1
|
Liu F, Su R, Jiang X, Wang S, Mu W, Chang L. Advanced micro/nano-electroporation for gene therapy: recent advances and future outlook. NANOSCALE 2024; 16:10500-10521. [PMID: 38757536 DOI: 10.1039/d4nr01408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Gene therapy is a promising disease treatment approach by editing target genes, and thus plays a fundamental role in precision medicine. To ensure gene therapy efficacy, the effective delivery of therapeutic genes into specific cells is a key challenge. Electroporation utilizes short electric pulses to physically break the cell membrane barrier, allowing gene transfer into the cells. It dodges the off-target risks associated with viral vectors, and also stands out from other physical-based gene delivery methods with its high-throughput and cargo-accelerating features. In recent years, with the help of advanced micro/nanotechnology, micro/nanostructure-integrated electroporation (micro/nano-electroporation) techniques and devices have significantly improved cell viability, transfection efficiency and dose controllability of the electroporation strategy, enhancing its application practicality especially in vivo. This technical advancement makes micro/nano-electroporation an effective and versatile tool for gene therapy. In this review, we first introduce the evolution of electroporation technique with a brief explanation of the perforation mechanism, and then provide an overview of the recent advancements and prospects of micro/nano-electroporation technology in the field of gene therapy. To comprehensively showcase the latest developments of micro/nano-electroporation technology in gene therapy, we focus on discussing micro/nano-electroporation devices and current applications at both in vitro and in vivo levels. Additionally, we outline the ongoing clinical studies of gene electrotransfer (GET), revealing the tremendous potential of electroporation-based gene delivery in disease treatment and healthcare. Lastly, the challenges and future directions in this field are discussed.
Collapse
Affiliation(s)
- Feng Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Rongtai Su
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xinran Jiang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Siqi Wang
- Department of General Surgery and Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Mu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
2
|
Suffian IFBM, Al-Jamal KT. Bioengineering of virus-like particles as dynamic nanocarriers for in vivo delivery and targeting to solid tumours. Adv Drug Deliv Rev 2022; 180:114030. [PMID: 34736988 DOI: 10.1016/j.addr.2021.114030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Virus-like particles (VLPs) are known as self-assembled, non-replicative and non-infectious protein particles, which imitate the formation and structure of original wild type viruses, however, lack the viral genome and/or their fragments. The capacity of VLPs to encompass small molecules like nucleic acids and others has made them as novel vessels of nanocarriers for drug delivery applications. In addition, VLPs surface have the capacity to achieve variation of the surface display via several modification strategies including genetic modification, chemical modification, and non-covalent modification. Among the VLPs nanocarriers, Hepatitis B virus core (HBc) particles have been the most encouraging candidate. HBc particles are hollow nanoparticles in the range of 30-34 nm in diameter and 7 nm thick envelopes, consisting of 180 or 240 copies of identical polypeptide monomer. They also employ a distinctive position among the VLPs carriers due to the high-level synthesis, which serves as a strong protective capsid shell and efficient self-assembly properties. This review highlights on the bioengineering of HBc particles as dynamic nanocarriers for in vivo delivery and specific targeting to solid tumours.
Collapse
Affiliation(s)
- Izzat F B M Suffian
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (Kuantan Campus), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
3
|
Basu I, Maiti PK. Insight into the Mechanism of Carrier-Mediated Delivery of siRNA in the Cell Membrane Using MD Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:266-277. [PMID: 33369423 DOI: 10.1021/acs.langmuir.0c02871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effective translocation of small interfering RNA (siRNA) across cell membranes has become one of the main challenges in gene silencing therapy. In this study, we have carried out molecular dynamics simulations to investigate a systematic procedure with different carriers that could be convenient for efficient siRNA delivery into the cell. Starting with poly-amido-amine (PAMAM) dendrimers and cholesterol molecules as carriers, we have found cholesterol as the most efficient carrier for siRNA when it is covalently attached with the siRNA terminal group. Our simulations show that binding of this complex in the lipid membrane alters the structure and dynamics of the nearby lipids to initiate the translocation process. Potential of mean force (PMF) was computed for siRNA with the carriers along the bilayer normal to understand the spontaneity of the process. Though all the PMF profiles show repulsive interaction inside the bilayer, the siRNA with cholesterol shows a comparative attractive interaction (∼27 kcal/mol) with respect to the siRNA-PAMAM complex. Altogether, our results demonstrate the binding interaction of the siRNA-carrier complex in the lipid membrane and propose a theoretical model for the efficient carrier by comparative study of the binding. The probable mechanism of the translocation process is also provided by the alteration of the lipid structure and dynamics for specifically siRNA-cholesterol binding.
Collapse
Affiliation(s)
- Ipsita Basu
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
4
|
Abstract
Small interfering RNA (siRNA) is a clinically approved therapeutic modality, which has attracted widespread attention not only from basic research but also from pharmaceutical industry. As siRNA can theoretically modulate any disease-related gene's expression, plenty of siRNA therapeutic pipelines have been established by tens of biotechnology companies. The drug performance of siRNA heavily depends on the sequence, the chemical modification, and the delivery of siRNA. Here, we describe the rational design protocol of siRNA, and provide some modification patterns that can enhance siRNA's stability and reduce its off-target effect. Also, the delivery method based on N-acetylgalactosamine (GalNAc)-siRNA conjugate that is widely employed to develop therapeutic regimens for liver-related diseases is also recapitulated.
Collapse
Affiliation(s)
- Mei Lu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, and Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, and Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, and Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, and Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
5
|
Tanoi T, Tamura T, Sano N, Nakayama K, Fukunaga K, Zheng YW, Akhter A, Sakurai Y, Hayashi Y, Harashima H, Ohkohchi N. Protecting liver sinusoidal endothelial cells suppresses apoptosis in acute liver damage. Hepatol Res 2016; 46:697-706. [PMID: 26490536 DOI: 10.1111/hepr.12607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023]
Abstract
AIM Apoptosis is associated with various types of hepatic disorders. We have developed a novel cell-transfer drug delivery system (DDS) using a multifunctional envelope-type nano device that targets liver sinusoidal endothelial cells (LSECs). The purpose of this study was to determine the efficacy of the novel DDS containing siRNA at suppressing apoptosis in LSECs. METHODS Bax siRNA was transfected into a sinusoidal endothelial cell line (M1) to suppress apoptosis induced by an anti-Fas antibody and staurosporine. C57BL/6J mice were divided into three groups: (i) a control group, only intravenous saline; (ii) a nonselective group, injections of siRNA sealed in the nonselective DDS; and (iii) an LSEC-transfer efficient group, injections of siRNA sealed in an LSEC-transfer efficient DDS. Hepatic cell apoptosis was induced by an anti-Fas antibody. RESULTS Bax siRNA had an anti-apoptotic effect on M1 cells. Serum alanine aminotransferase was reduced in the LSEC-transfer efficient group, as were cleaved caspase-3 and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling positive hepatocytes. Silver impregnation staining indicated that the sinusoidal space was maintained in the LSEC-transfer efficient group but not in the other groups. Electron microscopy showed that the LSECs were slightly impaired, although the sinusoidal structure was maintained in the LSEC-transfer efficient group. CONCLUSION Hepatocyte apoptosis was reduced by the efficient suppression of LSEC apoptosis with a novel DDS. Protecting the sinusoidal structure by suppressing LSEC damage will be an effective treatment for acute liver failure.
Collapse
Affiliation(s)
- Tomohito Tanoi
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takafumi Tamura
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoki Sano
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ken Nakayama
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kiyoshi Fukunaga
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yun-Wen Zheng
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Afsana Akhter
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Sakurai
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Hayashi
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Nobuhiro Ohkohchi
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Sengupta A, Mezencev R, McDonald JF, Prausnitz MR. Delivery of siRNA to ovarian cancer cells using laser-activated carbon nanoparticles. Nanomedicine (Lond) 2016; 10:1775-84. [PMID: 26080699 DOI: 10.2217/nnm.15.27] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM The RNAi-mediated knockdown of gene expression is an attractive tool for research and therapeutic purposes but its implementation is challenging. Here we report on a new method based on photoacoustic delivery of siRNA developed to address some of these challenges. MATERIALS & METHODS Physical properties and photoacoustic emission of carbon black (CB) particles upon near-infrared laser irradiation were characterized. Next, ovarian cancer cells Hey A8-F8 were exposed to near-infrared nanosecond laser pulses in the presence of siRNA targeting EGFR gene and CB particles. The intracellular delivery of siRNA and silencing of the target gene were determined by specific qPCR assays. RESULTS & CONCLUSION Laser-activated CB nanoparticles generated photoacoustic emission and enabled intracellular delivery of siRNA and significant knockdown of its target EGFR mRNA. This physical method represents a new promising approach to targeted therapeutic delivery of siRNA.
Collapse
Affiliation(s)
- Aritra Sengupta
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roman Mezencev
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - John F McDonald
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mark R Prausnitz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
Glebova K, Reznik ON, Reznik AO, Mehta R, Galkin A, Baranova A, Skoblov M. siRNA technology in kidney transplantation: current status and future potential. BioDrugs 2015; 28:345-61. [PMID: 24573958 DOI: 10.1007/s40259-014-0087-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kidney transplantation is one of the most common transplantation operations in the world, accounting for up to 50 % of all transplantation surgeries. To curtail the damage to transplanted organs that is caused by ischemia-reperfusion injury and the recipient's immune system, small interfering RNA (siRNA) technology is being explored. Importantly, the kidney as a whole is a preferential site for non-specific systemic delivery of siRNA. To date, most attempts at siRNA-based therapy for transplantation-related conditions have remained at the in vitro stage, with only a few of them being advanced into animal models. Hydrodynamic intravenous injection of naked or carrier-bound siRNAs is currently the most common route for delivery of therapeutic constructs. To our knowledge, no systematic screens for siRNA targets most relevant for kidney transplantation have been attempted so far. A majority of researchers have arrived at one or another target of interest by analyzing current literature that dissects pathological processes taking place in transplanted organs. A majority of the genes that make up the list of 53 siRNA targets that have been tested in transplantation-related models so far belong to either apoptosis- or immune rejection-centered networks. There is an opportunity for therapeutic siRNA combinations that may be delivered within the same delivery vector or injected at the same time and, by targeting more than one pathway, or by hitting the same pathways within two different key points, will augment the effects of each other.
Collapse
Affiliation(s)
- Kristina Glebova
- Research Center for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
8
|
Ho CM, Chen YH, Chien CS, Ho YT, Ho SL, Hu RH, Chen HL, Lee PH. Transplantation speed offers early hepatocyte engraftment in acute liver injured rats: A translational study with clinical implications. Liver Transpl 2015; 21:652-61. [PMID: 25821041 DOI: 10.1002/lt.24106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/31/2014] [Accepted: 02/08/2015] [Indexed: 01/10/2023]
Abstract
The impact of the rate of intraportal hepatocyte transplantation on early engraftment and repopulation is unclear. The aim of this study was to address this and to improve the engraftment and repopulation efficiencies of hepatocyte transplantation for the treatment of a rat model of acute liver failure in a clinically useful way without preconditioning. Acute hepatic injury was induced into Sprague-Dawley rats with D-galactosamine. Hepatocytes were infused intraportally over a period of 30, 70, or 100 seconds to study early engraftment (2 days) and repopulation (7 days). Three groups had significant differences in hepatocyte engraftment (P = 0.018) and repopulation efficiencies (P = 0.037), and an infusion over a period of 70 seconds produced superior outcomes. After the 70-second infusion, the transplanted cells immediately transmigrated the sinusoidal endothelial layer and rarely accumulated in the portal venules, with liver function improving significantly. The mean first peak pressures, without significant differences, were 14.8 ± 6.5, 17.7 ± 3.7, and 13.6 ± 3.0 mm Hg in the 30-, 70-, and 100-second groups, respectively. Differential hepatocyte transfusion rates contributed to accelerated early engraftment and repopulation in rats with acute liver injury. These proof-of-concept findings are of clinical significance because they are easy to translate into practice.
Collapse
Affiliation(s)
- Cheng-Maw Ho
- Department of Surgery; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Yang C, Hu R, Anderson T, Wang Y, Lin G, Law WC, Lin WJ, Nguyen QT, Toh HT, Yoon HS, Chen CK, Yong KT. Biodegradable nanoparticle-mediated K-ras down regulation for pancreatic cancer gene therapy. J Mater Chem B 2015; 3:2163-2172. [DOI: 10.1039/c4tb01623h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biodegradable nanoparticle-mediated K-ras siRNA delivery has shown inhibition of cell proliferation, migration and invasion in pancreatic cancer cells.
Collapse
|
10
|
Morishita Y, Yoshizawa H, Watanabe M, Ishibashi K, Muto S, Kusano E, Nagata D. siRNAs targeted to Smad4 prevent renal fibrosis in vivo. Sci Rep 2014; 4:6424. [PMID: 25236771 PMCID: PMC4168270 DOI: 10.1038/srep06424] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/28/2014] [Indexed: 12/21/2022] Open
Abstract
Renal fibrosis is the final common pathway leading to decreased renal function. No therapy has been established to prevent it. In order to establish a therapeutic approach and target molecule for renal fibrosis, we investigated the effects of Smad4 knockdown by siRNAs on renal fibrosis in vivo. Renal fibrosis mice were produced by single intraperitoneal injection of folic acid. siRNAs targeted to Smad4 (Smad4-siRNAs) (5 nmol) were injected into each mouse by systemic tail vein injection three times per week. Non-targeted siRNAs (control-siRNAs) were injected in the same way for a control group. The siRNAs were delivered to the interstitial fibrous area and tubules. Smad4-siRNAs significantly knocked down Smad4 expression and inhibited renal fibrosis. They also inhibited α-SMA-positive myofibroblasts. Control-siRNAs did not show these effects. The results of this study suggest that Smad4 knockdown is one of the crucial therapeutic options for the prevention of renal fibrosis in vivo.
Collapse
Affiliation(s)
- Yoshiyuki Morishita
- 1] Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan [2]
| | - Hiromichi Yoshizawa
- 1] Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan [2]
| | - Minami Watanabe
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Shigeaki Muto
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Eiji Kusano
- Department of Internal Medicine, Utsunomiya Social Insurance Hospital, Tochigi, Japan
| | - Daisuke Nagata
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
11
|
Gao S, Hein S, Dagnæs-Hansen F, Weyer K, Yang C, Nielsen R, Christensen EI, Fenton RA, Kjems J. Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing. Am J Cancer Res 2014; 4:1039-51. [PMID: 25157280 PMCID: PMC4142293 DOI: 10.7150/thno.7866] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/28/2014] [Indexed: 12/05/2022] Open
Abstract
RNAi-based strategies provide a great therapeutic potential for treatment of various human diseases including kidney disorders, but face the challenge of in vivo delivery and specific targeting. The chitosan delivery system has previously been shown to target siRNA specifically to the kidneys in mice when administered intravenously. Here we confirm by 2D and 3D bioimaging that chitosan formulated siRNA is retained in the kidney for more than 48 hours where it accumulates in proximal tubule epithelial cells (PTECs), a process that was strongly dependent on the molecular weight of chitosan. Chitosan/siRNA nanoparticles, administered to chimeric mice with conditional knockout of the megalin gene, distributed almost exclusively in cells that expressed megalin, implying that the chitosan/siRNA particle uptake was mediated by a megalin-dependent endocytotic pathway. Knockdown of the water channel aquaporin 1 (AQP1) by up to 50% in PTECs was achieved utilizing the systemic i.v. delivery of chitosan/AQP1 siRNA in mice. In conclusion, specific targeting PTECs with the chitosan nanoparticle system may prove to be a useful strategy for knockdown of specific genes in PTECs, and provides a potential therapeutic strategy for treating various kidney diseases.
Collapse
|
12
|
Peer D. Harnessing RNAi nanomedicine for precision therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:5. [PMID: 26056574 PMCID: PMC4452054 DOI: 10.1186/2052-8426-2-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/30/2013] [Indexed: 01/05/2023]
Abstract
Utilizing RNA interference as an innovative therapeutic strategy has an immense likelihood to generate novel concepts in precision medicine. Several clinical trials are on the way with some positive initial results. Yet, targeting of RNAi payloads such as small interfering RNAs (siRNAs), microRNA (miR) mimetic or anti-miR (antagomirs) into specific cell types remains a challenge. Major attempts are done for developing nano-sized carriers that could overcome systemic, local and cellular barriers. This progress report will focus on the recent advances in the RNAi world, detailing strategies of systemic passive tissue targeting and active cellular targeting, which is often considered as the holy grail of drug delivery.
Collapse
Affiliation(s)
- Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv, 69978 Israel ; Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv, 69978 Israel ; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
13
|
Peer D. Harnessing RNAi nanomedicine for precision therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:5. [PMID: 26056574 PMCID: PMC4452054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/30/2013] [Indexed: 11/21/2023]
Abstract
Utilizing RNA interference as an innovative therapeutic strategy has an immense likelihood to generate novel concepts in precision medicine. Several clinical trials are on the way with some positive initial results. Yet, targeting of RNAi payloads such as small interfering RNAs (siRNAs), microRNA (miR) mimetic or anti-miR (antagomirs) into specific cell types remains a challenge. Major attempts are done for developing nano-sized carriers that could overcome systemic, local and cellular barriers. This progress report will focus on the recent advances in the RNAi world, detailing strategies of systemic passive tissue targeting and active cellular targeting, which is often considered as the holy grail of drug delivery.
Collapse
Affiliation(s)
- Dan Peer
- />Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv, 69978 Israel
- />Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv, 69978 Israel
- />Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
14
|
Abstract
Hepatocytes, like other epithelia, are situated at the interface between the organism's exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes.
Collapse
Affiliation(s)
- Aleksandr Treyer
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, New York, USA
| | | |
Collapse
|
15
|
Stevenson M, Carlisle R, Davies B, Preece C, Hammett M, Liu WL, Fisher KD, Ryan A, Scrable H, Seymour LW. Development of a Positive-readout Mouse Model of siRNA Pharmacodynamics. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e133. [PMID: 24253258 PMCID: PMC3889190 DOI: 10.1038/mtna.2013.63] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/06/2013] [Indexed: 12/19/2022]
Abstract
Development of RNAi-based therapeutics has the potential to revolutionize treatment options for a range of human diseases. However, as with gene therapy, a major barrier to progress is the lack of methods to achieve and measure efficient delivery for systemic administration. We have developed a positive-readout pharmacodynamic transgenic reporter mouse model allowing noninvasive real-time assessment of siRNA activity. The model combines a luciferase reporter gene under the control of regulatory elements from the lac operon of Escherichia coli. Introduction of siRNA targeting lac repressor results in increased luciferase expression in cells where siRNA is biologically active. Five founder luciferase-expressing and three founder Lac-expressing lines were generated and characterized. Mating of ubiquitously expressing luciferase and lac lines generated progeny in which luciferase expression was significantly reduced compared with the parental line. Administration of isopropyl β-D-1-thiogalactopyranoside either in drinking water or given intraperitoneally increased luciferase expression in eight of the mice examined, which fell rapidly when withdrawn. Intraperitoneal administration of siRNA targeting lac in combination with Lipofectamine 2000 resulted in increased luciferase expression in the liver while control nontargeting siRNA had no effect. We believe a sensitive positive readout pharmacodynamics reporter model will be of use to the research community in RNAi-based vector development.
Collapse
Affiliation(s)
- Mark Stevenson
- Academic Endocrine Unit, OCDEM, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Salzano G, Riehle R, Navarro G, Perche F, De Rosa G, Torchilin VP. Polymeric micelles containing reversibly phospholipid-modified anti-survivin siRNA: a promising strategy to overcome drug resistance in cancer. Cancer Lett 2013; 343:224-31. [PMID: 24099916 DOI: 10.1016/j.canlet.2013.09.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/26/2013] [Indexed: 12/11/2022]
Abstract
The discovery that survivin, a small anti-apoptotic protein, is involved in chemoresistance, opens a new scenario to overcome the drug resistance in cancer. It was shown that siRNA can efficiently inhibit the expression of survivin in cancer cells. However, the clinical use of siRNA is still hampered by an unfavorable pharmacokinetic profile. To address this problem, earlier we developed a novel system to deliver siRNA into cancer cells. Namely, we reversibly modified the survivin siRNA with a phosphothioethanol (PE) portion via a reducible disulfide bond and incorporated the resulting siRNA-S-S-PE conjugate into nanosized polyethyelene glycol 2000-phosphatidyl ethanolamine (PEG2000-PE)-based polymeric micelles (PM), obtaining survivin siRNA PM. The activity of these nanopreparations was evaluated by survivin protein down-regulation, tumor cell growth inhibition, and chemosensitization of the treated tumor cells to paclitaxel (PXL). We found a significant decrease of cell viability and down-regulation of survivin protein levels after treatment with survivin siRNA PM in several cancer cell lines. In addition, the down-regulation of survivin by treating cells with survivin siRNA PM, elicited a significant sensitization of the cells to PXL, in both sensitive and resistant cancer cell lines. Finally, we demonstrated successful co-delivery of PXL and survivin siRNA in the same PM leading to superior therapeutic activity compared to their sequential administration. Our results support the use of this new platform for the treatment of the most aggressive tumors.
Collapse
Affiliation(s)
- G Salzano
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - R Riehle
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - G Navarro
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - F Perche
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - G De Rosa
- Department of Pharmacy, University of Naples, Federico II, Naples, Italy
| | - V P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA.
| |
Collapse
|
17
|
Petrick JS, Brower-Toland B, Jackson AL, Kier LD. Safety assessment of food and feed from biotechnology-derived crops employing RNA-mediated gene regulation to achieve desired traits: a scientific review. Regul Toxicol Pharmacol 2013; 66:167-76. [PMID: 23557984 DOI: 10.1016/j.yrtph.2013.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 01/09/2023]
Abstract
Gene expression can be modulated in plants to produce desired traits through agricultural biotechnology. Currently, biotechnology-derived crops are compared to their conventional counterparts, with safety assessments conducted on the genetic modification and the intended and unintended differences. This review proposes that this comparative safety assessment paradigm is appropriate for plants modified to express mediators of RNA-mediated gene regulation, including RNA interference (RNAi), a gene suppression mechanism that naturally occurs in plants and animals. The molecular mediators of RNAi, including long double-stranded RNAs (dsRNA), small interfering RNAs (siRNA), and microRNAs (miRNA), occur naturally in foods; therefore, there is an extensive history of safe consumption. Systemic exposure following consumption of plants containing dsRNAs that mediate RNAi is limited in higher organisms by extensive degradation of ingested nucleic acids and by biological barriers to uptake and efficacy of exogenous nucleic acids. A number of mammalian RNAi studies support the concept that a large margin of safety will exist for any small fraction of RNAs that might be absorbed following consumption of foods from biotechnology-derived plants that employ RNA-mediated gene regulation. Food and feed derived from these crops utilizing RNA-based mechanisms is therefore expected to be as safe as food and feed derived through conventional plant breeding.
Collapse
Affiliation(s)
- Jay S Petrick
- Monsanto Company, 800 N. Lindbergh Blvd, St. Louis, MO 63167, USA.
| | | | | | | |
Collapse
|
18
|
Thibault PA, Wilson JA. Targeting miRNAs to treat Hepatitis C Virus infections and liver pathology: Inhibiting the virus and altering the host. Pharmacol Res 2013; 75:48-59. [PMID: 23541631 DOI: 10.1016/j.phrs.2013.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 02/06/2023]
Abstract
Hepatitis C Virus (HCV) infection-induced liver disease is a growing problem worldwide, and is the primary cause of liver failure requiring liver transplantation in North America. Improved therapeutic strategies are required to control and possibly eradicate HCV infections, and to modulate HCV-induced liver disease. Cellular microRNAs anneal to and regulate mRNA translation and stability and form a regulatory network that modulates virtually every cellular process. Thus, miRNAs are promising cellular targets for therapeutic intervention for an array of diseases including cancer, metabolic diseases, and virus infections. In this review we outline the features of miRNA regulation and how miRNAs may be targeted in strategies to modulate HCV replication and pathogenesis. In particular, we highlight miR-122, a miRNA that directly modulates the HCV life cycle using an unusual mechanism. This miRNA is very important since miR-122 antagonists dramatically reduced HCV titres in HCV-infected chimpanzees and humans and currently represents the most likely candidate to be the first miRNA-based therapy licensed for use. However, we also discuss other miRNAs that directly or indirectly alter HCV replication efficiency, liver cirrhosis, fibrosis and the development of hepatocellular carcinoma (HCC). We also discuss a few miRNAs that might be targets to treat HCV in cases of HCV/HIV co-infection. Finally, we review methods to deliver miRNA antagonists and mimics to the liver. In the future, it may be possible to design and deliver specific combinations of miRNA antagonists and mimics to cure HCV infection or to limit liver pathogenesis.
Collapse
Affiliation(s)
- Patricia A Thibault
- Department of Microbiology and Immunology and Vaccine and Infectious Disease Organization, University of Saskatchewan, Rm 2D01, HSc Bldg, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | | |
Collapse
|
19
|
Andersen MØ, Dillschneider P, Kjems J. The Role of MicroRNAs in Natural Tissue Development and Application in Regenerative Medicine. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2013. [DOI: 10.1007/978-1-4614-4744-3_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Gallas A, Alexander C, Davies MC, Puri S, Allen S. Chemistry and formulations for siRNA therapeutics. Chem Soc Rev 2013; 42:7983-97. [DOI: 10.1039/c3cs35520a] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
VAKILI SANAZ, EBRAHIMI SHADISADATSEYYED, SADEGHI ASIE, GORGANI-FIRUZJAEE SATTAR, BEIGY MAANI, PASALAR PARVIN, MESHKANI REZA. Hydrodynamic-based delivery of PTP1B shRNA reduces plasma glucose levels in diabetic mice. Mol Med Rep 2012; 7:211-6. [DOI: 10.3892/mmr.2012.1172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/12/2012] [Indexed: 11/06/2022] Open
|
22
|
Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D, Vlassov AV, Smyth HDC. Formulation approaches to short interfering RNA and MicroRNA: challenges and implications. J Pharm Sci 2012; 101:4046-66. [PMID: 22927140 DOI: 10.1002/jps.23300] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 07/10/2012] [Accepted: 08/02/2012] [Indexed: 11/09/2022]
Abstract
RNA interference has emerged as a potentially powerful tool in the treatment of genetic and acquired diseases by delivering short interfering RNA (siRNA) or microRNA (miRNA) to target genes, resulting in their silencing. However, many physicochemical and biological barriers have to be overcome to obtain efficient in vivo delivery of siRNA and miRNA molecules to the organ/tissue of interest, thereby enabling their effective clinical therapy. This review discusses the challenges associated with the use of siRNA and miRNA and describes the nonviral delivery strategies used in overcoming these barriers. More specifically, emphasis has been placed on those technologies that have progressed to clinical trials for both local and systemic siRNA and miRNA delivery.
Collapse
Affiliation(s)
- Diana Guzman-Villanueva
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Texas 78712-0120, USA
| | | | | | | | | |
Collapse
|
23
|
Breton M, Delemotte L, Silve A, Mir LM, Tarek M. Transport of siRNA through Lipid Membranes Driven by Nanosecond Electric Pulses: An Experimental and Computational Study. J Am Chem Soc 2012; 134:13938-41. [DOI: 10.1021/ja3052365] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marie Breton
- Université Paris-Sud, Laboratoire de Vectorologie et Thérapeutiques
Anticancéreuses, UMR 8203, Orsay F-91405, France
- CNRS,
Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses,
UMR 8203, Orsay F-91405, France
- Institut Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques
Anticancéreuses, UMR 8203, Villejuif F-94805, France
| | - Lucie Delemotte
- Université de Lorraine, UMR Structure et Réactivité
des Systèmes Moléculaires Complexes, CNRS, Nancy 54003,
France
| | - Aude Silve
- Université Paris-Sud, Laboratoire de Vectorologie et Thérapeutiques
Anticancéreuses, UMR 8203, Orsay F-91405, France
- CNRS,
Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses,
UMR 8203, Orsay F-91405, France
- Institut Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques
Anticancéreuses, UMR 8203, Villejuif F-94805, France
| | - Lluis M. Mir
- Université Paris-Sud, Laboratoire de Vectorologie et Thérapeutiques
Anticancéreuses, UMR 8203, Orsay F-91405, France
- CNRS,
Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses,
UMR 8203, Orsay F-91405, France
- Institut Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques
Anticancéreuses, UMR 8203, Villejuif F-94805, France
| | - Mounir Tarek
- Université de Lorraine, UMR Structure et Réactivité
des Systèmes Moléculaires Complexes, CNRS, Nancy 54003,
France
| |
Collapse
|
24
|
Podolska K, Svoboda P. Targeting genes in living mammals by RNA interference. Brief Funct Genomics 2011; 10:238-47. [DOI: 10.1093/bfgp/elr013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
Wong HL, Shen Z, Lu Z, Wientjes MG, Au JLS. Paclitaxel tumor-priming enhances siRNA delivery and transfection in 3-dimensional tumor cultures. Mol Pharm 2011; 8:833-40. [PMID: 21417439 PMCID: PMC3109178 DOI: 10.1021/mp1004383] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The clinical development of siRNA cancer therapeutics is limited by the poor interstitial transport and inefficient transfection in solid tumors. We have shown that paclitaxel pretreatment, by inducing apoptosis, causes expansion of the interstitial space and thereby improves nanoparticle delivery and transport in tumor interstitium (referred to as paclitaxel tumor priming) and efficacy of nanomedicines in tumor-bearing animals. The present study evaluated whether paclitaxel tumor priming improves the delivery and transfection of siRNA in 2- and 3-dimensional cultures of human oropharyngeal carcinoma FaDu cells. We used the fluorescent siGLO and confocal microcopy to monitor transport, and used survivin siRNA and immunostaining and immunoblotting to monitor transfection. Survivin is a chemoresistance gene/protein, inducible by chemotherapy. siRNA was loaded in cationic liposomes. The results showed that pretreatment with 50-200 nM paclitaxel (24 or 48 h before siRNA) enhanced the total uptake of siGLO into monolayers (∼15%, p < 0.05), and the depth of penetration into 3-dimensional spheroids and tumor fragment histocultures (2.1- to 2.5-times greater area under the penetration-depth curve). In both monolayer cells and histocultures, paclitaxel pretreatment induced survivin upregulation (p < 0.05). Survivin siRNA alone decreased the survivin levels in a dose-dependent manner, and applying survivin siRNA after paclitaxel pretreatment completely abolished the paclitaxel-induced survivin increases. These findings indicate that paclitaxel tumor priming did not compromise the siRNA functionality. In summary, paclitaxel tumor priming improved the penetration, transfection and functionality of siRNA in tumors, thus offering a promising and practical means to develop chemo-siRNA cancer gene therapy.
Collapse
Affiliation(s)
- Ho Lun Wong
- College of Pharmacy, The Ohio State University, 500 West 12 Avenue, Columbus, OH 43210, USA
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Zancong Shen
- College of Pharmacy, The Ohio State University, 500 West 12 Avenue, Columbus, OH 43210, USA
| | - Ze Lu
- Optimum Therapeutics LLC, OSU Science Tech Village, Columbus, OH 43212, USA
| | - M. Guillaume Wientjes
- College of Pharmacy, The Ohio State University, 500 West 12 Avenue, Columbus, OH 43210, USA
| | - Jessie L.-S. Au
- College of Pharmacy, The Ohio State University, 500 West 12 Avenue, Columbus, OH 43210, USA
| |
Collapse
|
26
|
|
27
|
Takahashi Y, Nishikawa M, Takiguchi N, Suehara T, Takakura Y. Saturation of transgene protein synthesis from mRNA in cells producing a large number of transgene mRNA. Biotechnol Bioeng 2011; 108:2380-9. [PMID: 21520018 DOI: 10.1002/bit.23179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/04/2011] [Accepted: 04/11/2011] [Indexed: 11/12/2022]
Abstract
Experimental results have suggested that transgene expression can be saturated when large amounts of plasmid vectors are delivered into cells. To investigate this saturation kinetic behavior, cells were transfected with monitoring and competing plasmids using cationic liposomes. Even although an identical amount of a monitoring plasmid expressing firefly luciferase (FL) was used for transfection, transgene expression from the plasmid was greatly affected by the level of transgene expression from competing plasmids expressing renilla luciferase (RL). Similar results were obtained by exchanging the monitoring and competing plasmids. The competing plasmid-dependent reduction in transgene expression from the monitoring plasmid was also observed in mouse liver after hydrodynamic injection of plasmids. On the other hand, the mRNA and protein expression level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an endogenous gene, in the liver hardly changed even when transgene expression process is saturated. The expression of FL from a monitoring plasmid was significantly restored by siRNA-mediated degradation of RL mRNA that was expressed from a competing plasmid. These results suggest that the efficiency of protein synthesis from plasmid vectors is reduced when a large amount of mRNA is transcribed with no significant changes in endogenous gene expression.
Collapse
Affiliation(s)
- Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan; telephone: +81-75-753-4580; fax: +81-75-753-4614
| | | | | | | | | |
Collapse
|
28
|
Liesz A, Zhou W, Mracskó É, Karcher S, Bauer H, Schwarting S, Sun L, Bruder D, Stegemann S, Cerwenka A, Sommer C, Dalpke AH, Veltkamp R. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. ACTA ACUST UNITED AC 2011; 134:704-20. [PMID: 21354973 DOI: 10.1093/brain/awr008] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
T lymphocytes are increasingly recognized as key modulators of detrimental inflammatory cascades in acute ischaemic stroke, but the potential of T cell-targeted therapy in brain ischaemia is largely unexplored. Here, we characterize the effect of inhibiting leukocyte very late antigen-4 and endothelial vascular cell adhesion molecule-1-mediated brain invasion-currently the most effective strategy in primary neuroinflammatory brain disease in murine ischaemic stroke models. Very late antigen-4 blockade by monoclonal antibodies improved outcome in models of moderate stroke lesions by inhibiting cerebral leukocyte invasion and neurotoxic cytokine production without increasing the susceptibility to bacterial infections. Gene silencing of the endothelial very late antigen-4 counterpart vascular cell adhesion molecule-1 by in vivo small interfering RNA injection resulted in an equally potent reduction of infarct volume and post-ischaemic neuroinflammation. Furthermore, very late antigen-4-inhibition effectively reduced the post-ischaemic vascular cell adhesion molecule-1 upregulation, suggesting an additional cross-signalling between invading leukocytes and the cerebral endothelium. Dissecting the specific impact of leukocyte subpopulations showed that invading T cells, via their humoral secretion (interferon-γ) and immediate cytotoxic mechanisms (perforin), were the principal pathways for delayed post-ischaemic tissue injury. Thus, targeting T lymphocyte-migration represents a promising therapeutic approach for ischaemic stroke.
Collapse
Affiliation(s)
- Arthur Liesz
- Department of Neurology, University Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xu L, Anchordoquy T. Drug delivery trends in clinical trials and translational medicine: challenges and opportunities in the delivery of nucleic acid-based therapeutics. J Pharm Sci 2011; 100:38-52. [PMID: 20575003 DOI: 10.1002/jps.22243] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ability to deliver nucleic acids (e.g., plasmid DNA, antisense oligonucleotides, siRNA) offers the potential to develop potent vaccines and novel therapeutics. However, nucleic acid-based therapeutics are still in their early stages as a new category of biologics. The efficacy of nucleic acids requires that these molecules be delivered to the interior of the target cell, which greatly complicates delivery strategies and compromises efficiency. Due to the safety concerns of viral vectors, synthetic vectors such as liposomes and polymers are preferred for the delivery of nucleic acid-based therapeutics. Yet, delivery efficiencies of synthetic vectors in the clinic are still too low to obtain therapeutic levels of gene expression. In this review, we focus on some key issues in the field of nucleic acid delivery such as PEGylation, encapsulation and targeted delivery and provide some perspectives for consideration in the development of improved synthetic vectors.
Collapse
Affiliation(s)
- Long Xu
- Department of Pharmaceutical Sciences, University of Colorado, 12700 East Nineteenth Avenue, Aurora, Colorado 80045, USA
| | | |
Collapse
|
30
|
Effect of biological matrix and sample preparation on qPCR quantitation of siRNA drugs in animal tissues. J Pharmacol Toxicol Methods 2011; 63:168-73. [DOI: 10.1016/j.vascn.2010.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
|
31
|
Li F, Mahato RI. RNA interference for improving the outcome of islet transplantation. Adv Drug Deliv Rev 2011; 63:47-68. [PMID: 21156190 DOI: 10.1016/j.addr.2010.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/19/2010] [Accepted: 11/25/2010] [Indexed: 01/06/2023]
Abstract
Islet transplantation has the potential to cure type 1 diabetes. Despite recent therapeutic success, it is still not common because a large number of transplanted islets get damaged by multiple challenges including instant blood mediated inflammatory reaction, hypoxia/reperfusion injury, inflammatory cytokines, and immune rejection. RNA interference (RNAi) is a novel strategy to selectively degrade target mRNA. The use of RNAi technologies to downregulate the expression of harmful genes has the potential to improve the outcome of islet transplantation. The aim of this review is to gain a thorough understanding of biological obstacles to islet transplantation and discuss how to overcome these barriers using different RNAi technologies. This eventually will help improve islet survival and function post transplantation. Chemically synthesized small interferring RNA (siRNA), vector based short hairpin RNA (shRNA), and their critical design elements (such as sequences, promoters, and backbone) are discussed. The application of combinatorial RNAi in islet transplantation is also discussed. Last but not the least, several delivery strategies for enhanced gene silencing are discussed, including chemical modification of siRNA, complex formation, bioconjugation, and viral vectors.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | |
Collapse
|
32
|
Shi Q, Zhang XL, Dai KR, Benderdour M, Fernandes JC. siRNA therapy for cancer and non-lethal diseases such as arthritis and osteoporosis. Expert Opin Biol Ther 2010; 11:5-16. [DOI: 10.1517/14712598.2010.532483] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Abstract
The success of any gene transfer procedure, either through in vivo inoculation of the genetic material or after gene transfer into the patient’s cells ex vivo, strictly depends upon the efficiency of nucleic acid internalization by the target cells. As a matter of fact, making gene transfer more efficient continues to represent the most relevant challenge to the clinical success of gene therapy.
Collapse
Affiliation(s)
- Mauro Giacca
- grid.425196.d0000000417594810International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
34
|
Non-viral S/MAR vectors replicate episomally in vivo when provided with a selective advantage. Gene Ther 2010; 18:82-7. [PMID: 20739959 DOI: 10.1038/gt.2010.116] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ideal gene therapy vector should enable persistent expression without the limitations of safety and reproducibility. We previously reported that a prototype plasmid vector, containing a scaffold matrix attachment region (S/MAR) domain and the luciferase reporter gene, showed transgene expression for at least 6 months following a single administration to MF1 mice. Following partial hepatectomy of the animals, however, we found no detectable vector replication and subsequent propagation in vivo. To overcome this drawback, we have now developed an in vivo liver selection strategy by which liver cells transfected with an S/MAR plasmid are provided with a survival advantage over non-transfected cells. This allows an enrichment of vectors that are capable of replicating and establishing themselves as extra-chromosomal entities in the liver. Accordingly, a novel S/MAR plasmid encoding the Bcl-2 gene was constructed; Bcl-2 expression confers resistance against apoptosis-mediated challenges by the Fas-activating antibody Jo2. Following hydrodynamic delivery to the livers of mice and frequent Jo2 administrations, we demonstrate that this Bcl-luciferase S/MAR plasmid is indeed capable of providing sustained luciferase reporter gene expression for over 3 months and that this plasmid replicates as an episomal entity in vivo. These results provide proof-of-principle that S/MAR vectors are capable of preventing transgene silencing, are resistant to integration and are able to confer mitotic stability in vivo when provided with a selective advantage.
Collapse
|
35
|
Peer D. Induction of therapeutic gene silencing in leukocyte-implicated diseases by targeted and stabilized nanoparticles: a mini-review. J Control Release 2010; 148:63-68. [PMID: 20624432 DOI: 10.1016/j.jconrel.2010.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
Abstract
RNA interference (RNAi) is a highly conserved endogenous mechanism that uses small RNA species to guide the sequence-specific silencing of gene expression. The discovery that RNAi functions in mammalian cells to regulate important cellular processes suggested that harnessing these endogenous gene-silencing pathways can prove to be an effective method for the targeted silencing of gene expression. Yet, the key challenge in translating the discovery of RNAi into a novel therapeutic modality is the lack of effective and safe delivery strategies. Here, we describe the major systemic delivery platforms that have been developed. Focus is given to the development of new strategies to target leukocytes, which are among the most difficult cells to transduce with RNAi. Finally, we discuss our strategies to target subsets of leukocytes using integrin-targeted and stabilized nanoparticles (I-tsNPs).
Collapse
Affiliation(s)
- Dan Peer
- Laboratory of Nanomedicine, Dept. of Cell Research and Immunology, George S. Wise Faculty of Life Science, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
36
|
Wang J, Lu Z, Wientjes MG, Au JLS. Delivery of siRNA therapeutics: barriers and carriers. AAPS JOURNAL 2010; 12:492-503. [PMID: 20544328 DOI: 10.1208/s12248-010-9210-4] [Citation(s) in RCA: 571] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/01/2010] [Indexed: 12/29/2022]
Abstract
RNA interference is a naturally occurring endogenous regulatory process where short double-stranded RNA causes sequence-specific posttranscriptional gene silencing. Small interference RNA (siRNA) represents a promising therapeutic strategy. Clinical evaluations of siRNA therapeutics in locoregional treatment settings began in 2004. Systemic siRNA therapy is hampered by the barriers for siRNA to reach their intended targets in the cytoplasm and to exert their gene silencing activity. The three goals of this review were to provide an overview of (a) the barriers to siRNA delivery, from the perspectives of physicochemical properties of siRNA, pharmacokinetics and biodistribution, and intracellular trafficking; (b) the non-viral siRNA carriers including cell-penetrating peptides, polymers, dendrimers, siRNA bioconjugates, and lipid-based siRNA carriers; and (c) the current status of the clinical trials of siRNA therapeutics.
Collapse
Affiliation(s)
- Jie Wang
- Optimum Therapeutics LLC, The Ohio State University Science Tech Village, Columbus, 43212, USA.
| | | | | | | |
Collapse
|
37
|
Weinstein S, Peer D. RNAi nanomedicines: challenges and opportunities within the immune system. NANOTECHNOLOGY 2010; 21:232001. [PMID: 20463388 DOI: 10.1088/0957-4484/21/23/232001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNAi, as a novel therapeutic modality, has an enormous potential to bring the era of personalized medicine one step further from notion into reality. However, delivery of RNAi effector molecules into their target tissues and cells remain extremely challenging. Major attempts have been made in recent years to develop sophisticated nanocarriers that could overcome these hurdles. This review will present the recent progress with the challenges and opportunities in this emerging field, focusing mostly on the in vivo applications with special emphasis on the strategies for RNAi delivery into immune cells.
Collapse
Affiliation(s)
- Shiri Weinstein
- Department of Cell Research and Immunology, George S Wise Faculty of Life Science, Israel
| | | |
Collapse
|
38
|
Wilson R, Purcell D, Netter HJ, Revill PA. Does RNA interference provide new hope for control of chronic hepatitis B infection? Antivir Ther 2010; 14:879-89. [PMID: 19918092 DOI: 10.3851/imp1424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatitis B virus (HBV) infection is a global human health problem, with an estimated 350 million people having chronic hepatitis B (CHB) infection worldwide. The majority of infections acquired during adulthood are resolved without intervention; however, infections acquired at birth or during early childhood have a 90% chance of progressing to CHB, leading to a host of adverse effects on the liver, including cirrhosis and cancer. CHB is currently treated with a combination of cytokines and/or nucleoside/nucleotide analogues; however, adverse side effects to cytokine therapy and the selection of resistance mutations to nucleoside analogues often abrogate the efficacy of treatment. The recent discovery that small interfering RNA and microRNA are active in mammalian cells suggests it might be possible to supplement existing HBV therapies with small RNA-based therapeutic(s).
Collapse
Affiliation(s)
- Rachel Wilson
- Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
39
|
Abstract
RNA interference (RNAi) as a mechanism to selectively degrade mRNA (mRNA) expression has emerged as a potential novel approach for drug target validation and the study of functional genomics. Small interfering RNAs (siRNA) therapeutics has developed rapidly and already there are clinical trials ongoing or planned. Although other challenges remain, delivery strategies for siRNA become the main hurdle that must be resolved prior to the full-scale clinical development of siRNA therapeutics. This review provides an overview of the current delivery strategies for synthetic siRNA, focusing on the targeted, self-assembled nanoparticles which show potential to become a useful and efficient tool in cancer therapy.
Collapse
Affiliation(s)
- Kun Gao
- University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
40
|
Shi ML, Zhao ZH, Wang Y, Chen HP. [In vivo delivery of siRNA]. YI CHUAN = HEREDITAS 2009; 31:683-688. [PMID: 19586872 DOI: 10.3724/sp.j.1005.2009.00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
RNA interference (RNAi) is a mechanism of posttranscriptional gene silencing mediated by small interfering RNA (siRNA). The ability of synthetic siRNA to silence genes in vivo has made it well suited as therapeutic drug, but the instability and polarity of siRNA and the complexity of in vivo circumstances retarded rapid development of RNAi-based therapies. In this review, a summary of the advances on in vivo siRNA delivery is presented and discussed.
Collapse
Affiliation(s)
- Ming-Lei Shi
- Beijing Institute of Biotechnology, Beijing 100071, China.
| | | | | | | |
Collapse
|
41
|
Podesta JE, Al-Jamal KT, Herrero MA, Tian B, Ali-Boucetta H, Hegde V, Bianco A, Prato M, Kostarelos K. Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:1176-1185. [PMID: 19306454 DOI: 10.1002/smll.200801572] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Carbon nanotubes are novel nanomaterials that are thought to offer potential benefits to a variety of biomedical and clinical applications. In this study, the treatment of a human lung carcinoma model in vivo using siRNA sequences leading to cytotoxicity and cell death is carried out using either cationic liposomes (DOTAP:cholesterol) or amino-functionalized multi-walled carbon nanotubes (MWNT - NH(+)(3)). Validation for the most cytotoxic siRNA sequence using a panel of human carcinoma and murine cells reveals that the proprietary siTOX sequence is human specific and can lead to significant cytotoxic activities delivered both by liposome or MWNT - NH(+)(3) in vitro. A comparative study using both types of vector indicates that only MWNT - NH(+)(3):siRNA complexes administered intratumorally can elicit delayed tumor growth and increased survival of xenograft-bearing animals. siTOX delivery via the cationic MWNT - NH(+)(3) is biologically active in vivo by triggering an apoptotic cascade, leading to extensive necrosis of the human tumor mass. This suggests that carbon-nanotube-mediated delivery of siRNA by intratumoral administration leads to successful and statistically significant suppression of tumor volume, followed by a concomitant prolongation of survival of human lung tumor-bearing animals. The direct comparison between carbon nanotubes and liposomes demonstrates the potential advantages offered by carbon nanotubes for the intracellular delivery of therapeutic agents in vivo. The present work may act as the impetus for further studies to explore the therapeutic capacity of chemically functionalized carbon nanotubes to deliver siRNA directly into the cytoplasm of target cells and achieve effective therapeutic silencing in various disease indications where local delivery is feasible or desirable.
Collapse
Affiliation(s)
- Jennifer E Podesta
- Centre for Drug Delivery Research The School of Pharmacy, University of London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Liu Y, Sun QA, Chen Q, Lee TH, Huang Y, Wetsel WC, Michelotti GA, Sullenger BA, Zhang X. Targeting inhibition of GluR1 Ser845 phosphorylation with an RNA aptamer that blocks AMPA receptor trafficking. J Neurochem 2008; 108:147-57. [PMID: 19046328 DOI: 10.1111/j.1471-4159.2008.05748.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorylation at glutamate receptor subunit 1(GluR1) Ser845 residue has been widely accepted to involve in GluR1-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking, but the in vivo evidence has not yet been established. One of the main obstacles is the lack of effective methodologies to selectively target phosphorylation at single amino acid residue. In this study, the Escherichia coli-expressed glutathione-S-transferase-tagged intracellular carboxyl-terminal domain of GluR1 (cGluR1) was phosphorylated by protein kinase A for in vitro selection. We have successfully selected aptamers which effectively bind to phospho-Ser845 cGluR1 protein, but without binding to phospho-Ser831 cGluR1 protein. Moreover, pre-binding of the unphospho-cGluR1 protein with these aptamers inhibits protein kinase A-mediated phosphorylation at Ser845 residue. In contrast, the pre-binding of aptamer A2 has no effect on protein kinase C-mediated phosphorylation at Ser831 residue. Importantly, the representative aptamer A2 can effectively bind the mammalian GluR1 that inhibited GluR1/GluR1-containing AMPA receptor trafficking to the cell surface and abrogated forskolin-stimulated phosphorylation at GluR1 Ser845 in both green fluorescent protein-GluR1-transfected human embryonic kidney cells and cultured rat cortical neurons. The strategy to use aptamer to modify single-residue phosphorylation is expected to facilitate evaluation of the potential role of AMPA receptors in various forms of synaptic plasticity including that underlying psychostimulant abuse.
Collapse
Affiliation(s)
- Yingmiao Liu
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bogdanov AA. Merging molecular imaging and RNA interference: early experience in live animals. J Cell Biochem 2008; 104:1113-23. [PMID: 18247325 DOI: 10.1002/jcb.21689] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapid development of non-invasive imaging techniques and imaging reporters coincided with the enthusiastic response that the introduction of RNA interference (RNAi) techniques created in the research community. Imaging in experimental animals provides quantitative or semi-quantitative information regarding the biodistribution of small interfering RNAs and the levels of gene interference (i.e., knockdown of the target mRNA) in living animals. In this review we give a brief summary of the first imaging findings that have potential for accelerating the development and testing of new approaches that explore RNAi as a method for achieving loss-of-function effects in vivo and as a promising therapeutic tool.
Collapse
Affiliation(s)
- Alexei A Bogdanov
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| |
Collapse
|
45
|
Bisht B, Srinivasan K, Dey CS. In vivo inhibition of focal adhesion kinase causes insulin resistance. J Physiol 2008; 586:3825-37. [PMID: 18587052 DOI: 10.1113/jphysiol.2008.157107] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, has recently been implicated in the regulation of insulin resistance in vitro. However, its in vivo validation has not been attempted due to lethality of FAK knockout. Hence, to ascertain the role of FAK in the development of insulin resistance in vivo, we have down-regulated FAK expression by delivering FAK-specific small interfering RNA (siRNA) in mice using hydrodynamic tail vein injection. Here, we show for the first time that FAK silencing (57 +/- 0.05% in muscle and 80 +/- 0.08% in liver) exacerbates insulin signalling and causes hyperglycaemia (251.68 +/- 8.1 mg dl(-1)) and hyperinsulinaemia (3.48 +/- 0.06 ng ml(-1)) in vivo. FAK-silenced animals are less glucose tolerant and have physiological and biochemical parameters similar to that of high fat diet (HFD)-fed insulin-resistant animals. Phosphorylation and expression of insulin receptor substrate 1 (IRS-1) was attenuated by 40.2 +/- 0.03% and 35.2 +/- 0.6% in muscle and 52.3 +/- 0.04% and 40.2 +/- 0.03% in liver in FAK-silenced mice. Akt-Ser473-phosphorylation decreased in muscle and liver (50.3 +/- 0.03% and 70.2 +/- 0.02%, respectively) in FAK-silenced mice. This, in part, explains the mechanism of development of insulin resistance in FAK-silenced mice. The present study provides direct evidence that FAK is a crucial mediator of insulin resistance in vivo. Considering the lethality of FAK gene knockout the approach of this study will provide a new strategy for in vivo inhibition of FAK. Furthermore, the study should certainly motivate chemists to synthesize new chemical entities for FAK activation. This may shed light on new drug development against insulin resistance.
Collapse
Affiliation(s)
- Bharti Bisht
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | | | | |
Collapse
|
46
|
McSwiggen JA, Seth S. A potential treatment for pandemic influenza using siRNAs targeting conserved regions of influenza A. Expert Opin Biol Ther 2008; 8:299-313. [DOI: 10.1517/14712598.8.3.299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Abstract
Sequence-specific gene silencing using small interfering RNA (siRNA) is a Nobel prize-winning technology that is now being evaluated in clinical trials as a potentially novel therapeutic strategy. This article provides an overview of the major pharmaceutical challenges facing siRNA therapeutics, focusing on the delivery strategies for synthetic siRNA duplexes in vivo, as this remains one of the most important issues to be resolved. This article also highlights the importance of understanding the genocompatibility/toxicogenomics of siRNA delivery reagents in terms of their impact on gene-silencing activity and specificity. Collectively, this information is essential for the selection of optimally acting siRNA delivery system combinations for the many proposed applications of RNA interference.
Collapse
Affiliation(s)
- Saghir Akhtar
- SA Pharma, Sutton Coldfield, West Midlands, United Kingdom.
| | | |
Collapse
|
48
|
Vandenbroucke RE, Lentacker I, Demeester J, De Smedt SC, Sanders NN. Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles. J Control Release 2007; 126:265-73. [PMID: 18237813 DOI: 10.1016/j.jconrel.2007.12.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 11/24/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
Short interfering RNA (siRNA) attracts much attention for the treatment of various diseases. However, its delivery, especially via systemic routes, remains a challenge. Indeed, naked siRNAs are rapidly degraded, while complexed siRNAs massively aggregate in the blood or are captured by macrophages. Although this can be circumvented by PEGylation, we found that PEGylation had a strong negative effect on the gene silencing efficiency of siRNA-liposome complexes (siPlexes). Recently, ultrasound combined with microbubbles has been used to deliver naked siRNA but the gene silencing efficiency is rather low and very high amounts of siRNA are required. To overcome the negative effects of PEGylation and to enhance the efficiency of ultrasound assisted siRNA delivery, we coupled PEGylated siPlexes (PEG-siPlexes) to microbubbles. Ultrasound radiation of these microbubbles resulted in massive release of unaltered PEG-siPlexes. Interestingly, PEG-siPlexes loaded on microbubbles were able to enter cells after exposure to ultrasound, in contrast to free PEG-siPlexes, which were not able to enter cells rapidly. Furthermore, these PEG-siPlex loaded microbubbles induced, in the presence of ultrasound, much higher gene silencing than free PEG-siPlexes. Additionally, the PEG-siPlex loaded microbubbles only silenced the expression of genes in the presence of ultrasound, which allows space and time controlled gene silencing.
Collapse
Affiliation(s)
- Roosmarijn E Vandenbroucke
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|