 alpha (HIF-1α) in a concentration dependent manner, without affecting MSC morphology and survival. Activation of HIF-1α led to the up-regulation of the mRNA levels of pro-angiogenic factors like vascular endothelial growth factor alpha and angiopoietin 1. Furthermore this preconditioning increased the expression of potent neuroprotective factors, including nerve growth factor, glial cell-derived neurotrophic factor and neurotrophin-3, and cytokines with anti-inflammatory activity like IL4 and IL5. Additionally, we observed that these molecules, which could also be used as therapeutics, were also increased in the secretome of MSCs preconditioned with DFX compared to the secretome obtained from non-preconditioned cells. Moreover, DFX preconditioning significantly increased the total antioxidant capacity of the MSC secretome and they showed neuroprotective effects when evaluated in an in vitro model of DN. Altogether, our findings suggest that DFX preconditioning of AD-MSCs improves their therapeutic potential and should be considered as a potential strategy for the generation of new alternatives for DN treatment.
Collapse
Affiliation(s)
- Carolina Oses
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo. Av. Las Condes, Santiago, Chile
| | - Belén Olivares
- Centro de Química Médica, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo. Av. Las Condes, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo. Av. Las Condes, Santiago, Chile
| | - Cristian Acosta
- Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Facultad de Medicina, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Paul Bosch
- Facultad de Ingeniería, Universidad del Desarrollo. Av. Plaza, Santiago, Chile
| | - Macarena Donoso
- Facultad de Ingeniería, Universidad del Desarrollo. Av. Plaza, Santiago, Chile
| | - Patricio Léniz
- Unidad de Cirugía Plástica, Reparadora y Estética, Clínica Alemana. Av. Vitacura, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo. Av. Las Condes, Santiago, Chile
- * E-mail:
| |
Collapse
|
34
|
Bonilla-Porras AR, Velez-Pardo C, Jimenez-Del-Rio M. Fast transdifferentiation of human Wharton's jelly mesenchymal stem cells into neurospheres and nerve-like cells. J Neurosci Methods 2017; 282:52-60. [PMID: 28286110 DOI: 10.1016/j.jneumeth.2017.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/02/2017] [Accepted: 03/06/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND The human mesenchymal stem cells derived from Wharton's jelly tissue (hWJ-MSCs) represent a tool for cell-based therapies and regenerative medicine. hWJ-MSCs form neurospheres (NSs) within 3-7 days. No data is available to establish the neuro-phenotypic markers and time of formation of nerve-like (NLCs) and glial cells from NSs derived from hWJ-MSCs. NEW METHOD: hWJ-MSCs were incubated with Fast-N-Spheres medium for 24 and 72h. The new formed NSs were in turn incubated with forskolin in neurogenic NeuroForsk medium for 1-7days. RESULTS hWJ-MSCs cultured with Fast-N-Spheres medium trans-differentiated into NSs in just 24h compared to 72h for hWJ-MSCs cultured with classic growth factor medium. The NSs generated from the Fast-N-Spheres medium expressed reduced levels SOX2, OCT4 and NANOG, as markers of pluripotency compared to undifferentiated hWJ-MSCs. The formed NSs exposed to NeuroForsk medium differentiated into NLCs in 4days as evidenced by high levels of protein expression of the neuronal markers, and no expression of the glial marker GFAP. COMPARISON WITH EXISTING METHOD(S) Currently, the formation and harvest of NSs is expensive and time consuming. Published protocols require 3-7days to form NSs from whole human umbilical cord MSCs. We report for the first time, to our knowledge, the differentiation of NSs-derived from hWJ-MSCs into NLCs. CONCLUSIONS The fastest method to obtain NSs and NLCs from hWJ-MSCs takes only five days using the two-step incubation media Fast-N-Spheres and NeuroForsk.
Collapse
Affiliation(s)
- A R Bonilla-Porras
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59,Building 1, Room 412, SIU Medellin, Colombia
| | - C Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59,Building 1, Room 412, SIU Medellin, Colombia.
| | - M Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59,Building 1, Room 412, SIU Medellin, Colombia.
| |
Collapse
|
35
|
Sabbaghziarani F, Mortezaee K, Akbari M, Kashani IR, Soleimani M, Moini A, Ataeinejad N, Zendedel A, Hassanzadeh G. Retinoic acid-pretreated Wharton's jelly mesenchymal stem cells in combination with triiodothyronine improve expression of neurotrophic factors in the subventricular zone of the rat ischemic brain injury. Metab Brain Dis 2017; 32:185-193. [PMID: 27549229 DOI: 10.1007/s11011-016-9897-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022]
Abstract
Stroke is the consequence of limited blood flow to the brain with no established treatment to reduce the neurological deficits. Focusing on therapeutic protocols in targeting subventricular zone (SVZ) neurogenesis has been investigated recently. This study was designed to evaluate the effects of retinoic acid (RA)-pretreated Wharton's jelly mesenchymal stem cells (WJ-MSCs) in combination with triiodothyronine (T3) in the ischemia stroke model. Male Wistar rats were used to induce focal cerebral ischemia by middle cerebral artery occlusion (MCAO). There were seven groups of six animals: Sham, Ischemic, WJ-MSCs, RA-pretreated WJ-MSCs, T3, WJ-MSCs +T3, and RA-pretreated WJ-MSCs + T3. The treatment was performed at 24 h after ischemia, and animals were sacrificed one week later for assessments of retinoid X receptor β (RXRβ), brain-derived neurotrophic factor (BDNF), Sox2 and nestin in the SVZ. Pro-inflammatory cytokines in sera were measured at days four and seven after ischemia. RXRβ, BDNF, Sox2 and nestin had the significant expressions in gene and protein levels in the treatment groups, compared with the ischemic group, which were more vivid in the RA-pretreated WJ-MSCs + T3 (p ≤ 0.05). The same trend was also resulted for the levels of TNF-α and IL-6 at four days after ischemia (p ≤ 0.05). In conclusion, application of RA-pretreated WJ-MSCs + T3 could be beneficial in exerting better neurotrophic function probably via modulation of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Fatemeh Sabbaghziarani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Mansooreh Soleimani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashraf Moini
- Department of Gynecology and Obstetrics, Roointan Arash women's Health Research and Education Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Ataeinejad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran.
| |
Collapse
|
36
|
Intravitreal implantation of TPP1-transduced stem cells delays retinal degeneration in canine CLN2 neuronal ceroid lipofuscinosis. Exp Eye Res 2016; 152:77-87. [DOI: 10.1016/j.exer.2016.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022]
|
37
|
Li X, Liu L, Yang J, Yu Y, Chai J, Wang L, Ma L, Yin H. Exosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation. EBioMedicine 2016; 8:72-82. [PMID: 27428420 PMCID: PMC4919539 DOI: 10.1016/j.ebiom.2016.04.030] [Citation(s) in RCA: 338] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC)-derived exosomes have diverse functions in regulating wound healing and inflammation; however, the molecular mechanism of human umbilical cord MSC (hUCMSC)-derived exosomes in regulating burn-induced inflammation is not well understood. We found that burn injury significantly increased the inflammatory reaction of rats or macrophages exposed to lipopolysaccharide (LPS), increased tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) levels and decreased IL-10 levels. hUCMSC-exosome administration successfully reversed this reaction. Further studies showed that miR-181c in the exosomes played a pivotal role in regulating inflammation. Compared to control hUCMSC-exosomes, hUCMSC-exosomes overexpressing miR-181c more effectively suppressed the TLR4 signaling pathway and alleviated inflammation in burned rats. Administration of miR-181c-expressing hUCMSC-exosomes or TLR4 knockdown significantly reduced LPS-induced TLR4 expression by macrophages and the inflammatory reaction. In summary, miR-181c expression in hUCMSC-exosomes reduces burn-induced inflammation by downregulating the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Xiao Li
- Department of Burn & Plastic Surgery, The First Affiliated Hospital to PLA General Hospital, Beijing 100048, China
| | - Lingying Liu
- Department of Burn & Plastic Surgery, The First Affiliated Hospital to PLA General Hospital, Beijing 100048, China
| | - Jing Yang
- Department of Burn & Plastic Surgery, The First Affiliated Hospital to PLA General Hospital, Beijing 100048, China
| | - Yonghui Yu
- Department of Burn & Plastic Surgery, The First Affiliated Hospital to PLA General Hospital, Beijing 100048, China
| | - Jiake Chai
- Department of Burn & Plastic Surgery, The First Affiliated Hospital to PLA General Hospital, Beijing 100048, China.
| | - Lingyan Wang
- Department of Medical Administration, The First Affiliated Hospital to PLA General Hospital, Beijing 100048, China
| | - Li Ma
- Department of Burn & Plastic Surgery, The First Affiliated Hospital to PLA General Hospital, Beijing 100048, China
| | - Huinan Yin
- Department of Burn & Plastic Surgery, The First Affiliated Hospital to PLA General Hospital, Beijing 100048, China
| |
Collapse
|
38
|
Tissue-specific Differentiation Potency of Mesenchymal Stromal Cells from Perinatal Tissues. Sci Rep 2016; 6:23544. [PMID: 27045658 PMCID: PMC4820697 DOI: 10.1038/srep23544] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/09/2016] [Indexed: 12/11/2022] Open
Abstract
Human perinatal tissue is an abundant source of mesenchymal stromal cells(MSCs) and lacks the ethical concerns. Perinatal MSCs can be obtained from various tissues as like amnion, chorion, and umbilical cord. Still, little is known of the distinct nature of each MSC type. In this study, we successfully isolated and cultured MSCs from amnion(AMSCs), chorion(CMSCs), and umbilical cord(UC-MSCs). Proliferation potential was different among them, that AMSCs revealed the lowest proliferation rate due to increased Annexin V and senescence-associated β-galactosidase positive cells. We demonstrated distinct characteristic gene expression according to the source of the original tissue using microarray. In particular, genes associated with apoptosis and senescence including CDKN2A were up-regulated in AMSCs. In CMSCs, genes associated with heart morphogenesis and blood circulation including HTR2B were up-regulated. Genes associated with neurological system processes including NPY were up-regulated in UC-MSCs. Quantitative RT-PCR confirmed the gene expression data. And in vitro differentiation of MSCs demonstrated that CMSCs and UC-MSCs had a more pronounced ability to differentiate into cardiomyocyte and neural cells, respectively. This study firstly demonstrated the innate tissue-specific differentiation potency of perinatal MSCs which can be helpful in choosing more adequate cell sources for better outcome in a specific disease.
Collapse
|
39
|
Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products. Stem Cells Int 2016; 2016:9756973. [PMID: 26880998 PMCID: PMC4736584 DOI: 10.1155/2016/9756973] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells' secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest.
Collapse
|
40
|
Kramerov AA, Ljubimov AV. Stem cell therapies in the treatment of diabetic retinopathy and keratopathy. Exp Biol Med (Maywood) 2015; 241:559-68. [PMID: 26454200 DOI: 10.1177/1535370215609692] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nonproliferative diabetic retinopathy (DR) is characterized by multiple degenerative changes that could be potentially corrected by stem cell therapies. Most studies so far have attempted to alleviate typical abnormalities of early retinopathy, including vascular hyperpermeability, capillary closure and pericyte dropout. Success was reported with adult stem cells (vascular progenitors or adipose stem cells), as well as induced pluripotent stem cells from cord blood. The cells were able to associate with damaged vessels in both pericyte and endothelial lining positions in models of DR and ischemia-reperfusion. In some diabetic models, functional amelioration of vasculature and electroretinograms was noted. Another approach for endogenous progenitor cell therapy is to normalize dysfunctional diabetic bone marrow and residing endothelial progenitors using NO donors, PPAR-δ and -γ agonists, or inhibition of TGF-β. A potentially important strategy would be to reduce neuropathy by stem cell inoculations, either naïve (e.g., paracrine-acting adipose stem cells) or secreting specific neuroprotectants, such as ciliary neurotrophic factor or brain-derived neurotrophic factor that showed benefit in amyotrophic lateral sclerosis and Parkinson's disease. Recent advances in stem cell therapies for diabetic retinal microangiopathy may form the basis of first clinical trials in the near future. Additionally, stem cell therapies may prove beneficial for diabetic corneal disease (diabetic keratopathy) with pronounced epithelial stem cell dysfunction.
Collapse
Affiliation(s)
- Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
41
|
Magro G, Musumeci G, Parenti R. Immunomarkers in human developing and pediatric neoplastic tissues. Acta Histochem 2015; 117:311-2. [PMID: 25891910 DOI: 10.1016/j.acthis.2015.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|