1
|
Villani C, Murugan P, George A. Exosome-Laden Hydrogels as Promising Carriers for Oral and Bone Tissue Engineering: Insight into Cell-Free Drug Delivery. Int J Mol Sci 2024; 25:11092. [PMID: 39456873 PMCID: PMC11508290 DOI: 10.3390/ijms252011092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Mineralization is a key biological process that is required for the development and repair of tissues such as teeth, bone and cartilage. Exosomes (Exo) are a subset of extracellular vesicles (~50-150 nm) that are secreted by cells and contain genetic material, proteins, lipids, nucleic acids, and other biological substances that have been extensively researched for bone and oral tissue regeneration. However, Exo-free biomaterials or exosome treatments exhibit poor bioavailability and lack controlled release mechanisms at the target site during tissue regeneration. By encapsulating the Exos into biomaterials like hydrogels, these disadvantages can be mitigated. Several tissue engineering approaches, such as those for wound healing processes in diabetes mellitus, treatment of osteoarthritis (OA) and cartilage degeneration, repair of intervertebral disc degeneration, and cardiovascular diseases, etc., have been exploited to deliver exosomes containing a variety of therapeutic and diagnostic cargos to target tissues. Despite the significant efficacy of Exo-laden hydrogels, their use in mineralized tissues, such as oral and bone tissue, is very sparse. This review aims to explore and summarize the literature related to the therapeutic potential of hydrogel-encapsulated exosomes for bone and oral tissue engineering and provides insight and practical procedures for the development of future clinical techniques.
Collapse
Affiliation(s)
| | | | - Anne George
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.V.); (P.M.)
| |
Collapse
|
2
|
Sindhusha VB, Doraiswamy JN. The Role of Chitosan and Gelatin-Based Scaffolds in Bone Regeneration: A Systematic Review. Cureus 2024; 16:e69793. [PMID: 39435228 PMCID: PMC11492353 DOI: 10.7759/cureus.69793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Guided bone regeneration facilitates the growth of new bone in areas where there is a bone defect or insufficiency. This technique involves placing a barrier membrane over the bone graft site, and the membrane prevents the invasion of soft tissue (such as gingival tissue) into the bone graft area. This allows the slower-growing bone cells to populate the area without competition, promoting proper bone regeneration. When combined, chitosan and gelatin create composite scaffolds that leverage the strengths of both materials. Chitosan provides structural integrity and antimicrobial properties, and gelatin enhances cell attachment and proliferation, which improves mechanical properties and makes it more suitable for supporting bone regeneration in load-bearing areas. This systematic review aims to evaluate the effectiveness of chitosan and gelatin-based scaffolds in bone regeneration. Various databases such as PubMed, Cochrane Library, LILAC, and Google Scholar were screened to adhere to the eligibility criteria. The included studies in the review were the in vivo and in vitro assessment of the chitosan and gelatin efficiency as a scaffold. Six studies were investigated for the involvement of chitosan and gelatin-based scaffolds in bone regeneration. Of these, two in vivo studies examined bone regeneration by measuring alkaline phosphatase activity (ALP) using different staining techniques, while the remaining four in vitro studies used histologic and histometric analysis where stem cells, chemicals, and other biopolymers were compared. Chitosan and gelatin scaffolds consistently showed better results in terms of bone repair throughout all six experiments. Gelatin's capacity for regeneration can be increased by mixing it with chitosan. For additional advancement, future researchers need to focus on incorporating biopolymers. The potential of scaffolds composed of gelatin and chitosan to replace tissue lost due to periodontitis shows great clinical significance.
Collapse
Affiliation(s)
- Vyshnavi B Sindhusha
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Jayakumar N Doraiswamy
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
3
|
Saravana Karthikeyan B, Madhubala MM, Rajkumar G, Dhivya V, Kishen A, Srinivasan N, Mahalaxmi S. Physico-chemical and biological characterization of synthetic and eggshell derived nanohydroxyapatite/carboxymethyl chitosan composites for pulp-dentin tissue engineering. Int J Biol Macromol 2024; 271:132620. [PMID: 38795888 DOI: 10.1016/j.ijbiomac.2024.132620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Hybrid nanohydroxyapatite/carboxymethyl chitosan (nHAp-CMC) scaffolds have garnered significant attention in the field of regenerative engineering. The current study comparatively analyzed the physicochemical and biological properties of synthetic nanohydroxyapatite (SnHA)- and eggshell-sourced nanohydroxyapatite (EnHA)- based CMC biocomposites for pulp-dentin regeneration. EnHA and CMC were synthesized through a chemical process, whereas SnHA was commercially obtained. Composite scaffolds of SnHA-CMC and EnHA-CMC (1:5 w/w) were prepared using freeze-drying method. All biomaterials were characterized by FTIR, micro-Raman, XRD, HRSEM-EDX, and TEM analyses, and their in vitro bioactivity was assessed by immersing them in simulated body fluid for 21 days. The biological properties of the composite scaffolds were evaluated by assessing cytocompatibility using MTT assay and biomineralization potential by analyzing the odontogenic gene expressions (ALP, DSPP, DMP-1 and VEGF) in human dental pulp stem cells (DPSCs) using RT-qPCR method. Characterization studies revealed that EnHA displayed higher crystallinity and superior surface morphology compared to SnHA. The composite scaffolds showed a highly interconnected porous microstructure with pore sizes ranging between 60 and 220 μm, ideal for cell seeding. All tested materials, SnHA, EnHA, and their respective composites, displayed high cytocompatibility, increased ALP activity and degree of mineralization with significant upregulation of odontogenic-related genes on DPSCs (p < 0.05). Nevertheless, the odontogenic differentiation potential of EnHA-CMC on DPSCs was significantly higher when compared to SnHA-CMC. The findings from this study highlight the potential of EnHA-CMC as a promising candidate for pulp-dentin engineering.
Collapse
Affiliation(s)
- Balasubramanian Saravana Karthikeyan
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Bharathi Salai, Chennai, SRM Institute of Science and Technology, Tamil Nadu, India.
| | - Manavalan Madhana Madhubala
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Bharathi Salai, Chennai, SRM Institute of Science and Technology, Tamil Nadu, India
| | - G Rajkumar
- Department of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, Tamil Nadu, India
| | - V Dhivya
- Department of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, Tamil Nadu, India
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Ontario M5G 1X3, Canada
| | | | - Sekar Mahalaxmi
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Bharathi Salai, Chennai, SRM Institute of Science and Technology, Tamil Nadu, India.
| |
Collapse
|
4
|
Zhao Q, Leng C, Lau M, Choi K, Wang R, Zeng Y, Chen T, Zhang C, Li Z. Precise healing of oral and maxillofacial wounds: tissue engineering strategies and their associated mechanisms. Front Bioeng Biotechnol 2024; 12:1375784. [PMID: 38699431 PMCID: PMC11063293 DOI: 10.3389/fbioe.2024.1375784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Precise healing of wounds in the oral and maxillofacial regions is usually achieved by targeting the entire healing process. The rich blood circulation in the oral and maxillofacial regions promotes the rapid healing of wounds through the action of various growth factors. Correspondingly, their tissue engineering can aid in preventing wound infections, accelerate angiogenesis, and enhance the proliferation and migration of tissue cells during wound healing. Recent years, have witnessed an increase in the number of researchers focusing on tissue engineering, particularly for precise wound healing. In this context, hydrogels, which possess a soft viscoelastic nature and demonstrate exceptional biocompatibility and biodegradability, have emerged as the current research hotspot. Additionally, nanofibers, films, and foam sponges have been explored as some of the most viable materials for wound healing, with noted advantages and drawbacks. Accordingly, future research is highly likely to explore the application of these materials harboring enhanced mechanical properties, reduced susceptibility to external mechanical disturbances, and commendable water absorption and non-expansion attributes, for superior wound healing.
Collapse
Affiliation(s)
- Qingtong Zhao
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Stomatology, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Changyun Leng
- School of stomatology, Jinan University, Guangzhou, China
| | - Manting Lau
- Department of Stomatology, Baoan Central Hospital of Shenzhen, Shenzhen, China
| | - Kawai Choi
- School of stomatology, Jinan University, Guangzhou, China
| | - Ruimin Wang
- School of stomatology, Jinan University, Guangzhou, China
| | - Yuyu Zeng
- School of stomatology, Jinan University, Guangzhou, China
| | - Taiying Chen
- School of stomatology, Jinan University, Guangzhou, China
| | - Canyu Zhang
- School of stomatology, Jinan University, Guangzhou, China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Ozkendir O, Karaca I, Cullu S, Erdoğan OC, Yaşar HN, Dikici S, Owen R, Aldemir Dikici B. Engineering periodontal tissue interfaces using multiphasic scaffolds and membranes for guided bone and tissue regeneration. BIOMATERIALS ADVANCES 2024; 157:213732. [PMID: 38134730 DOI: 10.1016/j.bioadv.2023.213732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Periodontal diseases are one of the greatest healthcare burdens worldwide. The periodontal tissue compartment is an anatomical tissue interface formed from the periodontal ligament, gingiva, cementum, and bone. This multifaceted composition makes tissue engineering strategies challenging to develop due to the interface of hard and soft tissues requiring multiphase scaffolds to recreate the native tissue architecture. Multilayer constructs can better mimic tissue interfaces due to the individually tuneable layers. They have different characteristics in each layer, with modulation of mechanical properties, material type, porosity, pore size, morphology, degradation properties, and drug-releasing profile all possible. The greatest challenge of multilayer constructs is to mechanically integrate consecutive layers to avoid delamination, especially when using multiple manufacturing processes. Here, we review the development of multilayer scaffolds that aim to recapitulate native periodontal tissue interfaces in terms of physical, chemical, and biological characteristics. Important properties of multiphasic biodegradable scaffolds are highlighted and summarised, with design requirements, biomaterials, and fabrication methods, as well as post-treatment and drug/growth factor incorporation discussed.
Collapse
Affiliation(s)
- Ozgu Ozkendir
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Ilayda Karaca
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Selin Cullu
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Oğul Can Erdoğan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Hüsniye Nur Yaşar
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Serkan Dikici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Robert Owen
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Betül Aldemir Dikici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey.
| |
Collapse
|
6
|
Karanth D, Song K, Martin ML, Meyer DR, Dolce C, Huang Y, Holliday LS. Towards resorbable 3D-printed scaffolds for craniofacial bone regeneration. Orthod Craniofac Res 2023; 26 Suppl 1:188-195. [PMID: 36866957 DOI: 10.1111/ocr.12645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
This review will briefly examine the development of 3D-printed scaffolds for craniofacial bone regeneration. We will, in particular, highlight our work using Poly(L-lactic acid) (PLLA) and collagen-based bio-inks. This paper is a narrative review of the materials used for scaffold fabrication by 3D printing. We have also reviewed two types of scaffolds that we designed and fabricated. Poly(L-lactic acid) (PLLA) scaffolds were printed using fused deposition modelling technology. Collagen-based scaffolds were printed using a bioprinting technique. These scaffolds were tested for their physical properties and biocompatibility. Work in the emerging field of 3D-printed scaffolds for bone repair is briefly reviewed. Our work provides an example of PLLA scaffolds that were successfully 3D-printed with optimal porosity, pore size and fibre thickness. The compressive modulus was similar to, or better than, the trabecular bone of the mandible. PLLA scaffolds generated an electric potential upon cyclic/repeated loading. The crystallinity was reduced during the 3D printing. The hydrolytic degradation was relatively slow. Osteoblast-like cells did not attach to uncoated scaffolds but attached well and proliferated after coating the scaffold with fibrinogen. Collagen-based bio-ink scaffolds were also printed successfully. Osteoclast-like cells adhered, differentiated, and survived well on the scaffold. Efforts are underway to identify means to improve the structural stability of the collagen-based scaffolds, perhaps through mineralization by the polymer-induced liquid precursor process. 3D-printing technology is promising for constructing next-generation bone regeneration scaffolds. We describe our efforts to test PLLA and collagen scaffolds produced by 3D printing. The 3D-printed PLLA scaffolds showed promising properties akin to natural bone. Collagen scaffolds need further work to improve structural integrity. Ideally, such biological scaffolds will be mineralized to produce true bone biomimetics. These scaffolds warrant further investigation for bone regeneration.
Collapse
Affiliation(s)
- Divakar Karanth
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Kaidong Song
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Macey L Martin
- University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Delaney R Meyer
- Department of Materials Science & Engineering, University of Florida, Gainesville, Florida, USA
| | - Calogero Dolce
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - L Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
7
|
Zhou L, Zhao S, Xing X. Effects of different signaling pathways on odontogenic differentiation of dental pulp stem cells: a review. Front Physiol 2023; 14:1272764. [PMID: 37929208 PMCID: PMC10622672 DOI: 10.3389/fphys.2023.1272764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are a type of mesenchymal stem cells that can differentiate into odontoblast-like cells and protect the pulp. The differentiation of DPSCs can be influenced by biomaterials or growth factors that activate different signaling pathways in vitro or in vivo. In this review, we summarized six major pathways involved in the odontogenic differentiation of DPSCs, Wnt signaling pathways, Smad signaling pathways, MAPK signaling pathways, NF-kB signaling pathways, PI3K/AKT/mTOR signaling pathways, and Notch signaling pathways. Various factors can influence the odontogenic differentiation of DPSCs through one or more signaling pathways. By understanding the interactions between these signaling pathways, we can expand our knowledge of the mechanisms underlying the regeneration of the pulp-dentin complex.
Collapse
Affiliation(s)
| | | | - Xianghui Xing
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Puterman I, Fien MJ, Mesquida J, Ginebreda I, Bauza G, Somerman M. A perspective: Regeneration of soft and hard tissues in the oral cavity, from research to clinical practice. FRONTIERS IN DENTAL MEDICINE 2023; 4:1242547. [PMID: 39916909 PMCID: PMC11797814 DOI: 10.3389/fdmed.2023.1242547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/26/2023] [Indexed: 02/09/2025] Open
Abstract
Regenerative medicine has gained much attention and has been a hot topic in all medical fields since its inception, and dentistry is no exception. However, innovations and developments in basic research are sometimes disconnected from daily clinical practice. This existing gap between basic research and clinical practice can only be addressed with improved communication between clinicians, academicians, industry, and researchers to facilitate the advance of evidence-based therapies and procedures and to direct research to areas of clinical need. In this perspective, six participants with strong clinical and research interests debated five previously conceived questions. These questions covered current methods and procedures for soft and hard tissue regeneration in the oral cavity with predictable outcomes, limitations of their respective protocols, and needs for future development of regenerative materials and technologies.
Collapse
Affiliation(s)
- Israel Puterman
- International Dentistry Research Group, Palma de Mallorca, Spain
- Private Practitioner, Chevy Chase, MD, United States
| | - Matthew J. Fien
- International Dentistry Research Group, Palma de Mallorca, Spain
- Private Practitioner, Fort Lauderdale, FL, United States
| | - Juan Mesquida
- International Dentistry Research Group, Palma de Mallorca, Spain
- Private Practitioner, Palma de Mallorca, Spain
| | - Ignacio Ginebreda
- International Dentistry Research Group, Palma de Mallorca, Spain
- Private Practitioner, Barcelona, Spain
| | - Guillermo Bauza
- International Dentistry Research Group, Palma de Mallorca, Spain
- Center for NanoHealth, Institute of Life Sciences, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - Martha Somerman
- National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Venkatesh G, Arumugam C, Ramesh SR, Balaji D, Rajendran MR, Balaji L. Efficacy of Chitosan Scaffolded Calcium Silicate-based Cements for Treating Internal Resorption Defects with Perforation: In Vitro Study. J Contemp Dent Pract 2023; 24:314-319. [PMID: 38149809 DOI: 10.5005/jp-journals-10024-3504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
AIM The present study aimed to evaluate the efficacy of chitosan scaffold combined with calcium silicate cements in the management of internal resorption with perforation. MATERIALS AND METHODS Internal resorption cavities were simulated in 20 human permanent maxillary incisors that were then divided into two groups: group I - biodentine and group II - chitosan scaffold combined with biodentine. The samples were evaluated for the mineralization activity at the end of the 7th day and 14th day using scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis. The data were recorded, tabulated, and then statistically analyzed. RESULTS From the SEM-EDX analysis, the mean score of calcium and phosphorus ion uptake by the material was obtained. Statistical analysis by nonparametric Mann-Whitney test showed that there was statistically significant difference in calcium ion uptake at the end of the 7th day (p = 0.016) and at the end of 14th day (p = 0.043) between the group biodentine and group chitosan scaffold combined with biodentine (p < 0.05). CONCLUSION In this present study, the use of chitosan scaffolds combined with biodentine showed a statistically significant difference in the mineralization activity when compared with pure biodentine. These scaffolded biomaterials exhibited greater potential for mineralization in vitro which can be efficiently used for the management of teeth with internal resorption with perforation. Further clinical trials are required for the understanding of their behavior in real-world scenarios. CLINICAL SIGNIFICANCE Calcium silicate cements have often exhibited defective hard tissue barrier formation and hence there is a pressing need to search for newer biomaterials that can overcome these shortcomings. Scaffolded biomaterials provide a controlled microcellular environment for bioactivity, and they were found to be efficient in the remineralization of tooth structure. The present study findings indicate that these chitosan scaffolds can be efficiently used in combination with calcium silicate cements for the management of internal resorption with perforation to enhance the treatment outcome.
Collapse
Affiliation(s)
- Gheerthana Venkatesh
- Department of Conservative Dentistry and Endodontics, Sri Ramachandra Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Chakravarthy Arumugam
- Department of Conservative Dentistry and Endodontics, Sri Ramachandra Dental College and Hospital, Chennai, Tamil Nadu, India, Phone: +91 9789070656, e-mail:
| | - Seshan Rakkesh Ramesh
- Department of Conservative Dentistry and Endodontics, Sri Ramachandra Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Dakshayani Balaji
- Department of Conservative Dentistry and Endodontics, Sri Ramachandra Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Mathan Rajan Rajendran
- Department of Conservative Dentistry and Endodontics, Sri Ramachandra Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Lakshmi Balaji
- Department of Conservative Dentistry and Endodontics, Sri Ramachandra Dental College and Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Abdel Nasser Atia G, Shalaby HK, Zehravi M, Ghobashy MM, Ahmad Z, Khan FS, Dey A, Rahman MH, Joo SW, Barai HR, Cavalu S. Locally Applied Repositioned Hormones for Oral Bone and Periodontal Tissue Engineering: A Narrative Review. Polymers (Basel) 2022; 14:polym14142964. [PMID: 35890740 PMCID: PMC9319147 DOI: 10.3390/polym14142964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022] Open
Abstract
Bone and periodontium are tissues that have a unique capacity to repair from harm. However, replacing or regrowing missing tissues is not always effective, and it becomes more difficult as the defect grows larger. Because of aging and the increased prevalence of debilitating disorders such as diabetes, there is a considerable increase in demand for orthopedic and periodontal surgical operations, and successful techniques for tissue regeneration are still required. Even with significant limitations, such as quantity and the need for a donor area, autogenous bone grafts remain the best solution. Topical administration methods integrate osteoconductive biomaterial and osteoinductive chemicals as hormones as alternative options. This is a promising method for removing the need for autogenous bone transplantation. Furthermore, despite enormous investigation, there is currently no single approach that can reproduce all the physiologic activities of autogenous bone transplants. The localized bioengineering technique uses biomaterials to administer different hormones to capitalize on the host’s regeneration capacity and capability, as well as resemble intrinsic therapy. The current study adds to the comprehension of the principle of hormone redirection and its local administration in both bone and periodontal tissue engineering.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo 13759, Egypt;
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Sang Woo Joo
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea;
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Piata 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| |
Collapse
|
11
|
Biocompatible and Biomaterials Application in Drug Delivery System in Oral Cavity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9011226. [PMID: 34812267 PMCID: PMC8605911 DOI: 10.1155/2021/9011226] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023]
Abstract
Biomaterials applications have rapidly expanded into different fields of sciences. One of the important fields of using biomaterials is dentistry, which can facilitate implantation, surgery, and treatment of oral diseases such as peri-implantitis, periodontitis, and other dental problems. Drug delivery systems based on biocompatible materials play a vital role in the release of drugs into aim tissues of the oral cavity with minimum side effects. Therefore, scientists have studied various delivery systems to improve the efficacy and acceptability of therapeutic approaches in dental problems and oral diseases. Also, biomaterials could be utilized as carriers in biocompatible drug delivery systems. For instance, natural polymeric substances, such as gelatin, chitosan, calcium phosphate, alginate, and xanthan gum are used to prepare different forms of delivery systems. In addition, some alloys are conducted in drug complexes for the better in transportation. Delivery systems based on biomaterials are provided with different strategies, although individual biomaterial has advantages and disadvantages which have a significant influence on transportation of complex such as solubility in physiological environments or distribution in tissues. Biomaterials have antibacterial and anti-inflammatory effects and prolonged time contact and even enhance antibiotic activities in oral infections. Moreover, these biomaterials are commonly prepared in some forms such as particulate complex, fibers, microspheres, gels, hydrogels, and injectable systems. In this review, we examined the application of biocompatible materials in drug delivery systems of oral and dental diseases or problems.
Collapse
|
12
|
Baskar K, Saravana Karthikeyan B, Gurucharan I, Mahalaxmi S, Rajkumar G, Dhivya V, Kishen A. Eggshell derived nano-hydroxyapatite incorporated carboxymethyl chitosan scaffold for dentine regeneration: A laboratory investigation. Int Endod J 2021; 55:89-102. [PMID: 34617273 DOI: 10.1111/iej.13644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
AIM To assess odontogenic differentiation abilities of porous biomineralizable composite scaffolds comprising eggshell derived nano-hydroxyapatite (HAnp) and carboxymethyl chitosan (CMC) on cultured human dental pulp stem cells (hDPSCs). METHODOLOGY Nano-hydroxyapatite was derived from eggshells using a simple combustion method and CMC was prepared from chitosan through a chemical route. Several compositions of HAnp-CMC (0:5, 5:0, 1:5, 2:5, 3:5, 4:5 and 1:1 w/w%) scaffolds were prepared by magnetic stirring and freeze-drying methods. HAnp-CMC scaffolds were characterized using high-resolution scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction methods. In vitro bioactivity was determined following the interaction in simulated body fluid for 21 days. The optimized composite was then loaded onto hDPSCs to assess cell viability/proliferation, dentine sialophosphoprotein (DSPP) and vascular endothelial growth factor (VEGF) expressions using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, real-time quantitative polymerase chain reaction and flow cytometry methods, respectively, following 7, 14 and 21 days. For intergroup and intragroup comparisons, Kruskal-Wallis and Friedman tests were employed, respectively, followed by appropriate post hoc test (Dunn). Significant levels were set at *p < .05 and *p < .01. RESULTS Synthesized hydroxyapatite (HAp) comprised crystals ranging from 20 to 50 nm (HAnp) with spherulite morphology and calcium/phosphorus (Ca/P) molar ratio of 1.67. The ultrastructure of all the scaffolds revealed a highly interconnected porous microstructure, whilst the chemical characterization displayed specific functional groups of both HAnp and CMC. In vitro bioactivity assessment confirmed the biomineralization potential of all scaffolds with an apatite-like crystal formation on the surface. The 1:5 HAnp-CMC revealed a favourable pore size (60-180 µm) that was suitable for cell seeding and was chosen for further experiments. Cell viability/proliferation rates of hDPSCs loaded 1:5 HAnp-CMC at 21st day was significantly greater than that at 7th day (p < .05). The mean relative quantification of DSPP expression by the scaffold was significantly higher (p < .05) on day 21 (3.16) than on day 7 (1.67). Mean fluorescence intensity of the VEGF expression at day 21 (32.5) was also significantly higher (p < .01) than at day 7 (12.54). CONCLUSION hDPSCs on 1:5 HAnp-CMC scaffolds displayed increased cell viability/proliferation and enhanced DSPP as well as VEGF expressions. The 1:5 HAnp-CMC composite has the potential to serve as a promising scaffold for dentine regeneration.
Collapse
Affiliation(s)
- Kaviya Baskar
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Bharathi Salai, Chennai, India
| | - Balasubramanian Saravana Karthikeyan
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Bharathi Salai, Chennai, India
| | - Ishwarya Gurucharan
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Bharathi Salai, Chennai, India
| | - Sekar Mahalaxmi
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Bharathi Salai, Chennai, India
| | | | | | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Parhizkar A, Asgary S. Local Drug Delivery Systems for Vital Pulp Therapy: A New Hope. Int J Biomater 2021; 2021:5584268. [PMID: 34567123 PMCID: PMC8457968 DOI: 10.1155/2021/5584268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
Vital pulp therapy (VPT) is deliberated as an ultraconservative/minimally invasive approach for the conservation of vital pulpal tissues, preservation of dental structure, and maintenance of tooth function in the oral cavity. In VPT, following the exposure of the dental pulp, the environment is prepared for the possible healing and probable refunctionalisation of pulpal connective tissue. However, to succeed in VPT, specific biomaterials are used to cover and/or dress the exposed pulp, lower the inflammation, heal the dental pulp, provoke the remaining odontoblastic cells, and induce the formation of a hard tissue, i.e., the dentinal bridge. It can be assumed that if the employed biomaterial is transferred to the target site using a specially designed micro-/nanosized local drug delivery system (LDDS), the biomaterial would be placed in closer proximity to the connective tissue, may be released in a controlled and sustained pattern, could properly conserve the remaining dental pulp and might appropriately enhance hard-tissue formation. Furthermore, the loaded LDDS could help VPT modalities to be more ultraconservative and may minimise the manipulation of the tooth structure as well as pulpal tissue, which could, in turn, result in better VPT outcomes.
Collapse
Affiliation(s)
- Ardavan Parhizkar
- Iranian Centre for Endodontic Research, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Saeed Asgary
- Iranian Centre for Endodontic Research, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| |
Collapse
|
14
|
The Role of BiodentineTM on the Odontogenic/Osteogenic Differentiation of Human Dental Pulp Stem Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The clinical use of bioactive material in the field of biomedical tissue engineering has become increasingly of interest in practice. This study investigates how BiodentineTM (BD), a tricalcium silicate cement, in culture media, affects the odonto/osteogenic differentiation potential of in vitro cultured human dental pulp stem cells (hDPSCs). hDPSCs were extracted and characterized for their expression profile by flow cytometry. Then, hDPSCs were cultured in media containing BD for 3 weeks to study the impact of BD on the odonto/osteogenesis pathway, compared to the positive control (osteogenic media) and negative control (cell culture media). Odonto/osteogenic differentiation of hDPSCs treated with BD was assessed by measuring the level of expression of odonto/osteogenic markers by flow cytometry, ELISA and Alizarin red stain. Additionally, the expression profile of the genes involved in the odonto/osteogenesis pathway was investigated, using PCR array. Our results indicate that hDPSCs treatment with BD results in an increased tendency for odonto/osteogenic differentiation. The BD treated group demonstrates a significant increase in the expression of odonto/osteogenic markers, osteocalcin (OCN) (p < 0.005), osteopontin (OPN) (p < 0.0005) and alkaline phosphatase (ALP) (p < 0.0005), and the presentation of calcium deposits by ARS, compared to the negative control by using t-test and ANOVA. Moreover, the BD-treated group is marked by the upregulation of genes related to the odonto/osteogenesis pathway, compared to the control groups, specifically the genes that are involved in the bone morphogenic protein (BMP) (p < 0.05) signaling pathway, the activation of the extracellular matrix-related gene (ECMG) (p < 0.05) and the Ca2+ signaling pathway (p < 0.05), compared to day 1 of treatment by using ANOVA. BD shows a stimulatory effect on the odonto/steogenic capacity of hDPSCs, suggesting BD as a good candidate and a very promising and useful means to be applied in regenerative medicine to regenerate dentine tissue in clinical settings.
Collapse
|
15
|
Terauchi M, Tamura A, Arisaka Y, Masuda H, Yoda T, Yui N. Cyclodextrin-Based Supramolecular Complexes of Osteoinductive Agents for Dental Tissue Regeneration. Pharmaceutics 2021; 13:136. [PMID: 33494320 PMCID: PMC7911178 DOI: 10.3390/pharmaceutics13020136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Oral tissue regeneration has received growing attention for improving the quality of life of patients. Regeneration of oral tissues such as alveolar bone and widely defected bone has been extensively investigated, including regenerative treatment of oral tissues using therapeutic cells and growth factors. Additionally, small-molecule drugs that promote bone formation have been identified and tested as new regenerative treatment. However, treatments need to progress to realize successful regeneration of oral functions. In this review, we describe recent progress in development of regenerative treatment of oral tissues. In particular, we focus on cyclodextrin (CD)-based pharmaceutics and polyelectrolyte complexation of growth factors to enhance their solubility, stability, and bioactivity. CDs can encapsulate hydrophobic small-molecule drugs into their cavities, resulting in inclusion complexes. The inclusion complexation of osteoinductive small-molecule drugs improves solubility of the drugs in aqueous solutions and increases in vitro osteogenic differentiation efficiency. Additionally, various anionic polymers such as heparin and its mimetic polymers have been developed to improve stability and bioactivity of growth factors. These polymers protect growth factors from deactivation and degradation by complex formation through electrostatic interaction, leading to potentiation of bone formation ability. These approaches using an inclusion complex and polyelectrolyte complexes have great potential in the regeneration of oral tissues.
Collapse
Affiliation(s)
- Masahiko Terauchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| | - Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| |
Collapse
|
16
|
Lian M, Han Y, Sun B, Xu L, Wang X, Ni B, Jiang W, Qiao Z, Dai K, Zhang X. A multifunctional electrowritten bi-layered scaffold for guided bone regeneration. Acta Biomater 2020; 118:83-99. [PMID: 32853801 DOI: 10.1016/j.actbio.2020.08.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
The guided bone regeneration (GBR) concept has been extensively utilized to treat maxillofacial bone defects in clinical practice. However, the repair efficacy of currently available GBR membranes is often compromised by their limited bone regeneration potential and deficient antibacterial activity. In this study, inspired by the bi-layered structure design of the commonly used Bio-GideⓇmembrane, we designed and fabricated a new kind of multifunctional bi-layered "GBR scaffold" combining solution electrospinning writing (SEW) and solution electrospinning (SES) techniques using a single SEW printer. Copper-loaded mesoporous silica nanoparticles (Cu@MSNs) were incorporated into the poly(lactic-co-glycolic acid)/gelatin (PLGA/Gel, denoted as PG) fiber matrix to construct a composite PG-Cu@MSNs fibrous scaffold. The obtained GBR scaffold consisted of a loose and porous SEW layer to support and facilitate bone ingrowth, and a dense and compact SES layer to resist non-osteoblast interference. The resulting enhanced mechanical properties, coordinated degradation profile, and facile preparation procedure imparted the composite scaffold with good clinical feasibility. In vitro biological experiments indicate that the PG-Cu@MSNs composite scaffold exhibited favorable osteogenic and antibacterial properties. Furthermore, an in vivo rat periodontal defect model further confirmed the promising bone regeneration efficacy of the PG-Cu@MSNs scaffold. In conclusion, the developed electrowritten Cu@MSNs-incorporated bi-layered scaffold with hierarchical architecture and concurrent osteogenic and antibacterial functions may hold great potential for application in GBR.
Collapse
Affiliation(s)
- Meifei Lian
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu Han
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China
| | - Binbin Sun
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China
| | - Ling Xu
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaofeng Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Excellent Science and Technology Innovation Group of Jiangsu Province, Nanjing, 211171, China
| | - Bing Ni
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Wenbo Jiang
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China
| | - Zhiguang Qiao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China; Department of Orthopaedic Surgery, Renji Hospital, South Campus, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, China.
| | - Kerong Dai
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China.
| | - Xiuyin Zhang
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
17
|
Dissanayaka WL, Zhang C. Scaffold-based and Scaffold-free Strategies in Dental Pulp Regeneration. J Endod 2020; 46:S81-S89. [DOI: 10.1016/j.joen.2020.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Huo SC, Yue B. Approaches to promoting bone marrow mesenchymal stem cell osteogenesis on orthopedic implant surface. World J Stem Cells 2020; 12:545-561. [PMID: 32843913 PMCID: PMC7415248 DOI: 10.4252/wjsc.v12.i7.545] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/13/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) play a critical role in the osseointegration of bone and orthopedic implant. However, osseointegration between the Ti-based implants and the surrounding bone tissue must be improved due to titanium’s inherent defects. Surface modification stands out as a versatile technique to create instructive biomaterials that can actively direct stem cell fate. Here, we summarize the current approaches to promoting BMSC osteogenesis on the surface of titanium and its alloys. We will highlight the utilization of the unique properties of titanium and its alloys in promoting tissue regeneration, and discuss recent advances in understanding their role in regenerative medicine. We aim to provide a systematic and comprehensive review of approaches to promoting BMSC osteogenesis on the orthopedic implant surface.
Collapse
Affiliation(s)
- Shi-Cheng Huo
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
19
|
Baranova J, Büchner D, Götz W, Schulze M, Tobiasch E. Tooth Formation: Are the Hardest Tissues of Human Body Hard to Regenerate? Int J Mol Sci 2020; 21:E4031. [PMID: 32512908 PMCID: PMC7312198 DOI: 10.3390/ijms21114031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
With increasing life expectancy, demands for dental tissue and whole-tooth regeneration are becoming more significant. Despite great progress in medicine, including regenerative therapies, the complex structure of dental tissues introduces several challenges to the field of regenerative dentistry. Interdisciplinary efforts from cellular biologists, material scientists, and clinical odontologists are being made to establish strategies and find the solutions for dental tissue regeneration and/or whole-tooth regeneration. In recent years, many significant discoveries were done regarding signaling pathways and factors shaping calcified tissue genesis, including those of tooth. Novel biocompatible scaffolds and polymer-based drug release systems are under development and may soon result in clinically applicable biomaterials with the potential to modulate signaling cascades involved in dental tissue genesis and regeneration. Approaches for whole-tooth regeneration utilizing adult stem cells, induced pluripotent stem cells, or tooth germ cells transplantation are emerging as promising alternatives to overcome existing in vitro tissue generation hurdles. In this interdisciplinary review, most recent advances in cellular signaling guiding dental tissue genesis, novel functionalized scaffolds and drug release material, various odontogenic cell sources, and methods for tooth regeneration are discussed thus providing a multi-faceted, up-to-date, and illustrative overview on the tooth regeneration matter, alongside hints for future directions in the challenging field of regenerative dentistry.
Collapse
Affiliation(s)
- Juliana Baranova
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, Vila Universitária, São Paulo 05508-000, Brazil;
| | - Dominik Büchner
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Werner Götz
- Oral Biology Laboratory, Department of Orthodontics, Dental Hospital of the University of Bonn, Welschnonnenstraße 17, 53111 Bonn, NRW, Germany;
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| |
Collapse
|
20
|
Salerno A, Cesarelli G, Pedram P, Netti PA. Modular Strategies to Build Cell-Free and Cell-Laden Scaffolds towards Bioengineered Tissues and Organs. J Clin Med 2019; 8:E1816. [PMID: 31683796 PMCID: PMC6912533 DOI: 10.3390/jcm8111816] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 01/07/2023] Open
Abstract
Engineering three-dimensional (3D) scaffolds for functional tissue and organ regeneration is a major challenge of the tissue engineering (TE) community. Great progress has been made in developing scaffolds to support cells in 3D, and to date, several implantable scaffolds are available for treating damaged and dysfunctional tissues, such as bone, osteochondral, cardiac and nerve. However, recapitulating the complex extracellular matrix (ECM) functions of native tissues is far from being achieved in synthetic scaffolds. Modular TE is an intriguing approach that aims to design and fabricate ECM-mimicking scaffolds by the bottom-up assembly of building blocks with specific composition, morphology and structural properties. This review provides an overview of the main strategies to build synthetic TE scaffolds through bioactive modules assembly and classifies them into two distinct schemes based on microparticles (µPs) or patterned layers. The µPs-based processes section starts describing novel techniques for creating polymeric µPs with desired composition, morphology, size and shape. Later, the discussion focuses on µPs-based scaffolds design principles and processes. In particular, starting from random µPs assembly, we will move to advanced µPs structuring processes, focusing our attention on technological and engineering aspects related to cell-free and cell-laden strategies. The second part of this review article illustrates layer-by-layer modular scaffolds fabrication based on discontinuous, where layers' fabrication and assembly are split, and continuous processes.
Collapse
Affiliation(s)
- Aurelio Salerno
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
| | - Giuseppe Cesarelli
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
| | - Parisa Pedram
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy.
| |
Collapse
|
21
|
Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int J Oral Sci 2019; 11:23. [PMID: 31423011 PMCID: PMC6802669 DOI: 10.1038/s41368-019-0060-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
In modern medicine, bone and dental loss and defects are common and widespread morbidities, for which regenerative therapy has shown great promise. Mesenchymal stem cells, obtained from various sources and playing an essential role in organ development and postnatal repair, have exhibited enormous potential for regenerating bone and dental tissue. Currently, mesenchymal stem cells (MSCs)-based bone and dental regeneration mainly includes two strategies: the rescue or mobilization of endogenous MSCs and the application of exogenous MSCs in cytotherapy or tissue engineering. Nevertheless, the efficacy of MSC-based regeneration is not always fulfilled, especially in diseased microenvironments. Specifically, the diseased microenvironment not only impairs the regenerative potential of resident MSCs but also controls the therapeutic efficacy of exogenous MSCs, both as donors and recipients. Accordingly, approaches targeting a diseased microenvironment have been established, including improving the diseased niche to restore endogenous MSCs, enhancing MSC resistance to a diseased microenvironment and renormalizing the microenvironment to guarantee MSC-mediated therapies. Moreover, the application of extracellular vesicles (EVs) as cell-free therapy has emerged as a promising therapeutic strategy. In this review, we summarize current knowledge regarding the tactics of MSC-based bone and dental regeneration and the decisive role of the microenvironment, emphasizing the therapeutic potential of microenvironment-targeting strategies in bone and dental regenerative medicine.
Collapse
|
22
|
Bariana M, Kaidonis JA, Losic D, Ranjitkar S, Anderson PJ. Titania nanotube-based protein delivery system to inhibit cranial bone regeneration in Crouzon model of craniosynostosis. Int J Nanomedicine 2019; 14:6313-6324. [PMID: 31496688 PMCID: PMC6690047 DOI: 10.2147/ijn.s202090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/27/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Craniosynostosis is a developmental disorder characterized by the premature fusion of skull sutures, necessitating repetitive, high-risk neurosurgical interventions throughout infancy. This study used protein-releasing Titania nanotubular implant (TNT/Ti) loaded with glypican 3 (GPC3) in the cranial critical-sized defects (CSDs) in Crouzon murine model (Fgfr2c342y/+ knock-in mutation) to address a key challenge of delaying post-operative bone regeneration in craniosynostosis. MATERIALS AND METHODS A 3 mm wide circular CSD was created in two murine models of Crouzon syndrome: (i) surgical control (CSDs without TNT/Ti or any protein, n=6) and (ii) experimental groups with TNT/Ti loaded with GPC3, further subdivided into the presence or absence of chitosan coating (on nanotubes) (n=12 in each group). The bone volume percentage in CSDs was assessed 90 days post-implantation using micro-computed tomography (micro-CT) and histological analysis. RESULTS Nano-implants retrieved after 90 days post-operatively depicted well-adhered, hexagonally arranged, and densely packed nanotubes with average diameter of 120±10 nm. The nanotubular architecture was generally well-preserved. Compared with the control bone volume percentage data (without GPC3), GPC3-loaded TNT/Ti without chitosan coating displayed a significantly lower volume percent in cranial CSDs (P<0.001). Histological assessment showed relatively less bone regeneration (healing) in GPC3-loaded CSDs than control CSDs. CONCLUSION The finding of inhibition of cranial bone regeneration by GPC3-loaded TNT/Ti in vivo is an important advance in the novel field of minimally-invasive craniosynostosis therapy and holds the prospect of altering the whole paradigm of treatment for affected children. Future animal studies on a larger sample are indicated to refine the dosage and duration of drug delivery across different ages and both sexes with the view to undertake human clinical trials.
Collapse
Affiliation(s)
- Manpreet Bariana
- Adelaide Dental School, The University of Adelaide, Adelaide, SA5005, Australia
| | - John A Kaidonis
- Adelaide Dental School, The University of Adelaide, Adelaide, SA5005, Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA5005, Australia
| | - Sarbin Ranjitkar
- Adelaide Dental School, The University of Adelaide, Adelaide, SA5005, Australia
| | - Peter J Anderson
- Adelaide Dental School, The University of Adelaide, Adelaide, SA5005, Australia
- Australian Craniofacial Unit
, Adelaide, SA5006, Australia
| |
Collapse
|
23
|
Limjeerajarus CN, Sonntana S, Pajaree L, Kansurang C, Pitt S, Saowapa T, Prasit P. Prolonged release of iloprost enhances pulpal blood flow and dentin bridge formation in a rat model of mechanical tooth pulp exposure. J Oral Sci 2019; 61:73-81. [DOI: 10.2334/josnusd.17-0368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Chalida N. Limjeerajarus
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University
| | - Seang Sonntana
- Graduate School, Oral Biology Program, Faculty of Dentistry, Chulalongkorn University
| | | | | | - Supaphol Pitt
- The Petroleum and Petrochemical College, Chulalongkorn University
| | - Thumsing Saowapa
- The Petroleum and Petrochemical College, Chulalongkorn University
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut University of Technology North
| | - Pavasant Prasit
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University
| |
Collapse
|
24
|
Şenel S, Aksoy EA, Akca G. Application of Chitosan Based Scaffolds for Drug Delivery and Tissue Engineering in Dentistry. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/978-981-13-8855-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Pokrowiecki R. The paradigm shift for drug delivery systems for oral and maxillofacial implants. Drug Deliv 2018; 25:1504-1515. [PMID: 29968496 PMCID: PMC6058499 DOI: 10.1080/10717544.2018.1477855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Along with the development of nanotechnological strategies for biomaterials associated with the prevention of infections, a myriad of clinically unproven techniques have been described to date. In this work, the aim was to perform a critical analysis of the literature available concerning antibacterial biomaterials for oral implantology and to provide a practical derivation for such a purpose. As anti-adhesive strategies may affect osseointegration, they should no longer be recommended for inclusion in this class of biomaterials, despite promising results in biomedical engineering for other, non-bone load bearing organs. Targeted, antibacterial drug delivery is most likely desirable in the case of intraosseous implants. Interfering factors such as the oral cavity environment, saliva, the bacterial microbiome, as well as, the characteristics of the alveolar mucosa and peri-implant space must be taken into account when calculating the local pharmacokinetics for antibacterial coatings. Effective release is crucial for tailoring antibacterial implant longevity providing minimal inhibitory concentration (MIC) for the desired amount of time, which for oral implants, should be at least the cumulative time for the osseointegration period and functional loading period within the tissues. These parameters may differ between the implant type and its anatomical site. Also, the functional drug concentration in the peri-implant space should be calculated as the amount of the drug released from the implant surface including the concentration of the drug inactivated by biological fluids of the peri-implant space or saliva flow throughout the effective release time.
Collapse
Affiliation(s)
- Rafal Pokrowiecki
- Department of Otolaryngology and Ophtalmology, Prof. Stanislaw Popowski Voivoid Children Hospital Department of Head and Neck Surgery – Maxillofacial Surgery, Zołnierska, Olsztyn, Poland
- Private Dental Practice, Poland
| |
Collapse
|
26
|
Application of TiO2
Nanotubes as a Drug Delivery System for Biomedical Implants: A Critical Overview. ChemistrySelect 2018. [DOI: 10.1002/slct.201801459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Stocco TD, Bassous NJ, Zhao S, Granato AEC, Webster TJ, Lobo AO. Nanofibrous scaffolds for biomedical applications. NANOSCALE 2018; 10:12228-12255. [PMID: 29947408 DOI: 10.1039/c8nr02002g] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tissue engineering is an emergent and very interesting research field, providing potential solutions for a myriad of challenges in healthcare. Fibrous scaffolds specifically have shown promise as an effective tissue engineering method, as their high length-to-width ratio mimics that of extracellular matrix components, which in turn guides tissue formation, promotes cellular adhesion and improves mechanical properties. In this review paper, we discuss in detail both the importance of fibrous scaffolds for the promotion of tissue growth and the different methods to produce fibrous biomaterials to possess favorable and unique characteristics. Here, we focus on the pressing need to develop biomimetic structures that promote an ideal environment to encourage tissue formation. In addition, we discuss different biomedical applications in which fibrous scaffolds can be useful, identifying their importance, relevant aspects, and remaining significant challenges. In conclusion, we provide comments on the future direction of fibrous scaffolds and the best way to produce them, proposed in light of recent technological advances and the newest and most promising fabrication techniques.
Collapse
Affiliation(s)
- Thiago D Stocco
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Liu AQ, Hu CH, Jin F, Zhang LS, Xuan K. Contributions of Bioactive Molecules in Stem Cell-Based Periodontal Regeneration. Int J Mol Sci 2018; 19:ijms19041016. [PMID: 29597317 PMCID: PMC5979460 DOI: 10.3390/ijms19041016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
Periodontal disease is a widespread disease, which without proper treatment, may lead to tooth loss in adults. Because stem cells from the inflammatory microenvironment created by periodontal disease exhibit impaired regeneration potential even under favorable conditions, it is difficult to obtain satisfactory therapeutic outcomes using traditional treatments, which only focus on the control of inflammation. Therefore, a new stem cell-based therapy known as cell aggregates/cell sheets technology has emerged. This approach provides sufficient numbers of stem cells with high viability for treating the defective site and offers new hope in the field of periodontal regeneration. However, it is not sufficient for regenerating periodontal tissues by delivering cell aggregates/cell sheets to the impaired microenvironment in order to suppress the function of resident cells. In the present review, we summarize some promising bioactive molecules that act as cellular signals, which recreate a favorable microenvironment for tissue regeneration, recruit endogenous cells into the defective site and enhance the viability of exogenous cells.
Collapse
Affiliation(s)
- An-Qi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
| | - Cheng-Hu Hu
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
| | - Fang Jin
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Li-Shu Zhang
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
29
|
Garzón I, Serrato D, Roda O, Del Carmen Sánchez-Quevedo M, González-Jaranay M, Moreu G, Nieto-Aguilar R, Alaminos M, Campos A. In vitro Cytokeratin Expression Profiling of Human Oral Mucosa Substitutes Developed by Tissue Engineering. Int J Artif Organs 2018; 32:711-9. [DOI: 10.1177/039139880903201002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this work we performed a study of cytokeratin (CK) expression profiling on human artificial oral mucosa developed in vitro by tissue engineering at different stages of maturation (from immature to well-developed stages) at the protein and mRNA levels. Human artificial oral mucosa was generated in the laboratory using fibrin-agarose biomaterials. As controls, we used human native normal oral mucosa and embryonic oral tissues. Our results demonstrated that human embryonic oral tissues tended to express CK8 and CK19. In contrast, monolayered bioengineered oral mucosa did not show any CK expression by immunohistochemistry whereas bilayered and multilayered artificial oral mucosa showed several markers of stratified epithelia, but did not express CK10. These results suggest that the CK expression pattern is strongly dependent on the maturation state of the artificial tissues and that the CK expression profile of our model of artificial oral mucosa was partially similar to that of the non-keratinized human adult oral mucosa. However, the expression of CK8 by the artificial oral mucosa suggests that these samples correspond to an early stage of development while kept in vitro.
Collapse
Affiliation(s)
- Ingrid Garzón
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada - Spain
| | - Deyanira Serrato
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada - Spain
| | - Olga Roda
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada - Spain
| | | | - Maximino González-Jaranay
- Department of Stomatology, Faculty of Dentistry, University of Granada, Cartuja Campus, Granada - Spain
| | - Gerardo Moreu
- Department of Stomatology, Faculty of Dentistry, University of Granada, Cartuja Campus, Granada - Spain
| | - Renato Nieto-Aguilar
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada - Spain
| | - Miguel Alaminos
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada - Spain
| | - Antonio Campos
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada - Spain
| |
Collapse
|
30
|
Gelli R, Del Buffa S, Tempesti P, Bonini M, Ridi F, Baglioni P. Enhanced formation of hydroxyapatites in gelatin/imogolite macroporous hydrogels. J Colloid Interface Sci 2017; 511:145-154. [PMID: 29017100 DOI: 10.1016/j.jcis.2017.09.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
HYPOTHESIS Gelatin is widely investigated for the fabrication of synthetic scaffolds in bone tissue engineering. Practical limitations to its use are mainly due to the fast dissolution rate in physiological conditions and to the lack of pores with suitable dimensions for cell permeation. The aim of this work is to exploit imogolite clays as nucleation sites for the growth of calcium phosphates in gelatin-based hydrogels and to take advantage of a cryogenic treatment to obtain pores of ∼100µm. EXPERIMENTS We evaluated the effect of imogolites and a biocompatible cross-linker on the gelatin network in terms of morphology, thermal and rheological behavior. The hydrogels were cryogenically-treated and characterized to investigate the modification of the polymer network, both at the micro- and nano-scale. The samples were mineralized to investigate the effect of imogolites on the formation of calcium phosphates. FINDINGS The interaction between gelatin, imogolite and cross-linker leads to the modification of the hydrogel structure at the micro-scale, while minor effects are detected at the nano-scale. The cryogenic procedure is successful in generating pores with the desired size, while the presence of imogolites in the hydrogel promotes hydroxyapatites formation. These results demonstrate that imogolites can be effectively employed as functional fillers in polymer-based scaffolds.
Collapse
Affiliation(s)
- Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Stefano Del Buffa
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Paolo Tempesti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Massimo Bonini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
31
|
Glypican-based drug releasing titania implants to regulate BMP2 bioactivity as a potential approach for craniosynostosis therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017. [PMID: 28648641 DOI: 10.1016/j.nano.2017.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Advances in molecular biology and nanomedicine based therapies hold promise to obviate the need of multiple surgical interventions (associated with current management) in craniosynostosis by preventing bone re-ossification. One such adjunctive therapy involves application of glypicans 1 and 3 (GPC1 and GPC3) that are BMP inhibitors implicated in downregulating the BMP2 activity in prematurely fusing sutures. Electrochemically anodized Titania nanotube (TNT) arrays have been recognized as a promising localized, long-term drug delivery platform for bone-related therapies. This study presents the application of nanoengineered TNT/Ti implants loaded with recombinant glypicans for craniosynostosis therapy. By using Dual luciferase Reporter assay, we tested the biofunctionality of eluted glypicans from the TNT/Ti implants for BMP2 bioactivity regulation in C2C12 murine myoblast cell line. BMP2 activity was inhibited significantly for up to 15days by the glypicans released from polymer-coated TNT/Ti implants, indicating their potential application in adjunctive craniosynostosis treatment.
Collapse
|
32
|
Biological response of human suture mesenchymal cells to Titania nanotube-based implants for advanced craniosynostosis therapy. Colloids Surf B Biointerfaces 2017; 150:59-67. [DOI: 10.1016/j.colsurfb.2016.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 11/12/2016] [Accepted: 11/16/2016] [Indexed: 01/13/2023]
|
33
|
Islam MT, Felfel RM, Abou Neel EA, Grant DM, Ahmed I, Hossain KMZ. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review. J Tissue Eng 2017; 8:2041731417719170. [PMID: 28794848 PMCID: PMC5524250 DOI: 10.1177/2041731417719170] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/15/2017] [Indexed: 01/15/2023] Open
Abstract
An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.
Collapse
Affiliation(s)
- Md Towhidul Islam
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Reda M Felfel
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ensanya A Abou Neel
- Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- Biomaterials and Tissue Engineering Division, Eastman Dental Institute, University College London, London, UK
| | - David M Grant
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Kazi M Zakir Hossain
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| |
Collapse
|
34
|
Bakopoulou A, Leyhausen G, Geurtsen W, Koidis P. Dental Tissue Engineering Research and Translational Approaches towards Clinical Application. ORAL HEALTHCARE AND TECHNOLOGIES 2017:186-220. [DOI: 10.4018/978-1-5225-1903-4.ch004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Stem cell-based dental tissue regeneration is a new and exciting field that has the potential to transform the way that we practice dentistry. It is, however, imperative its clinical application is supported by solid basic and translational research. In this way, the full extent of the potential risks involved in the use of these technologies will be understood, and the means to prevent them will be discovered. Therefore, the aim of this chapter is to analyze the state-of-the-science with regard to dental pulp stem cell research in dental tissue engineering, the new developments in biomimetic scaffold materials customized for dental tissue applications, and to give a prospectus with respect to translational approaches of these research findings towards clinical application.
Collapse
|
35
|
Wang Q, Huang JY, Li HQ, Chen Z, Zhao AZJ, Wang Y, Zhang KQ, Sun HT, Al-Deyab SS, Lai YK. TiO 2 nanotube platforms for smart drug delivery: a review. Int J Nanomedicine 2016; 11:4819-4834. [PMID: 27703349 PMCID: PMC5036548 DOI: 10.2147/ijn.s108847] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.
Collapse
Affiliation(s)
- Qun Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People’s Republic of China
| | - Jian-Ying Huang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
| | - Hua-Qiong Li
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Allan Zi-Jian Zhao
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Yi Wang
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
| | - Hong-Tao Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People’s Republic of China
| | - Salem S Al-Deyab
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yue-Kun Lai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
| |
Collapse
|
36
|
Bae H, Lee J. Assembly of particle-fiber composites by electrohydrodynamic jetting using counter-charged nozzles: Independent release control. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Colombo JS, Moore AN, Hartgerink JD, D'Souza RN. Scaffolds to control inflammation and facilitate dental pulp regeneration. J Endod 2016; 40:S6-12. [PMID: 24698696 DOI: 10.1016/j.joen.2014.01.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In dentistry, the maintenance of a vital dental pulp is of paramount importance because teeth devitalized by root canal treatment may become more brittle and prone to structural failure over time. Advanced carious lesions can irreversibly damage the dental pulp by propagating a sustained inflammatory response throughout the tissue. Although the inflammatory response initially drives tissue repair, sustained inflammation has an enormously destructive effect on the vital pulp, eventually leading to total necrosis of the tissue and necessitating its removal. The implications of tooth devitalization have driven significant interest in the development of bioactive materials that facilitate the regeneration of damaged pulp tissues by harnessing the capacity of the dental pulp for self-repair. In considering the process by which pulpitis drives tissue destruction, it is clear that an important step in supporting the regeneration of pulpal tissues is the attenuation of inflammation. Macrophages, key mediators of the immune response, may play a critical role in the resolution of pulpitis because of their ability to switch to a proresolution phenotype. This process can be driven by the resolvins, a family of molecules derived from fatty acids that show great promise as therapeutic agents. In this review, we outline the importance of preserving the capacity of the dental pulp to self-repair through the rapid attenuation of inflammation. Potential treatment modalities, such as shifting macrophages to a proresolving phenotype with resolvins are described, and a range of materials known to support the regeneration of dental pulp are presented.
Collapse
Affiliation(s)
- John S Colombo
- School of Dentistry, University of Utah, Salt Lake City, Utah; Department of Chemistry and Bioengineering, Rice University, Houston, Texas
| | - Amanda N Moore
- Department of Chemistry and Bioengineering, Rice University, Houston, Texas
| | | | - Rena N D'Souza
- School of Dentistry, University of Utah, Salt Lake City, Utah. RD'
| |
Collapse
|
38
|
Chieruzzi M, Pagano S, Moretti S, Pinna R, Milia E, Torre L, Eramo S. Nanomaterials for Tissue Engineering In Dentistry. NANOMATERIALS 2016; 6:nano6070134. [PMID: 28335262 PMCID: PMC5224610 DOI: 10.3390/nano6070134] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/04/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023]
Abstract
The tissue engineering (TE) of dental oral tissue is facing significant changes in clinical treatments in dentistry. TE is based on a stem cell, signaling molecule, and scaffold triad that must be known and calibrated with attention to specific sectors in dentistry. This review article shows a summary of micro- and nanomorphological characteristics of dental tissues, of stem cells available in the oral region, of signaling molecules usable in TE, and of scaffolds available to guide partial or total reconstruction of hard, soft, periodontal, and bone tissues. Some scaffoldless techniques used in TE are also presented. Then actual and future roles of nanotechnologies about TE in dentistry are presented.
Collapse
Affiliation(s)
- Manila Chieruzzi
- Department of Civil and Environmental Engineering-UdR INSTM-University of Perugia, Strada di Pentima, 4-05100 Terni, Italy.
| | - Stefano Pagano
- Department of Surgical and Biomedical Sciences-University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| | - Silvia Moretti
- Department of Experimental Medicine-University of Perugia Polo Unico Sant'Andrea delle Fratte, 06132 Perugia, Italy.
| | - Roberto Pinna
- Department of Biomedical Science-University of Sassari viale San Pietro 43/C -07100 Sassari, Italy.
| | - Egle Milia
- Department of Biomedical Science-University of Sassari viale San Pietro 43/C -07100 Sassari, Italy.
| | - Luigi Torre
- Department of Civil and Environmental Engineering-UdR INSTM-University of Perugia, Strada di Pentima, 4-05100 Terni, Italy.
| | - Stefano Eramo
- Department of Surgical and Biomedical Sciences-University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| |
Collapse
|
39
|
Abstract
Temporomandibular Disorders (TMD) represent a heterogeneous group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles and/or associated structures. They are a major cause of non-dental orofacial pain. As a group, they are often multi-factorial in nature and have no common etiology or biological explanations. TMD can be broadly divided into masticatory muscle and TMJ disorders. TMJ disorders are characterized by intra-articular positional and/or structural abnormalities. The most common type of TMJ disorders involves displacement of the TMJ articular disc that precedes progressive degenerative changes of the joint leading to osteoarthritis (OA). In the past decade, progress made in the development of stem cell-based therapies and tissue engineering have provided alternative methods to attenuate the disease symptoms and even replace the diseased tissue in the treatment of TMJ disorders. Resident mesenchymal stem cells (MSCs) have been isolated from the synovia of TMJ, suggesting an important role in the repair and regeneration of TMJ. The seminal discovery of pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have provided promising cell sources for drug discovery, transplantation as well as for tissue engineering of TMJ condylar cartilage and disc. This review discusses the most recent advances in development of stem cell-based treatments for TMJ disorders through innovative approaches of cell-based therapeutics, tissue engineering and drug discovery.
Collapse
|
40
|
Regenerative Engineering in Maxillofacial Reconstruction. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2016. [DOI: 10.1007/s40883-016-0009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Leong DJX, Setzer FC, Trope M, Karabucak B. Biocompatibility of two experimental scaffolds for regenerative endodontics. Restor Dent Endod 2016; 41:98-105. [PMID: 27200277 PMCID: PMC4868884 DOI: 10.5395/rde.2016.41.2.98] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/18/2016] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES The biocompatibility of two experimental scaffolds for potential use in revascularization or pulp regeneration was evaluated. MATERIALS AND METHODS One resilient lyophilized collagen scaffold (COLL), releasing metronidazole and clindamycin, was compared to an experimental injectable poly(lactic-co-glycolic) acid scaffold (PLGA), releasing clindamycin. Human dental pulp stem cells (hDPSCs) were seeded at densities of 1.0 × 10(4), 2.5 × 10(4), and 5.0 × 10(4). The cells were investigated by light microscopy (cell morphology), MTT assay (cell proliferation) and a cytokine (IL-8) ELISA test (biocompatibility). RESULTS Under microscope, the morphology of cells coincubated for 7 days with the scaffolds appeared healthy with COLL. Cells in contact with PLGA showed signs of degeneration and apoptosis. MTT assay showed that at 5.0 × 10(4) hDPSCs, COLL demonstrated significantly higher cell proliferation rates than cells in media only (control, p < 0.01) or cells co-incubated with PLGA (p < 0.01). In ELISA test, no significant differences were observed between cells with media only and COLL at 1, 3, and 6 days. Cells incubated with PLGA expressed significantly higher IL-8 than the control at all time points (p < 0.01) and compared to COLL after 1 and 3 days (p < 0.01). CONCLUSIONS The COLL showed superior biocompatibility and thus may be suitable for endodontic regeneration purposes.
Collapse
Affiliation(s)
- Dephne Jack Xin Leong
- Faculty of Dentistry, National University of Singapore, and University Dental Cluster (Endodontics), National University Hospital Singapore, Singapore, Singapore
| | - Frank C Setzer
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin Trope
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bekir Karabucak
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Jazayeri HE, Fahmy MD, Razavi M, Stein BE, Nowman A, Masri RM, Tayebi L. Dental Applications of Natural-Origin Polymers in Hard and Soft Tissue Engineering. J Prosthodont 2016; 25:510-7. [DOI: 10.1111/jopr.12465] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hossein E. Jazayeri
- University of Pennsylvania School of Dental Medicine; Philadelphia PA
- Marquette University School of Dentistry; Milwaukee WI
| | - Mina D. Fahmy
- Marquette University School of Dentistry; Milwaukee WI
| | - Mehdi Razavi
- BCAST, Institute of Materials and Manufacturing; Brunel University London; Uxbridge London UK
- Brunel Institute for Bioengineering; Brunel University London; Uxbridge London UK
| | - Brett E. Stein
- University of Pennsylvania School of Dental Medicine; Philadelphia PA
| | - Aatif Nowman
- Marquette University School of Dentistry; Milwaukee WI
| | - Radi M. Masri
- Department of Endodontics, Prosthodontics and Operative Dentistry; University of Maryland School of Dentistry; Baltimore MD
| | - Lobat Tayebi
- Marquette University School of Dentistry; Milwaukee WI
- Department of Engineering Science; University of Oxford; Oxford UK
| |
Collapse
|
43
|
Ivanovic J, Knauer S, Fanovich A, Milovanovic S, Stamenic M, Jaeger P, Zizovic I, Eggers R. Supercritical CO 2 sorption kinetics and thymol impregnation of PCL and PCL-HA. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Li S, Hu J, Zhang G, Qi W, Zhang P, Li P, Zeng Y, Zhao W, Tan Y. Extracellular Ca2+ Promotes Odontoblastic Differentiation of Dental Pulp Stem Cells via BMP2-Mediated Smad1/5/8 and Erk1/2 Pathways. J Cell Physiol 2015; 230:2164-73. [PMID: 25656933 DOI: 10.1002/jcp.24945] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/23/2015] [Indexed: 01/09/2023]
Abstract
Ca(2+) is the main element of many pulp capping materials that are used to promote the regeneration of tertiary dentin, but the underlying molecular mechanism is not clear. In this study, we found that Ca(2+) increased the expression of the odontoblastic differentiation marker gene DSPP and promoted odontoblastic differentiation and mineralization of DPSCs, but inhibited ALP activity. Ca(2+) increases the expression of endogenous BMP2, which activates the Smad1/5/8 pathway and promotes the Smad1-Runx2 and Runx2-DSPP interaction in DPSCs. Inhibition of Smad1/5/8 with dorsomorphin partially blocked Runx2 activity; however, inhibition of the BMP2 receptor with Noggin nearly fully suppressed Runx2 activity. These results indicate that Ca(2+) promotes cell differentiation mainly via BMP2-mediated Smad-dependent and Smad-independent pathways. We then determined that the phosphorylation level of Erk1/2, but not JNK or p38, was significantly increased as a result of Ca(2+) stimulation. Blockage of Erk1/2 was found to inhibit Runx2 activity, indicating that Ca(2+) triggers the Erk1/2 pathway, which subsequently regulates Runx2 activity. In addition, inhibition of Erk1/2 differentially attenuated the phosphorylation levels of Smad1/5/8 and Smad2/3. Collectively, this study demonstrates that Ca(2+) activates the BMP2-mediated Smad1/5/8 and Erk1/2 pathways in DPSCs and that Smad1/5/8 and Erk1/2 signaling converge at Runx2 to control the odontoblastic differentiation of DPSCs.
Collapse
Affiliation(s)
- Shiting Li
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jing Hu
- Department of Stomatology, General Hospital of Beijing Military Command, Beijing, China
| | - Gang Zhang
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wei Qi
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ping Zhang
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Pengfei Li
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yong Zeng
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wenfeng Zhao
- Department of Stomatology, General Hospital of Beijing Military Command, Beijing, China
| | - Yinghui Tan
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
45
|
Gulati K, Kogawa M, Maher S, Atkins G, Findlay D, Losic D. Titania Nanotubes for Local Drug Delivery from Implant Surfaces. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20346-1_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Beavers KR, Nelson CE, Duvall CL. MiRNA inhibition in tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2015; 88:123-37. [PMID: 25553957 PMCID: PMC4485980 DOI: 10.1016/j.addr.2014.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/25/2014] [Accepted: 12/20/2014] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that provide an endogenous negative feedback mechanism for translation of messenger RNA (mRNA) into protein. Single miRNAs can regulate hundreds of mRNAs, enabling miRNAs to orchestrate robust biological responses by simultaneously impacting multiple gene networks. MiRNAs can act as master regulators of normal and pathological tissue development, homeostasis, and repair, which has motivated expanding efforts toward the development of technologies for therapeutically modulating miRNA activity for regenerative medicine and tissue engineering applications. This review highlights the tools currently available for miRNA inhibition and their recent therapeutic applications for improving tissue repair.
Collapse
Affiliation(s)
- Kelsey R Beavers
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Craig L Duvall
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
47
|
Bansal R, Jain A, Mittal S. Current overview on challenges in regenerative endodontics. J Conserv Dent 2015; 18:1-6. [PMID: 25657518 PMCID: PMC4313471 DOI: 10.4103/0972-0707.148861] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/29/2014] [Accepted: 10/23/2014] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Regenerative endodontics provides hope of converting the non-vital tooth into vital once again. It focuses on substituting traumatized and pathological pulp with functional pulp tissue. Current regenerative procedures successfully produce root development but still fail to re-establish real pulp tissue and give unpredictable results. There are several drawbacks that need to be addressed to improve the quality and efficiency of the treatment. AIM The aim of this review article is to discuss major priorities that ought to be dealt before applications of regenerative endodontics flourish the clinical practice. MATERIALS AND METHODS A web-based research on MEDLINE was done using filter terms Review, published in the last 10 years and Dental journals. Keywords used for research were "regenerative endodontics," "dental stem cells," "growth factor regeneration," "scaffolds," and "challenges in regeneration." This review article screened about 150 articles and then the relevant information was compiled. RESULTS Inspite of the impressive growth in regenerative endodontic field, there are certain loopholes in the existing treatment protocols that might sometimes result in undesired and unpredictable outcomes. CONCLUSION Considerable research and development efforts are required to improve and update existing regenerative endodontic strategies to make it an effective, safe, and biological mode to save teeth.
Collapse
Affiliation(s)
- Ramta Bansal
- Department of Conservative Dentistry and Endodontics, Institute of Dental Sciences, Sehora, Jammu and Kashmir, India
| | - Aditya Jain
- Department of Physiology, Government Medical College, Patiala, India
| | - Sunandan Mittal
- Department of Conservative Dentistry and Endodontics, Dasmesh Institute of Research and Dental Sciences, Faridkot, Punjab, India
| |
Collapse
|
48
|
Hashemi ZS, Moghadam MF, Soleimani M. Comparison of TGFbR2 down-regulation in expanded HSCs on MBA/DBM scaffolds coated by UCB stromal cells. In Vitro Cell Dev Biol Anim 2014; 51:495-506. [DOI: 10.1007/s11626-014-9854-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 11/30/2014] [Indexed: 01/27/2023]
|
49
|
Losic D, Aw MS, Santos A, Gulati K, Bariana M. Titania nanotube arrays for local drug delivery: recent advances and perspectives. Expert Opin Drug Deliv 2014; 12:103-27. [DOI: 10.1517/17425247.2014.945418] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Tarafder S, Bose S. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9955-65. [PMID: 24826838 PMCID: PMC4095936 DOI: 10.1021/am501048n] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 05/14/2014] [Indexed: 05/18/2023]
Abstract
The aim of this work was to evaluate the effect of in vitro alendronate (AD) release behavior through polycaprolactone (PCL) coating on in vivo bone formation using PCL-coated 3D printed interconnected porous tricalcium phosphate (TCP) scaffolds. Higher AD and Ca(2+) ion release was observed at lower pH (5.0) than that at higher pH (7.4). AD and Ca(2+) release, surface morphology, and phase analysis after release indicated a matrix degradation dominated AD release caused by TCP dissolution. PCL coating showed its effectiveness for controlled and sustained AD release. Six different scaffold compositions, namely, (i) TCP (bare TCP), (ii) TCP + AD (AD-coated TCP), (iii) TCP + PCL (PCL-coated TCP), (iv) TCP + PCL + AD, (v) TCP + AD + PCL, and (vi) TCP + AD + PCL + AD were tested in the distal femoral defect of Sprague-Dawley rats for 6 and 10 weeks. An excellent bone formation inside the micro and macro pores of the scaffolds was observed from histomorphology. Histomorphometric analysis revealed maximum new bone formation in TCP + AD + PCL scaffolds after 6 weeks. No adverse effect of PCL on bioactivity of TCP and in vivo bone formation was observed. All scaffolds with AD showed higher bone formation and reduced TRAP (tartrate resistant acid phosphatase) positive cells activity compared to bare TCP and TCP coated with only PCL. Bare TCP scaffolds showed the highest TRAP positive cells activity followed by TCP + PCL scaffolds, whereas TCP + AD scaffolds showed the lowest TRAP activity. A higher TRAP positive cells activity was observed in TCP + AD + PCL compared to TCP + AD scaffolds after 6 weeks. Our results show that in vivo local AD delivery from PCL-coated 3DP TCP scaffolds could further induce increased early bone formation.
Collapse
|